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Abstract

Historically, mathematics has often been regarded as a role model for all of science – a paragon
of abstraction, logical precision, and objectivity. The 19th and early 20th centuries saw tremendous
progress. The great mathematician David Hilbert proposed a sweeping program whereby the entire
panorama of higher mathematical abstractions would be justified objectively and logically, in terms of
finite processes. But then in 1931 the great logician Kurt Gödel published his famous incompleteness
theorems, leading to an era of confusion and skepticism. In this talk I show how modern foundational
research has opened a new path toward objectivity and optimism in mathematics.

This is the text of a lecture for the general public, delivered at the National University of Singapore in
2016. Figure 1 is a publicity poster, and the slides for the lecture are included as Figures 1 through 12.

* * *
Good evening to all. Basically I am a mathematics professor, and my task this evening is to explain

something about my research area, mathematical logic and foundations of mathematics.
Throughout history, mathematics and logic have been regarded not only as indispensable components of

most other sciences, but also as role models for all of science – the most objective and logically perfect of all
the sciences. For these reasons, scientists throughout history have thought that it is particularly important to
understand the logical structure of mathematics. And that is the need which my research area seeks to fulfill.
Foundations of mathematics is the study of the most basic concepts and logical structure of mathematics.

Of course, mathematics is an ancient science which has evolved and continues to evolve over time. And
it may be hard to believe, but throughout history there have been a number of foundational crises – times
when there was severe doubt about the logical basis of mathematics. What I want to do here is to explore one
of the issues which have dominated foundational research. The issue in question is centered on the concept
of infinity.

I begin with a quotation from the greatest mathematician of the early 20th century, David Hilbert. See
Figure 2.

“The infinite! No other question has ever moved so profoundly the spirit of man.”

This ringing statement was the beginning of Hilbert’s profound essay “On the infinite.” See Reference [8].
Hilbert was a great mathematician, but why did he say this? Surely there are many finite things that move
us profoundly, such as our families and our careers. What is so moving about the infinite? Let me return to
this question later, after giving you some background concerning the infinite and its role in mathematics.
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Abstract  

Historically, mathematics has been regarded as a role model for all of 

science -- a paragon of abstraction, logical precision, and objectivity.  

The 19th and early 20th centuries saw tremendous progress. The great 

mathematician David Hilbert proposed a sweeping program whereby 

the entire panorama of higher mathematical abstractions would be 

justified objectively and logically, in terms of finite processes. But then 

in 1931 the great logician Kurt Gödel published his famous 

incompleteness theorems, thus initiating an era of confusion and 

skepticism.  In this talk I show how modern foundational research has 

opened a new path toward objectivity and optimism in mathematics. 

"Objective concepts of 
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work in logic."  
-- Kurt Gödel (1906-1978) 
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Figure 1: Public lecture at the National University of Singapore
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“The infinite! No other question has ever moved so profoundly the spirit of man.”

Figure 2: David Hilbert (1862–1943)

Hilbert’s essay “On the infinite” was a mature and definitive statement of his plan to place mathematics
on a firm, solid, objective, logical foundation. But why was there even a need for such a foundation? After all,
mathematics is normally regarded as the most basic, most certain, most logically perfect of all the sciences.
Mathematics is the science of measurement and quantity, and as the science of measurement and quantity,
it is an essential component of all of the hard sciences.

Furthermore, beyond its role in the hard sciences, mathematics has often been viewed as an excellent
laboratory for intellectual training. Among the ancient Greek thinkers such as Plato, rigorous training in
mathematics was regarded as an indispensable prerequisite for all serious intellectual activity. Above the
gateway entrance to Plato’s Academy was inscribed the phrase “Let none but geometers enter here.” This
widely accepted story is perhaps unverifiable, but at the same time it is certainly true in spirit. The point is
that mathematics, perhaps moreso than other sciences, deals in powerful but precisely defined abstractions.
By developing our ability to handle mathematical abstractions correctly, we also develop our ability to handle
abstractions in other areas such as philosophy, law, politics, and even ethics.

So again, in an era when mathematics was flourishing and making great strides in many directions, why
were great mathematicians such as Hilbert concerned about the foundations of mathematics, i.e., the most
basic concepts and logical structure of mathematics? Why did they feel a need to shore up the foundations?

The answer is that, even as mathematics was flowering, some of the newer and more abstract mathematical
abstractions became, well, a little bit hard to swallow. These new abstractions seemed to be more and more
remote from observable reality, and this made mathematical practitioners uneasy. There was a real and
growing concern that mathematics may have moved into some sort of “twilight zone.”

Actually, this kind of unease had a precedent in ancient Greece. More than 2500 years ago, the philo-
sophical school of Pythagoras was obsessed with pure numbers. But consider for example the abstraction
of a geometrical square. Clearly, the ratio of the diagonal of the square to any one of the four sides of the
square is a pure number, independent of the physical lengths of the diagonal or of the sides. This number
is now known as

√
2, the square root of 2. It is the unique positive number which, when multiplied by

itself, gives exactly 2. See Figure 3. For a long period of time, it was believed that each and every pure
number could be described as a ratio of whole numbers, for example the ratio 7 divided by 5, or the ratio
99 divided by 70. However, the Pythagoreans were horrified to discover that this is not the case. In fact,
they discovered that the square root of 2 can never be described exactly as the ratio of two whole numbers.
It is approximated rather well as the ratio 99 divided by 70, and it is approximated even better as the ratio
665857 divided by 470832. But the Pythagoreans proved that there is no way to express

√
2 exactly as a

ratio a divided by b where a and b are whole numbers, no matter how large a and b are. In other words,
√

2
was the first example of what is now called an irrational number. The Pythagoreans viewed this discovery as
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Figure 3: The square root of 2.

horrifying and subversive. For a significant amount of time they tried to keep the irrationality of
√

2 hidden
as a deep, dark, esoteric secret, known only among their own exclusive group. Historically we may say that
the discovery of the irrationality of

√
2 led to the first major crisis in the foundations of mathematics.

Moving forward through history, there has been a sequence of higher and higher mathematical abstrac-
tions, more and more remote from real-world measurements and real-world quantities. Even in the realm of
numbers, the names chosen for these new classes of numbers give a hint of the kind of tension that has al-
ways existed in mathematics and science, between the abstract and the concrete. The very phrase irrational
number may be viewed as an arrogant challenge to the power of reason and science. And far beyond the
irrational numbers, 19th and 20th century mathematicians have introduced ever-more-remote abstractions
such as the transcendental numbers, the imaginary numbers, the complex numbers, the transfinite ordinal
numbers, the uncountable cardinal numbers, the inaccessible numbers, the hyperinaccessible numbers, the
ineffable numbers, etc. Each of these advances met with considerable resistance when it was first introduced.
Note also that each of these classes of numbers involves an appeal to the infinite. For instance, the decimal
expansion of

√
2 is an infinite and nonrepeating sequence of digits,

1.41421356237309504880168872420969807856967187537694807317667973799 . . . .

And the other kinds of abstract numbers which I just mentioned involve infinities which are even more
extreme.

Throughout history, the tension between the abstract versus the concrete, or the infinite versus the
finite, has been been pondered deeply. This tension is depicted graphically in a famous fresco, known as
“The School of Athens,” by the Italian Renaissance artist Raphael. See Figures 4 and 5. In this 16th
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Figure 4: The School of Athens (about 360 B.C.), by Raphael (1483–1520).

century masterpiece, Raphael depicts the two masters of ancient Greek philosophy, Plato and Aristotle,
walking among their Athenian colleagues and debating the nature of the infinite and its relationship to the
finite. Plato is pointing upward, toward the heavens, while Aristotle is spreading his hand powerfully and
benevolently over the earth. This painting by Raphael is often regarded as the perfect embodiment of the
classical spirit of the Renaissance. In the context of Raphael’s fresco, Hilbert’s statement about the spirit
of man may be more readily understood.

Aristotle is arguably the greatest philosopher of all time. His major work on the philosophy of existence
is known as the Metaphysics. The Metaphysics is a massive tome, hundreds of pages long. The purpose of
the Metaphysics is to answer the most profound questions about the nature of existence. A typical question
discussed in the Metaphysics is, do abstractions exist in reality, or only in the human mind? As part of
the Metaphysics, Aristotle includes a highly nuanced and thorough discussion of the nature of mathematical
existence. Books M and N of the Metaphysics are the first-ever treatise on the philosophy of mathematics.
See Reference [1].

As part of Books M and N of the Metaphysics, Aristotle fashions a grand compromise between the
infinite and the finite. This grand compromise depends on a crucial distinction between two kinds of infinity:
potential infinity versus actual infinity.

Potential infinity is the kind of infinity associated with a process that can be repeated or continued
indefinitely. Many processes of this kind can be observed in reality. For instance, there is the earth turning
on its axis, the planets revolving around the sun, the march of time, the motion of a body in outer space, the
cycle of generations, the accumulation of wealth, the accumulation of knowledge, etc. Each of these processes
is perfectly capable of repeating or continuing, without any forseeable limit. There are many examples of
potential infinity in mathematics. The most important example is the potentially infinite sequence of whole
numbers, 1, 2, 3, 4, 5, 6, 7, dot dot dot. Another example is a potentially infinite sequence of smaller and
smaller rational numbers, for example 1, 1/2, 1/4, 1/8, 1/16, 1/32, dot dot dot. Yet another example is the
potentially infinite sequence of decimal approximations to the square root of 2, namely 1 point 4 1 4 2 1 3 5
dot dot dot. The process of computing more and more decimal digits of the square root of 2 can be continued
indefinitely. All of these potential infinities in mathematics play an important role in our understanding of
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Figure 5: Plato and Aristotle (about 360 B.C.)

real-world phenomena.
Actual infinity is another kind of infinity, standing in contrast to potential infinity. An actual infinity is a

completed infinite totality, with emphasis on the word completed. As a mathematical example, imagine that
we have just now finished enumerating the entire sequence of all the whole numbers, and then imagine that
we pause to look backward over the entire sequence. This stopping point is sometimes denoted by the symbol
ω, because ω (pronounced “omega”) is the last letter of the Greek alphabet. In abstract mathematics, the
symbol ω denotes an actual infinity, a completed infinite totality. The symbol ω may be viewed, and often
is viewed, as standing for the collection of all whole numbers, all gathered together into one infinite basket.

The philosophical question at issue here is:

Which kinds of infinity have an objective existence?

Do potential infinities exist objectively? Do actual infinities exist objectively? Aristotle comes down on the
side of a rather compelling philosophical position. The Aristotelean position may be called finitism, but
it is really a compromise between the finite and the infinite. According to Aristotelean finitism, potential
infinities are part of objective existence, but actual infinities are not.

Over the centuries, many thinkers have agreed with Aristotle’s finitism, simply because in observable
reality there are many obvious examples of potential infinity, but there are no convincing examples of actual
infinity. On the other hand, there have also been many non-finitistic thinkers who profoundly disagreed
with Aristotle. Some of them have endorsed a great variety of actual infinities, typically on the grounds
that these actual infinities exist as an important component of theological, philosophical, or mathematical
thought. As a possible response to these non-finitist thinkers, we “hard-headed realists” could note that
existence-in-thought is different from the kind of objective existence which Aristotle was analyzing.

While we are at it, let me note that a great majority of contemporary mathematical practitioners are
indifferent to philosophical questions such as potential infinity versus actual infinity. They wish only to carry
on with their day-to-day mathematical work, extending current mathematical paradigms and unencumbered
by philosophical issues.
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We have been dwelling on ancient Greece, and especially Aristotle’s finitism. And again I want to stress
that Aristotle’s finitism does not reject all infinities. Rather, Aristotle’s finitism fully accepts the concept of
potential infinity, while at the same time rejecting the concept of actual infinity.

But now let us fast-forward to the late 19th and early 20th centuries. During this relatively modern
period of history, mathematics was undergoing a great expansion in all directions: differential equations,
geometry, number theory, algebra, etc. And as part of this tremendous flowering of mathematics, great
strides were being made in the direction of mathematical rigor and logical precision. The work of Cauchy,
Weierstrass, Dedekind, Peano, Frege, Cantor, Russell, Whitehead, and Zermelo cleared the way toward a
perfect logical framework for all of mathematics. A landmark was the treatise of Hilbert and his assistant
Ackermann. Hilbert and Ackermann presented an elegant and completely symbolic formulation of the logical
axioms and rules for what is now known as the predicate calculus. Even though digital computers did not
yet exist, it was in some sense clear that mathematics and perhaps many other scientific disciplines could in
principle be completely formalized, i.e., programmed for digital computers.

Later in the 20th century, levels of mathematical abstraction continued to increase rapidly, with a great
variety of actual infinities. Consequently, due in part to the non-objective nature of these actual infinities,
there were nagging and sometimes massive doubts about the validity of mathematics. The philosopher
Russell famously characterized mathematics as “the science in which we never know what we are talking
about, nor whether what we say is true.” The mathematical physicist Wigner declared that there is no
rational explanation for the usefulness of mathematics in the physical sciences. The mathematician Morris
Kline published an influential popular book entitled “Mathematics: the loss of certainty.” None of these
scientists were viewed as enemies of mathematics. They were viewed as merely raising legitimate doubts
about the validity of mathematics.

Highlighting a key step in this loss of certainty in mathematics, I want to say something about the ideas
of great mathematician David Hilbert and the great logician Kurt Gödel. See Figures 2 and 6.

“Objective concepts of mathematics are fundamental to my work in logic.”

Figure 6: Kurt Gödel (1906–1978)

Concerning our question about Aristotle’s finitism, Hilbert had already made dramatic use of non-finitistic
methods early in his career, in his work in a branch of algebra called invariant theory. Other finitistically-
minded mathematicians criticized Hilbert’s method. For instance, the mathematician Gordan said that
Hilbert’s work in this area was not mathematics but rather theology. Later, at the peak of his career,
Hilbert argued forcefully for the acceptance of actual infinities in mathematics. “Noone shall expel us from
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Figure 7: Hilbert’s Program (1926):

Using the tools of mathematical logic, Hilbert proposed to prove that
all of mathematics, including the non-finitistic parts of mathematics, is
reducible to purely finitistic mathematics. In this way, the objectivity of
mathematics would be confirmed.

Figure 8: Gödel’s refutation of Hilbert’s Program (1931):

Gödel used mathematical logic to prove that some parts of non-finitistic
mathematics are not reducible to finitistic mathematics. This includes
the “medium” and “strong” levels of the Gödel hierarchy. Thus, the
objectivity of mathematics is left in doubt.

Figure 9: The Gödel hierarchy

“strong”



...
huge cardinal numbers
...
ineffable cardinal numbers
...

ZFC (Zermelo/Fraenkel set theory)

ZC (Zermelo set theory)

simple type theory

“medium”



Z2 (second-order arithmetic)
...

Π1
2-CA0 (Π1

2 comprehension)

Π1
1-CA0 (Π1

1 comprehension)

ATR0 (arithmetical transfinite recursion)

ACA0 (arithmetical comprehension)

“weak”



WKL0 (weak König’s lemma)

RCA0 (recursive comprehension)

PRA (primitive recursive arithmetic)

EFA (elementary function arithmetic)

bounded arithmetic
...
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the paradise that Cantor has created for us!” The paradise of which Hilbert was speaking was, of course, a
massively non-finitistic paradise, chock full of actual infinities.

However, Hilbert also appreciated the finitistic viewpoint. Indeed, he saw finitistic mathematics as the
most indispensable part, the meaningful core of mathematics. Attempting to reconcile these two viewpoints,
Hilbert developed a sophisticated plan whereby non-finitistic mathematics would be “reduced” to finitistic
mathematics, i.e., validated in a fully finitistic way. This would be achieved in three steps.

1. Formalize finitistic and non-finitistic mathematics as two distinct but logically perfect systems of
axioms and rules of inference. The key technical tool here would be the predicate calculus of Hilbert
and Ackermann.

2. Embed the finitistic system as a subsystem of the non-finitistic system. In essence, these first two steps
had already been accomplished by the late 1920s.

3. Argue finitistically that any finitistically meaningful conclusion which is deducible in the non-finitistic
system would also be deducible in the finitistic system.

In this way, all of the actual infinities would be seen as “ideal elements” or “harmless but convenient fictions.”
Because of this reduction, mathematicians would have full license to use the actual infinities freely. The actual
infinities would be guaranteed to be harmless, once and for all, because we would know in advance that they
could never contaminate the finitistically meaningful core of mathematics. See Figure 7.

In short, when it came to the question of potential infinity versus actual infinity in mathematics, Hilbert
was trying to ride to the rescue. He was proposing a bold, sophisticated, far-reaching plan to compromise
between finitism and non-finitism. He wanted mathematicians to have it both ways, i.e., to have our cake
and eat it too. This proposal is now known as Hilbert’s program or, in a more technical vein, finitistic
reductionism. The full statement of Hilbert’s program is spelled out in his 1926 essay entitled “On the
infinite.” See References [8, 15].

But then, five years later in 1931, Gödel published his famous paper proving that Hilbert’s program is
impossible to carry out in its entirety. In fact, the work of Gödel revealed a hierarchy of stronger and stronger
formal mathematical systems, relying more and more extensively on actual infinities, leading to more and
more consequences which are finitistically meaningful but not finitistically verifiable. This hierarchy is known
as the Gödel hierarchy. See Figure 9 and References [6, 11, 15]. The Gödel hierarchy undercuts Hilbert’s
program, because it shows us that every time we introduce a new kind of actual infinity, it can result in
more and more contamination of the finitistically meaningful core. See Figures 8 and 9.

This discovery by Gödel was viewed as a complete and total defeat for mathematical finitism. The
mathematical world seemed to be left with only two options. Either cling to objectivity by rejecting all
non-finitistic methods, or abandon objectivity by embracing the panorama of actual infinities. Since mathe-
maticians were by that time quite comfortable with actual infinities, they almost universally chose the second
option. Finitism, finitistic reducibility, and objectivity were now apparently out the window. Even today,
despite modern advances, the popular wisdom or “settled science” is that Gödel’s theorems meant the end
of Hilbert’s program and the end of objectivity in mathematics.

In the title of this lecture, I promised an optimistic message. So let me now finish by reporting on some
results of modern research, dating from the 1970s to the present. The big discovery here is that, despite
Gödel, a large and significant part of Hilbert’s program can in fact be carried out with brilliant success!

To explain how this can be so despite Gödel, let me return to the Gödel hierarchy. There are two
important points to make. See Figure 11 and References [9, 10, 11, 12, 13].

Figure 10: Reverse mathematics

Reverse mathematics is a series of case studies to determine which parts
of mathematics belong to which levels of the Gödel hierarchy.

The first point is that Hilbert’s program can be carried out for the so-called “weak” levels of the Gödel
hierarchy. See Figures 7 and 9 and References [2, 10, 11]. In other words, we can prove finitistically that
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Figure 11: Two discoveries

1. Using the methods envisioned by Hilbert, we can prove that “weak”
levels of the Gödel hierarchy are finitistically reducible, in the sense
of Hilbert’s program.

2. Reverse-mathematical case studies provide solid evidence that the
“weak” levels cover at least 85 percent of mathematics. This in-
cludes most or all of the “applicable” parts of mathematics.

Combining 1 and 2, we conclude that Hilbert’s program is largely valid.

Figure 12: My optimistic message:

Most of mathematics has an objective basis!

for any proof of a finitistically meaningful statement in one of these “weak” non-finitistic systems, we can
find an alternative proof which is purely finitistic. This is a consequence of the proof-theoretical methods
pioneered by Hilbert and Gentzen, as outlined by Hilbert in his 1926 essay.

In order to explain the second point, I need to discuss an ongoing research direction in the foundations
of mathematics. Beginning in the 1970s and continuing through the present, mathematical logicians have
carried out a series of precise foundational case studies known as reverse mathematics. See Figure 10 and
References [10, 11]. The goal of reverse mathematics is to determine which levels of the Gödel hierarchy
are essential for the formalization of which parts of mathematics. This huge and ongoing research program,
reverse mathematics, is the subject of an international conference or workshop being held this week and next
(January 3–16, 2016) here at NUS, at the Institute for Mathematical Sciences.

As an outcome of reverse mathematics, we now know that the bulk of mathematics, including a great
deal of non-finitistic mathematics, can in fact be formalized at the “weak” levels of the Gödel hierarchy.
This is of course an ongoing project, but I estimate that it applies to something like 85 to 95 percent of
mathematics as it exists today, including not only constructive or computable mathematics but also a great
deal of highly nonconstructive mathematics. See References [9] and [10, Chapter IV].

In many cases, some care is needed. For instance, a central feature of the usual proof of Peano’s existence
theorem for solutions of ordinary differential equations is a sequential compactness argument involving the
Ascoli lemma. In order to show that the Peano theorem is finitistically reducible, we need to rework this
sequential compactness argument into a covering compactness argument. See [10, §IV.8]. However, the
reworking is purely technical and does not affect the mathematical significance.

So what is my optimistic message? My optimistic message is that, by focusing on the “weak” levels of the
Gödel hierarchy, we can carry out Hilbert’s program for at least 85 percent of mathematics. In other words,
we can have our cake and eat at least 85 percent of it. Yes, some of the most blatant non-finitistic moves
can result in contamination, but not by any means all of them. Our message is that, if mathematicians
exercise some care and work within the strictures of the known “weak” systems or other systems which are
finitistically reducible, then all is well. The finitistic core is protected from contamination. Hilbert’s program
lives! See Figure 12 and Reference [9].

To summarize, what I am suggesting is that, even though Hilbert’s program cannot be carried out in its
entirety, there is a less sweeping version of Hilbert’s program which can be carried out, and which represents
the proper balance between the finite and the infinite in mathematics.

Now, if only we could find the proper balance between the finite and the infinite in theology!
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