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Preface 
This set of notes is an outline of the concepts, structures, and theorems that serve    

as the point of departure for Mathematical Physics. The notes are intended to be used in   
conjunction with a companion volume entitled:  Foundations Problem Set .  
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Introduction

The phrase Mathematical Physics  refers to the mathematical models that are used to 
understand the physical environment. These models are founded on the two main ideas of 
Calculus:  Differentiation  and Integration. In turn, the framework of Number, Function, and  
Limit  underlies calculus. The objective here is to develop this framework to the point of functional  
literacy in mathematics.    

We introduce the various themes of mathematical reasoning: 

Logic and Set Theory  
We begin with the syntactic and semantic issues of the language of mathematics. Syntax  

refers to axiom systems and semantics refers to models of axiom systems. 

Algebraic Structures and Homomorphisms
Structures with Binary Operations, and the Preservation of these Operations by   

Homomorphisms, is the subject matter of Algebra.  Example   The Natural Logarithm  
is a function mapping the set of all positive real numbers onto the set of all real numbers:    

 Ln : 0,∞( ) → R . The Logarithm Addition Theorem :  Ln    a  b = Ln   a + Ln   b , asserts that the 
natural logarithm is a Homomorphism from the positive reals, relative to multiplicative structure,     
onto the set of all reals, relative to additive structure. 

Topological Structures and Continuous Maps  
The Limit Process  is the subject matter of Topology. The issues are Convergence in      

structures, and the Preservation of Convergence  by functions. A prototype for a limit process is  
the convergence of the infinite sequence of multiplicative inverses of positive integers to the number  
zero. A Continuous Function  is a function that preserves convergence; the natural logarithm is also  
an example of a continuous function. 

Analysis and the Class of Elementary Functions        
The class of algebraic and transcendental functions is the subject matter of Analysis. In the   

case of real number variables, the main theorem (and focal point of the notes) is the assertion that   
Integration  and Differentiation  are inverse operations on functions.     

We emphasize a nomenclature and methodology in which the different themes of  
mathematical reasoning are unified; and, for each branch of mathematics, there is a natural lead–in   
for subsequent work. The collection of theorems is a problem set in the Moore School  tradition.  
The notes are intended to be used with a Back and Forth  approach; the first step is a run–through  
to get a sense of where things are located.  
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I.  Logic and Set Theory
1. Outline of the Language of Mathematics

(1)  Syntax :    Finitary Combinatorics of Strings of Formal Symbols  

                (i) Classification of Symbols
 Logical Symbol

Variable  
 x1, x2,…, xn ,…  

Connective Symbol
Negation    ¬     
Conjunction  ∧       
Disjunction  ∨            

Conditional    →               
Biconditional ↔                      

Quantifier
Existential   ∃     There Exists

  Universal       ∀     For All     

Syntactic Equality  Symbol    ≈
  

 Parametric Symbol
Function Symbol       Including Constant Symbols 
Predicate Symbol  

             (ii)  Classification of Strings
Term Name of an Individual Syntactical Point               
Formula     Atomic Formula, Free versus Bound Variable, Prenex Normal Form 
Sentence     Each Variable occurs within the Scope of a Quantifier 

           (iii) Syntactical Proof and Syntactical Theorem
Axiom         Classified as Logical or Parametric
Rule of  Inference

(2)  Semantics :   Assignment of Meaning to Syntax    

                 (i) Structure and Variable Assignment  

               (ii) Models of Axiom Systems
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(3)  Metatheoretic Concepts

Set–Theoretic Concepts
Set Membership Symbol:   ∈     (Primitive Concept)

Set Inclusion Symbol:   ⊆      Definition:  A ⊆ B  ⇔  ∀x x ∈A⇒ x ∈B[ ]
Equality of Ordered Pairs:   

∀x ∀y  ∀u ∀v x, y = u,v  ⇔  x = u  & y = v⎡⎣ ⎤⎦

Relative to the ordered pair: x, y , the First Component (Coordinate) is x , and   
the Second Component (Coordinate) is y . 

Symbol Correspondence
     Correspondence from syntactic to semantic symbols:  
                 (i)  Logical Symbols    (ii) Parametric Symbols

 Connectives  ¬            ¬  Bold–Face   Light–Face

 ∧    &
 ∨     or

  →    ⇒
  ↔     ⇔

Quantifiers           ∃          ∃
 ∀    ∀

Equality  ≈         =

We require a Formal Language  in which to frame our various axiom systems, so that we  
then have the flexibility of assigning any number of different Interpretations or Meanings to the   

symbols; for instance, a function symbol  F  in a formal language is typically assigned to infinitely   
many different set–theoretic functions f  as the application of the axiom system varies.           

(4)  Additional Quantifiers

∀ae      : For All but Finitely Many  (Almost Everywhere)
 

         ∃                 : There Exists at Least One

∃†          : There Exists at Most One

∃ !             : There Exists a Unique  (One and only One)

         ∃ den :  There Exist Countably Infinitely Many  (Denumerably Many)       
         ∃ unc :   There Exist Uncountably Many      
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2. Function Concept

Dynamic Viewpoint of Transformation

Hypothesis
Suppose that each of A  and B  is a nonempty set, and that f : A→ B .  
This notation means that f  is a Function from A  into B , which in turn, means that f     

can be viewed as a method of associating, mapping, or transforming each point of A  into a unique    
(one and only one) point of B .  

The function concept is officially defined in terms of the ordered pair membership of the      
graph as a subset of the cartesian product of the Domain crossed with the Target.     

(1)  Binary Relation (and its Inverse Relation)

A (Binary) Relation  is defined to be a set R  such that each element of R  is an ordered 
pair:      

R is  a binary    relation ⇔  ∀  u  u ∈R⇒∃ x  ∃ y  u = x, y( )⎡⎣ ⎤⎦

The Relation Inverse  of a binary relation R  is defined by:   

R–1 = y, x : x, y ∈R{ }

(2)  Function Definition in its Dynamic Form     

Cross (Cartesian) Product

A × B = x, y : x ∈A  & y ∈B{ }
Dynamic Function Definition

f : A→ B   ⇔  f ⊆ A × B &  ∀x ∈A  ∃ !    y ∈B  x, y ∈ f⎡⎣ ⎤⎦

( A × B  is a Graph Ambient Set for f )

(3)  Forward and Reverse Action of a Function

                 (i) Domain and Target
In the case of a dynamic function definition:  f : A→ B ,  the Domain of f  is A  and the  

choice of Target (Codomain) for f  is B :  

Domain  f = A     Target  f = B
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              (ii) Function Evaluation  (Forward Direction)

If f  is a function, then the notation: f x( ) = y , is defined by: x, y ∈ f . Therefore:

f x( ) = y  ⇔  x, y ∈ f

We use the terminology:  Evaluation at the  Argument  x ∈A  returning the  Value  y ∈B  .    
 

           (iii) Range  (Forward Direction)

Range f = Image f = y ∈B :  ∃ x ∈A f x( ) = y⎡⎣ ⎤⎦{ }  

The cross product:  A × Range  f , is the smallest (relative to set inclusion) possible graph 
ambient set.   

            (iv) Point–Inverse Set  (Fiber)   (Reverse Direction of a Pull–Back)

∀  y ∈B f –1 y( ) = x ∈A : f x( ) = y{ }⎡⎣ ⎤⎦

The fiber f –1 y( )  is the Solution Set  in A  to the equation: f x( ) = y

(4)  Distinguished Classes of Functions
 

                 (i) Surjective Function
The function f  is Surjective (Onto its Target) provided that:

Range f = Target f = B
The function f  is Surjective  iff  each point–inverse set contains at least one point:

∀y ∈B ∃  x ∈A f x( ) = y⎡⎣ ⎤⎦
              (ii) Injective Function  

The function f  is Injective (One–to–One) provided that:

∀x, y ∈A x ≠ y ⇒ f x( ) ≠ f y( )⎡⎣ ⎤⎦

The function f  is Injective  iff  each point–inverse set contains at most one point:

∀y ∈B ∃†  x ∈A f x( ) = y⎡⎣ ⎤⎦
           (iii) Bijective Function

The function f  is Bijective  provided that f  is both injective and surjective.
The function f  is Bijective  iff  each point–inverse set contains exactly one point:

∀y ∈B ∃ !   x ∈A f x( ) = y⎡⎣ ⎤⎦
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(5)  Functional Inverse

Suppose that f : A→ B . Then, f ⊆ A × B  is a binary relation, and in turn, it is always  
possible to construct the relation inverse:

f –1 = y, x ⊆ B × A : f x( ) = y{ }
The relation inverse is a well–defined single–valued function: f –1 : B→ A ,

iff f : A→ B  is a bijection of A  onto B .  

If f –1 : B→ A  exists as a single–valued function, then f –1  is necessarily a bijection 
of B  onto A .

(6)  Set Image and Inverse Image

Suppose that f : A→ B , and that each of C ⊆ A  and D ⊆ B  is a nonvoid subset. 

Image
Then, under the forward direction of f :
   The Image of  C  under f  is:   

f C[ ] = f x( ) : x ∈C{ } ⊆ B

Inverse Image  (Pull–Back)
Then, under the reverse (inverse) direction of f :

The Inverse Image, or Preimage, of  D  under f  is:

f –1 D[ ] = x ∈A : f x( ) ∈D{ } ⊆ A

(7)  Function Restriction and Extension

Suppose that f : A→ B , and that C ⊆ A  is a nonvoid subset. 

Then, the Restriction of f  to C , denoted f   C , is defined by:    

g = f   C    g : C → B     g x( ) = f x( )       x ∈C( )   

Terminology:     g  Restricts f       f  Extends g
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3. Stationary (Graph) Viewpoint of the Function Concept

Stationary Definitions

             (i) As mentioned above, a (Binary) Relation  is a set of ordered pairs. A Function  is a relation  
f  such that no two distinct ordered pairs in f  have the same First Component :

f  is  a  function ⇔  f  is a  binary  relation

& ∀x ∀y  ∀z x, y ∈ f & x, z ∈ f ⇒ y = z⎡⎣ ⎤⎦

(Abstract  Vertical Line Test)

          (ii) If f  is a function, then f  is moreover an Injective (One–to–One)  function provided that 
no two distinct ordered pairs in f  have the same Second Component :

∀a ∀b ∀y a, y ∈ f  &  b, y ∈ f    ⇒    a = b⎡⎣ ⎤⎦

(Abstract  Horizontal  Line Test)

         (iii) The Domain  of f  is the set of all first components of ordered pairs in f :

Domain  f = x :  ∃ y x, y ∈ f⎡⎣ ⎤⎦{ }
Projection  of  Graph  f  to  the First  Component  Set( )

         (iv) The Range (Image)  of f  is the set of all second components of ordered pairs in f :

Range f = Image  f = y :  ∃  x  x, y ∈ f⎡⎣ ⎤⎦{ }
Projection  of  Graph  f  to  the Second  Component  Set( )

Remark
From the stationary viewpoint of function construction, the issue of a choice of target does  

not arise. 
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Power Set
Suppose that X  is a set. Then, the Power Set of X  is defined to be the collection of all 

subsets of X  (including the void set):
Power Set  X( ) = PS X( ) = S : S ⊆ X{ }

Covers and Partitions
Suppose that X  is a nonvoid set, and Y ⊆ Power  Set  X( ) = S : S ⊆ X{ } . Then:   

Y  is a  Cover  of  X  iff  ∀p ∈X   ∃ S ∈Y  p ∈S[ ]
Y  is a  Partition  of  X  iff  Y  is a  pairwise disjoint  cover of  X  by nonvoid  subsets

Alternatively, a collection Y  of nonvoid subsets of X  is a partition of X  provided that:

∀p ∈X   ∃ !  S ∈Y  p ∈S[ ]
Thus,  a partition is a cover without overlap. The  Cells of a Partition     are the partition  

elements. 

Fiber Partition induced by a Function
Suppose that each of A  and B  is a nonempty set, and that f : A→ B .  Then, the  

collection of all the fibers of f  is a partition of A = Domain f : 

The  fiber partition  induced by   f  

= Fiber Partition  f( ) = f –1 y( ) : y ∈Range f{ } ⊆ PS A( )
Thus, one method of constructing functions from A  into B  is to first decompose     

A  into a partition, and then in the second step, associate with each cell of the partition a unique        
element of B . If different cells are associated with different points of B , then the fibers of the      
function coincide with the cells of the partition constructed in the first step. 
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4. Transitive Binary Relations

(1)  Axiom Systems for a Binary Predicate Symbol       
Suppose P    is a binary predicate symbol. The universal quantification closure of each of the 

following formulas is a First–Order Binary Predicate Axiom on P  (Polish Notation) :

      (i) P  x  x Reflexivity

      (ii)  ¬ P  x  x     Irreflexivity  

     (iii) P  x  y →  P  y x Symmetry

    (iv) P  x  y ∧  P  y x  →  x  ≈ y Anti–Symmetry

    (v) P  x  y ∨  P  y x  ∨  x  ≈ y Comparability  

     (vi) P  x  y  ↔   ¬  P  y  x  ∧  ¬       x  ≈ y      Trichotomy 

   (vii) P  x  y ∧  P  y z  →  P  x  z Transitivity  

A structure for a binary predicate symbol is an ordered pair A, R  where A  is a   
nonvoid set, and R ⊆ A × A  is a subset of the cross product of A  with itself.

Hierarchy of Order Relations  
   (1) A Reducibility  is a structure A, R  for P  which moreover is a model of the axioms:   

    Reflexivity        Transitivity      

   (2) A Partial Order  is a structure A, R  for P  which moreover is a model of the axioms:        

    Reflexivity      Anti – Symmetry   Transitivity  

   (3) A Strict Partial Order is a structure A, R  for P  which moreover is a model of theaxioms:      

Irreflexivity  Anti – Symmetry( ) Transitivity

(Irreflexivity & Transitivity ⇒  Anti–Symmetry) 

   (4) A Strict Total Order is a structure A, R  for P which moreover is a model of the axioms:

     Trichotomy    Transitivity

(Trichotomy  ⇔  Irreflexivity  &  Anti–Symmetry  &  Comparability)     
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Equivalence Class Partition Theorem    

Suppose A  is a nonvoid set, and R ⊆ A × A  is an Equivalence Relation  on A ; 
this means that A, R  is a model of:     Reflexivity    Symmetry    Transitivity

For each a ∈A , the Equivalence Class of a  with respect to R  is defined by:      
a[ ]

 R  =  b ∈A : a, b ∈R{ }
Then,  the collection of all equivalence classes:  a[ ]

 R :a ∈A{ } , is a partition of A .

Least Element Axiom    The universal quantification closure of the following formula is 
the Second–Order Least Element Binary Predicate Axiom on P :

   P  x y  ↔  ¬   P  y x  ∧  ¬       x ≈ y[ ]  ∧ P  x  y ∧  P  y z  →  P  x z[ ]   
 ∧  ∀  X  ∃ u   X  u →  ∃ v    X  v  ∧   ∀ u  X  u  →  u  ≈  v ∨   P  v u  [ ]( )⎡⎣ ⎤⎦  

In this formula, X  is a Second–Order Variable  that varies over subsets of the universe of   
a structure for the language, as opposed to the usual first–order variables that  vary over the points 
of the universe of a structure. The first two conjuncts of the formula are the first–order Trichotomy    
and Transitivity  axioms of a Strict Total Order .   

A Well–Ordering  is a structure A, R  for P  which moreover is a model of the  
second–order Least Element Axiom . 

(2)  Peano Axiomatization of the Natural Numbers   

Peano Axioms    

Suppose that c  is a constant symbol, and that σ  is a unary function symbol.    

     First–order Peano Successor Axioms:  
∀x  ¬    c ≈ σ  x[ ]        ∀x  ∀y ¬     x  ≈  y →  ¬      σ  x  ≈  σ  y[ ]

     Second–order Peano Induction Postulate:  
∀ X    X  c ∧  ∀  u  X  u →  X  σ  u ( )  →  ∀  u    X  u⎡⎣ ⎤⎦

Natural Number Characterization Theorem
As a structure for the language consisting of c  and σ , the Natural Number System    

  N = 0,1,2,…,n,…{ }  where the constant symbol c  is interpreted as 0 , and the function 
symbol σ  is interpreted as the natural number successor function   n    n + 1 , is characterized             
as the unique model for which each of the Peano Axioms  is satisfied.   
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5. Cardinality

(1)  Cardinality Operator

Cardinality and Similarity
Suppose that each of A  and B  is a nonempty set. Then:  

Card A( ) = Card B( )   iff   ∃ f  f : A→ B  is  a bijection[ ]
The set A  is Similar  to the set B , denoted by A    Sim    B , provided that the cardinality of    

A  is equal to that of B :    A    Sim    B ⇔  Card A( ) = Card B( )
Remark

If f : A→ B   is a  bijection , then f –1 : B→ A  is  a bijection .   
 

(2)  Cardinality Domination

Suppose that each of A  and B  is a set. Then, the set A  is Dominated  
( respectively, Strictly Dominated )  by the set B  iff   A B  ( respectively,  A B ) . 

             (i)  A B   iff   ∃ f  f : A→ B  is  an  injection[ ]     

             (ii)  A B   iff   ∃ f  f : B→ A  is  a  surjection[ ]     (Equivalent Characterization)

            (iii)  A B       iff        ∃ f         f : A→ B      is  an  injection[ ]   & ¬ ∃ f        f : B→ A      is  an  injection[ ]
 

Cardinality Comparison Theorem
Suppose that each of A  and B  is a set. Then:    A B  or   B A

(3)  Set Classification Definition by Cardinality Comparison to the Natural Numbers 

Recall that   N = 0,1,2,…,n,…{ }  denotes the set of all natural numbers.
 

             (i) A set A  is Finite    iff  A N .    
 

           (ii) A set A  is Infinite    iff  N  A .
 

         (iii) A set A  is Countably Infinite (Denumerable)    iff  N  A  &  AN .
 

          (iv) A set A  is Countable    iff  A N .
 

            (v) A set A  is Uncountable    iff  N  A .
13



(4)  Theorems on Set Cardinality
  

Suppose that each of A  and B  is a nonvoid set. Then: 
  

             (i) Theorem on Finite Sets        
  

A  is finite  iff   ∀ f : A→ A  f  is  injective ⇔  f  is  surjective[ ]
  

           (ii) Theorem on Infinite Sets       
  

A  is  infinite  iff  A  can  be bijectively mapped onto a  proper subset  of  A   
  

         (iii) Cantor's Theorem on the Power Set    
  

 A Power  Set A( )
  

          (iv) Cantor's Theorem on the Cross Product         
  

A  is  infinite ⇒  Card A( ) = Card A × A( )    
  

            (v) Bernstein–Cantor–Schröder Theorem     
  

  ∃  f  f : A → B  is an injection[ ]  &  ∃ g g : B → A  is  an injection[ ]
  

⇒  ∃ h h : A → B   is a bijection[ ]  
  

Equivalently:    
  

  ∃  f  f : A → B  is a  surjection[ ]  &  ∃ g g : B → A  is a  surjection[ ]
  

⇒  ∃ h h : A → B   is a bijection[ ]  
  

Equivalently:  
 

 A B   &   B  A  ⇒  A   Sim    B  

(5)  Theorem on the Cardinality of Number Systems   (Chapter II)
  

 (a)   Card N( ) = Card Z( ) = Card Q( )
  

 (b)      Card P( ) = Card R( ) = Card C( )       = Card Power Set N( )( )
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(5)  Proof Constructions

Cantor's Theorem on the Power Set      
For every set A :     A Power  Set A( )

               (1) Suppose there exists a surjective function  f : A→ PS A( )  mapping A  onto its power set.                                    

               (2) Let X = a ∈A : a ∉ f a( ){ } ∈PS A( ) .

               (3) Since f  is surjective, and X  is an element of the target collection, we can choose u ∈A  
such that f u( ) = X . 

               (4) Then:
u ∈ f u( )  ⇒  u ∉X  ⇒  u ∉ f u( )
u ∉ f u( )  ⇒  u ∈X   ⇒  u ∈ f u( )   

In each case:    The first conditional is by the Defining Property  of X ; and, the second        
conditional is by the choice of u .  

               (5) Thus, each of the cases: u ∈ f u( )  and u ∉ f u( ) , is untenable, thereby contradicting the 
hypothesis on the existence of a surjective f .

 Bernstein–Cantor–Schröder Theorem      
Suppose that each of A  and B  is a nonempty set, and that each of f : A→ B   and 

g : B→ A  is an injection. Then, we can construct a bijection h : A→ B  of A  onto B . 
               (1) By simultaneous recursion, we construct two nested decreasing (set inclusion)  sequences 
of sets: 

           C : N→ PS A( )         D : N→ PS B( )  

          C0 = A D0 = B

          Cn +1 = g Dn[ ] ⊆ A Dn+1 = f Cn[ ] ⊆ B

               (2) Define  h : A→ B   by cases:

          h x( ) = f x( ) x  ∈ C2n \ C2n+1  n ∈N( )
         h x( ) = g–1 x( ) x  ∈ C2n +1 \ C2n+ 2  n ∈N( )  

        h x( ) = f x( )
  
x  ∈ Cn

n  ∈ N
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II.  Real and Complex Number Systems
Algebra

1. Function Composition and Permutation Groups

(1)  Function Composition   

Suppose that each of A, B, C,  and  D  is a nonvoid set; suppose further that f : A→ B      
and g : C → D . Then, the Composition of f  followed by g , denoted   h = g  f , is the 

function defined by:           
       Dynamic        

h : E → D      h x( ) = g f x( )( )      E = ∅  ⇒  h is undefined( )
E  =  Domain  h  =  x ∈Domain  f : f x( ) ∈Domain g{ } ⊆ A

       Stationary
h = a,d :∃ x a, x ∈ f   &  x,d ∈g⎡⎣ ⎤⎦{ } ≠   ∅

(2)  Axiomatic Theory of Groups    

A Group  is defined to be a model of the following axiom system of first–order logic;     
that is, a group is a structure for the language of the system in which each of the axioms below is     

satisfied. The language consists of one binary function symbol:   i , and one constant symbol:  c .       

We use Infix Notation  for binary function symbols.

The universal quantification closure of each of the following formulas is an axiom:          

 x i  y  i z ( )  ≈   x  i y  ( )  i z Associative Law  

 c  i  x  ≈  x  i  c ≈  x Identity Existence  

 ∃  y  y i  x  ≈  x i y  ≈  c [ ] Inverse Existence 

(3)  Group Homomorphism

Suppose that each of  G,Δ,a  and  H,∇,b  is a group. Then, the functionality and the  
membership of constants satisfy:         

 Δ : G × G → G   a ∈G( )        ∇ : H × H → H    b∈H( )
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Suppose further that ϕ :G → H . Then, ϕ  is moreover a Group Homomorphism,  
relative to the group operations Δ and  ∇ , provided that the universal quantification closure of  
the following equation is satisfied:  

ϕ x  Δ  y( ) = ϕ x( )  ∇  ϕ y( )
If ϕ  is a Group Homomorphism, relative to the group operations Δ and  ∇ , and ϕ  is  

an injective function, then ϕ  is moreover a Group–Theoretic Isomorphism, relative to the group  
operations Δ and  ∇ . 

The group  G,Δ,a  is Isomorphic  to the group  H,∇,b  provided that there exists a  
group–theoretic isomorphism ϕ :G → H  that is moreover surjective. 

(4)  Subgroup

Suppose that  G,Δ,a  is a group, and that H ⊆ G . Then, 
 

H ,Δ      H × H ,a  is a 

Subgroup  of  G,Δ,a  provided that:

            (i) Range Δ      H × H( )  ⊆  H
          (ii)    a ∈H
         (iii)  ∀x ∈H  ∃  y∈H  x  Δ  y = a[ ]

(5)  Permutation Group  

Permutation   

A Permutation  on a nonvoid set A  is a bijection from A  onto A : 

Perm A( ) = f :  f : A→ A is  a bijection{ }
Symmetric Group

The Symmetric Group  on a nonvoid set A , denoted by Sym A( ) , is the model of the
group–theoretic axiom system where the universe is the collection of all permutations on A ,   
the binary  operation symbol  i  is interpreted as function composition   , c  is interpreted as the 
identity permutation, and the inverse element is interpreted as the function inverse:  

 Sym A( ) = Perm A( ) , , IdA     IdA : A→ A   IdA a( ) = a

Example of a Group for which the Commutative Law Fails

If a , b , and c  are three distinct symbols, then there exist x, y ∈Sym a,b, c{ }( )  such    
that:    x y ≠ y x    
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2. Commutative Rings with Multiplicative Identity

(1)  Language and Axiom System

A Commutative Ring with Multiplicative Identity  is defined to be a model of the following     
axiom system of first–order logic; by this we mean a structure for the language of the system in    
in which each of the axioms below is satisfied. 

The language consists of two binary function symbols:   +  and  i ,  and two constant   
symbols:  0 and  1 .        

The universal quantification closure of each of the following formulas is an axiom:  

   (i) Axioms of Ring Addition 

x + y ≈  y + x Commutative Law

x +  y + z ( )  ≈   x + y ( ) + z Associative Law  
0 + x ≈    x + 0 ≈  x Identity Existence  
∃ y   y + x ≈  x + y ≈ 0 [ ] Inverse Existence

   (ii) Axioms of Ring Multiplication

 x i y  ≈  y  i x Commutative Law 
 x i  y  i z ( )  ≈   x  i y ( )  i  z  Associative Law

   1 i x  ≈    x i 1 ≈  x Identity Existence  

  (iii )  Distributive Law   (Multiplication distributes over Addition )  
 x i y  + z( )  ≈  x i  y( )  +  x i z( )

   (iv) Distinct Identity Elements :    ¬ 0 ≈1[ ]  

Remark
The Distributive Law  is the only axiom that relates the two binary operations.
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(2)  Canonical Initial Model
The Integer Number System as an extension of the Natural Number System is a prototype:     

  Z = …  , –3, –2,–1,  0  ,  1,  2,  3,  …{ }
The Natural Number System, with point–set:    N = 0,1,2,…,n,…{ } , is initially  

characterized as the unique model of the Peano Axioms ; addition and multiplication operations  
are then defined by the universal quantification closure of the following Recursion Equations: 

            (i) x + 0 = x (Ground Equation) 

x + Successor y( ) = Successor x + y( ) (Iteration Equation)

          (ii)  x   i     0 = 0 (Ground Equation) 

 x  i     Successor y( ) = x  i     y  + x (Iteration Equation)

We construct the Integer Number System  as the unique extension of the natural number  
system such that the following sentence is satisfied:  

 ∀n ∈N n + −n( ) = 0⎡⎣ ⎤⎦
(3)  Quotient Models

Congruence relative to the Integers
The  Congruence Relation with Modulus  n ∈N with n ≥ 2 , on the Integer Number  

System , is defined by:

 x ≡ y  Mod  n ⇔  ∃  k ∈Z    x – y = k   n[ ]    

Integer Congruence Theorem

For each  n ∈N with n ≥ 2 , Congruence Modulo   n  is an equivalence relation on  Z ,   
with n – many  equivalence classes, that is moreover Compatible with the Algebraic Operations: 

This means that we can form a new commutative ring with multiplicative identity by taking 
the corresponding partition of  Z  as the point–set for the new system and by defining the new 
operations as follows:

x[ ]+ y[ ] = x + y[ ]     x[ ]  y[ ] = x  y[ ]  
In order for the operations to be Well–Defined, it must be shown that the values of each   

operation, which are equivalence classes, depend only upon the operation arguments, which again    
are equivalence classes, and do not depend upon the choice of class representatives inherent in the   

execution of each operation.  
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3. Fields

(1)  Language and Axiom System

A Field  is defined to be a model of the following axiom system of first–order logic; that is, 
a field is a structure for the language of the system in which each of the axioms below is satisfied.

The language consists of two binary function symbols:   +  and  i ,  and two constant 
symbols:  0 and  1 .       

The universal quantification closure of each of the following formulas is an axiom:  

   (i) Axioms of Field Addition 

x + y ≈  y + x Commutative Law

x +  y + z ( )  ≈   x + y ( ) + z Associative Law  
0 + x ≈    x + 0 ≈  x Identity Existence  
∃ y   y + x ≈  x + y ≈ 0 [ ] Inverse Existence

   (ii) Axioms of Field Multiplication

 x i y  ≈  y  i x Commutative Law 
 x i  y  i z ( )  ≈   x  i y ( )  i  z  Associative Law

   1 i x  ≈    x i 1 ≈  x Identity Existence  
 ∃  y  ¬ x≈ 0( )  →   y i x  ≈  x  i y  ≈  1⎡⎣ ⎤⎦  Inverse Existence

  (iii )  Distributive Law   (Multiplication distributes over Addition )  
 x i y  + z( )  ≈  x i  y( )  +  x i z( )

   (iv) Distinct Identity Elements :    ¬ 0 ≈1[ ]  

Remark     The first two parts of the system are the axioms of a Commutative Group   
(with a special exclusionary clause on zero in the second inverse axiom) for each of the languages 
+  and  0 , and, • and  1  individually. There is redundancy in each of the Identity Existence  and 
Inverse Existence Axioms ; the redundancy disappears (in part) for the axiomatization of               
Arbitrary Groups  in which the Commutative Law  is omitted. 
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(2)  Derived Concepts

We introduce unary function symbols for the additve and multiplicative inverses  (after 
providing the appropriate uniqueness proofs):   

 x   –  x                    x    x–1    ¬ x ≈ 0( )
Then, the field operations Subtraction  and Division  are defined by the equations:  

x – y  ≈  x  +  – y( )                
 
x ÷ y  ≈  x    i   y–1( )       ¬ y ≈ 0( )
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4. Fields of Characteristic Zero

(1)  Language and Axiom System

The axiom system for  Fields of Characteristic Zero  is obtained from the Field Axioms   
above by appending the following infinite axiom schema extending the last field axiom on distinct      
identity elements: 

     ¬  0 ≈  1 [ ]       
  ¬  0 ≈  1 +  1  [ ] 
  ¬  0 ≈  1 +  1 +  1 [ ] 

       i
       i
       i

In fields of characteristic zero, we define the following (partial) substructures:  

    (i) Natural Number System:     N  is the Operation Closure  of 0,1{ }  under the addition 
operation.  

    (ii) Integer Number System:      Z  is the Operation Closure  of 0,1{ }  under the addition 
operation and the additive inverse operation.  

   (iii ) Rational Number System:    Q  is the Operation Closure  of 0,1{ }  under all of the field 
operations. 

These are the Canonical (Partial) Substructures  of a field of characteristic zero; the  
substructure  Q  is isomorphic to the Prime Subfield  of the total field, which means that an     
isomorphic copy of  Q  is the smallest (in the sense of set inclusion) subfield of the total field.  

If each of F and  K  is a field of characteristic zero, then at each level of closure, the  
corresponding canonical (partial) substructures are isomorphic. Thus, each of  N ,  Z , and  Q  
is invariant as we range over all fields of characteristic zero.  

Remark    Congruence over the integers with a prime modulus is an example of a field that 
has nonzero characteristic. 
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Structure of the Real Number System
5. Ordered Fields

(1)  Axiom System with a Binary Predicate Symbol as Primitive
The axiom system for Ordered Fields  is obtained by first enlarging the language by 

introducing a binary predicate symbol  < , and then, by appending to the Field Axioms  the     
following  Linear and Algebraic Order Axioms  of first–order logic. 

The universal  quantification closure of each of the following formulas (infix notation) is an 
axiom: 

 (i) ¬  x < x [ ]       Irreflexive Law 
x < y ∧  y < z →  x < z Transitive Law 
x < y ∨  y < x  ∨  x ≈ y      Comparability Law  

(ii) x < y →  x + z  <   y + z    Translation Law               

 x  < y ∧  0  < z →  x i z  <   y i z     Positive Slope Law        

Remark     
The first two axioms of the first part of the system specify the axioms for a  Strict Partially 

Ordered Structure.   
In combination with the third axiom, we obtain a  Strict Totally Ordered Structure. 

Remark
The second part of the system relates the ordering to the algebra.   

Remark
The terminology for the last axiom is suggested by the fact that a linear real–valued function  

of one real variable is increasing iff  the slope of the graph is positive.

Trichotomy     
For each element a  of an ordered field, exactly one of the following conditions is satisfied:     

a < 0     a = 0     0 < a  

An element a  of an ordered field is defined to be Positive  iff  0 < a ; and, an element a  
is defined to be Negative  iff  a < 0 .   

Corollary    Every ordered field has characteristic zero.   
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(2)  Axiom System with a Unary Predicate Symbol as Primitive

Ordered Field Characterization by Positive Elements  
      Suppose that Pos  is a unary predicate symbol Axiomatized  by (i) and (ii) :

     (i)           ∀x  Pos  x  ↔   ¬    Pos  –  x( )  ∧  ¬ x≈ 0( )⎡⎣ ⎤⎦  

    (ii)   ∀x  ∀y Pos  x ∧  Pos y →  Pos  x + y ∧  Pos x • y[ ]
    Then,  axiomatize  the ordering by universally closing:    x  <  y     ↔     Pos   y  – x

Positive Sequence Theorem  
Each term of the sequence:   1,  1 + 1,  1+ 1 + 1,  … , is positive.

Order Topology     (Chapter III – Section 1 – Items (1), (2) and (3))

We automatically associate with each ordered field F  the Order Topology; the Canonical  
Global Base  for the order topology is the collection of all open intervals: 

a,b( ) :  a < b{ }  where a,b( ) = x :  a < x < b{ }
A function whose domain is  N  is a Sequence.  A sequence   p :N → F  Converges to a 

Point  q ∈F  in the order topology of F  means that:

 ∀a,b ∈F with a < q < b  ∃  m ∈N  ∀n ≥ m  a < p n( ) < b⎡⎣ ⎤⎦

Archimedean Property     

An ordered field F  has the Archimedean Property  provided that:
The strictly decreasing sequence of multiplicative inverses of the positive elements   

of  N  converges to zero  in the order topology of F .  

Archimedean Characterization Theorem     

In an ordered field, each of  the  following is equivalent to the Archimedean Property :       
        (i)  The set  N  is Unbounded in the Ordering  of the ordered field F :   

 ∀a ∈F  ∃  n ∈N  a < n[ ]
         (ii)  The set  Q  is Everywhere Dense in the Order Topology  of the ordered field F : 

 ∀a,b ∈F with a < b  ∃  q ∈Q   a < q < b[ ]   
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  6. Order–Complete Ordered Fields    

(1)  Order–Completeness Axiom

The last step is to append to the Ordered Field Axioms , all of which are axioms of   
first–order logic, the Order–Completeness Axiom of Second–Order Logic,  in which, X  is a       
second–order variable that varies over unary predicates in structures for the language:  

∀ X  ∃ λ   (  ∃ u  X  u ∧  ∃ v  ∀ u  X  u → u ≤ v[ ]
  →     ∀ u  X  u → u ≤ λ[ ]   ∧  ∀ v  ∀  u  X  u → u ≤ v( )  →  λ ≤ v⎡⎣ ⎤⎦   ) 

In a structure for the language, the hypothesis asserts that X  is a name for a nonempty   
set bounded from above, and the conclusion asserts that λ  is a Least Upper Bound  for the set;     
thus, the effect of the axiom in a model (in conjunction with the effect of the first–order axioms),     
is that every nonempty subset with an upper bound has a least upper bound. The existence of at     
most one least upper bound is proved as a theorem.

Abbreviations

Lub ≡ Least  Upper  Bound ≡ Sup ≡ Supremum
Glb ≡ Greatest  Lower  Bound ≡ Inf ≡ Infimum    

(2)  Real Numbers

Real Number Theorem  

There exists a unique order–complete ordered field; we define the Real Number System: 

  R , + , i , 0 , 1 , < ,  to be the structure in question.

Irrational Numbers   

The set of all Irrational Numbers is defined by:   P = R \ Q   

Open Subsets of the Real Line
A subset  U ⊆ R  is defined to be an Open Set in the usual Euclidean Topology  provided:

  ∃  Γ ⊆ PS R( )  Γ is a  collection  of  open  intervals &  U = Γ⎡⎣ ⎤⎦

Open Component Theorem
Every open subset  U ⊆ R  in the usual Euclidean topology is the union of a collection of  

Pairwise Disjoint  open intervals and open rays. 
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(3)  Characterizations of Order–Completeness

Connected Line Theorem 
An ordered field F  is order–complete iff F  is Connected in the Order Topology:   
This means that for every proper subset S ⊆ F , there exists a ∈F  such that every open    

interval about a  contains both a point of S  and a point of F \ S .   

Embedding Theorem   (Using Concepts from Chapters III and IV)      

For every Archimedean ordered field F , there is a unique order–isomorphism of F  onto a 
dense subfield of  R  such that each element of  Q  is held fixed. 

The fact that the image of F  is a subfield of  R  follows from the Continuity of the Binary    
Operations. With respect to the order topology in  Q  and the Product Topology in  Q ×Q , the 
restriction of each of the algebraic binary field operations is continuous: 

 +  :   Q× Q  →  Q            • :   Q ×Q  →  Q
(Regardless of the original field, these restrictions are the same.)  

Moreover, each restriction continuously extends, for each field F  and  R  individually, to   
the total product space in the domain, and to the original field in the range.    

Absolute Value and Distance       

In an ordered field, the Absolute Value  of an element a  is defined by cases:     

 a  = a    a  is positive or a = 0        a  = –  a     a  is not positive and a ≠ 0

In an Archimedean ordered field, the Distance  between two points  a and  b ,          
is defined to be the absolute value of the difference:   d a,b( ) =   a –  b 

Remark    In the Archimedean case, the absolute value is in turn uniquely identified with a 
real number by the Embedding Theorem .  

Cauchy Sequence
A sequence  p :N → F  taking values in an Archimedean  ordered field F  is Cauchy      

provided that: 

 ∀ε > 0  ∃ n ∈N  ∀s, t ≥ n  d ps, pt( )  < ε⎡⎣ ⎤⎦

Cauchy Convergence Theorem       

An ordered field F  is order–complete iff  it is Archimedean, and every Cauchy sequence    
taking values in F  converges to a point of F  in the order topology.
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Structure of the Complex Number System
 

7. Algebraically Closed Fields of Characteristic Zero

(1)  Language and Axiom System
An Algebraically Closed Field of Characteristic Zero  is a model of the following axiom       

system. We return to the language that consists of two binary function symbols:   +  and  i ,  and  
two constant symbols:  0 and  1 .

We extend the axioms for fields of characteristic zero  by appending the universal 
quantification closure of each of the infinitely many formulas of the following schema: 

∃ x   ¬  a ≈ 0[    
 →   a i x  i x  +   b i x  +  c  ≈  0 ]

∃ x   ¬  a ≈ 0[    
 →   a i x  i x i x   +   b i x i x   +   c i x  +  d  ≈  0 ]

 i
 i
 i

Root Existence Theorem
In a model, every nonconstant polynomial has at least one root.

(2)  Complex Numbers

Complex Number System
The  Complex Number System :    C , + , i , 0 , 1 , is defined by extending the Real 

Number Field  according to the following rules.    
The point–set for the system is   C = R × R   (so the geometry of the point–set is that of a 

plane), and the operations are defined by extending those for real numbers:  

a  +  b i( )  + c +  d i( )  =  a  +  c( )  + b  +  d( )  i

 
a  +  b i( )  i c  +  d  i( )  =  a i  c –  b i d( )  + a i d  +  b i c( )  i

 a,b ∈R     i = 0,1      b i = 0,b      a + b i = a,b      i2 = –1
  

Complex Number Theorem
The Complex Number System  is an algebraically closed field of characteristic zero;  

moreover, the Complex Number System  is the Unique  algebraically closed algebraic field  
extension of the Real Number Field. 
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III.  Convergence Concepts

1. Topological Spaces

(1)  Axioms for Abstract Topological Spaces  

Axioms  
A Topological Space   is an ordered pair X, τ  such that X  is a nonvoid set, and τ  is a 

collection of subsets of X  for which the following axioms are satisfied:
τ ⊆ PS X( )

        (i ) Both the empty set ∅  and the total set X  are elements of τ :   ∅,  X ∈τ  
        (ii ) For every (nonvoid) finite collection of sets where each set is an element of τ , the  
intersection of the collection is an element of τ : 

  Set–Theoretic Closure  of τ  under the Finite Argument Intersection Operator    
 ∀Nonvoid  Finite  Γ ⊆ τ   Γ ∈τ[ ]

 
 Γ = x ∈X :∀U  U ∈Γ ⇒ x ∈U[ ]{ }( )

      (iii)  For every (arbitrary) collection of sets where each set is an element of τ , the union  of the 
collection is an element of τ :       

  Set–Theoretic Closure of τ  under the Union Operator   
 ∀Γ ⊆ τ   Γ ∈τ[ ]

 
 Γ = x ∈X :∃ U  U ∈Γ& x ∈U[ ]{ }( )

Point–Set and Topology of a Space
The total set X  (of Indivisible Elements or Points ) is the Point–Set  for the space; and the     

collection τ  is the Topology  for the space. The members of τ  are the Open Sets  for the space.  

Extreme Examples     If τ = PS X( ) , then τ  is the Discrete Topology  on X ;
and, if τ = ∅, X{ } , then τ  is the Indiscrete Topology  on X .

Remark    Informally, a topology on a set is a Notion of Relative Closeness among the     
various points that belong to the set. 

Remark    Different topologies can be chosen for the same point–set; and, as either the     
topology or point–set varies, the associated topological space varies. In fact, the point–set is always     
implicit in the topology as its largest member with respect to set inclusion (alternatively, the     
point–set is the union of the collection of all open sets).   
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(2)  Topological Base and Axioms of Base Countability

Global and Local Basis Concepts

For a topological space X, τ ,  a subcollection µ ⊆ τ  is a Global Base  for τ   
iff  each open set in τ  is the union of a subcollection of open sets in µ :   

∀p ∈X  ∀U ∈τ  ∃  V ∈µ p ∈U ⇒ p ∈V ⊆ U[ ]
Therefore, µ ⊆ τ   is a (global) base for τ  iff  the Set–Theoretic Closure  of µ  under    

the Union Operator  returns τ .   
A subcollection µ ⊆ τ   of the topology τ  is a Local Base  for τ  at p ∈X  

iff  each open set in τ  that contains 

� 

p  is the union of a subcollection of open sets in µ :   

∀U ∈τ  ∃ V ∈µ  p ∈U ⇒ p ∈V ⊆U[ ]
Thus, we pass from Global to Local, by transforming p ∈X  from a universally bound 

variable to a free variable in the respective defining formulas. 

Basis Axioms

          (i ) A topological space X, τ   satisfies the First Axiom of (Base) Countability  

iff  ∀p ∈X  ∃  µ ⊆ τ  µ is a  local base  for τ  at  p &  µ is countable[ ] . 

          (ii) A topological space X, τ   satisfies the Second Axiom of (Base) Countability 

iff  ∃  µ ⊆ τ   µ is a  global  base for τ  &  µ is countable[ ] .

(3)  Euclidean Spaces and Topological Product

Remark    The real line is the prototype for Point–Set Theory. 

Order Topology     In the case of an Order Topology, the collection of all open intervals 
relative to a totally ordered structure provides a global base. 

           (i ) Reals     Let  R  denote the Real Number System  with the Usual Topology: 
The collection of all open intervals is the Canonical Global Base for the usual Euclidean     

topology of the real line.  

             (ii ) Products of Reals    Let  Rn  (  n ∈N+ )  denote n – Dimensional Euclidean Space.    
By this, we mean the Topological Product  of n – many  factors of the topological space  R :      

The point–set is the n – dimensional cartesian product of lines; basic open sets for the   
product space are cartesian products of open sets, one from each factor.   
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(4)  Topological Subbase  

Open Sets by Iterated Closure     For a space X, τ ,  a subcollection ν ⊆ τ  is a      
Global Subbase  for τ  iff  a base for τ  is obtained from ν  by taking for the elements of the    
base the intersection of each (nonvoid) finite collection of open sets in ν .    

The Set–Theoretic Closure  of ν  under the Finite Argument Intersection Operator returns      
a base for τ :             ∀p ∈X   ∀U ∈τ   ∃   n ∈N  ∃ V0 ,…,Vn ∈ν

              p ∈U ⇒ p ∈V0 ∩ ⋅⋅ ⋅∩Vn ⊆U[ ]
Therefore, ν ⊆ τ  is a subbase for τ  iff  the Set–Theoretic Closure  of ν   under both the       

Finite Argument Intersection Operator  and the Union Operator  returns τ  itself. To formulate the       
local concept, omit the first quantification in the above formula.     

Euclidean Product Subbase     R+ (x) : x ∈Rn{ }∪ R– (x) :x ∈Rn{ }      
The set of n – dimensional Unbounded Rectangular Corner Regions  is a subbase for  Rn  

 (n ∈N+ ) ; where R+(x)  ( respectively, R– (x)  )  is the product of open rays (a,∞)  
( respectively, ( –∞,a ) )  for which the endpoints are the coordinates of x .    

Canonical Subbase for a Product  
The Canonical Subbase  for a product is the collection of all inverse images of open subsets  

of the factor spaces relative to the various projection functions:   x xi .

(5)  Topological Subspace

Inheriting a Topology      Suppose X,σ  is a topological space. Every nonvoid subset 
Y ⊆ X  is automatically transformed into a Topological Subspace :   

The subspace is the topological space where the chosen subcollection Y is the  point–set, 
and the topology τ  is Inherited  from the total space by intersecting each of the original open sets  

with the new point–set:  τ = V ⊆Y :  ∃U ∈σ  V = U ∩Y[ ]{ }
Euclidean Subspaces     Let  Q  and  P  denote the topological spaces for which the set of  

all Rationals  and the set of all Irrationals  are the respective point–sets, and basic open sets for the    
topology in each case are obtained by intersecting open   intervals on the real line with the new 
point–set. Thus, each of  Q  and  P  is a topological subspace of  R  (with the usual topology).   

In turn, products of subspaces of  R , such as   Q
n  n ∈N with n ≥ 2( ) , form the class 

of all Productive Subspaces  of higher dimensional Euclidean Spaces. 
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(6)  Topological Quotient  

Partitions and  Quotients

Suppose that X,σ  is a topological space, and that Y ⊆ PS X( )  is a Partition of X . 
This means that Y  is a pairwise disjoint cover of X  by nonvoid subsets, where a Cover  is in turn          
defined by:   ∀p ∈X  ∃ S ∈Y  p ∈S[ ]   

Then, the Quotient Topology τ  on Y  is:    ∀V ⊆ Y  V ∈τ  ⇔  V ∈σ[ ]
The new space Y ,τ  is a Quotient Space  on the original space X,σ .

Quotients  of  Euclidean  Spaces
Partition each of the line and the plane by taking for the cells of the partition all Rigid    

Motion Additive Translations  of the integers:   Z , and the cross product of the integers with itself:  
 Z × Z , respectively. Then, the induced quotient spaces are topologically equivalent (the same    
topological properties) to the circle and the torus respectively, where the torus is the topological     
product of the circle with itself.  

(7)  Closed Sets

For a space X, τ ,  a subset A ⊆ X  is defined to be Closed  ( relative to the given 
topology τ )  iff  the complement X  \ A  is open, that is, X \ A ∈τ .      

Therefore, the closed sets are obtained from the open sets by applying the set–theoretic           
Complementation Operator; conversely, the open sets can be obtained from the closed sets by the    
same operator. The symmetry on this issue suggests the  important alternative point of view of 
taking the closed sets as primitive.  
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2. Metric Spaces

(1)  Distance  
Let  R  denote the Real Number System.  A Metric Space  is an ordered pair X, d      

such that X  is a nonvoid set, and  d : X × X → R  is a function for which the universal   
quantification closure of each of the following axioms is satisfied:     

         (i )  d p, q( ) ≥ 0  & d p,q( ) = 0 ⇔ p = q⎡⎣ ⎤⎦          Positive Definiteness

         (ii )  d p, q( ) = d q, p( )           Symmetry   

          (iii)  d p, q( ) ≤  d p,r( ) + d r, q( )           Triangle Inequality  

The function d  is a Distance Function  or Metric  on the set X . 

Since the quantification in each of the axioms is entirely universal, it follows that for  
each Y ⊆ X , the restriction d   Y ×Y  also satisfies the axioms, and is, therefore, a distance

function on Y :   Y ,d   Y ×Y   is a metric space.

(2)  Basic Neighborhood Function and the Induced Topology

Suppose that X, d  is a metric space. A Basic Open Neighborhood  relative to d  is a 

set–value of the Basic Neighborhood Function N = N d( )   ( d  is a parameter) :

  N :   X × R+ →  PS X( )    Nε p( ) = q ∈X :  d p,q( ) < ε{ }
    p ∈X   is the neighborhood  center and   ε > 0  is  the neighborhood  radius( )  

 R
+ = ε ∈R : ε > 0{ }      PS X( ) = Power Set  X( )

         (i ) The Topology τ  Induced by d  is defined by:

U ∈τ  ⇔  ∀  p ∈U   ∃ ε > 0  Nε p( ) ⊆ U⎡⎣ ⎤⎦

         (ii ) Thus, a metric space is automatically a topological space:  X, τ ; and, a reference to    

X, d  as a topological space automatically refers to X, τ .   

          (iii) The range of the basic neighborhood function N  is the Canonical Base  for τ .         
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Local Basis Theorem for Metric Spaces  
(Corollary of the Archimedean Property of the Real Line)   

Every metric space satisfies the First Axiom of Base Countability .   
  
(3)  Euclidean Spaces  

Each Euclidean space:   Rn   n ∈N+( ) , is automatically transformed into a metric space by 

the Euclidean Distance Function  ( derived from the Pythagorean Theorem ) : 

d p,q( ) = p – q = p1 – q1( )2 + ⋅ ⋅ ⋅+ pn – qn( )2⎡
⎣

⎤
⎦

 1
2        

(4)  Diameter and Set Distance in Metric Spaces    
Let   R

e  =  R ∪ – ∞,∞{ }  denote the Extended Real Number System  in which both a 
smallest and a largest point are adjoined to  R  (we are not  extending the algebra).  

Suppose that X, d  is a metric space. Then: 
   (i ) The Diameter Function   Diam : PS X( ) → Re    is defined by:   

  Diam S( ) = Lub d p,q( ) :  p, q ∈S{ }     Diam ∅( ) = 0( )    
A subset S ⊆ X  is Bounded  iff Diam S( ) < ∞   is finite.  

   (ii ) We extend the distance function d  to nonempty subsets of X  as follows:   

 d p, S( ) = Glb d p,q( ) :  q ∈S{ }   p ∈X ,  S ⊆ X( )

d S,T( ) = Glb d p, q( ) :  p ∈S & q ∈T{ } S,T ⊆ X( )
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(5)  Limit Points and Boundary Points in Metric Spaces
    

Suppose that X, d  is a metric space. Then, the Deleted Basic Neighborhood  with center 
p ∈X  and radius ε > 0  is defined by: 

 Nε
  p( )  =  q ∈X :  d p,q( ) < ε  &  q ≠ p{ }  =   Nε p( ) \ p{ }

Suppose S ⊆ X  and p ∈X  (we are neutral as to whether p  is in S ) . Then: 

       (i ) p ∈X  is a Limit Point  (or Point of Accumulation ) of S ⊆ X  provided that:     

  
 
∀ε > 0   ∃  q ∈S q  ∈    Nε

  p( )⎡⎣ ⎤⎦
  

     (ii ) p ∈X  is Isolated From S ⊆ X  iff p  is not a limit point of S :              
  
 
∃  ε > 0 Nε

  p( )   ∩   S  =   ∅⎡⎣ ⎤⎦
  

    (iii) p ∈X  is a Boundary Point  of S ⊆ X  provided that:      
         ∀ε > 0 Nε p( ) ∩ S ≠ ∅   &  Nε p( ) ∩ X \ S( ) ≠ ∅⎡⎣ ⎤⎦  

(6)  Theorem on Vanishing Set Distance in Metric Spaces  
Suppose that X, d  is a metric space, that S ⊆ X  is nonvoid, and p ∈X \ S . 

Then, the following conditions are equivalent:  

 (i)  p ∈Bd S( )     (ii)  p ∈Lp S( )     (iii)  d p, S( ) = 0
 

Corollary     Every closed subspace of a metric space can be represented as the intersection 
of a countable collection of open sets;  the dual result is that every open subspace can be represented 
as the union of a countable collection of closed sets. 
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3. Operators on Topological Spaces

(1)  Limit Points and Boundary Points in Topological Spaces
  

  Suppose that X, τ  is a topological space, S ⊆ X  and p ∈X . Then:   

      (i) p ∈X  is a Limit Point  (or Point of Accumulation ) of S ⊆ X  provided that:

∀U ∈τ   ∃  q ∈U  p ∈U  ⇒  q∈S & q ≠ p[ ]
     (ii) p ∈X  is Isolated From S ⊆ X  iff p  is not a limit point of S :

∃ U ∈τ  p ∈U  &  U ∩ S ⊆ p{ }[ ]
    (iii) p ∈X  is a Boundary Point  of S ⊆ X  provided that:

∀U ∈τ  p ∈U  ⇒  U ∩ S ≠ ∅   &  U ∩ X \ S( ) ≠ ∅⎡⎣ ⎤⎦

(2)  Operators

  An informal, and occasional, mathematical usage of the word Operator is to designate a  
function for which the domain and target coincide.  

Whenever an argument of an operator is equal to its value, the point in question is a Fixed 
Point  of the operator. 
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(3)  Topological Operators

Suppose that X, τ  is a topological space. The domain and target of each of the following 

operators is PS X( ) = Power Set  X( ) . Each operator depends upon τ . Let S ⊆ X .

       (i) Interior The Interior Operator  is defined by: 

Int S( ) = p ∈S :  ∃U ∈τ  p ∈U ⊆ S[ ]{ }  Int = Intτ  

       (ii) Boundary      The Boundary Operator  is defined by:   

Bd S( ) = p ∈X :  p is  a boundary  point  of  S{ } Bd = Bdτ  
  
       (iii ) Exterior The Exterior Operator  is defined by: 

Ext S( ) = p ∈X \ S :  ∃U ∈τ  p ∈U ⊆ X \ S[ ]{ } Ext = Extτ   

     (iv) Derived Set The Derived Set Operator  is defined by: 
Lp S( ) = p ∈X :  p is a  limit  point  of  S{ } Lp = Lpτ

  

      (v) Isolated Set  The Isolated Set Operator  is defined by: 

Iso S( ) = p ∈S :  p  is an  isolated  point  of  S{ } Iso = Isoτ

  

        (vi ) Topological Closure     

The Topological Closure Operator  is defined by:  Cl = Clτ
  Cl S( )  =    A :  X \ A∈τ  &  S ⊆ A{ }
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(4)  Operator Theorem

Suppose that X, τ  is a topological space, and S ⊆ X . Then:

              (i)  Equations of Symmetry

Bd S( ) = Bd X \ S( )       Lp S( ) \ S = Bd S( ) \ S  

X = Int S( ) ∪ Bd S( )∪ Ext S( )
            (ii)  Open Set Characterization

A subset U ⊆ X  is open  iff  U = Int U( )    (U  is disjoint from its boundary) .

          (iii )  Balanced (Regular) Open Set Characterization   

A Balanced (Regular) Open Set  is a fixed point of the composition operator below; here,  
the fixed point set coincides with the range of the composition: 

 Int Cl : PS X( ) → PS X( )
Suppose U ∈τ .  Then:    U = Int Cl U( )( )    ⇔  Bd U( ) = Bd X \ Cl U( )( )

           (iv) Closed Set Characterization   

      (a) Each of Bd S( )  and Cl S( )  is a closed set; in a metric space, Lp S( )  is also closed.

         (b) Cl S( ) = S∪ Lp S( ) = S ∪Bd S( ) = Lp S( )∪ Iso S( )
        (c) Cl S( )  is the smallest (in the sense of set inclusion) closed set that includes S  as a subset.

         (d ) The following conditions on a subset A ⊆ X  are equivalent: 

(i )  A  is closed     (ii )  Lp A( ) ⊆ A     (iii)  Bd A( ) ⊆ A     (iv )  A = Cl A( )

Remark     
   A set is open  iff  it is disjoint from its boundary.      

Remark     
A set is closed  iff  it includes its boundary.

Remark
  A closed set is the disjoint union of its (possibly void) interior and its (possibly void)   
boundary; in the case of a void boundary, the set is both open and closed. 
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(4)  Dense and Nowhere Dense Sets

Suppose that X, τ  is a topological space. 
    (i ) A set D ⊆ X  is (Everywhere) Dense  in X  iff D  intersects each nonvoid open set: 

∀  U ∈τ  U ≠ ∅  ⇒    D ∩U ≠ ∅[ ]
Equivalently, D ⊆ X  is (Everywhere) Dense  in X  provided that:  Cl D( ) = X

   (ii ) A set S ⊆ X  is Nowhere Dense  in X  iff  Cl S( )  has a void interior:  Cl S( ) = Bd S( )    

Dual Statement :  Cl S( ) = Bd S( ) ⇔  X \ Cl S( )  is open everywhere dense

     

(5)  Examples of Everywhere Dense Subsets

Real Line      Each of  Q  and  P  is everywhere dense in the real line  R .

Euclidean Spaces      For each   n ∈N+ :    Q
n  is everywhere dense in  Rn .
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4. Alternative Characterizations of Topological Spaces  

Remark    
The fundamental duality between open and closed sets is indicated below. For each type of    

operator here, the range and the fixed point set coincide. 

(1)  Abstract Topological Interior Operator    
A Topological Interior Operator : Int : PS X( ) → PS X( ) , on a nonvoid set X  is an 

operator for which the universal closure of each of the following axioms is satisfied:  
 
               (i )  Int ∅( ) = ∅ and  Int X( ) = X

            (ii ) Int U( ) ⊆ U

           (iii) Int U ∩V( ) = Int U( )∩ Int V( )

           (iv ) Int Int U( )( ) = Int U( )

A subset U ⊆ X  is defined to be an open set iff U  is a fixed point of the topological 
interior operator:  U = Int U( ) ; closed sets are defined by complementation.

(2)  Abstract Topological Closure Operator    
A Topological Closure Operator : Cl : PS X( ) → PS X( ) , on a nonvoid set X  is an 

operator for which the universal closure of each of the following axioms is satisfied:  
 
               (i ) Cl ∅( ) = ∅ and  Cl X( ) = X

            (ii ) A ⊆ Cl A( )

           (iii)  Cl A∪ B( ) = Cl A( )∪ Cl B( )

           (iv ) Cl Cl A( )( ) = Cl A( )

A subset A ⊆ X  is defined to be a closed set iff A  is a fixed point of the topological   
closure operator:  A = Cl A( ) ; open sets are defined by complementation.  
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5. Sequential Convergence

(1)  Sequences and Subsequences

              (i ) A Sequence  is a function whose domain is the set of all natural numbers. (More generally, 
a sequence is a function whose domain is a well–ordered set.)    

            (ii ) A sequence  s : N→ N  is Strictly Increasing  provided that:  

 ∀n ∈N s n + 1( ) > s n( )⎡⎣ ⎤⎦

          (iii) Suppose that X  is a nonempty set, and  f :N → X  is a sequence taking values in X .  
Then, a sequence  g : N→ X  is a Subsequence  of f  provided that:  

  ∃  s  s : N→ N &  s is  strictly  increasing &  g = f  s[ ]

In this relationship,  s : N→ N  is the Auxiliary (Strictly Increasing) Sequence  in the   
construction of the subsequence g  from the original sequence f .    

(2)  Sequential Convergence

Hypothesis

Suppose that X, d  is a metric space, that  f :N → X  is a sequence taking values in the    
target X , and that p ∈X .

We visualize the sequence  f :N → X  from two points of view.

Graph of the Sequence:

                              0              1               2                m                 n       

  ↓    ↓    ↓        ↓        ↓    

 f 0( )  f 1( )  f 2( )   f m( )   f n( )  

Range of the Sequence:               Range f ⊆ X

X
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Initial and Tail Ends

Each  m ∈N  splits the natural number set into a finite Initial Segment:   n ∈N :n < m{ } ,    
and an infinite Tail End:   n ∈N :n ≥ m{ } .

Sequential Convergence
The sequence f  Converges to the point p  ( relative to d )  provided that:

 ∀ε > 0   ∃  m ∈N   ∀n ∈N with n ≥ m  d f n( ) , p( ) < ε⎡⎣ ⎤⎦

The role of various parts of the quantifier prefix of the definition corresponds in order to: 

                                    (1)  Specification of a Basic Neighborhood centered at p
(2)  Specification of a Tail End of  N
(3)  Tail End Membership

The formula matrix of the definition specifies:

Neighborhood Membership of f n( )

We visualize the specification of a tail end, and tail end membership, in the context of  
the picture for the sequence graph; whereas, we visualize the specification of a neighborhood,    
and neighborhood membership in the context of the sequence range as a subset of the ambient   

(surrounding) space X . 

An equivalent characterization of sequential convergence is provided by: 

 ∀ε > 0  ∀ae      n∈N  d f n( ) , p( ) < ε⎡⎣ ⎤⎦

(3)  Neighborhoods and Convergence

     (i ) Suppose that X, d  is a metric space, and that  f :N → X  is a sequence. Then:

 f :N → X  Converges  to  a Point  p ∈X     

 ⇔  ∀ε > 0  ∃  m ∈N  ∀n ≥ m  f n( ) ∈Nε p( )⎡⎣ ⎤⎦

    (ii ) Suppose that X, τ  is a topological space, and that  f :N → X  is a sequence. Then:

 f :N → X  Converges to a  Point  p ∈X   

 ⇔  ∀U ∈τ  with  p ∈U   ∃  m ∈N  ∀n ≥ m  f n( ) ∈U⎡⎣ ⎤⎦
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(4)  Visualizing Subsequences

                                  0              1               2                m                 n       
                 

        s

                                                                 ↓
          g                                                               0              1               2                m                 n       

       f     

↓   ↓    ↓    ↓        ↓        ↓    

      f 0( )  f 1( )  f 2( )   f m( )   f n( )  

The official definition of Subsequence given above captures the intuitive idea of first listing  
the original sequence, and then building a subsequence by taking an infinite walk, and step by step,  
marking off relevant points as indicated in the following picture: 

                      •                 •            •                                                                              •  

 f 0( )  f 1( )  f 2( )  f 3( )  f 4( )  f 5( )  f 6( )  f 7( )    f m( )    f n( )  

(5)  Limit of a Sequence

Initial Theorem on Sequential Convergence in Metric Spaces

  (i ) A sequence in a metric space can converge to at most one point.
 (ii ) In a metric space, every subsequence of a convergent sequence is itself  convergent and 
converges to the same point as that of the original sequence.    

Suppose X, d  is a metric space with induced topology τ , and  f :N → X  is a  
sequence that converges to p ∈X . 

Then, p  is the Limit of the Sequence f , denoted:    Lim
n → ∞

 f n( ) = Lim
n → ∞

 fn = p     
Remark
The limit process depends upon the topology τ .

Remark
Our introductory use of the symbol f  to denote a sequence is intended to emphasize that a  

sequence is first of all a function. We now switch to more conventional notation; the switch aids in   

tracking the Type Hierarchy of Functions. 
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(6)  Limit of a Sequence as related to Limit Point of a Set

Ambient Theorem on Sequences taking values in a Metric Space   
Suppose that X, d  is a metric space, and A ⊆ X . Then:   

             (i ) The set A  is closed  iff  for every convergent sequence  p :N → A  taking values in A , 
the limit of the sequence is a point in A :  Lim

n → ∞
 p n( ) ∈A .

           (ii ) A point  q ∈X  is a limit point of A  iff  there exists a one–to–one convergent sequence 

 p :N → A \ q{ }   taking values in A \ q{ }  such that:  Lim
n → ∞

 p n( ) = q . 

          (iii) A point q ∈X  is a limit point of the range of a sequence  p :N → X  iff  there exists an 
injective (one–to–one) subsequence of p  that converges to q .      

(7)  Universal Sequences
A sequence of points  p :N → X  is Universal  with respect to τ  provided that:   

 ∀nonvoid  U ∈τ   ∃  n ∈N  p n( ) ∈U⎡⎣ ⎤⎦
Thus, a sequence  p :N → X  is universal with respect to τ  iff  Range p  is everywhere 

dense. A topological space X, τ  is Point–Separable  provided that the space admits a universal   
sequence.     

(8)  Universal Sequences in the context of Metric Spaces    

Suppose that X, d  is a metric space, and τ  is the topology induced by d .

             (i ) Convergence Theorem on Universal Sequences  (in Metric Spaces)  

 If  p :N → X  is a universal sequence with respect to τ , then for every q ∈X ,  there 
exists a subsequence of p  that converges to q . 

           (ii ) Global Basis Theorem on Universal Sequences  (in Metric Spaces)     
There is a countable global base for the topology τ  iff  there exists a universal sequence    

with respect to τ . 

Remark    Thus, for metric spaces, the Second Axiom of Base Countability  is  
characterized by the existence of a universal sequence.  

          (iii) Theorem on the Existence of Euclidean Universal Sequences 

For each   n ∈N+ :   There exists a universal sequence  p :N → Rn  with respect to the    
n –  dimensional Euclidean topology. 
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6. Compactness

(1)  Compact Subsets of Topological Spaces

Covering Definition of Compactness

A subspace A ⊆ X  of a topological space X, τ  is Compact  iff  from every open cover 
of A , it is possible to extract a finite subcollection that is itself a cover of A . 

Briefly, A ⊆ X  is Compact  iff  every open cover of A  has a finite subcover:

∀  Γ ⊆ τ   ∃ Δ ⊆ Γ  
 A ⊆   Γ ⇒  A ⊆  Δ   &  Δ is  finite[ ]

( In the context:  A ⊆ X , members of a cover of A  by subsets of X  are not necessarily 
subsets of A .)

(2)  Sequential Convergence Characterization for Metric Spaces

Sequence Theorem

Suppose that X, d  is a metric space, and that A ⊆ X .

 Then, A ⊆ X  is a compact subspace iff  for every sequence  f :N → A  taking values 

in A , there exists a subsequence  g = f  s  of f  that converges to a point of A :

 s : N→ N is strictly increasing     g :N → A    Lim n→∞  gn = p ∈A

(3)  Compactness Theorem for Euclidean Subspaces

Closed and Bounded Consequence Theorem  (in Metric Spaces)

Suppose that A ⊆ X  is a compact subspace of a metric space X, d .

Then:  (i)  A is  closed    (ii)  A is bounded

Remark   In Euclidean spaces, the converse holds:

Heine–Borel Theorem

A subspace of a Euclidean space is compact  iff  it is closed and bounded.
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Constructions for the Consequence Theorem

Suppose  N  is the neighborhood function and τ  is the topology induced by d . 
     (i)              (1) Let p ∈Lp A( ) . 

              (2) Let   U : N→ τ   defined by:  Un = X  \  Cl   Nε p( )( )      ε = 1
n + 1

              (3) Let Γ = Range  U .

Claim    If p ∉A , then Γ  is an open cover of A  for which there does not exist a finite  
subcollection that covers A .  

     (ii)              (1) Let p ∈X . 

              (2) Let   U : N→ τ   defined by:   Un = Nn+1 p( )     

              (3) Let Γ = Range  U .

Claim    The collection Γ  is an open cover of X  such that for each finite subcollection,  
the union of the subcollection is a bounded subset of X .  

Heine–Borel Theorem

Let  n ∈N+ . Suppose that  A ⊆ Rn  is a subset of n – dimensional  Euclidean space.

 Then,  A ⊆ Rn  is a compact subspace iff  A  is closed and bounded.

Construction for showing that the Closed Unit Interval is a Compact Subspace

            (1) Let Γ  be an open cover of closed unit interval  I = 0,1[ ] ⊆ R  as a subspace of the line.      

            (2) Define A  by:   A =  t ∈ 0,1[ ] :  ∃  Finite Subcollection   Δ ⊆ Γ Δ  covers 0,t[ ]  ( )  { }
            (3) Let L = Lub  A .

Claim   L = 1
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7. Connectedness

(1)  Connected Subsets of Topological Spaces  
Mutually Separate Sets and Open–Closed Sets in the Subspace Topology
In a topological space, two sets A  and B  are Mutually Separate  iff  each of A  and B  is 

nonvoid, A  and B  are disjoint, and neither set contains a limit point of the other set.        
In turn, a subset C ⊆ X  of a topological space X, τ  is a Connected Subset  

iff  C  can not be partitioned as the union of two mutually separate subsets included in C .          
Every nonvoid C ⊆ X  inherits a topology from τ . The Subspace Topology  for C  is   

inherited from the total space by intersecting C  with each total space open set: U ∩C :  U ∈τ{ } .     
Two mutually separate sets with union C  are nonvoid disjoint Open–Closed  sets in the   

subspace topology for C . Thus, C  is connected iff C  can not be partitioned into two nonvoid   
disjoint open sets belonging to its subspace topology.   

(2)  Theorem on the Connectedness of Euclidean Spaces  

Real Line     Order–Completeness in  R  implies that the real line  R  is connected.

Construction      
             (1) Suppose that U,V{ }  is a partition of  R , a ∈U , b ∈V  and that  a < b .  

             (2) Let A =  t ∈ a,b[ ] :  a, t[ ] ⊆ U{ } .  

             (3) Let L = Lub  A .

Claim     
The point L  witnesses that U  and V  are not mutually separate.

Fact on Intermediate Points
A subset  C ⊆ R  is connected iff  the following condition is satisfied:

 ∀a,b ∈C  ∀x ∈R a ≤ x ≤ b ⇒  x ∈C[ ]

Euclidean Spaces      For each   n ∈N+ :    Rn  is connected.
Construction Tool      
Let  u,v ∈Rn  with u ≠ v . Then, the Line Segment Joining  u  and v  is defined by:   

 Seg u,v( )  =    t   u + 1 – t( )  v :  t ∈ 0,1[ ]  { }  ⊆  Rn
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8. Cauchy Completeness in Metric Spaces 

(1)  Cauchy Sequences

Suppose that X, d  is a metric space.

Then,  p :N → X  is a Cauchy Sequence  ( relative to d ) provided that: 
   ∀ε > 0  ∃ n ∈N  ∀  s, t ≥ n  d ps, pt( ) < ε⎡⎣ ⎤⎦

Cauchy Theorem on Sequential Convergence in Metric Spaces

              (i ) Every convergent sequence in a metric space is a Cauchy sequence.      
            (ii ) If a subsequence of a Cauchy sequence converges, then the Cauchy sequence is itself   
convergent and converges to the same limit as that of the subsequence.   

(2)  Cauchy Complete Metric Spaces    

A metric space X, d  is (Cauchy) Complete iff  for every Cauchy sequence  p :N → X  
taking values in X , p  converges to a point of X .

Remark     
In a complete metric space, the Cauchy condition is both necessary and sufficient to  

determine whether a sequence converges. The defining condition is entirely internal to the sequence,   
so we have a test for convergence that does not require a global survey of candidates for the limit.    

Theorem on Cauchy Completeness in Metric Spaces      

              (i ) Compact Metric Spaces      

Every compact metric space is Cauchy complete.   

            (ii ) Euclidean Spaces     

For each   n ∈N+ :   Rn  is Cauchy complete.  
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Construction in the Real Line   

Suppose that  p :N → R  is a Cauchy sequence (relative to the usual Euclidean distance 
function). 

               (1) Choose a strictly increasing sequence   c :N → N   such that: 

 
∀  n ∈N  ∀ s, t  ≥  c n( )   d ps , pt( )  <  

1
n + 1

⎡
⎣⎢

⎤
⎦⎥

             (2) Construct a nested decreasing (inclusion) sequence of closed intervals in the real line:   

An = pm : m ≥ c n( ){ }
Gn = Glb  An     Ln = Lub An

  Gn , Ln[ ] :n ∈N          

Claim     

  
Lim

 n→∞      pn =   Gn, Ln[ ]
n  ∈ N


48



IV.  Mapping Concepts
 

1. Continuous Functions

(1)  Continuity

Continuity Definition  

Suppose that each of X,σ  and X, τ  is a topological space, and that f : X →Y  is a 

function of X  into Y . Then:

      (i )  f  is Continuous  at q ∈X  ( relative to σ  and  τ )  provided that:    
∀V ∈τ   ∃ U ∈σ  f q( ) ∈V  ⇒  q ∈U & f U[ ] ⊆V⎡⎣ ⎤⎦

     (ii )  f  is Continuous (Everywhere)  ( relative to σ  and  τ )  provided that:   

∀V ⊆ Y  V ∈τ  ⇒   f –1 V[ ] = U ∈σ⎡⎣ ⎤⎦

(Inverse  images  of  open  sets are  open)

The dual formulation of global continuity is the requirement that the inverse image of each   
closed subset of the target space is a closed subset of the domain space. 

The relevant set–theoretic property is the pull–back conditional on partitions: 

S,T{ }  is  a  partition of  Y   ⇒    f –1 S[ ], f –1 T[ ]{ }  is  a partition of  X

(2)  Characterizations of Continuity

         (i ) In the above Definition of Continuity , the replacement of τ  by either a Global Base  or a           
Global Subbase  for   τ    yields   an   equivalent characterization. 

The  relevant set–theoretic equations  are:

  
f –1  Γ[ ]  =     f –1 S[ ] :S ∈Γ{ }            

f –1  Γ[ ]  =     f –1 S[ ] :S ∈Γ{ }  

  Γ ⊆ PS Y( ),  Γ ≠ ∅( )
     (ii ) Suppose the First Axiom of Base Countability  is satisfied in both the domain and  

target   spaces.  Then:    A function is continuous iff  it preserves sequential convergence.
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Remark    
A continuous function is completely determined by the values that it assumes on a dense set  

of arguments of its domain.  

Composition
The equation below  underlies  that  a composition of  continuous functions is  itself  continuous: 

 
f  g( )–1 V[ ]  =   g–1 f –1 V[ ]⎡⎣ ⎤⎦

(4)  Characterization of Continuity in the context of Metric Spaces

Hypothesis
Suppose that each of X, d  and Y ,e  is a metric space, that σ  and  τ  are the respective  

induced topologies, and that f : X →Y  is a function of X  into Y .

Global Continuity     

Each of the following is a necessary and sufficient condition for the global continuity of f  

( relative to σ  and  τ ) :      

     Closeness

∀q ∈X   ∀ε > 0  ∃ δ > 0  ∀p ∈X  d p,q( ) < δ  ⇒  e f p( ), f q( )( ) < ε⎡⎣ ⎤⎦

     Convergence  

 ∀q ∈X   ∀p : N→ X   Lim
n→∞

d pn, q( ) = 0 ⇒  Lim
n→∞

e f pn( ) , f q( )( ) = 0⎡
⎣⎢

⎤
⎦⎥

 ∀q ∈X   ∀p : N→ X   Lim
n→∞

pn = q ⇒  Lim
n→∞

f pn( ) = f q( )⎡
⎣⎢

⎤
⎦⎥

In the first matrix conditional for preservation of convergence, in both the antecedent  and 
the consequent, sequential convergence in the real line is at issue.        

In the second conditional, the issue in the antecedent and in the consequent, is sequential     

convergence in X,σ , and sequential convergence in Y ,τ , respectively.

Continuity at a Point
For a necessary and sufficient condition for the continuity of f  at  q ∈X , omit the  

quantification on q  in each of the preceding formulas. 
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Remark     
In comparison to the definitions for the general topological setting, the neighborhood   

determined by ε  is the analogue of V , and the neighborhood determined by δ  is the analogue    

of U ; ε  and V  are Value Closeness Constraints.

Oscillation    
The Oscillation  of f , relative to d  and e , is defined by:      

 Oscf : X → a ∈Re :a ≥ 0{ }
Oscf q( ) = Glb Diam  f Nδ q( )⎡⎣ ⎤⎦ :δ > 0{ }

q ∈X,  N = N d( ) ,  Diam = Diam e( )( )

Oscillation Theorem

Then: f  is continuous at q ∈X  iff  Oscf q( )  is zero.
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2. Uniform Continuity

(1)  Contrast between Global and Uniform Continuity  

Suppose that each of X, d  and Y ,e  is a metric space, and that f : X →Y  is a 

function of X  into Y .  

Then, f  is Uniformly Continuous  ( relative to d  and e )  provided that: 

∀ε > 0  ∃ δ > 0  ∀p, q ∈X

d p,q( ) < δ  ⇒  e f p( ), f q( )( ) < ε⎡⎣ ⎤⎦  

Contrast the quantification above with that of global continuity for metric spaces.    
It is apparent that uniform continuity implies global continuity, and that in the case of uniform   
continuity, δ  depends only upon ε :  δ = δ ε( ) , as opposed to both ε  and the choice of q  
for the weaker property:  δ = δ q,ε( ) . This fact also explains the terminology. 

(2)  Theorem on Uniform Continuity from Continuity on a Compact Domain  

Suppose that each of X, d  and Y ,e  is a metric space, that σ  and  τ  are the  
respective topologies, and that f : X →Y   is continuous ( relative to σ  and  τ ) . 

Suppose further that X,σ  is compact. Then, f  is uniformly continuous. 

Construction    Let ε > 0 .

              (1) Using global continuity:  For each q ∈X , choose a radius r q( ) > 0  for a basic   
neighborhood centered at q  for which the image under f  is included as a subset of the basic
neighborhood centered at f q( )  with radius ε ÷ 2 .

              (2) Using compactness, choose a finite subcover of the following open cover of X :

Nt q( ) : q ∈X   &      t = r q( ) ÷ 2{ }
( N  is the basic neighborhood function induced by d )

              (3) Let δ  be the minimum value of the radius of a neighborhood belonging to the finite    
subcover. 

Claim    Our construction returns a value of δ  that satisfies the uniform continuity  
constraint imposed by the initial (and arbitrary) choice of ε .   
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V.  Analysis

1. Real–Valued Functions of One Real Variable
 Class of Elementary Functions 

  Function – Building Operations  
The following methods are used to construct new functions from given functions:  

              (i ) Linear Combinations   (Addition and Multiplication by Constants)       
            (ii ) Algebraic Combinations   (Arithmetical Operations and Extractions of Roots)   
          (iii) Composition of  Functions   
           (iv ) Taking  the Functional  Inverse    (Rigid–Motion Reflection about  y = x )
           (v) Definition  by Cases    ( Including Absolute Value and Step Functions)     
          (vi) Geometric  Transformations  

         (vii) Rigid – Motion Horizontal  and  Vertical  Translations   (Additive Constant )      
       (viii) Rigid – Motion Reflection about  the lines :  x = 0  y = 0     (Minus  Sign)      

          (ix ) Horizontal  and  Vertical Expansions  and  Contractions  (Multiplicative  Constant)  
 

Basic Functions
  

Basic Algebraic Functions

(1)  Polynomials    
The  Polynomial of Degree  n  with Coefficients    a0 ,  a1,  a2 ,…,  an ∈R , where

n ≠ 0  implies an ≠ 0 ,  is the function  f :R → R   defined by the following equation:  
 f x( )  =   a0x0 + a1x

1 + a2x2 + ⋅ ⋅ ⋅+ amxm + ⋅⋅ ⋅ + an xn  
Each Exponent m , 0 ≤ m ≤ n , must be a natural number; thus, a polynomial  

is a Linear Combination of Power Functions  xm  with natural number exponents  m ∈N : 
 y  =   xm  =  1 i   x   i   x   i    i   x    (m – many  factors of  x)

(2)  Rational Functions    
A Rational Function  is a quotient (ratio) of two polynomials for which the denominator is     

not the constant polynomial function taking the value zero  everywhere. 
(A polynomial is a special case of a rational function where the denominator is the  

constant polynomial function taking the value one  everywhere.)
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(3)  Extraction of Roots             
Suppose that  n ∈N   with n > 1 . Then, the Root Function of Degree n , denoted by   

y = xn = x  1÷ n ,  is the functional inverse of   y = xn   in the case where   n  is odd, and is the 

functional inverse of the restriction of y = xn  to x ∈ 0,∞[ )  for   n  even. A root function is  a    
power function where  the exponent is  a  multiplicative inverse of a natural number   n > 1 .  

(4)  Algebraic Power Functions

An Algebraic Power Function  with positive exponent is a function f  defined as a 
composition of a root function, and a power function with a positive integer exponent:   

f x( )  =  x  a
 =  x  m ÷ n

 =  x  1÷ n( )m
 =  x   m( ) 1÷ n

 =  xn( )m
 =  xmn  

 x ≥ 0 varies;  a = m ÷ n ∈Q  is fixed;  m, n ∈N+( )
The domain of f  extends to all  x ∈R  in the case  a = m ÷ n > 0   where the  

denominator   n ∈N   is an odd natural number. For the exponent – a , the power function is    
defined to be the composition of  f  above followed by the multiplicative inverse function. 

Remark    For a power function, the exponent is held fixed, whereas the Base  varies with 
the argument. If the exponent is irrational, then the function is a Transcendental Power Function,  
and as such, falls outside of the current classification.     

Auxiliary Functions
      Projection Functions   

The functions  Proj
 1 : R2 → R   and   Proj

 2 : R2 → R   denote the projection   
functions to the first and second coordinates respectively: 

Proj
 1 x, y( ) = x       Proj

 2 x, y( ) = y

      Wrapping Function    
On the right unit semi–circle, Θ  varies over signed arc length:

g y( ) =  1

 1– t 2
 dt = Θ

0

y
∫     –1 < y < 1( )

g continuously  extends  to 1 and – 1   

Definition of π :    π = 2 g 1( ) = –2 g –1( )
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Define  W : R→ R2  by:

      y = g–1 Θ( )       x =  1 – y2               g –1( ) = –2–1π ≤  Θ ≤ 2–1π = g 1( )  ( )
      W Θ( ) = W Θ + 2n  π( ) = x, y     W Θ + 2n + 1( )π( ) = –x, – y      n ∈Z( )

The function   W : R→ R2   uniformly wraps the real line around the unit circle with zero   
taken to the base point 1,0 , the positive number ray mapped  counter–clockwise, the negative 
number ray mapped clockwise, and with every closed number interval of length 2π  being mapped      
once around the unit circle with overlap at the endpoints (and only at the endpoints).   
( See Chapter VI – Section 5 .)    

Basic Transcendental Functions
(1)  Trigonometric Functions

We define the Cosine  and  Sine  functions to be the following compositions:    
 Cosine = Proj

 1W      Sine = Proj
 2 W      

The other four basic trigonometric functions are defined algebraically from the cosine    
and sine: 

 Secant x( )  = 1
Cos x( )

                   Cosecant x( ) = 1
Sin x( )

Cotangent x( ) =
Cos x( )
Sin x( )

              Tangent x( ) =
Sin x( )
Cos x( )

Restrictions of Trigonometric Functions to their Principal Parts (or Branches)   

Domains of the Principal Parts: 

   Cosine:                      0,π[ ]            Sine:                     – π
2 ,π2

⎡
⎣⎢

⎤
⎦⎥

   Secant:                    0,π2
⎡
⎣⎢

⎞
⎠⎟ ∪

π
2 ,π⎛

⎝⎜
⎤
⎦⎥

   Cosecant:              – π
2 ,0⎡

⎣⎢
⎞
⎠⎟ ∪ 0, π2

⎛
⎝⎜

⎤
⎦⎥

   Cotangent:                 0,π( )            Tangent:                  – π
2 , π2

⎛
⎝⎜

⎞
⎠⎟
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(2)  Arc Trigonometric Functions

Each principal part is an injective function; the Arc Trigonometric Functions are the    
functional inverses of the Principal Parts of the Trigonometric Functions . 

(3)  Natural Logarithm and the Exponential Functions

Ln x = t –1dt
1

x
∫   x > 0( )      

Definition of e :   t –1dt
1

e
∫ = 1

The function y = Ln x  is the Natural Logarithm ; let Exp  denote the functional inverse    
of the natural logarithm. The Exponential Function with Base  a  is the function f  defined by 
composing the linear function, with slope Ln a , with Exp : 

f x( ) = Exp  Ln a( )  x( )     f x( )  is denoted  by  ax = e  x  Ln   a

 x ∈R varies as the argument;  a is the fixed  base;  a > 0,  a ≠ 1( )

(4)  Logarithmic Functions    
All exponential functions are injective. 

The Logarithmic Function with Base  a ≠ e  is defined to be the functional inverse of the 
exponential function with base a ≠ e .  

(5)  Transcendental Power Functions

The Transcendental Power Function with Exponent  a  is the function f  defined by:

f x( ) = xa = e a  Ln  x

 x > 0 varies;  a ∈P  is a  fixed  irrational number( )
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Remark    
Transcendental functions Transcend  algebraic operations.   

Remark
A real or complex number is defined to be Algebraic iff  it is a root of a polynomial with 

rational coefficients; a complex number that is not algebraic is defined to be Transcendental.  
The numbers e  and π  are real transcendental numbers; the number i  is an Imaginary   

(that is, nonreal complex) algebraic number.           

    

Definition of the Class of Elementary Functions

An Elementary Real–Valued Function of One Real Variable  is defined to be either one of     
the

  
basic   functions listed above, or  any function that can be constructed from the  basic functions by   

applying the function–building operations listed above some finite number of times.   If all of the 
basic functions involved in  the construction are algebraic, then  the end result is algebraic also;   
otherwise, the combination function is a transcendental function.  

That is, if any transcendental component function appears in a function construction, then   
the end result is itself defined to be a transcendental function. 

Thus, the class of elementary functions is partitioned into two disjoint subclasses:

Algebraic  and   Transcendental
This means that every elementary function belongs to one of the two classes, but no  

function belongs to both.  
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2. Limits and Continuity
 

Hypothesis and Notation

Suppose that each of X, d  and Y ,e  is a metric space. Suppose further that    
A ⊆ X , q ∈X  is a limit point of A , and that f : A→ Y  is a function of A  into Y .     

Finally, let L ∈Y  be an arbitrary choice of a point in the target space.     
 
(1)  Function Limit

The limit concept for a metric space variable argument is defined by:

Limit of  f p( )  as p converges to q , p ∈A \ q{ } , equals L

Lim p→q  f p( ) = L

iff  ∀ε > 0  ∃ δ > 0  ∀p ∈A  0 < d p, q( ) < δ  ⇒  e f p( ) ,L( ) < ε⎡⎣ ⎤⎦   
The constraint:  p ∈Domain f  with p ≠ q ,  is implicit in the notation:  p → q .

 
(2)  Characterization of Continuity by Function Limit

The function f  is continuous at q  iff  each of the conditions below is satisfied:

   (i )  q ∈A = Domain  f             Existence of  a  Function Value       
  (ii ) Lim p→q  f p( ) = L          Existence of  a  Function Limit   
  (iii) f q( ) = L        Value of  the  Function and  value  

             of  the Function Limit Coincide
 
(3)  Removable and Essential Discontinuities

The discontinuities of f  are classified as follows:   
          (i ) If Lim p→q  f p( ) = L , but either f  is undefined at q , or f q( ) ≠ L , then q  is a 
Removable Discontinuity  of f .

          (ii ) If Lim p→q  f p( )  does not exist, then q  is an Essential Discontinuity  of f .   
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3. Differentiation

Algebraic Approximation :   Slope of a Secant ≡ Average Rate of Change

Limit Process :  Slope of the Tangent ≡ Instantaneous Rate of Change  
Hypothesis     Suppose that  u, v ∈R  with u < v , x ∈ u, v( ) , and that  f : u, v( ) → R .

Let a,b( )  denote the open interval centered at zero  such that:   
   a  =  b  = Min  x – u ,  x – v  { }

Then: 
            (i) The Difference Quotient  for f  with Fixed Point x  is defined by: 

 DQ : a, b( ) \ 0{ } → R          DQ h( ) =
f x + h( ) – f x( )

h

In the definition of the function DQ :  h  is the independent variable, and, x  is being held 
fixed as a parameter. 

         (ii) If it exists, the Simplified Difference Quotient  for f  with Fixed Point x  is defined to be 
the Unique Extension  of DQ  to a function that is defined and continuous at zero : 

        SDQ : a,b( ) → R           ∀h ∈ a,b( ) \ 0{ }  SDQ h( ) = DQ h( )⎡⎣ ⎤⎦

SDQ  is  defined  and  continuous  at  zero  
DQ has  zero  as  a removable  discontinuity( )

       (iii) If it exists, the Derivative  of f  at x , denoted: ′f x( ) , is defined by:  
′f x( ) = Lim h→ 0  DQ h( ) = Lim h→0  SDQ h( ) = SDQ 0( )

After the evaluation: SDQ 0( ) , only the parameter x  occurs as an unknown. The new 
function ′f  is the Derivative  of f ; the original function f  is an Antiderivative  of ′f . 
 

Remark     In the preceding three–step construction, there are (potentially) four distinct 
functions:   Original Function,  Difference Quotient,  Simplified Difference Quotient,  Derivative  

The independent variable of the original function and its derivative is x ; whereas,  
h  is the independent variable of each difference quotient.   
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4. Integration

Algebraic Approximation :   Riemann Sum ≡ Sum Signed Rectangle Areas

Limit Process :   Definite Integral ≡ Signed Area of the Planar Region  
Hypothesis    Suppose that  a,b ∈R  with a ≠ b , and that  f : u,v[ ] → R  is a 

continuous function, where u = Min a,b{ } , and v = Max a, b{ } . 

(1)  Partition   (Orientation, Delta Function, and Mesh)    
           (i)   A Partition  of u,v[ ]  Oriented  from u  to v  is a strictly increasing finite sequence x  

such that:     x : 0,1,…,n{ } → u, v[ ]     x0 = u    xi–1 < xi      xn = v      n ∈N+ ,  1≤ i ≤ n( )
(Traverse the interval from u  to v)

           (ii) A Partition  of u,v[ ]  Oriented  from v  to u  is a strictly decreasing finite sequence x  

such that:      x : 0,1,…,n{ } → u, v[ ]    xn = u      xi < xi–1     x0 = v       n ∈N+ ,  1≤ i ≤ n( )
(Traverse the interval from v  to u)

          (iii )  Regardless of the orientation,   define  the Change in x Function Δx( )  by:

  Δx( ) : 1,…,n{ } → R        Δx( )i = xi – xi–1

The values of the change in x  function: Δx( ) , are either entirely positive (increasing case), 
or entirely negative (decreasing case). 
           (iv) The Mesh  of the partition x  is defined to be the largest subinterval length:  

Mesh x( )  =  Max   Δx( )i  :1 ≤ i ≤ n{ }
Remark     Thus, the effect of a partition is to both orient the original interval, and to  

subdivide the original interval into finitely many subintervals.  

(2)  Sample Points 
A choice of Intermediate Arguments or Sample Points  for a partition x  with domain  

 0,1,…,n{ } , is defined to be a finite sequence t  such that:   
   

 t : 1,2,…, n{ } → u, v[ ] 
 ∀i ∈ 1,2,…,n{ }  xi–1 ≤ ti ≤ xi  Increasing( )  or  xi ≤ ti ≤ xi–1 Decreasing( )⎡⎣ ⎤⎦
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(3)  Riemann Sum

The Riemann Sum  corresponding to the integrand f , a partition x  with domain  
 0,1,…,n{ } , and a choice of sample points t  for x , is defined by: 

 
f ti( ) Δx( )i

i  =  1

n

∑   =     f t1( ) Δx( )1 + f t2( ) Δx( )2 ++ f tn( ) Δx( )n

(4)  Definite Integral

After  the  existence proof  as indicated below,  the  Definite Integral   of f  with Lower Limit    
a  and Upper Limit  b  is the real number defined by the following construction:   

Suppose that   R : N→ R   is a sequence of Riemann sums for which each of the two      
conditions below is satisfied: 

           (i ) Each of the underlying partitions is oriented from a  to b .
           (ii ) For each Riemann sum Rn   n ∈N( ) , let Mesh Rn( )  denote the mesh of the underlying 

partition of Rn . Then, the sequence of mesh values converges to zero :     
Lim n→∞  Mesh Rn( ) = 0

Then, the definite integral of f  from a  to b  is the number defined by the equation:  

f t( ) dt
a

b
∫ = Lim n→∞  Rn

Meaning of the Expression :   Existence of the Definite Integral
The definite integral of f  from a  to b  exists iff Lim n→∞  Rn  exists, and the value of     

the limit depends only upon the orientation of the partitions, and the requirement that the sequence    
of mesh values, of the underlying partitions, converges to zero.    

Thus, we need to prove the existence of the definite integral for a continuous function   
defined on a closed interval. 

In the case of coincidence of lower and upper limits of integration, we take the definite 
integral to be zero by definition:   

a = b ⇒  f t( ) dt
a

b
∫ = 0  
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5. Theorems on Continuous Functions

Background    
           (i )  A subspace of a Euclidean space is compact iff  it is closed and bounded.
           (ii )  A continuous function mapping a compact subspace of a metric space into a metric space is      
uniformly continuous.  

Hypothesis for the Theorems       
Suppose  a,b ∈R  with a ≠ b ; let α = Min a,b{ } ,  and let β = Max a,b{ } . Suppose 

further that  f : α ,β[ ]→ R  is a continuous function. 

Conclusions       
             (i ) Continuous Images 

(1)  Intermediate Value Theorem  (IVT)       
The image of a connected set under a continuous function is itself connected:  

Range f  is  connected  

(2)  Compact Range Theorem  (CRT)       
The image of a compact set under a continuous function is itself compact:  

Range f  is  compact     
           (ii ) Uniform Continuity from Continuity and Compactness of Domain        

(3)  Uniform Continuity Theorem  (UCT)   

The function f  is uniformly continuous. 

            (iii) Continuity and Definite Integration  
(4)  Existence of the Definite Integral  (EDI) 

The definite integral of f  from a  to b :  f t( ) dt
a

b
∫ , exists.

(5)  Mean Value Theorem of Integral Calculus  (MVT–IC)   
There exists c ∈ α ,β( )  such that:   f c( ) b – a( ) = f t( )dt

a

b
∫
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6. Theorems on Differentiable Functions

(1)  Fundamental Theorem of Calculus–Part I  (FTC–I)   
Hypothesis and Terminology
Continuous Integrand           
Suppose that  u, v ∈R  with u < v , and that  f : u, v( ) → R  is a continuous function . 
Antidifferentiation on Open Sets          
A function for which the derivative is defined on an open set including the domain of f       

and for which the derivative is equal to f  on Domain  f , is an Antiderivative  of f .   

Indefinite Integration     Suppose that  a, z ∈R  with a ∈ u, v( ) , and that each   
individual value of the function g  is constructed by a definite integration as indicated below:    

 g : u, v( ) → R         g x( ) = f t( ) dt
a

x
∫  +  z

(The argument x  determines which definite integral by specifying the upper limit of  
integration; regardless of x , the lower limit is held fixed at the value of the parameter a .)    

Then, the function g  is the Indefinite Integral  corresponding to the parameters:     
Integrand  f      Fixed Lower  Limit   a      Additive Constant  z   

Conclusion  

           (i ) First Formulation of the Conclusion of FTC – I     Indefinite Integration  
Then, g  is everywhere differentiable, and, for each x ∈ u, v( ) :  ′g x( ) = f x( )
The rate of change in the signed area of the planar region bounded by the integrand is the         

signed vertical line segment length from the x – axis  to the graph of the integrand.        
           (ii ) Second Formulation of the Conclusion of FTC – I     Antiderivatives    
   Then, the indefinite integral g  is an antiderivative of f ; thus, every continuous function   
defined on an open interval has an antiderivative on the open interval.             

Remark    Integration followed by differentiation returns the original continuous integrand 
f  ( integration and differentiation are inverse operations on functions) .

Remark    The hypothesis of the preceding theorem requires only a continuous function,   
whereas the conclusion asserts that indefinite integration of a continuous integrand returns a    
differentiable function.    

Remark    Our proof below of FTC – I  is an application of MVT – IC . 
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(2)  Mean Value Theorem of Differential Calculus  (MVT – DC)  
Suppose that  a,b ∈R  with a < b , and that  f : a,b[ ] → R  is a continuous  function on 

the closed interval a,b[ ] , and that f  is a differentiable function on the open interval a,b( ) .  
Then, there exists c ∈ a,b( )  such that:      

′f c( ) =
f b( ) – f a( )

b – a

Equivalently, there exists a line tangent to Graph  f , at a point over the interior of the  
domain of f , that is parallel to the secant joining the graph endpoints.    
 
(3)  Antiderivative Comparison Theorem  (ACT)     Corollary of MVT – DC 

Suppose that  s,u, v, t ∈R  with s < u < v < t , and that  f : u,v[ ] → R  is       
a continuous function. Suppose further that each of  g : s, t( ) → R  and  h : s, t( ) → R      
is a differentiable function such that:   ′g = ′h = f  on u,v[ ]   ( each of  g  and h   is an 

antiderivative of  f  on u,v[ ] ) . Then, g  and h  differ by an additive constant on u,v[ ] :

 ∃ z ∈R ∀x ∈ u, v[ ]  g x( ) = h x( ) + z⎡⎣ ⎤⎦

Equivalently, each of Graph    g  u, v[ ]  and Graph    h  u, v[ ]  is a rigid motion vertical     
translation of the other. 
  
(4)  Fundamental Theorem of Calculus–Part II  (FTC – II)

             (i ) First Formulation of FTC – II  
Hypothesis      Suppose that  a,b ∈R  with a < b , and that  f : a,b[ ] → R  is a 

continuous function. Suppose further that on an open interval, h  is an antiderivative of f . 
The assertion on  h  means   that there exist  u, v ∈R , with u < a < b < v ,  such  that:

 h : u,v( ) → R is  differentiable      ′h t( ) = f t( )   t ∈ a,b[ ]  ( )
(Since f  is continuous, and ′h = f  on a,b[ ] :  ′h  is continuous on a,b[ ] .)

Conclusion      f t( ) dt
a

b
∫   = ′h t( ) dt

a

b
∫   =    h b( ) – h a( )
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Remark     In contrast to FTC – I , we now differentiate first, and then integrate.   

           (ii ) Second Formulation of FTC – II

Continuously Differentiable Functions  

Suppose that  u, v ∈R  with u < v , and that  f : u, v( ) → R  is a differentiable     
function for which the derivative ′f  is itself a continuous function on u,v( ) . In the case    
of a continuous derivative, the original function f  is Continuously Differentiable.   

Suppose that each of a  and b  is a point in the interval u,v( ) .

Then, regardless of orientation:    ′f t( ) dt
a

b
∫ = f b( ) – f a( )

In turn, this implies:    f x( ) = ′f t( ) dt
a

x
∫  +  z     z = f a( )    x ∈ u, v( )  

An antiderivative of a continuous integrand is an indefinite integral of the integrand.     

Remark     Differentiation followed by integration returns the original function.    
Remark     Thus, the second formulation of FTC – II  is simply the extension to functions  

that follows from the first formulation.      
Remark     We give below two proofs of FTC – II  with the alternative strategies:   

Corollary of FTC – I and ACT         Application of  MVT – DC   

Fundamental Theorem of Calculus    (Consolidation)
Let  C  denote the collection of all globally continuous real–valued functions with an open    

interval domain in the real line; and, let  C  D  denote the collection of all globally continuously          
differentiable real–valued functions with an open interval domain in the real line.    

Then, the condition below is sufficient for the Differentiation – Translation operator:      

 f  ′f , f a( ) ,  to be a bijection from  C  D  onto   C × R  for which Indefinite Integration         
is the operator inverse:  

       f x( ) = ′f t( ) dt
a

x
∫  +  f a( )       x ∈ u, v( ) = Domain f      a = u +

  u  –  v  

2
Extension     The Fundamental Theorem  extends as follows:   
First, we can extend from Open Interval  domain to Open Connected Set  domain; we can     

then extend from Open Connected Set  domain to simply Open Set  domain. ( The  second  step   uses  
 the Open Component Theorem  of Chapter II – Section 6    – (2).)
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7. Retrospectus

There are two main ideas, each involving an application of a limit process to infinitely many 
algebraic approximations:   

Differentiation:  Limit of the Difference Quotient.  
Definite Integration:  Limit of an infinite sequence of Riemann Sums.    

Indefinite integration is repeated definite integration thereby generating a function.   
Passing from Definite  to Indefinite  refers to the fact that the upper limit of the definite integration    

varies with the argument for the indefinite integral function.  
Antidifferentiation is simply a change in perspective from that of differentiating an          

initial function to the alternative view where the initial function is the result of a differentiation.  
Each of Indefinite Integration  and Antidifferentiation  can be represented as an       

infinite–valued operator acting on continuous functions.     
The main theorem is the assertion that integration and differentiation are inverse operations    

on functions:  FTC – I  is integration followed by differentiation; FTC – II  is differentiation  
followed by integration. Unfortunately, it is often the case that the indefinite integral is confused    
with the General Antiderivative  at the point of definition, as opposed to a relationship between    
distinct concepts established by proving the main theorem:  

                   Differentiation                                                                 Integration

 
 FTC  
  =

                  Antidifferention                       Indefinite Integration
                                   

  

         FTC – I :        Class of all Indefinite Integrals ⊆  Class of all Antiderivatives
         FTC – II :      Class of all Antiderivatives ⊆  Class of all Indefinite Integrals    

Each of the operators Antidifferentiation  and  Indefinite Integration transforms  the class          
of all  Continuous Functions  into the class of all Continuously Differentiable Functions.  
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VI.  Proof Constructions     

1. Constructions Underlying the Fundamental Theorem

Hypothesis

For the Theorems on Continuity, we assume that α = a < b = β ; and therefore,        
 f : a,b[ ] → R  is a continuous function with domain a,b[ ] . 

For the two theorems on definite integration:  Items (3) and (4)  below, the case b < a  is 
by symmetry.    

(1)  Intermediate Value Theorem

Proof Strategy

              (1) Let u, v ∈Range  f  with u < v . Let w ∈ u, v( ) . 

By the Fact on Intermediate Points , we need to show that w ∈Range f . 

              (2) Assume otherwise: w ∉Range f ; from this assumption, we now derive a contradiction.  

Construction

U = f –1 –∞,w( )⎡⎣ ⎤⎦         V = f –1 w,∞( )⎡⎣ ⎤⎦
Claim

U  and  V  are mutually separate  sets such  that  a,b[ ] = U ∪V  

Verification

              (1) By the definition of a function:

A partition of the target pulls back to a partition of the domain.

              (2) By the continuity of f : 

The pull–back of an open subset of the target is an open subset of Domain  f = a,b[ ] ;
in turn, an open subset of a,b[ ]  is the intersection of a,b[ ]  with an open subset of  R .

Conclusion

The connectedness of the interval a,b[ ]  has been contradicted.
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(2)  Compact Range Theorem  

  Suppose that  f : a,b[ ] → R   a,b ∈R, a < b( )  is a continuous function with compact 

domain a,b[ ] .  Then,  Range f ⊆ R  is a compact subspace of the real line.

Proof Strategy      

Using the Sequence Theorem , we need to show that each sequence taking values in    

Range f   has a subsequence that converges to a point of Range f .  

Construction              

            (1)   Let  y : N→ Range f   (we are choosing the sequential terms in the vertical axis). 

            (2)   We now pull back to the domain (in the horizontal axis). 

Let  x : N→ a,b[ ]  such that:     y = f  x   f xn( ) = yn      n ∈N( )  

            (3)   By the Heine–Borel Theorem , a,b[ ]  is a compact subspace of  R . 

           (4) Therefore, by the Sequence Theorem , we can choose a subsequence  t = x  s  of x  
such that t  converges to a point c ∈ a,b[ ] : 

 s : N→ N is strictly increasing    t : N→ a,b[ ]    c = Lim n→∞  tn

           (5)   As a continuous function, f  preserves sequential convergence, and therefore:      

 Lim n→∞  f tn( ) = Lim n→∞  f  t( )n = f c( )

Claim
The sequence  y s  is a convergent subsequence of y ;   y s  converges to f c( ) .

Verification     

            (1) By the associative law for composition of functions: 

 y s = f  x( ) s = f  x  s( ) = f  t             

            (2) In turn, by the continuity of f  as noted above:

 Lim n→∞  y  s( )n = Lim n→∞ f  t( )n = f c( )  
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(3)  Existence of the Definite Integral

 The definite integral of f  from a  to b :   f t( ) dt
a

b
∫ ,  exists.

Fixed Partition
Suppose that  x : 0,1,…,n{ } → a,b[ ]    n ∈N( )   is a partition from a  to b .  
Lower Riemann Sum for the Partition
By the Compact Range Theorem , we can choose a sequence of sample points  

 m : 1,2,…, n{ } → a,b[ ]  for the partition x  such that for each i , 1 ≤ i ≤ n :  
f mi( )  is  the absolute minimum  value of  f  on the subinterval  xi–1, xi[ ]

Then, the Lower Sum  for the partition x  is the Riemann Sum: 

Lower  Sum  f  x( )   =  f mi( ) Δx( )i
i  =  1

n

∑

Upper Riemann Sum for the Partition
By the Compact Range Theorem , we can choose a sequence of sample points  

 M : 1, 2,…,n{ } → a,b[ ]  for the partition x  such that for each i , 1 ≤ i ≤ n :  
f Mi( )  is the absolute maximum  value  of  f  on the subinterval  xi–1, xi[ ]

Then, the Upper Sum  for the partition x  is the Riemann Sum: 

Upper  Sum  f  x( )   =  f Mi( ) Δx( )i
i  =  1

n

∑

Remark
For the definite integral of f  from b  to a , the lower sum is returned by the maximum   

values and the upper sum is returned by the minimum values. 

Order Relation
The lower sum for a fixed partition x  is less that or equal to the upper sum for x .       
We show below that this extends to where the partition of the lower sum is distinct from       

that of the upper sum.
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Common Refinement
A Common Refinement  of two partitions is a partition for which the set of subdivision       

points includes the subdivision points of each of the original partitions.  

Lower and Upper Sum Refinement Lemma

Every lower sum for  f  on a,b[ ]  ≤  Every upper  sum  for   f  on a,b[ ]
( Here, the partitions of the lower sums vary independently from those of the upper sums.)    

The lemma follows immediately from the following observation:
The lower sum for a common refinement is greater than or equal to each of the original  

lower sums; and, the upper sum is less than or equal to each of the originals.   

Proof Strategy

Let L  denote the least upper bound for the collection of all lower sums for f  on  a,b[ ] ; 
and, let G  denote the greatest lower bound for the collection of all upper sums for f  on a,b[ ] . 

By the Refinement Lemma , L ≤G . 

We need to show that:

L = f t( ) dt
a

b
∫ = G

Moreover, we need to show that the upper and lower sums of a partition can be forced 
arbitrarily close by simply choosing the partition with a sufficiently small mesh.  
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Construction  

   (1) Let ε > 0 . Choose δ > 0  according to the uniform continuity of f  on a,b[ ]  relative to    

the value closeness constraint ε b – a( )–1  ( Uniform Continuity Theorem ) .

   (2) Let  x : 0,1,… ,n{ } → a,b[ ]    n ∈N+( )   be a partition from a  to b  for which the mesh 

is less than δ .  

   (3) Let  m : 1, 2,… ,n{ } → a,b[ ]  be a choice of sample points so that the Lower Sum  for 

the partition x  is the Riemann Sum : 

Lower  Sum  f  x( )   =  f mi( ) Δx( )i
i  =  1

n

∑

   (4) Let  M : 1,2,…, n{ } → a,b[ ]  be a choice of sample points so that the Upper Sum  for 

the partition x  is the Riemann Sum:   

  Upper  Sum  f  x( )   =  f Mi( ) Δx( )i
i  =  1

n

∑

   (5) Then:   f mi( ) Δx( )i
i  =  1

n

∑
⎛

⎝⎜
⎞

⎠⎟
 ≤  L ≤  G  ≤  f Mi( ) Δx( )i

i  =  1

n

∑
⎛

⎝⎜
⎞

⎠⎟
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Sum Closeness Verification  

f Mi( ) Δx( )i
i  =  1

n

∑
⎛

⎝⎜
⎞

⎠⎟
– f mi( ) Δx( )i

i  =  1

n

∑
⎛

⎝⎜
⎞

⎠⎟
 

= f Mi( ) – f mi( )⎡⎣ ⎤⎦  Δx( )i
i  =  1

n

∑       Distributive Law

< ε b – a( )–1 Δx( )i
i  =  1

n

∑        By the choice of x  and δ :  Mi – mi < δ ,

            and thus,  f Mi( ) – f mi( ) < ε b – a( )–1

= ε b – a( )–1 Δx( )i
i =  1

n

∑      Distributive Law      

= ε b – a( )–1 b – a( )      Sum of the changes in x  is the Interval Length

= ε      Cancellation
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(4)  Mean Value Theorem of Integral Calculus

Construction
  

      (1)  Apply the Compact Range Theorem  to obtain the absolute minimum value m   and 
absolute maximum value M  assumed by the function f , and, let each of p  and q  be a point  
in a,b[ ]  such that f p( ) = m  and f q( ) = M .

      (2)  Then:    m b – a( ) ≤ f t( ) dt
a

b
∫ ≤ M b – a( )

      (3)   Apply the Intermediate Value Theorem  to the linear function y = b – a( ) x  restricted to 
the domain m, M[ ] :

Choose   z ∈ m, M[ ]  such  that   f t( ) dt
a

b
∫ = b – a( ) z⎡

⎣⎢
⎤
⎦⎥

Remark    The slope of the linear function: y = b – a( ) x , is b – a( ) .

      (4) If the integrand f  is constant, then arbitrarily choose c ∈ a,b( ) . 
Then:     m = z = M = f c( )   

      (5) Suppose that f  is not constant. Then:  p ≠ q ; and in turn, by the continuity of f ,    
the inequality m < z < M  holds.    

By the Intermediate Value Theorem  applied to f  restricted to the closed interval joining 
p  and q , we can choose c ∈ p, q[ ]  such that  z = f c( ) .

             (6) Arguing by cases, we can further require a choice of c ∈ p,q( )  strictly in between p  and 
q  such that z = f c( ) .

Conclusion   

f c( ) b – a( ) = f t( ) dt
a

b
∫          c ∈ a,b( )

Remark     Thus, after the initial set–up using the Compact Range Theorem ,  
the Mean Value Theorem of Integral Calculus  follows from two applications of the  
Intermediate Value Theorem .
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(5)  Fundamental Theorem of Calculus–Part I        Application of  MVT–IC

Construction

        (1) ′g x( ) = Lim h→0  h
–1 g x + h( ) – g x( )⎡⎣ ⎤⎦   

         (2) = Lim h→0  h
–1 f t( ) dt

a

x +h
∫ – f t( ) dt

a

x
∫⎡

⎣⎢
⎤
⎦⎥

         (3) = Lim h→0  h
–1 f t( ) dt

x

x +h
∫⎡⎣⎢

⎤
⎦⎥

         (4) = Lim h→0  h
–1 f c( ) h⎡⎣ ⎤⎦  

for  some choice  of  c strictly  in between x and  x + h  
          (5) = Lim h→0  f c( )

          (6) = Lim c→x  f c( )

          (7) = f x( )

Verification

         (1)   Definition of the derivative ′g x( )
         (2)   Definition of g

         (3)   Definite Integral Splitting Lemma     (Chapter VI – Section 2 – (1) )

         (4)   Mean Value Theorem of Integral Calculus

          (5)   Simplified Difference Quotient

          (6)   As h → 0 , x + h → x , and therefore:   c → x    ( since x < c < x + h )
          (7)   Continuity of f  at  x  
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(6)  Mean Value Theorem of Differential Calculus

Construction

        (1) Let  g : a,b[ ]→ R  defined by:    

g x( ) = f x( )  –  f b( ) – f a( )
b – a

⎛
⎝⎜

⎞
⎠⎟

x – a( )  +  f a( )⎡

⎣
⎢

⎤

⎦
⎥

       (2) For each argument x ,  g x( )   is the Vertical Distance  between the graph of f  and the 
graph of the secant joining the endpoints of Graph  f :

y =
f b( ) – f a( )

b – a
⎛
⎝⎜

⎞
⎠⎟

x – a( )  +  f a( )

g subtracts  the value of  the secant from  the value of  f( )

        (3) Using the rules of differentiation:

′g x( ) = ′f x( )  –  f b( ) – f a( )
b – a

⎛
⎝⎜

⎞
⎠⎟

       (4) Since g a( ) = g b( ) = 0 , g  is either constant, or we can use the Compact Range
Theorem  to choose an interior point c ∈ a,b( )  at which g  assumes an extremum. 

       (5) Apply the Turning Point Lemma (Chapter VI – Section 2 – (2) ):    ′g c( ) = 0

Conclusion    

′g c( ) = 0 &  ′g c( ) = 0 ⇒  ′f c( ) =
f b( ) – f a( )

b – a
⎡
⎣⎢

⎤
⎦⎥
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(7)  Antiderivative Comparison Theorem     Corollary of MVT–DC        

Construction      

We claim k = g – h  is constant on u,v[ ] . Otherwise, we can choose a  and b , with 

u ≤ a < b ≤ v , such that:  k a( ) ≠ k b( ) . 

In turn, by the Mean Value Theorem of Differential Calculus , applied to the function k  

restricted to a,b[ ] , we can then choose c ∈ a,b( )  such that:     

′k c( )  =  

k b( ) – k a( )
b – a

 ≠  0

Conclusion  

This result contradicts the hypothesis that each of g  and h  is an  antiderivative for f :

′k c( ) = g – h( )′ c( ) = ′g c( ) – ′h c( ) = f c( ) – f c( ) = 0
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(8)  Fundamental Theorem of Calculus–Part II

          (i )   First Formulation            Corollary of FTC–I and ACT     
Construction

       (1) Continuously extend f  to the open interval u,v( ) .

        (2) By the Fundamental Theorem of Calculus–Part I , the following indefinite integral g
(where the additive constant is zero)  is an antiderivative for f  on u,v( ) :

 g : u, v( ) → R         g x( ) = f t( ) dt
a

x
∫         ′g x( ) = f x( )

       (3) Each of g  and h  is an antiderivative for f  on a,b[ ] . By the Antiderivative    
Comparison Theorem , we can now choose the translation constant that relates g  and h . 

Let  z∈R  such that:    g x( ) = h x( ) + z    x ∈ a, b[ ]

Conclusion     f t( ) dt
a

b
∫  = f t( ) dt

a

b
∫ – f t( ) dt

a

a
∫

= g b( ) – g a( ) = h b( ) + z⎡⎣ ⎤⎦ – h a( ) + z⎡⎣ ⎤⎦ = h b( ) – h a( )

         (ii ) Second Formulation        Application of  MVT–DC   
Construction

       (1)  Assume a ≠ b , and let u = Min a,b{ } , and v = Max a, b{ } . Let   n ∈N+ , and 
suppose that  x : 0,1,… ,n{ } → u,v[ ]  is a partition of u,v[ ]  from a  to b .  

        (2) By n – many  applications of the  Mean Value Theorem of Differential Calculus , we can  
choose a finite sequence c  of intermediate arguments for x  such that:

     c : 1,2,… ,n{ } → u,v[ ]       f xi( ) – f xi–1( ) = ′f ci( ) Δx( )i       1≤ i ≤ n( )  

       (3) Then:   f b( ) – f a( )  =  f xi( ) – f xi–1( )
i  =  1

n

∑  =  ′f ci( ) Δx( )i
i =  1

n

∑

Conclusion

Since the partition x  is arbitrary:    f b( ) – f a( ) = ′f t( ) dt
a

b
∫
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2. Splitting and Turning Point Lemmas
 

(1)  Definite Integral Splitting Lemma
 

Suppose that  u, v ∈R  with u < v , that each of a , b , and c  is a choice of a point in the  
open interval u,v( ) , and that  f : u, v( ) → R  is a continuous function.
 

Then, regardless of whether the choices a,b, c  are distinct and regardless of the ordering   

of the choices a,b, c  in the interval:
 

f t( ) dt
a

b
∫ = – f t( ) dt

b

a
∫     and    f t( ) dt

a

c
∫ = f t( ) dt

a

b
∫ + f t( ) dt

b

c
∫

 

(2)  Differentiation Turning Point Lemma
 

(With more accuracy:  Differentiation Extremum Lemma)
 

Suppose that  a,b ∈R  with a < b , and that  g : a,b[ ]→ R  is a continuous function on 

the closed interval a,b[ ] , and that g  is a differentiable function on the open interval a,b( ) . 
Suppose further that c ∈ a,b( )  is an interior point at which g  locally  assumes an extreme 

value. Then, ′g c( ) = 0 .
 

Construction
 

Suppose that g  assumes a local minimum at c  ( the argument for the case of a local 
maximum is by symmetry) .

Let DQ  denote the difference quotient for g  with fixed point c . 
In the case of a local minimum, for h ≠ 0  sufficiently close to zero, the numerator of the   

difference quotient is always zero  or positive:  g c + h( ) – g c( ) ≥ 0 . 

Therefore, for all h ≠ 0  in a sufficiently small neighborhood of zero : 
 

h < 0 ⇒  DQ h( ) ≤ 0    &   h > 0 ⇒  DQ h( ) ≥ 0
 

Conclusion
′g c( ) =  Lim h  →  0  –  DQ h( )  ≤ 0

 

′g c( ) =  Lim h  →  0  +  DQ h( )  ≥ 0
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3. Differentiability Hierarchy

(1)  Differentiability implies Continuity  
Suppose that  u, v ∈R  with u < v , a ∈ u, v( ) , and that  f : u, v( ) → R .

Suppose further that f  is differentiable at a . Then, f  is continuous at a .  

By hypothesis:   
 
∃ b ∈R ′f a( ) = Lim h→ 0

f a + h( ) – f a( )
h

= b⎡
⎣⎢

⎤
⎦⎥

In order for a fraction to converge to a constant as the denominator converges to zero, it is  
necessary for the numerator to converge to zero  also:   

Lim h→0  f a + h( ) – f a( ) = 0

The limit equation for the numerator asserts that f  is continuous at a .  

(2)  Hierarchy of Oscillation Examples

             (i )  f :R → R f x( ) = Sin x–1( )  x ∈R \ 0{ } f 0( ) = 0    
           (ii )  f :R → R f x( ) = x Sin x–1( )  x ∈R \ 0{ } f 0( ) = 0

          (iii)  f :R → R f x( ) = x2  Sin x–1( )  x ∈R \ 0{ } f 0( ) = 0

In each case, f  is continuously differentiable on  R \ 0{ } :  ′f  exists and is itself a 
continuous function on  R \ 0{ } .    
  (i) The first example has an essential discontinuity at zero : 

As x → 0 , the graph of f  oscillates between the graphs of the horizontal lines y = 1 and  
y = –1 . For each of lines y = 1 and y = –1 , there is an infinite sequence that converges to zero    

such that the tangent to the graph of f  over each argument of the sequence is the horizontal line in 
question:  

Define:  x : N→ R \ 0{ }    xn = 2n  π + π
2

⎛
⎝⎜

⎞
⎠⎟

–1

Lim n→∞ xn = 0            f  x   is  constant with  the value 1  

Define:  y : N→ R \ 0{ }        yn = 2n + 1( )  π + π
2

⎛
⎝⎜

⎞
⎠⎟

–1

Lim n→∞ yn = 0      f  y  is  constant  with the  value –1
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 (ii) The second example is continuous at zero, but not differentiable at zero :  

(a)   The function f  is continuous at zero:

The graph of f  oscillates between the graphs of the linear functions y = x  and y = – x . 
As a result, Lim x→ 0 f x( ) = 0 .

(b)   The function f  is not differentiable at zero:

Let DQ  denote the difference quotient for f  with fixed point zero. We use the same 
twoinput sequences converging to zero  as in the first example. 

      Define:  h : N→ R \ 0{ }      hn = 2n π + π
2

⎛
⎝⎜

⎞
⎠⎟

–1

Lim n→∞ hn = 0           DQ( ) h  is  constant with  the value 1  

     For each n , the secant through the origin corresponding to the argument hn  is y = x .

      Define:  k : N→ R \ 0{ }      kn = 2n + 1( )  π + π
2

⎛
⎝

⎞
⎠

–1

Lim n→∞ kn = 0           DQ( ) k   is  constant with  the value –1

     For each n , the secant through the origin corresponding to the argument kn  is y = – x .

(iii ) The third example is differentiable at zero, but not continuously differentiable at zero. The 
derivative is defined at zero, but has zero  as an essential discontinuity:  

(a)   The derivative is defined at zero :

The graph of f  oscillates between the graphs of the parabolas y = x2  and y = – x2 .   
As a result, as h → 0 , secants passing through the origin converge to the x – axis :  ′f 0( ) = 0

(b)   The derivative ′f  has zero  as an essential discontinuity:

Lim x→ 0 ′f x( ) = Lim x→0 –  Cos x–1( ) + 2x Sin x–1( )⎡
⎣

⎤
⎦

  Does Not  Exist

As x → 0 :    2x Sin x–1( ) → 0 , whereas –  Cos x –1( )  oscillates between y = 1 and 

y = –1 .
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4. Examples of Uniform Continuity
 

(1)  Bounded Derivative Theorem
 

Suppose that  f :U → R  is everywhere differentiable on a connected open set  U ⊆ R , 
and that its derivative ′f  is a function with a bounded range. 

Then, f  is uniformly continuous.  
(The theorem refers to the Euclidean distance function:  d p, q( ) =   p – q .)

 

Construction
 

       (1) By hypothesis, we can choose a positive  b ∈R  such that:  ∀x ∈U      ′f x( )  ≤ b⎡⎣ ⎤⎦
 

        (2) Let ε > 0 . Define δ  by:   δ = ε  b–1    
 

        (3) Let p,q ∈U  such that p < q , and, d p, q( ) =    p – q  < δ . 
 

         (4) By hypothesis, Domain  f  is connected, and therefore, p, q[ ] ⊆ Domain f . 
 

        (5) By the Mean Value Theorem of Differential Calculus , we can choose c ∈ p,q( )  such 

that:     ′f c( ) p – q( ) = f p( ) – f q( )  
 

Closeness Verification
 

     d f p( ) , f q( )( ) =     f p( ) – f q( )  Euclidean Distance
 
 

     =     ′f c( )      p – q  Application of MVT–DC†
 
 

≤ b    p – q  
 Choice of b

 

< b δ  Choice of p  and q
 

= b ε  b–1  Choice of δ     
 

= ε Cancellation

†We are also using:   ∀x, y ∈R    x  y =   x     y   ⎡⎣ ⎤⎦
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(2)  Sufficient Conditions for Uniform Continuity

Suppose that  D ⊆ R  is nonempty, and that  f : D → R .

Relative to the Euclidean distance function and induced topology, each of the conditions  
below is individually sufficient for the uniform continuity of f : 
           (i ) The function f  is continuous on D , and, the domain  D ⊆ R  is compact.
          (ii ) The domain   D ⊆ R  is a connected open set, the function  f   is differentiable on  D , and, 
the range of the derivative ′f  is bounded. 

(3)  Applications

           (i ) The function below is uniformly continuous by the first condition but not the second:

 f : –1,1[ ] → R     f x( ) = Arcsin x

          (ii ) The function below is uniformly continuous by the second condition but not the first: 
 h : R→ R      h x( ) =

f x( )
g x( )

Each of  f  and  g is  a polynomial for  which  Degree f ≤ Degree  g      

 Real  Roots of  g = x ∈R : g x( ) = 0{ } = ∅      Roots  of  g ⊆ C \ R( ) 
Example     h x( ) = 1 + x2( )–1

(4)  Vertical Asymptotes and Vertical Tangents  

Example     A rational function with a vertical asymptote is not uniformly continuous.

Example     Whereas a vertical asymptote precludes uniform continuity for each    

 f : D → R  where  D ⊆ R , vertical tangent lines are a possibility:  
           (i ) The function Arcsine  has vertical tangent lines x = –1  and x = 1 . 

          (ii ) The power function f x( )  =  x  a  for which  0 <  a  < 1  ( or the continuous extension of 
the power function to zero  in the case of an irrational exponent)  is uniformly  continuous, and has 
the y – axis  as a vertical tangent line.          

Remark     The uniform continuity of the power function follows from an application of the 
two conditions mentioned above used in combination.  
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5. Arc Length

(1)  Arc Length Formula
Suppose that  u, v ∈R  with u < v , that  f : u, v( ) → R  is a continuously differentiable    

function on u,v( ) , and that a,b ∈ u, v( )  with a < b . Then, the Length of the Function Graph 

from a, f a( )  to b, f b( )  is defined by the following definite integral:  

Arc Length
   f a,b( )  =        1+ ′f t( )  2

a

b
∫      dt

Remark   We need to show that the above Arc Length Equation  is the Correct  Definition  
of the geometric generalization of the Pythagorean Theorem  from line segments to arcs. 

Suppose  n ∈N+ , and  x : 0,1,…,n{ } → a,b[ ]  is a partition of the interval a,b[ ]  from 
a  to b . The partition induces an algebraic approximation of the arc length:

 Δx( )i
2 + Δy( )i

2

i  =  1

n

∑

Δx( )i = xi – xi–1    Δy( )i = f xi( ) – f xi–1( )    1 ≤ i ≤ n( )

By the Mean Value Theorem of Differential Calculus (n – many  applications) , we can 
choose a finite sequence  c : 1,…, n{ } → a,b[ ]  such that: 

Δy( )i =  f xi( ) – f xi–1( )  =  ′f ci( ) Δx( )i     xi–1 ≤ ci ≤ xi        1 ≤ i ≤ n( )

Then:          Δx( )i
2 + Δy( )i

2

i  =  1

n

∑     
=   Δx( )i

2 + ′f ci( )2 Δx( )i
2

i  =  1

n

∑

=     1 + ′f ci( )2
 

i  =  1

n

∑   Δx( )i

Thus, the approximation is a Riemann Sum  for the function:   s =   1+ ′f t( )  2

As the mesh converges to zero, we obtain the arc length integral as the value of the limit. 
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(2)  Application to the Unit Circle   

Let  f : –1,1[ ] → R  defined by f t( ) =  1– t2 . Then:

1 + ′f t( ) 2 = 1 + –t

 1– t2

⎛

⎝
⎜

⎞

⎠
⎟

2

= 1 + t2

1− t2 = 1
  1 − t 2     –1 < t < 1( )

Using the Arc Length Formula ,   the length of the arc on the unit circle from the apex 

0,1  to x, y , y = 1 – x2 , is the absolute value of the indefinite integral defined by:

Arcsin  x =  1

 1 – t2
 dt = Θ

0

x
∫        –1 < x < 1( )

The function Θ = Arcsin x  continuously extends to the endpoints; we define π   
(redundantly) by the following equations: 

Arcsin  1( ) = 2–1π      Arcsin  –1( ) = –2–1π
  

The tangent lines are vertical at the endpoints, so the derivative of the Arcsine  exists only 
on the interior of the interval. 
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VII.  Geometric Structure of Function Graphs in the Plane
 

1. Smoothness

Hypothesis      Suppose that f  is a real–valued function defined on an open subset of the   
real line, and that f  possesses global first and second derivatives. 

(1)  Rates of Change

Suppose that a,b ∈Domain f  with a < b  and a,b[ ] ⊆ Domain f .   
Chord   (Line Segment Joining Two Distinct Points of a Function Graph)     
For all arguments x, y ∈ a,b[ ]  with x < y , let LS x, y( )  denote the line segment joining 

the points x, f x( )  and y, f y( )  on the graph of f .   
Then, each of the concepts below is defined as the universal quantification closure of      

the indicated property as  x   and  y   vary over the interval a,b[ ]  under the constraint x < y : 

                 (i ) f  is Strictly Increasing  on a,b[ ]  iff   LS x, y( )  has  a  Positive  Slope

               (ii ) f  is Strictly Decreasing  on a,b[ ]   iff   LS x, y( )  has  a  Negative  Slope  

             (iii) f  is Concave Up  on a,b[ ]      iff   LS x, y( )  lies  above Graph f  

             (iv ) f  is Concave Down  on a,b[ ] iff   LS x, y( )  lies  below Graph f  

  

Turning Point  

A point of Graph  f  at which there is a change in the (strictly) increasing–decreasing         

behavior of f  is a Turning Point  of Graph  f . For instance,  in the case where  f   assumes  a    

local maximum at x ∈ a,b( ) ,  the conditional for asserting the presence of a turning point is:  

  f  is  strictly increasing  on  a, x[ ]  &  f  is strictly  decreasing on x,b[ ]
⇒  x, f x( )  is a  turning  point  of  Graph f

Inflection Point
A point of Graph  f  at which there is a change in the concavity of  f   is a Point of Inflection   

of Graph  f .
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Concavity Theorem

Application of the Mean Value Theorem of Differential Calculus  

             (i ) ′f > 0  &  ′′f > 0    
          ⇒  f  is Increasing Concave Up   ( f  is increasing at an increasing rate)

           (ii ) ′f > 0  &  ′′f < 0     
          ⇒  f  is Increasing Concave Down   ( f  is increasing at a decreasing rate)

          (iii) ′f < 0  &  ′′f > 0     
          ⇒  f  is Decreasing Concave Up   ( f  is decreasing at an increasing rate)

          (iv ) ′f < 0  &  ′′f < 0     
          ⇒  f  is Decreasing Concave Down  ( f  is decreasing at a decreasing rate)

Here, Increasing  and Decreasing  abbreviate Strictly Increasing  and Strictly Decreasing  
respectively. 

(2)  Limits Involving Infinity            

Suppose that  a ∈R .

Limits

             (i ) Lim x→  ∞  f x( )  =   a      ⇔    ∃  b ∈R    b,∞[ ) ⊆ Domain f   ⎡⎣ ⎤⎦

&    ∀ε > 0  ∃   t ∈R with t ≥ b   ∀x ∈ t,∞( )   a – ε < f x( ) < a + ε⎡⎣ ⎤⎦

The definition of  Lim x→–  ∞ f x( ) = a   is by symmetry.

          (ii ) Lim
 x→  a+

 
f x( ) = ∞    ⇔     ∃  b ∈R a < b ∧ a,b( ) ⊆ Domain f⎡⎣ ⎤⎦

&    ∀n ∈N   ∃   t ∈R with  t ∈ a,b( )   ∀x ∈ a, t( )   f x( ) > n⎡⎣ ⎤⎦

The definitions in the presence of minus signs are by symmetry.
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Asymptotes  

The Open Planar Strip with Radius ε > 0  Centered at the Horizontal Line  y = a   
is defined to be the cross product:     HorStripε a( )  =     R  ×  a – ε,  a + ε( )

Then, in the Positive Direction of the Argument, that is, as x →∞ , the horizontal line
y = a  is a  Horizontal Asymptote of Graph  f   provided that:

 ∃  b ∈R  b,∞[ ) ⊆ Domain  f⎡⎣ ⎤⎦

&    ∀ε > 0  ∃   t ∈R with t ≥ b  Graph   f  t,∞( )   ⊆  HorStripε a( )⎡⎣ ⎤⎦  

 For the other kinds of asymptotes, the definitions are again by symmetry.  

Asymptote Theorem

             (i ) Each of the limit conditions below is independently sufficient for the horizontal line y = a   
to be a horizontal asymptote of Graph  f :

Lim x→  ∞  f x( ) = a      Lim x→–  ∞ f x( ) = a

           (ii ) Each of the limit conditions below is independently sufficient for the vertical line x = a    
to be an upward vertical asymptote of Graph  f :   

Lim
 x→  a+

 
f x( ) = ∞     Lim

 x→  a –
 
f x( ) = ∞

         (iii) Each of the limit conditions below is independently sufficient for the vertical line x = a   
to be an downward vertical asymptote of Graph  f :      

Lim
 x→  a+

 
f x( ) = – ∞   Lim

 x→  a –
 
f x( ) = – ∞     
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2. Constructing the Graph from Sign Charts and Limits

(1)  Sign Chart of a Function

Suppose that  D ⊆ R  and that  f : D → R . Then, the Sign Chart  of f  is the function, 
taking values in a set of Formal Symbols, defined by:   

        Sign f : R   →  −, +,0,∞{ }      
Sign f x( )  =  − x  ∈  f –1 –∞,0( )⎡⎣ ⎤⎦ f x( ) < 0   

Sign f x( )  =  + x  ∈  f –1 0,∞( )⎡⎣ ⎤⎦ f x( ) > 0  
Sign f x( )  =     0 x  ∈  f –1 0( ) f x( ) = 0   
Sign f x( )  =   ∞  x  ∈ R  \  D f x( )  Undefined     

(2)  Graph Construction Theorem

The graph of a sufficiently smooth real–valued function f  of one real variable can be    
constructed from the sign charts of f , ′f , and ′′f , and the limits of f  involving infinity.
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