
Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

1

Contents

Foundations of Software Testing 2E
ADITYA P. MATHUR

Chapter 1 Chapter 2

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Chapter 7 Chapter 8

Chapter 9 Chapter 10 Chapter 11

Part I

Part II

Part III

Part IV

Updated: July 21, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

2

Contents

Chapter 1:

Preliminaries: Software Testing

Updated: July 17, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

3

Contents

Learning Objectives

n  Finite state machines	

n  Testing techniques	

n  Errors, Testing, debugging, test process, CFG, correctness, reliability,

oracles.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

4

Contents

1.1 Humans, errors and testing

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

5

Contents

Errors

Errors are a part of our daily life. 	

	

Humans make errors in their thoughts, actions, and in the products that
might result from their	

actions. 	

	

Errors occur wherever humans are involved in taking actions and making
decisions.	

These fundamental facts of human existence
make testing an essential activity. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

6

Contents

Errors: Examples

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

7

Contents

Error, faults, failures

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

8

Contents

1.2 Software Quality

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

9

Contents

Software quality

Static quality attributes: structured, maintainable, testable code as well as

the availability of correct and complete documentation.

Dynamic quality attributes: software reliability, correctness,

completeness, consistency, usability, and performance

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

10

Contents

Software quality (contd.)

Completeness refers to the availability of all features listed in the requirements,

or in the user manual. An incomplete software is one that does not fully

implement all features required.

Consistency refers to adherence to a common set of conventions and

assumptions. For example, all buttons in the user interface might follow a

common color coding convention. An example of inconsistency would be when

a database application displays the date of birth of a person in the database.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

11

Contents

Software quality (contd.)

Usability refers to the ease with which an application can be used. This is an

area in itself and there exist techniques for usability testing. Psychology plays

an important role in the design of techniques for usability testing.

Performance refers to the time the application takes to perform a requested

task. It is considered as a non-functional requirement. It is specified in terms

such as ``This task must be performed at the rate of X units of activity in one

second on a machine running at speed Y, having Z gigabytes of memory."

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

12

Contents

1.3 Requirements, behavior, and correctness

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

13

Contents

Requirements, behavior, correctness

Requirement 1: It is required to write a 	

program that inputs two integers and outputs the maximum of these.	

Requirement 2: It is required to write a 	

program that inputs a sequence of integers and outputs the sorted version of
this sequence.	

Requirements leading to two different programs: 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

14

Contents

Requirements: Incompleteness

Suppose that program max is developed to satisfy Requirement 1. The expected output

of max when the input integers are 13 and 19 can be easily determined to be 19.

Suppose now that the tester wants to know if the two integers are to be input to the

program on one line followed by a carriage return, or on two separate lines with a

carriage return typed in after each number. The requirement as stated above fails to

provide an answer to this question.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

15

Contents

Requirements: Ambiguity

Requirement 2 is ambiguous. It is not clear whether the input sequence is to sorted

in ascending or in descending order. The behavior of sort program, written to satisfy

this requirement, will depend on the decision taken by the programmer while writing

sort.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

16

Contents

Input domain (Input space)

The set of all possible inputs to a program P is known as the input domain or input
space, of P.

Using Requirement 1 above we find the input domain of max

to be the set of all pairs of integers where each element in the pair integers is in the
range -32,768 till 32,767.

Using Requirement 2 it is not possible to find the input domain for the sort
program.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

17

Contents

Input domain (Continued)

Modified Requirement 2:

It is required to write a program that inputs a

sequence of integers and outputs the integers in this sequence sorted in either

ascending or descending order. The order of the output sequence is determined by

an input request character which should be ``A'' when an ascending sequence is

desired, and ``D'' otherwise.

While providing input to the program, the request character is input first followed

by the sequence of integers to be sorted; the sequence is terminated with a period.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

18

Contents

Input domain (Continued)

Based on the above modified requirement, the input domain for sort is a set of

pairs. The first element of the pair is a character. The second element of the pair

is a sequence of zero or more integers ending with a period.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

19

Contents

Valid/Invalid Inputs

The modified requirement for sort mentions that the

request characters can be ``A'' and ``D'', but fails to answer the question ``What
if the user types a different character ?’’

When using sort it is certainly possible for the user to type a

character other than ``A'' and ``D''. Any character other than ``A'’ and ``D'' is

considered as invalid input to sort. The requirement for sort does not specify

what action it should take when an invalid input is encountered.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

20

Contents

1.4 Correctness versus reliability

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

21

Contents

Correctness

Though correctness of a program is desirable, it is almost

never the objective of testing.

To establish correctness via testing would imply testing a program on all

elements in the input domain. In most cases that are encountered in practice, this

is impossible to accomplish.

Thus, correctness is established via
mathematical proofs of programs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

22

Contents

Correctness and Testing

While correctness attempts to establish that the program is error free, testing
attempts to find if there are any errors in it.

Thus, completeness of testing does not necessarily demonstrate that a program is
error free.

Testing, debugging, and the error removal processes together increase our
confidence in the correct functioning of the program under test.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

23

Contents

Software reliability: two definitions

Software reliability [ANSI/IEEE Std 729-1983]: is the probability of

failure free operation of software over a given time interval and under given

conditions.

Software reliability is the probability of failure free operation of software

in its intended environment.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

24

Contents

Operational profile

An operational profile is a numerical description of how a program is used.

Consider a sort program which, on any given execution, allows any one of two

types of input sequences. Sample operational profiles for sort follow.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

25

Contents

Operational profile

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

26

Contents

Operational profile

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

27

Contents

1.5 Testing and debugging

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

28

Contents

Testing and debugging

Testing is the process of determining if a program has any errors.

When testing reveals an error, the process used to determine the cause of this error

and to remove it, is known as debugging.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

29

Contents

A test/debug cycle

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

30

Contents

Test plan

A test cycle is often guided by a test plan.

Example: The sort program is to be tested to meet the requirements given earlier.

Specifically, the following needs to be done.

•  Execute sort on at least two input sequences, one with ``A'' and

the other with ``D'' as request characters.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

31

Contents

Test plan (contd.)

•  Execute the program on an empty input sequence.

•  Test the program for robustness against erroneous inputs such as ``R''

typed in as the request character.

•  All failures of the test program should be recorded in a suitable file using

the Company Failure Report Form.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

32

Contents

Test case/data

A test case is a pair consisting of test data to be input to the program and the

expected output. The test data is a set of values, one for each input variable. 	

A test set is a collection of zero or more test cases. 	

Sample test case for sort: 	

	
Test data: <''A'’ 12 -29 32 >	

	
Expected output: -29 12 32	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

33

Contents

Program behavior

Can be specified in several ways: plain natural language, a state diagram,

formal mathematical specification, etc.

A state diagram specifies program states and how the program changes its
state on an input sequence. inputs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

34

Contents

Program behavior: Example

Consider a menu

driven application.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

35

Contents

Program behavior: Example (contd.)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

36

Contents

Behavior: observation and analysis

The entity that performs the task of checking the correctness of the

observed behavior is known as an oracle.

In the first step one observes the behavior.

In the second step one analyzes the observed behavior to check if it is correct

or not. Both these steps could be quite complex for large commercial

programs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

37

Contents

Oracle: Example

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

38

Contents

Oracle: Programs

Oracles can also be programs designed to check the behavior of other
programs.

For example, one might use a matrix multiplication program

to check if a matrix inversion program has produced the correct

output. In this case, the matrix inversion program inverts a given

matrix A and generates B as the output matrix.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

39

Contents

Oracle: Construction

Construction of automated oracles, such as the one to check a matrix

multiplication program or a sort program, requires the determination of input-

output relationship.

In general, the construction of automated oracles is a complex

undertaking.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

40

Contents

Oracle construction: Example

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

41

Contents

Testing and verification

Program verification aims at proving the correctness of programs by showing

that it contains no errors. This is very different from testing that aims at

uncovering errors in a program.

Program verification and testing are best considered as complementary techniques.

In practice, program verification is often avoided, and the focus is on testing.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

42

Contents

Testing and verification (contd.)

Testing is not a perfect technique in that a program might contain errors

despite the success of a set of tests.

Verification promises to verify that a program is free from errors. However, the

person/tool who verified a program might have made a mistake in the verification

process; there might be an incorrect assumption on the input conditions; incorrect

assumptions might be made regarding the components that interface with the

program, and so on.

Verified and published programs have been shown to be
incorrect.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

43

Contents

1.10. Test generation strategies

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

44

Contents

Test generation

Any form of test generation uses a source document. In the most informal of

test methods, the source document resides in the mind of the tester who

generates tests based on a knowledge of the requirements.

In several commercial environments, the process is a bit more formal. The tests are

generated using a mix of formal and informal methods either directly from the

requirements document serving as the source. In more advanced test processes,

requirements serve as a source for the development of formal models.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

45

Contents

Test generation strategies

Model based: require that a subset of the requirements be modeled using a

formal notation (usually graphical). Models: Finite State Machines, Timed

automata, Petri net, etc.

Specification based: require that a subset of the requirements be modeled using

a formal mathematical notation. Examples: B, Z, and Larch.

Code based: generate tests directly from the code.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

46

Contents

Test generation strategies (Summary)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

47

Contents

1.13 Types of software testing

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

48

Contents

Types of testing

C1: Source of test generation. 	

C2: Lifecycle phase in which testing takes place	

C3: Goal of a specific testing activity	

C4: Characteristics of the artifact under test	

One possible classification is based on the following four classifiers:	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

49

Contents

C1: Source of test generation

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

50

Contents

C2: Lifecycle phase

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

51

Contents

C3: Goal of specific testing activity

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

52

Contents

C4: Artifact under test

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

53

Contents

Summary

We have dealt with some of the most basic concepts in software

testing. Exercises at the end of Chapter 1 are to help you sharpen

your understanding.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

54

Contents

Chapter 2:

Preliminaries: Mathematical

Updated: July 12, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

55

Contents

2.1 Predicates and Boolean expressions

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

56

Contents

Where do predicates arise?

Predicates arise from requirements in a variety of applications. Here is an example

from Paradkar, Tai, and Vouk, “Specification based testing using cause-effect

graphs, Annals of Software Engineering,” V 4, pp 133-157, 1997.

A boiler needs to be to be shut down when the following conditions hold:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

57

Contents

Boiler shutdown conditions

1.  The water level in the boiler is below X lbs. (a)

2.  The water level in the boiler is above Y lbs. (b)

3.  A water pump has failed. (c)

4.  A pump monitor has failed. (d)

5.  Steam meter has failed. (e)

The boiler is to be shut down when a or b is true or the boiler is in degraded mode

and the steam meter fails. We combine these five conditions to form a compound

condition (predicate) for boiler shutdown.

Boiler in degraded mode when
either is true.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

58

Contents

Boiler shutdown conditions

Denoting the five conditions above as a through e, we obtain the following Boolean

expression E that when true must force a boiler shutdown:

 E=a+b+(c+d)e

where the + sign indicates “OR” and a multiplication indicates “AND.”

The goal of predicate-based test generation is to generate tests from a predicate p

that guarantee the detection of any error that belongs to a class of errors in the

coding of p.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

59

Contents

Another example

A condition is represented formally as a predicate, also known as a Boolean expression.

For example, consider the requirement

``if the printer is ON and has paper then send document to printer.”

This statement consists of a condition part and an action part. The following predicate

represents the condition part of the statement.

pr: (printer_status=ON) ∧ (printer_tray!= empty)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

60

Contents

Test generation from predicates

We will now examine two techniques, named BOR and BRO for generating tests

that are guaranteed to detect certain faults in the coding of conditions. The

conditions from which tests are generated might arise from requirements or might be

embedded in the program to be tested.

Conditions guard actions. For example,

 if condition then action

is a typical format of many functional requirements.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

61

Contents

Predicates

Relational operators (relop): {<, ≤, >, ≥, =, ≠.}

 = and == are equivalent.

Boolean operators (bop): {!,∧,∨, xor} also known as

 {not, AND, OR, XOR}.

Relational expression: e1 relop e2. (e.g. a+b<c)

e1 and e2 are expressions whose values can be compared using relop.

Simple predicate: A Boolean variable or a relational

 expression. (x<0)

Compound predicate: Join one or more simple predicates

 using bop. (gender==“female”∧age>65)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

62

Contents

Boolean expressions

Boolean expression: one or more Boolean variables joined by bop.
 (a∧b∨!c)

a, b, and c are also known as literals. Negation is also denoted by placing a bar over
a Boolean expression such as in

We also write ab for a∧b and a+b for a∨b when there is no confusion.

Singular Boolean expression: When each literal appears

 only once, e.g., in (a∧b∨!c)

(a∧b)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

63

Contents

Boolean expressions (contd.)

Disjunctive normal form (DNF): Sum of product terms:

 e.g. (p q) +(rs) + (a c).

Conjunctive normal form (CNF): Product of sums:

 e.g.: (p+q)(r+s)(a+c)

Any Boolean expression in DNF can be converted to an equivalent CNF and vice
versa.

e.g., CNF: (p+!r)(p+s)(q+!r)(q+s) is equivalent to DNF: (pq+!rs)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

64

Contents

Boolean expressions (contd.)

Mutually singular: Boolean expressions e1 and e2 are mutually singular when they

do not share any literal.

If expression E contains components e1, e2,.. then ei is considered singular only if it

is non-singular and mutually singular with the remaining elements of E.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

65

Contents

Boolean expressions: Syntax tree
representation

Abstract syntax tree (AST) for: (a+b)<c ∧!p.

Notice that internal nodes are labeled by

Boolean and relational operators

Root node: OR-node is labeled
as ∨.

∧

(a+b) c

! <

Leaf nodes

Root node (AND-node)

p

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

66

Contents

2.2 Program representation: Control flow graphs

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

67

Contents

Program representation: Basic blocks

A basic block in program P is a sequence of consecutive statements with a

single entry and a single exit point. Thus, a block has unique entry and exit

points.

Control always enters a basic block at its entry point and exits from its exit point.

There is no possibility of exit or a halt at any point inside the basic block except at

its exit point. The entry and exit points of a basic block coincide when the block

contains only one statement.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

68

Contents

Basic blocks: Example

Example: Computing x raised to y

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

69

Contents

Basic blocks: Example (contd.)

Basic blocks

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

70

Contents

Control Flow Graph (CFG)

A control flow graph (or flow graph) G is defined as a finite set N of nodes and a finite

set E of edges. An edge (i, j) in E connects two nodes ni and nj in N. We often write G=

(N, E) to denote a flow graph G with nodes given by N and edges by E.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

71

Contents

Control Flow Graph (CFG)

In a flow graph of a program, each basic block becomes a node and edges are used to

indicate the flow of control between blocks.

Blocks and nodes are labeled such that block bi corresponds to node ni. An edge (i,

j) connecting basic blocks bi and bj implies that control can go from block bi to

block bj.

We also assume that there is a node labeled Start in N that has no incoming edge, and

another node labeled End, also in N, that has no outgoing edge.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

72

Contents

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7, 8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4), (3, 4), (4, 5), (5,
6), (6, 5), (5, 7), (7, 8), (7, 9), (9, End)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

73

Contents

CFG Example

N={Start, 1, 2, 3, 4, 5, 6, 7, 8, 9, End}

E={(Start,1), (1, 2), (1, 3), (2,4), (3, 4), (4, 5),
(5, 6), (6, 5), (5, 7), (7, 8), (7, 9), (9, End)}

Same CFG with statements removed.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

74

Contents

Paths

Consider a flow graph G= (N, E). A sequence of k edges, k>0, (e_1, e_2, … e_k) ,

denotes a path of length k through the flow graph if the following sequence

condition holds.

Given that np, nq, nr, and ns are nodes belonging to N, and 0< i<k, if ei =

(np, nq) and ei+1 = (nr, ns) then nq = nr. }

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

75

Contents

Paths: sample paths through the exponentiation
flow graph

p1= (Start, 1, 2, 4, 5, 6, 5, 7, 9, End)

p2= (Start, 1, 3, 4, 5, 6, 5, 7, 9, End)

Two feasible and complete paths:

Bold edges: complete path.

Dashed edges: subpath.

p1= ((Start, 1), (1, 2), (2, 4), (4, 5), (5, 6), (6,
5), (5, 7), (7, 9), (9, End))

Specified unambiguously using edges:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

76

Contents

Paths: infeasible

p1= (Start, 1, 3, 4, 5, 6, 5, 7, 8, 9, End)

p2= (Start, 1, 1, 2, 4, 5, 7, 9, , End)

A path p through a flow graph for program P is

considered feasible if there exists at least one test

case which when input to P causes p to be

traversed.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

77

Contents

Number of paths

There can be many distinct paths through a program. A program with no

condition contains exactly one path that begins at node Start and terminates at

node End.

Each additional condition in the program can increases the number of distinct paths

by at least one.

Depending on their location, conditions can have a multiplicative effect

on the number of paths.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

78

Contents

2.6 Strings, languages, and regular expressions

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

79

Contents

Strings

Strings play an important role in testing. A string serves as a test input.

Examples: 1011; AaBc; “Hello world”.

A collection of strings also forms a language. For example, a set of all strings

consisting of zeros and ones is the language of binary numbers. In this section we

provide a brief introduction to strings and languages.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

80

Contents

Alphabet

A collection of symbols is known as an alphabet. We use an upper case letter

such as X and Y to denote alphabets.

Though alphabets can be infinite, we are concerned only with finite alphabets. For

example, X={0, 1} is an alphabet consisting of two symbols 0 and 1. Another

alphabet is Y={dog, cat, horse, lion}that consists of four symbols ``dog", ``cat",

``horse", and ``lion".

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

81

Contents

Strings over an Alphabet

A string over an alphabet X is any sequence of zero or more symbols that belong to

X. For example, 0110 is a string over the alphabet {0, 1}. Also, dog cat dog dog lion

is a string over the alphabet {dog, cat, horse, lion}.

We will use lower case letters such as p, q, r to denote strings. The length of a string

is the number of symbols in that string. Given a string s, we denote its length by |s|.

Thus, |1011|=4 and |dog cat dog|=3. A string of length 0, also known as an empty

string, is denoted by ε.

Note that ε denotes an empty string and also stands for “element of”
when used with sets.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

82

Contents

String concatenation

Let s1 and s2 be two strings over alphabet X. We write s1.s2 to denote the

concatenation of strings s1 and s2.

For example, given the alphabet X={0, 1}, and two strings 011 and 101 over X, we

obtain 011.101=011101. It is easy to see that |s1.s2|=|s1|+|s2|. Also, for any string s, we

have s. ε =s and ε.s=s.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

83

Contents

Languages

A set L of strings over an alphabet X is known as a language. A language can be

finite or infinite.

The following sets are finite languages over the binary alphabet {0, 1}:

∅: The empty set

{ε}: A language consisting only of one string of length zero

{00, 11, 0101}: A language containing three strings

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

84

Contents

Regular expressions

Given a finite alphabet X, the following are regular expressions over X:

If a belongs to X, then a is a regular expression that denotes the set {a}.

Let r1 and r2 be two regular expressions over the alphabet X that denote, respectively,

sets L1 and L2. Then r1.r2 is a regular expression that denotes the set L1.L2.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

85

Contents

Regular expressions (contd.)

If r is a regular expression that denotes the set L then r+ is a regular expression that

denotes the set obtained by concatenating L with itself one or more times also

written as L+ Also, r* known as the Kleene closure of r, is a regular expression. If r

denotes the set L then r* denotes the set {ε}∪ L+.

If r1 and r2 are regular expressions that denote, respectively, sets L1 and L2, then r1r2 is

also a regular expression that denotes the set L1 ∪ L2.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

86

Contents

Summary

We have introduced mathematical preliminaries an understanding of

which will be useful while you go through the remaining parts of this

book. Exercises at the end of Chapter 2 will help you sharpen your

understanding.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

87

Contents

Chapter 3

Domain Partitioning

Updated: July 12, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

88

Contents

Learning Objectives

Cause effect graphing has been omitted from these slides.

§  Equivalence class partitioning

§  Boundary value analysis

Essential black-box techniques for
generating tests for functional
testing.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

89

Contents

Applications of test generation techniques

Test generation techniques described in this chapter belong to the black-box

testing category.

These techniques are useful during functional testing where the objective is to

test whether or not an application, unit, system, or subsystem, correctly

implements the functionality as per the given requirements

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

90

Contents

Functional Testing: Test Documents
(IEEE829 Standard)

Test Plan

Requirements

Test Design

Spec.

Test Case

Spec.

Test Procedure

Test item transmittal

report

Test log
Test incident

report

Test summary

report

Model Reference: Lee Copland. A Practitioners
Guide to software Test Design

Test generation techniques

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

91

Contents

Functional Testing: Documents
Test Plan: Describe scope, approach, resources, test schedule, items to be

tested, deliverables, responsibilities, approvals needed. Could be used at the

system test level or at lower levels.

Test design spec: Identifies a subset of features to be tested and identifies

the test cases to test the features in this subset.

Test case spec: Lists inputs, expected outputs, features to be tested by this

test case, and any other special requirements e.g. setting of environment

variables and test procedures. Dependencies with other test cases are

specified here. Each test case has a unique ID for reference in other

documents.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

92

Contents

Functional Testing: Documents (contd)

Test procedure spec: Describe the procedure for executing a test case.

Test transmittal report: Identifies the test items being provided for testing,
e.g. a database.

Test log: A log observations during the execution of a test.

Test incident report: Document any special event that is recommended for
further investigation.

Test summary: Summarize the results of testing activities and provide an
evaluation.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

93

Contents

Test generation techniques in this chapter

Three techniques are considered: equivalence partitioning, boundary value

analysis, and category partitioning.

Each of these test generation techniques is black-box and useful for

generating test cases during functional testing.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

94

Contents

3.2 The test selection problem

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

95

Contents

Requirements and test generation

Requirements serve as the starting point for the generation of tests. During the initial

phases of development, requirements may exist only in the minds of one or more

people.

These requirements, more aptly ideas, are then specified rigorously using

modeling elements such as use cases, sequence diagrams, and statecharts in UML.

Rigorously specified requirements are often transformed into formal requirements

using requirements specification languages such as Z, S, and RSML.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

96

Contents

Test generation techniques

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

97

Contents

Test selection problem

Let D denote the input domain of a program P. The test selection problem is to

select a subset T of tests such that execution of P against each element of T will

reveal all errors in P.

In general there does not exist any algorithm to construct such a test set.

However, there are heuristics and model based methods that can be used to

generate tests that will reveal certain type of faults.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

98

Contents

Test selection problem (contd.)

The challenge is to construct a test set T⊆D that will reveal as many errors in P

as possible. The problem of test selection is difficult due primarily to the size

and complexity of the input domain of P.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

99

Contents

Exhaustive testing

The large size of the input domain prevents a tester from exhaustively testing the

program under test against all possible inputs. By ``exhaustive" testing we mean

testing the given program against every element in its input domain.

The complexity makes it harder to select individual tests.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

100

Contents

Large input domain

Consider program P that is required to sort a sequence of integers into ascending

order. Assuming that P will be executed on a machine in which integers range from

-32768 to 32767, the input domain of P consists of all possible sequences of integers

in the range [-32768, 32767].

If there is no limit on the size of the sequence that can be input, then the input domain

of P is infinitely large and P can never be tested exhaustively. If the size of the input

sequence is limited to, say Nmax>1, then the size of the input domain depends on the

value of N.
Calculate the size of the input domain.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

101

Contents

Complex input domain

Consider a procedure P in a payroll processing system that takes an employee

record as input and computes the weekly salary. For simplicity, assume that the

employee record consists of the following items with their respective types and

constraints:

Calculate the size of the input domain.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

102

Contents

3.3 Equivalence partitioning

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

103

Contents

Equivalence partitioning

Test selection using equivalence partitioning allows a tester to subdivide the input

domain into a relatively small number of sub-domains, say N>1, as shown (next

slide (a)).

In strict mathematical terms, the sub-domains by definition are disjoint. The four

subsets shown in (a) constitute a partition of the input domain while the subsets

in (b) are not. Each subset is known as an equivalence class.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

104

Contents

Subdomains

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

105

Contents

Program behavior and equivalence classes

The equivalence classes are created assuming that the program under test

exhibits the same behavior on all elements, i.e. tests, within a class.

This assumption allow the tester to select exactly one test from each

equivalence class resulting in a test suite of exactly N tests.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

106

Contents

Faults targeted

The entire set of inputs to any application can be divided into at least two subsets: one

containing all the expected, or legal, inputs (E) and the other containing all unexpected, or

illegal, inputs (U).

Each of the two subsets, can be further subdivided into subsets on which the application is
required to behave differently (e.g. E1, E2, E3, and U1, U2).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

107

Contents

Faults targeted (contd.)

Equivalence class partitioning selects tests that target any faults in
the application that cause it to behave incorrectly when the input is
in either of the two classes or their subsets.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

108

Contents

Example 1

Consider an application A that takes an integer denoted by age as input. Let us suppose that

the only legal values of age are in the range [1..120]. The set of input values is now divided

into a set E containing all integers in the range [1..120] and a set U containing the

remaining integers.

All integers

[1..120]

Other integers

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

109

Contents

Example 1 (contd.)

Further, assume that the application is required to process all values in the range [1..61] in

accordance with requirement R1 and those in the range [62..120] according to requirement

R2.

Thus, E is further subdivided into two regions depending on the expected behavior.

Similarly, it is expected that all invalid inputs less than or equal to 1 are to be treated in one

way while all greater than 120 are to be treated differently. This leads to a subdivision of U

into two categories.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

110

Contents

Example 1 (contd.)

All integers

[62-120]

[1..61]

<1

>120

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

111

Contents

Example 1 (contd.)

It is expected that any single test selected from the range [1..61] will reveal any fault

with respect to R1. Similarly, any test selected from the region [62..120] will reveal

any fault with respect to R2. A similar expectation applies to the two regions

containing the unexpected inputs.

Tests selected using the equivalence partitioning technique aim at targeting faults in the

application under test with respect to inputs in any of the four regions, i.e., two regions

containing expected inputs and two regions containing the unexpected inputs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

112

Contents

Effectiveness

The effectiveness of tests generated using equivalence partitioning for testing application

A, is judged by the ratio of the number of faults these tests are able to expose to the total

faults lurking in A.

As is the case with any test selection technique in software testing, the effectiveness of

tests selected using equivalence partitioning is less than 1 for most practical applications.

The effectiveness can be improved through an unambiguous and complete specification of

the requirements and carefully selected tests using the equivalence partitioning technique

described in the following sections.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

113

Contents

Example 2

Consider that wordCount method takes a word w and a filename f as input and

returns the number of occurrences of w in the text contained in the file named f. An

exception is raised if there is no file with name f.

This example shows a few ways to define equivalence classes based on the knowledge

of requirements and the program text.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

114

Contents

Example 2 (contd.)

begin

String w, f

Input w, f

if (not exists(f) {raise exception; return(0);}

if(length(w)==0)return(0);

if(empty(f))return(0);

return(getCount(w,f));

end

Using the partitioning method described in the

examples above, we obtain the equivalence

classes (next slide).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

115

Contents

Example 2 (contd.)

Equivalence class w f

E1 non-null exists, not empty

E2 non-null does not exist

E3 non-null exists, empty

E4 null exists, not empty

E5 null does not exist

E6 null exists, empty

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

116

Contents

Example 2 (contd.)

Note that the number of equivalence classes without any knowledge of

the program code is 2, whereas the number of equivalence classes derived

with the knowledge of partial code is 6.

Of course, an experienced tester will likely derive the six equivalence

classes given above, and perhaps more, even before the code is

available

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

117

Contents

Equivalence classes based on program
output

In some cases the equivalence classes are based on the output generated by the

program. For example, suppose that a program outputs an integer.

It is worth asking: ``Does the program ever generate a 0? What are the maximum

and minimum possible values of the output?"

These two questions lead to two the following equivalence classes based on

outputs:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

118

Contents

Equivalence classes based on program
output (contd.)

E1: Output value v is 0.

E2: Output value v is the maximum possible.

E3: Output value v is the minimum possible.

E4: All other output values.

Based on the output equivalence classes one may now derive equivalence classes

for the inputs. Thus, each of the four classes given above might lead to one

equivalence class consisting of inputs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

119

Contents

Equivalence classes for variables: range

Eq. Classes Example

One class with values
inside the range and
two with values
outside the range.

speed ∈[60..90] {50}, {75},
{92}

area: float
area≥0.0

{{-1.0},
{15.52}}

age: int {{-1}, {56},
{132}}

letter:bool {{J}, {3}}

Constraints Classes

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

120

Contents

Equivalence classes for variables: strings

Equivalence Classes Example

At least one containing all

legal strings and one all

illegal strings based on any

constraints.

firstname: string {{ε}, {Sue},
{Loooong Name}}

Constraints Classes

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

121

Contents

Equivalence classes for variables:
enumeration

Equivalence Classes Example

Each value in a separate
class

autocolor:{red,
blue, green}

{{red,} {blue},
{green}}

up:boolean {{true}, {false}}

Constraints Classes

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

122

Contents

Equivalence classes for variables: arrays

Equivalence Classes Example

One class containing all

legal arrays, one

containing the empty

array, and one containing a

larger than expected array.

int [] aName: new
int[3];

{[]}, {[-10, 20]},
{[-9, 0, 12, 15]}

Constraints Classes

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

123

Contents

Equivalence classes for variables: compound
data type

Arrays in Java and records, or structures, in C++, are compound types. Such input

types may arise while testing components of an application such as a function or an

object.

While generating equivalence classes for such inputs, one must consider legal and

illegal values for each component of the structure. The next example illustrates the

derivation of equivalence classes for an input variable that has a compound type.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

124

Contents

Equivalence classes for variables: compound
data type: Example

struct transcript

 {

 string fName; // First name.

 string lName; // Last name.

 string cTitle [200]; // Course titles.

 char grades [200]; // Letter grades corresponding
 to course titles.

}

In-class exercise: Derive equivalence classes for each component of R and

combine them!

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

125

Contents

uni-dimensional partitioning

One way to partition the input domain is to consider one input variable at a time. Thus,

each input variable leads to a partition of the input domain. We refer to this style of

partitioning as uni-dimensional equivalence partitioning or simply uni-dimensional

partitioning.

This type of partitioning is used commonly.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

126

Contents

Multidimensional partitioning

Another way is to consider the input domain I as the set product of the input

variables and define a relation on I. This procedure creates one partition consisting

of several equivalence classes. We refer to this method as multidimensional

equivalence partitioning or simply multidimensional partitioning.

Multidimensional partitioning leads to a large number of equivalence classes that are

difficult to manage manually. Many classes so created might be infeasible.

Nevertheless, equivalence classes so created offer an increased variety of tests as is

illustrated in the next section.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

127

Contents

Partitioning Example

Consider an application that requires two integer inputs x and y. Each of these

inputs is expected to lie in the following ranges: 3≤ x≤7 and 5≤y≤9.

For uni-dimensional partitioning we apply the partitioning guidelines to x and y

individually. This leads to the following six equivalence classes.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

128

Contents

Partitioning Example (contd.)

E1: x<3 E2: 3≤x≤7 E3: x>7 y ignored.

E4: y<5 E5: 5≤y≤9 E6: y>9 x ignored.

For multidimensional partitioning we consider the input domain to be the set

product X x Y. This leads to 9 equivalence classes.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

129

Contents

Partitioning Example (contd.)

E1: x<3, y<5 E2: x<3, 5≤y≤9 E3: x<3, y>9

E4: 3≤x≤7, y<5 E5: 3≤x≤7, 5≤y≤9 E6: 3≤x≤7, y>9

E7: >7, y<5 E8: x>7, 5≤y≤9 E9: x>7, y>9

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

130

Contents

Partitioning Example (contd.)

6 equivalence classes:

9 equivalence classes:

E1: x<3, y<5

E2: x<3, 5≤y≤9
E3: x<3, y>9

E4: 3≤x≤7, y<5
E5: 3≤x≤7, 5≤y≤9
E6: 3≤x≤7, y>9
E7: >7, y<5
E8: x>7, 5≤y≤9
E9: x>7, y>9

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

131

Contents

Systematic procedure for equivalence
partitioning

1. Identify the input domain: Read the requirements carefully and identify all input and

output variables, their types, and any conditions associated with their use.

Environment variables, such as class variables used in the method under test and

environment variables in Unix, Windows, and other operating systems, also serve

as input variables. Given the set of values each variable can assume, an

approximation to the input domain is the product of these sets.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

132

Contents

Systematic procedure for equivalence
partitioning (contd.)

2. Equivalence classing: Partition the set of values of each variable into disjoint subsets.

Each subset is an equivalence class. Together, the equivalence classes based on an input

variable partition the input domain. partitioning the input domain using values of one

variable, is done based on the the expected behavior of the program.

Values for which the program is expected to behave in the ``same way" are grouped

together. Note that ``same way" needs to be defined by the tester.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

133

Contents

Systematic procedure for equivalence
partitioning (contd.)

The equivalence classes are combined using the multidimensional partitioning approach

described earlier.

3. Combine equivalence classes: This step is usually omitted and the equivalence classes

defined for each variable are directly used to select test cases. However, by not

combining the equivalence classes, one misses the opportunity to generate useful tests.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

134

Contents

Systematic procedure for equivalence
partitioning (contd.)

For example, suppose that an application is tested via its GUI, i.e. data is input using

commands available in the GUI. The GUI might disallow invalid inputs by offering a

palette of valid inputs only. There might also be constraints in the requirements that

render certain equivalence infeasible.

4. Identify infeasible equivalence classes: An infeasible equivalence class is one that

contains a combination of input data that cannot be generated during test. Such an

equivalence class might arise due to several reasons.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

135

Contents

Boiler control example (BCS)

Command temp causes CS to ask the operator to enter the amount by which the

temperature is to be changed (tempch).

Values of tempch are in the range -10..10 in increments of 5 degrees Fahrenheit. An

temperature change of 0 is not an option.

The control software of BCS, abbreviated as CS, is required to offer several options. One

of the options, C (for control), is used by a human operator to give one of four

commands (cmd): change the boiler temperature (temp), shut down the boiler (shut),

and cancel the request (cancel).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

136

Contents

BCS: example (contd.)

The command file may contain any one of the three commands, together with the value of

the temperature to be changed if the command is temp. The file name is obtained from

variable F.

Selection of option C forces the BCS to examine variable V. If V is set to GUI, the

operator is asked to enter one of the three commands via a GUI. However, if V is set to

file, BCS obtains the command from a command file.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

137

Contents

BCS: example (contd.)

Control Software

(CS) G
U

I

datafile

cmd

tempch

V F cmd: command

(temp, shut, cancel)

tempch: desired

temperature change

(-10..10)

V, F: Environment variables

V ∈{GUI, file}

F: file name if V is set to “file.”

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

138

Contents

BCS: example (contd.)

Values of V and F can be altered by a different module in BCS.

In response to temp and shut commands, the control software is required to generate

appropriate signals to be sent to the boiler heating system.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

139

Contents

BCS: example (contd.)

The GUI forces the tester to select from a limited set of values as specified in the

requirements. For example, the only options available for the value of tempch are -10, -5,

5, and 10. We refer to these four values of tempch as tvalid while all other values as

tinvalid.

We assume that the control software is to be tested in a simulated environment. The tester

takes on the role of an operator and interacts with the CS via a GUI.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

140

Contents

BCS: 1. Identify input domain

The first step in generating equivalence partitions is to identify the (approximate) input

domain. Recall that the domain identified in this step will likely be a superset of the

complete input domain of the control software.

First we examine the requirements, identify input variables, their types, and values.

These are listed in the following table.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

141

Contents

BCS: Variables, types, values

Variable Kind Type Value(s)

V Environment Enumerated File, GUI

F Environment String A file name

cmd Input via GUI/File Enumerated {temp, cancel, shut}

tempch Input via GUI/File Enumerated {-10, -5, 5, 10}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

142

Contents

BCS: Input domain

Input domain⊆S=V×F×cmd×tempch

Sample values in the input domain (--: don’t care):

(GUI, --, shut, --), (file, cmdfile, shut, --)

(file, cmdfile, temp, 0) Does this belong to the input domain?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

143

Contents

BCS: 2. Equivalence classing

Variable Partition

V {{GUI}, {file}, {undefined}}

F {{fvalid}, {finvalid}}

cmd {{temp}, {cancel}, {shut}, {cinvalid}}

tempch {{tvalid}, {tinvalid}}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

144

Contents

BCS: 3. Combine equivalence classes
(contd.)

There are a total of 3×4×2×5=120 equivalence classes.

Note that tinvalid, tvalid, finvalid, and fvalid denote sets of values. “undefined”

denotes one value.

Sample equivalence class: {(GUI, fvalid, temp, -10)}

Note that each of the classes listed above represents an infinite number of input values

for the control software. For example, {(GUI}}, fvalid, temp, -10)} denotes an infinite set

of values obtained by replacing fvalid by a string that corresponds to the name of an

existing file. Each value is a potential input to the BCS.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

145

Contents

BCS: 4. Discard infeasible equivalence
classes

{(V, F, {cancel, shut, cinvalid}, tvalid∪ tinvalid)}

Note that the GUI requests for the amount by which the boiler temperature is to be

changed only when the operator selects temp for cmd. Thus, all equivalence classes that

match the following template are infeasible.

This parent-child relationship between cmd and tempch renders infeasible a total

of 3×2×3×5=90 equivalence classes.

Exercise: How many additional equivalence classes are infeasible?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

146

Contents

BCS: 4. Discard infeasible equivalence
classes (contd.)

After having discarded all infeasible equivalence classes, we are left with a total of 18

testable (or feasible) equivalence classes.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

147

Contents

Selecting test data

Given a set of equivalence classes that form a partition of the input domain, it is

relatively straightforward to select tests. However, complications could arise in the

presence of infeasible data and don't care values.

In the most general case, a tester simply selects one test that serves as a

representative of each equivalence class.

Exercise: Generate sample tests for BCS from the remaining

feasible equivalence classes.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

148

Contents

GUI design and equivalence classes

While designing equivalence classes for programs that obtain input exclusively from a

keyboard, one must account for the possibility of errors in data entry. For example, the

requirement for an application.

The application places a constraint on an input variable X such that it can assume

integral values in the range 0..4. However, testing must account for the possibility

that a user may inadvertently enter a value for X that is out of range.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

149

Contents

GUI design and equivalence classes (contd.)

Suppose that all data entry to the application is via a GUI front end. Suppose also that the

GUI offers exactly five correct choices to the user for X.

In such a situation it is impossible to test the application with a value of X that is out of

range. Hence only the correct values of X will be input. See figure on the next slide.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

150

Contents

GUI design and equivalence classes (contd.)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

151

Contents

3.4 Boundary value analysis

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

152

Contents

Errors at the boundaries

Experience indicates that programmers make mistakes in processing values at and near the

boundaries of equivalence classes.

For example, suppose that method M is required to compute a function f1 when x≤ 0 is

true and function f2 otherwise. However, M has an error due to which it computes f1 for

x<0 and f2 otherwise.

Obviously, this fault is revealed, though not necessarily, when M is tested against x=0

but not if the input test set is, for example, {-4, 7} derived using equivalence

partitioning. In this example, the value x=0, lies at the boundary of the equivalence

classes x≤0 and x>0.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

153

Contents

Boundary value analysis (BVA)

Boundary value analysis is a test selection technique that targets faults in applications at

the boundaries of equivalence classes.

While equivalence partitioning selects tests from within equivalence classes, boundary

value analysis focuses on tests at and near the boundaries of equivalence classes.

Certainly, tests derived using either of the two techniques may overlap.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

154

Contents

BVA: Procedure

1  Partition the input domain using uni-dimensional partitioning. This leads to as many

partitions as there are input variables. Alternately, a single partition of an input

domain can be created using multidimensional partitioning. We will generate several

sub-domains in this step.

2  Identify the boundaries for each partition. Boundaries may also be identified using

special relationships amongst the inputs.

3  Select test data such that each boundary value occurs in at least one test input.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

155

Contents

BVA: Example: 1. Create equivalence classes

Assuming that an item code must be in the range 99..999 and quantity in the range 1..100,

Equivalence classes for code:

E1: Values less than 99.

E2: Values in the range.

E3: Values greater than 999.

Equivalence classes for qty:

E4: Values less than 1.

E5: Values in the range.

E6: Values greater than 100.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

156

Contents

BVA: Example: 2. Identify boundaries

Equivalence classes and boundaries for findPrice. Boundaries are indicated

with an x. Points near the boundary are marked *.

E1
E2

E3

98 100 998 1000

99 999
x x * * * *

E4
E5

E6

0 2 99 101

1 100
x x * * * *

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

157

Contents

BVA: Example: 3. Construct test set

Test selection based on the boundary value analysis technique requires that tests

must include, for each variable, values at and around the boundary. Consider the

following test set:

T={ t1: (code=98, qty=0),

 t2: (code=99, qty=1),

 t3: (code=100, qty=2),

 t4: (code=998, qty=99),

 t5: (code=999, qty=100),

 t6: (code=1000, qty=101)

}

Illegal values of code and

qty included.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

158

Contents

BVA: In-class exercise

Is T the best possible test set for findPrice? Answer this question based on T’s

ability to detect missing code for checking the validity of age.

Is there an advantage of separating the invalid values of code and age into different

test cases?

Answer: Refer to Example 3.11.

Highly recommended: Go through Example 3.12.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

159

Contents

BVA: Recommendations

Relationships amongst the input variables must be examined carefully while

identifying boundaries along the input domain. This examination may lead to

boundaries that are not evident from equivalence classes obtained from the input

and output variables.

Additional tests may be obtained when using a partition of the input domain

obtained by taking the product of equivalence classes created using individual

variables.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

160

Contents

4.4. Tests using predicate syntax

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

161

Contents

Where do predicates arise?

Predicates arise from requirements in a variety of applications. Here is an example

from Paradkar, Tai, and Vouk, “Specification based testing using cause-effect

graphs,” Annals of Software Engineering,” V 4, pp 133-157, 1997.

A boiler needs to be shut down when the following conditions hold:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

162

Contents

Boiler shutdown conditions

1.  The water level in the boiler is below X lbs. (a)

2.  The water level in the boiler is above Y lbs. (b)

3.  A water pump has failed. (c)

4.  A pump monitor has failed. (d)

5.  Steam meter has failed. (e)

The boiler is to be shut down when a or b is true or the boiler is in degraded mode

and the steam meter fails. We combine these five conditions to form a compound

condition (predicate) for boiler shutdown.

Boiler in degraded mode when
either is true.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

163

Contents

Boiler shutdown conditions

Denoting the five conditions above as a through e, we obtain the following Boolean

expression E that when true must force a boiler shutdown:

 E=a+b+(c+d)e

where the + sign indicates “OR” and a multiplication indicates “AND.”

The goal of predicate-based test generation is to generate tests from a predicate p

that guarantee the detection of any error that belongs to a class of errors in the

coding of p.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

164

Contents

Another example

A condition is represented formally as a predicate, also known as a Boolean expression.

For example, consider the requirement

``if the printer is ON and has paper then send document to printer.”

This statement consists of a condition part and an action part. The following predicate

represents the condition part of the statement.

pr: (printer_status=ON) ∧ (printer_tray!= empty)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

165

Contents

Summary

Equivalence partitioning and boundary value analysis are the most commonly
used methods for test generation while doing functional testing.

Given a function f to be tested in an application, one can apply these

techniques to generate tests for f.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

166

Contents

Chapter 4

Predicate Analysis

Updated: July 12, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

167

Contents

Learning Objectives

§  Domain testing

§  Cause-effect graphing

§  Test generation from predicates

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

168

Contents

4.4 Tests using predicate syntax

 4.4.1: A fault model

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

169

Contents

Fault model for predicate testing

What faults are we targeting when testing for the correct

implementation of predicates?

Boolean operator fault: Suppose that the specification of a software module

requires that an action be performed when the condition (a<b) ∨ (c>d) ∧e is true.

Here a, b, c, and d are integer variables and e is a Boolean variable.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

170

Contents

Boolean operator faults

(a<b) ∧ (c>d) ∧e Incorrect Boolean operator

(a<b) ∨ ! (c>d) ∧e Incorrect negation operator

(a<b) ∧(c>d) ∨ e Incorrect Boolean operators

(a<b) ∨ (e>d) ∧c Incorrect Boolean variable.

Correct predicate: (a<b) ∨ (c>d) ∧e

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

171

Contents

Relational operator faults

(a==b) ∨ (c>d) ∧e Incorrect relational operator

(a==b) ∨ (c≤d) ∧e Two relational operator faults

(a==b) ∨ (c>d) ∨ e Incorrect Boolean operators

Correct predicate: (a<b) ∨ (c>d) ∧e

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

172

Contents

Arithmetic expression faults

Ei has an off-by-ε fault if |e3-e4|= ε for any test case for which e1=e2.

Correct predicate: Ec: e1 relop1 e2. Incorrect predicate: Ei: : e3 relop2 e4. Assume

that Ec and Ei use the same set of variables.

Ei has an off-by-ε* fault if |e3-e4|≥ ε for any test case for which e1=e2.

Ei has an off-by-ε+ fault if |e3-e4|> ε for any test case for which e1=e2.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

173

Contents

Arithmetic expression faults: Examples

Ei: a<b. Given c=1, Ei has an off-by-1 fault as |a-b|= 1 for a test case for which
a=b+c, e.g. <a=2, b=1, c=1>.

Correct predicate: Ec: a<(b+c). Assume ε=1.

Ei: a<b+1. Given c=2, Ei has an off-by-1* fault as |a-(b+1)|≥ 1 for any test case
for which a=b+c; <a=4, b=2, c=2>

Ei: a<b-1. Given c>0, Ei has an off-by-1+ fault as |a-(b-1)|>1 for any test case for
which a=b+c; <a=3, b=2, c=1>.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

174

Contents

Arithmetic expression faults: In class
exercise

Find an incorrect version of Ec that has off-by-1 fault.

Given the correct predicate: Ec: 2*X+Y>2. Assume ε=1.

Find an incorrect version of Ec that has off-by-1* fault.

Find an incorrect version of Ec that has off-by-1+ fault.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

175

Contents

Goal of predicate testing

Given a correct predicate pc, the goal of predicate testing is to generate a test set T

such that there is at least one test case t∈ T for which pc and its faulty version pi,

evaluate to different truth values.

Such a test set is said to guarantee the detection of any fault of the kind in the

fault model introduced above.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

176

Contents

Goal of predicate testing (contd.)

As an example, suppose that pc: a<b+c and pi: a>b+c. Consider a test set T={t1, t2}

where t1: <a=0, b=0, c=0> and t2: <a=0, b=1, c=1>.

The fault in pi is not revealed by t1 as both pc and pi evaluate to false when

evaluated against t1.

However, the fault is revealed by t2 as pc evaluates to true and pi to false when

evaluated against t2.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

177

Contents

Missing or extra Boolean variable faults

Correct predicate: a ∨ b

Extra Boolean variable fault: a ∨ b∧c

Missing Boolean variable fault: a

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

178

Contents

4.4 Tests using predicate syntax

 4.4.1: Predicate constraints

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

179

Contents

Predicate constraints: BR symbols

Consider the following Boolean-Relational set of BR-symbols:

BR={t, f, <, =, >, +ε, -ε}

For example, consider the predicate E: a<b and the constraint “>” . A test case

that satisfies this constraint for E must cause E to evaluate to false.

A BR symbol is a constraint on a Boolean variable or a relational expression.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

180

Contents

Infeasible constraints

A constraint C is considered infeasible for predicate pr if there exists no input

values for the variables in pr that satisfy c.

For example, the constraint t is infeasible for the predicate a>b∧ b>d if it is known

that d>a.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

181

Contents

Predicate constraints

Let pr denote a predicate with n, n>0, ∨ and ∧ operators.

A predicate constraint C for predicate pr is a sequence of (n+1) BR symbols, one

for each Boolean variable or relational expression in pr. When clear from context,

we refer to ``predicate constraint" as simply constraint.

Test case t satisfies C for predicate pr, if each component of pr satisfies the

corresponding constraint in C when evaluated against t. Constraint C for predicate

pr guides the development of a test for pr, i.e., it offers hints on what the values of

the variables should be for pr to satisfy C.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

182

Contents

True and false constraints

pr(C) denotes the value of predicate pr evaluated using a test case that satisfies C.

C is referred to as a true constraint when pr(C) is true and a false constraint

otherwise.

A set of constraints S is partitioned into subsets St and Sf, respectively, such that for

each C in St, pr(C) =true, and for any C in Sf, pr(C) =false. S= St ∪ Sf.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

183

Contents

Predicate constraints: Example

Consider the predicate pr: b∧ (r<s) ∨ (u≥v) and a constraint C: (t, =, >). The

following test case satisfies C for pr.

<b=true, r=1, s=1, u=1, v=0>

<b=true, r=1, s=2, u=1, v=2>

The following test case does not satisfy C for pr.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

184

Contents

4.4 Tests using predicate syntax

 4.4.3: Predicate testing criteria

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

185

Contents

Predicate testing: criteria

We will discuss three such criteria named BOR, BRO, and BRE.

Given a predicate pr, we want to generate a test set T such that

•  T is minimal and

•  T guarantees the detection of any fault in the implementation of pr; faults correspond

to the fault model we discussed earlier.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

186

Contents

Predicate testing: BOR testing criterion

 A test set T that satisfies the BOR testing criterion for a compound predicate pr,

guarantees the detection of single or multiple Boolean operator faults in the

implementation of pr.

 T is referred to as a BOR-adequate test set and sometimes written as TBOR.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

187

Contents

Predicate testing: BRO testing criterion

 A test set T that satisfies the BRO testing criterion for a compound predicate pr,

guarantees the detection of single Boolean operator and relational operator faults in

the implementation of pr.

 T is referred to as a BRO-adequate test set and sometimes written as TBRO.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

188

Contents

Predicate testing: BRE testing criterion

 A test set T that satisfies the BRE testing criterion for a compound predicate pr,

guarantees the detection of single Boolean operator, relational expression, and

arithmetic expression faults in the implementation of pr.

 T is referred to as a BRE-adequate test set and sometimes written as TBRE.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

189

Contents

Predicate testing: guaranteeing fault
detection

 Let Tx, x∈{BOR, BRO,BRE}, be a test set derived from predicate pr. Let pf be

another predicate obtained from pr by injecting single or multiple faults of one of

three kinds: Boolean operator fault, relational operator fault, and arithmetic

expression fault.

 Tx is said to guarantee the detection of faults in pf if for some t∈Tx, p(t)≠

pf(t).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

190

Contents

Guaranteeing fault detection: example

Let pr=a<b ∧ c>d

Let TBOR={t1, t2, t3} is a BOR adequate test set that satisfies S.

t1: <a=1, b=2, c=1, d=0 >; Satisfies (t, t), i.e. a<b is true and

 c<d is also true.

t2: <a=1, b=2, c=1, d=2 >; Satisfies (t, f)

t3: <a=1, b=0, c=1, d=0 >; Satisfies (f, t)

Constraint set S={(t, t), (t,f), (f, t)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

191

Contents

Guaranteeing fault detection: In class
exercise

Generate single Boolean operator faults in

 pr: a<b ∧ c>d

and show that T guarantees the detection of each fault.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

192

Contents

4.4 Tests using predicate syntax

 4.4.1: BOR, BRO, and BRE adequate tests

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

193

Contents

Algorithms for generating BOR, BRO, and
BRE adequate tests

Define the cross product of two sets A and B as:

 A×B={(a,b)|a∈A and b∈B}

The onto product of two sets A and B is defined as:

 A⊗B={(u,v)|u∈A, v∈B, such that each element of A appears at least once as u

and each element of B appears once as v.}

Note that A⊗B is a minimal set.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

194

Contents

Set products: Example

Let A={t, =, >} and B={f, <}

A×B={(t, f), (t, <), (=, f), (=, <), (>,f), (>,<)}

A⊗B ={(t, f), (=,<), (>,<)}

Any other possibilities for A⊗B?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

195

Contents

Generation of BOR constraint set

See page 184 for a formal algorithm. An illustration follows.

We want to generate TBOR for pr: a<b ∧ c>d

First, generate syntax tree of pr.

a<b c>d

∧

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

196

Contents

Generation of the BOR constraint set

Given node N in the syntax tree for predicate pr, we use the following notation:

SN= SN
t ∪ SN

f is the constraint set, where

 SN

t is the true constraint set, and

 SN
f is the false constraint.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

197

Contents

Generation of the BOR constraint set (contd.)

Second, label each leaf node with the constraint set {(t), (f)}. 	

We label the nodes as N1, N2, and so on for convenience.	

Notice that N1 and N2 are direct descendants of N3 which is an AND-node.	

a<b c>d

∧

N1 N2

N3

SN1= {(t), (f)} SN2= {(t), (f)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

198

Contents

Generation of the BOR constraint set (contd.)

Third, compute the constraint set for the next higher node in the syntax tree, in this

case N3. For an AND node, the formulae used are the following.

SN3
t = SN1

t ⊗ SN2
t ={(t)} ⊗ {(t)}={(t, t)}

SN3
f = (SN1

f ×{t2})∪({t1}× SN2
f

 = ({(f)} ×{(t)})∪({(t)}× {(f)})

 = {(f, t)}∪{(t, f)}

 = {(f, t),{(t, f)}

{(t), (f)}
a<b c>d

∧

{(t), (f)}

N1 N2

N3

SN3={(t,t), (f, t), (t, f)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

199

Contents

Generation of TBOR

As per our objective, we have computed the BOR constraint set for the root node of

the AST(pr). We can now generate a test set using the BOR constraint set associated

with the root node.

SN3 contains a sequence of three constraints and

hence we get a minimal test set consisting of three

test cases. Here is one possible test set.	

TBOR ={t1, t2, t3}	

t1=<a=1, b=2, c=6, d=5> (t, t)	

t2=<a=1, b=0, c=6, d=5> (f, t)	

t3=<a=1, b=2, c=1, d=2> (t, f)	

a<b c>d

∧

{(t), (f)} {(t), (f)}

N1 N2

N3

SN3={(t,t), (f, t), (t, f)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

200

Contents

Generation of BRO constraint set

See pages 187-188 for a formal algorithm. An illustration follows.

Recall that a test set adequate with respect to a BRO constraint set for predicate pr,

guarantees the detection of all combinations of single or multiple Boolean operator

and relational operator faults.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

201

Contents

BRO constraint set

The BRO constraint set S for relational expression e1 relop e2:

 S={(>), (=), (<)}

Separation of S into its true (St) and false (Sf)components:

 relop: > St={(>)} Sf={(=), (<)}

 relop: ≥ St={(>), (=)} Sf={(<)}

 relop: = St={(=)} Sf={(<), (>)}

 relop: < St={(<)} Sf={(=), (>)}

 relop: ≤ St={(<), (=)} Sf={(>)}

Note: tN denotes an element of St
N and fN denotes an element of Sf

N

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

202

Contents

BRO constraint set: Example

pr: (a+b<c)∧!p ∨ (r>s)

Step 1: Construct the AST for the given predicate.

p

r>s ∧

a+b<c !

∨

N1

N4

N2

N6

N5

N3

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

203

Contents

BRO constraint set: Example (contd.)

Step 2: Label each leaf node with its constraint set S.

p

r>s ∧

a+b<c !

∨

N1

N4

N2

N6

N5

N3

{(>), (=), (<)}

{(>), (=), (<)}

{(t), (f)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

204

Contents

BRO constraint set: Example (contd.)

Step 2: Traverse the tree and compute constraint set for each internal node.

St
N4=SN1

t ⊗ SN3
t={(<)} ⊗{(f)}={(<, f)}

St
N3=SN2

f={(f)} Sf
N3=SN2

t= {(t)}

Sf
N4= (Sf

N1
 × {(tN3)}) ∪ ({(tN1)} × Sf

N3)

 =({(>,=)} ×{(f)}) ∪ {(<)} ×{(t)})

 ={(>, f), (=, f)} ∪ {(<, t)}

 ={(>, f), (=, f), (<, t)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

205

Contents

BRO constraint set: Example (contd.)

{(<, f), (>, f), (=, f), (<, t)}

p

r>s ∧

a+b<c !

∨

N1

N4

N2

N6

N5

N3 {(f), {t)}

{(>), (=), (<)}

{(>), (=), (<)}

{(t), (f)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

206

Contents

BRO constraint set: Example (contd.)

Next compute the constraint set for the rot node (this is an OR-node).	

Sf
N6=Sf

N4
 ⊗ Sf

N5	

 ={(>,f),(=,f),(<,t)} ⊗{(=),(<)}={(<, f)}	

 ={(>,f,=), (=,f,<),(<,t,=)}	

St
N6= 	
(St

N4
 × {(fN5)})∪ ({(fN4)} × St

N5)	

	
=({(<,f)} ×{(=)}) ∪ {(>,f)} ×{(>)})	

	
={(<,f,=)} ∪ {(>,f,>)}	

	
={(<,f,=),(>,f,>)}	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

207

Contents

BRO constraint set: Example (contd.)

{(>,f,=), (=,f,<),(<,t,=), (<,f,=),(>,f,>)}	

{(<, f), (>, f), (=, f), (<, t)}	

p	

r>s	

∧	

a+b<c	
 !	

∨

N1	

N4	

N2	

N6	

N5	

N3 {(f), {t)}	

{(>), (=), (<)}	

{(>), (=), (<)}	

{(t), (f)}	

Constraint set for	
 pr: (a+b<c)∧!p ∨ (r>s)	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

208

Contents

BRO constraint set: In-class exercise

{(>,f,=), (=,f,<),(<,t,=), (<,f,=),(>,f,>)}	

Given the constraint set for pr: (a+b<c)∧!p ∨ (r>s), construct TBRO .	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

209

Contents

4.4 Tests using predicate syntax

 4.4.5: BOR constraints for non-singular expressions

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

210

Contents

BOR constraints for non-singular
expressions

Test generation procedures described so far are for singular predicates. Recall that a

singular predicate contains only one occurrence of each variable.

We will now learn how to generate BOR constraints for non-singular predicates.

First, let us look at some non-singular expressions, their respective disjunctive

normal forms (DNF), and their mutually singular components.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

211

Contents

Non-singular expressions and DNF:
Examples

Predicate (pr) DNF Mutually singular components in
pr

ab(b+c) abb+abc a; b(b+c)

a(bc+ bd) abc+abd a; (bc+bd)

a(!b+!c)+cde a!ba +a!c+cde a; !b+!c+ cde

a(bc+!b+de) abc+a!b+ade a; bc+!b; de

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

212

Contents

Generating BOR constraints for non-singular
expressions

We proceed in two steps.

First we examine the Meaning Impact (MI) procedure for generating a minimal set

of constraints from a possibly non-singular predicate.

Next, we examine the procedure to generate BOR constraint set for a non-singular

predicate.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

213

Contents

Meaning Impact (MI) procedure

Given Boolean expression E in DNF, the MI procedure produces a set of

constraints SE that guarantees the detection of missing or extra NOT (!) operator

faults in the implementation of E.

The MI procedure is on page 193 and is illustrated next.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

214

Contents

MI procedure: An Example

Consider the non-singular predicate: a(bc+!bd). Its DNF equivalent is:

 E=abc+a!bd.

Note that a, b, c, and d are Boolean variables and also referred to as literals. Each

literal represents a condition. For example, a could represent r<s.

Recall that + is the Boolean OR operator, ! is the Boolean NOT operator, and as

per common convention we have omitted the Boolean AND operator. For example

bc is the same as b∧c.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

215

Contents

MI procedure: Example (contd.)

Step 0: Express E in DNF notation. Clearly, we can write E=e1+e2, where e1=abc

and e2=a!bd.

Step 1: Construct a constraint set Te1 for e1 that makes e1 true. Similarly construct

Te2 for e2 that makes e2 true.

Note that the four t’s in the first element of Te1 denote the values of the Boolean

variables a, b,c, and d, respectively. The second element, and others, are to be

interpreted similarly.

Te1 ={(t,t,t,t), (t,t,t,f)} Te2 ={(t,f,t,t), (t,f,f,t)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

216

Contents

MI procedure: Example (contd.)

Step 2: From each Tei , remove the constraints that are in any other Tej. This gives

us TSei and TSej. Note that this step will lead TSei ∩TSej =∅.

There are no common constraints between Te1 and Te2 in our example. Hence we

get:

TSe1 ={(t,t,t,t), (t,t,t,f)} TSe2 ={(t,f,t,t), (t,f,f,t)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

217

Contents

MI procedure: Example (contd.)

Step 3: Construct St
E by selecting one element from each Te.

St
E ={(t,t,t,t), (t,f,f,f)}

Note that for each constraint x in St
E we get E(x)=true. Also, St

E is minimal. Check

it out!

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

218

Contents

MI procedure: Example (contd.)

Step 4: For each term in E, obtain terms by complementing each literal, one at a

time.

e1
1= !abc e2

1= a!bc e3
1= ab!c

e1
2= !a!bd e2

2= abd e3
2= a!b!d

From each term e above, derive constraints Fe that make e true. We get the

following six sets.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

219

Contents

MI procedure: Example (contd.)

Fe1
1= {(f,t,t,t), (f,t,t,f)}

Fe2
1= {(t,f,t,t), (t,f,t,f)}

Fe3
1= {(t,t,f,t), (t,t,f,f)}

Fe1
2= {(f,f,t,t), (f,f,f,t)}

Fe2
2= {(t,t,t,t), (t,t,f,t)}

Fe3
2= {(t,f,t,f), (t,f,f,f)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

220

Contents

MI procedure: Example (contd.)

FSe1
1= FSe1

1

FSe2
1= {(t,f,t,f)}

FSe3
1= FSe1

3

FSe1
2= FSe1

2

FSe2
2= {(t,t,f,t)}

FSe3
2= FSe1

3

Step 5: Now construct FSe by removing from Fe any constraint that appeared in any
of the two sets Te constructed earlier.

Constraints common to Te1
and Te2 are removed.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

221

Contents

MI procedure: Example (contd.)

Step 6: Now construct Sf
E by selecting one constraint from each Fe

Sf
E ={(f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)}

Step 7: Now construct SE= St
E ∪Sf

E

SE={{(t,t,t,t), (t,f,f,f), (f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)}

Note: Each constraint in St
E makes E true and each constraint in Sf

E makes E false.

Check it out!

We are now done with the MI procedure.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

222

Contents

BOR-MI-CSET procedure

The BOR-MI-CSET procedure takes a non-singular expression E as input and

generates a constraint set that guarantees the detection of Boolean operator faults in

the implementation of E.

The BOR-MI-CSET procedure using the MI procedure described earlier.

The entire procedure is described on page 195. We illustrate it with an example.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

223

Contents

BOR-MI-CSET: Example

Consider a non-singular Boolean expression: E= a(bc+!bd)

Mutually non-singular components of E:

 e1=a

 e2=bc+!bd

We use the BOR-CSET procedure to generate the constraint set for e1 (singular

component) and MI-CSET procedure for e2 (non-singular component).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

224

Contents

BOR-MI-CSET: Example (contd.)

For component e1 we get:

St
e1={t}. Sf

e1={f}

Recall that St
e1 is true constraint set for e1 and Sf

e1 is false constraint set for e1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

225

Contents

BOR-MI-CSET: Example (contd.)

Component e2 is a DNF expression. We can write e2=u+v where u=bc and v=!

bd.

Let us now apply the MI-CSET procedure to obtain the BOR constraint set for

e2.

As per Step 1 of the MI-CSET procedure we obtain:

Tu={(t,t,t), (t,t,f)} Tv={(f,t,t), (f,f,t)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

226

Contents

BOR-MI-CSET: Example (contd.)

Applying Steps 2 and 3 to Tu and Tv we obtain:

TSu=Tu TSv=Tv

St
e2={(t,t,f), (f, t, t)}

One possible alternative. Can
you think of other alternatives?

Next we apply Step 4 to u and v. We obtain the following complemented
expressions from u and v:

u1=!bc u2=b!c

v1=bd v2=!b!d

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

227

Contents

BOR-MI-CSET: Example (contd.)

Continuing with Step 4 we obtain:

Fu1={(f,t,t), (f,t,f)} Fu2=(t,f,t), (t,f,f)}

Fv1={(t,t,t), (t,f,t)} Fv2={(f,t,f), (f,f,f)}

Next we apply Step 5 to the F constraint sets to obtain:

FSu1={(f,t,f)} FSu2=(t,f,t), (t,f,f)}

FSv1={(t,f,t)} FSv2={(f,t,f), (f,f,f)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

228

Contents

BOR-MI-CSET: Example (contd.)

Applying Step 6 to the FS sets leads to the following

Sf
e2={(f,t,f), (t,f,t)}.

Combing the true and false constraint sets for e2 we get:

Se2={(t,t,f), (f, t, t), {(f,t,f), (t,f,t)}.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

229

Contents

BOR-MI-CSET: Example (contd.)

Summary:

St
e1={(t)} Sf

e1={(f)} from BOR-CSET
 procedure.

St
e2={(t,t,f), (f, t, t)} Sf

e2={(f,t,f), (t,f,t)} from MI-CSET
 procedure.

We now apply Step 2 of the BOR-CSET procedure to obtain the

constraint set for the entire expression E.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

230

Contents

BOR-MI-CSET: Example (contd.)

{(t),(f)}

{(t,t,f), (f, t, t), (f,t,f), (t,f,t)}

a

∧

Apply MI-CSET

b c

∧

!b d

∧

∨

N1

N2

N3
{(t,t,t,f), (t,f,t,t), (f,t,t,f),(t,f,t,f),(t,t,f,t)}

Obtained by applying Step 2 of BOR-CSET to an

AND node. St
N3=St

N1 ⊗ St
N22

Sf
N3=(Sf

N1 × {t2})∪({t1} × Sf
N2)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

231

Contents

Summary

Most requirements contain conditions under which functions are to be executed.

Predicate testing procedures covered are excellent means to generate tests to

ensure that each condition is tested adequately.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

232

Contents

Summary (contd.)

Usually one would combine equivalence partitioning, boundary value analysis,

and predicate testing procedures to generate tests for a requirement of the

following type:

 if condition then action 1, action 2, …action n;

Apply predicate testing

Apply eq. partitioning, BVA, and predicate

testing if there are nested conditions.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

233

Contents

Chapter 5

Test Generation from Finite State Models

Updated: July 16, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

234

Contents

Learning Objectives

UIO method is not covered in these slides. It is left for the students to read on
their own (Section 5.8).

§  The Wp method for test generation

§  What are Finite State Models?

§  The W method for test generation

§  Automata theoretic versus control-flow based test generation

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

235

Contents

Where are these methods used?

§  Conformance testing of communications protocols--this is where it all started.

§  Testing of any system/subsystem modeled as a finite state machine, e.g.

elevator designs, automobile components (locks, transmission, stepper

motors, etc), nuclear plant protection systems, steam boiler control, etc.)

§  Finite state machines are widely used in modeling of all kinds of systems.

Generation of tests from FSM specifications assists in testing the

conformance of implementations to the corresponding FSM model.

Alert: It will be a mistake to assume that the test generation methods described

here are applicable only to protocol testing!

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

236

Contents

5.2 Finite State Machines

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

237

Contents

What is a Finite State Machine?

A finite state machine, abbreviated as FSM, is an abstract representation of behavior

exhibited by some systems.

An FSM is derived from application requirements. For example, a network protocol

could be modeled using an FSM.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

238

Contents

What is a Finite State Machine?

Not all aspects of an application’s requirements are specified by an FSM. Real time

requirements, performance requirements, and several types of computational

requirements cannot be specified by an FSM.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

239

Contents

Requirements or design specification?

An FSM could serve any of two roles: as a specification of the required behavior and/

or as a design artifact according to which an application is to be implemented.

The role assigned to an FSM depends on whether it is a part of the requirements

specification or of the design specification.

Note that FSMs are a part of UML 2.0 design notation.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

240

Contents

Where are FSMs used?

Modeling GUIs, network protocols, pacemakers, Teller machines, WEB applications,

safety software modeling in nuclear plants, and many more.

While the FSM’s considered in examples are abstract machines, they are abstractions

of many real-life machines.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

241

Contents

FSM and statcharts

Note that FSMs are different from statecharts. While FSMs can be modeled using

statecharts, the reverse is not true.

Techniques for generating tests from FSMs are different from those for generating tests

from statecharts.

The term “state diagram” is often used to denote a graphical representation of an FSM

or a statechart.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

242

Contents

FSM (Mealy machine): Formal definition

An FSM (Mealy) is a 6-tuple: (X, Y, Q, q0, δ, O), where:,

X is a finite set of input symbols also known as the input alphabet.

Y is a finite set of output symbols also known as the output alphabet,

Q is a finite set states,

q0 in Q is the initial state,

δ: Q x X→ Q is a next-state or state transition function, and

O: Q x X→ Y is an output function

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

243

Contents

FSM (Moore machine): Formal definition

An FSM (Moore) is a 7-tuple: (X, Y, Q, q0, δ, O, F), where:,

X , Y, Q, q0, and δ are the same as in FSM (Mealy)

O: Q → Y is an output function

F∈Q is the set of final or accepting or terminating states.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

244

Contents

FSM: Formal definition (contd.)

Mealy machines are due to G. H. Mealy (1955 publication)

Moore machines are due to E. F. Moore (1956 publication)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

245

Contents

Test generation from FSMs

Our focus

Requirements FSM Test generation algorithm

FSM based
Test inputs

Test driver Application
Test inputs

Observed behavior Oracle Pass/fail

Application Test inputs

Test generation for application

Blue: Generated

data

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

246

Contents

Embedded systems

Many real-life devices have computers embedded in them. For example, an

automobile has several embedded computers to perform various tasks, engine control

being one example. Another example is a computer inside a toy for processing inputs

and generating audible and visual responses.

Such devices are also known as embedded systems. An embedded system can be as

simple as a child's musical keyboard or as complex as the flight controller in an aircraft.

In any case, an embedded system contains one or more computers for processing

inputs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

247

Contents

Specifying embedded systems

An embedded computer often receives inputs from its environment and

responds with appropriate actions. While doing so, it moves from one state to

another.

The response of an embedded system to its inputs depends on its current state. It is

this behavior of an embedded system in response to inputs that is often modeled by

a finite state machine (FSM).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

248

Contents

FSM: lamp example

(a) Lamp switch can be turned clockwise.

(b) Lamp switch can be turned clockwise and counterclockwise.

Simple three state lamp behavior:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

249

Contents

FSM: Actions with state transitions

(a) Notice the ADD, INIT, ADD, and OUT actions.

(b) INIT: Initialize num. ADD: Add to num. OUT: Output num.

Machine to convert a sequence of decimal digits to an integer:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

250

Contents

FSM: Formal definition

An FSM is a quintuple: (X, Y, Q, q0, δ, O), where:

X is a finite set of input symbols also known as the input alphabet.

Y is a finite set of output symbols also known as the output alphabet,

Q is a finite set states,

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

251

Contents

FSM: Formal definition (contd.)

q0 in Q is the initial state,

δ: Q x X→ Q is a next-state or state transition function, and

O: Q x X→ Y is an output function.

In some variants of FSM more than one state could be specified as an

initial state. Also, sometimes it is convenient to add F⊆ Q as a set of

final or accepting states while specifying an FSM.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

252

Contents

State diagram representation of FSM

A state diagram is a directed graph that contains nodes representing states and

edges representing state transitions and output functions.

Each node is labeled with the state it represents. Each directed edge in a state

diagram connects two states. Each edge is labeled i/o where i denotes an input

symbol that belongs to the input alphabet X and o denotes an output symbol that

belongs to the output alphabet O. i is also known as the input portion of the edge and

o its output portion.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

253

Contents

5.2.2 Tabular representation

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

254

Contents

Tabular representation of FSM

A table is often used as an alternative to the state diagram to represent

the state transition function δ and the output function O.

The table consists of two sub-tables that consist of one or more columns each. The

leftmost sub table is the output or the action sub-table. The rows are labeled by the

states of the FSM. The rightmost sub-table is the next state sub-table.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

255

Contents

Tabular representation of FSM: Example

The table given below shows how to represent functions δ and O for

the DIGDEC machine.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

256

Contents

5.2.3 Properties of FSM

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

257

Contents

Properties of FSM

Completely specified: An FSM M is said to be completely specified if from each

state in M there exists a transition for each input symbol.

Strongly connected: An FSM M is considered strongly connected if for each pair

of states (qi , qj) there exists an input sequence that takes M from state qi to state

qj.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

258

Contents

Properties of FSM: Equivalence

V-equivalence: Let M1=(X, Y, Q1, m1
0, T1, O1) and M2=(X, Y, Q2, m2

0, T2, O2) be

two FSMs. Let V denote a set of non-empty strings over the input alphabet X i.e.

V⊆ X+.

Let qi and qj, i≠ j, be the states of machines M1 and M2, respectively. qi and qj are

considered V-equivalent if O1(qi, s)=O2(qj, s) for all s in V.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

259

Contents

Properties of FSM: Distinguishable

Stated differently, states qi and qj are considered V-equivalent if M1 and M2 ,

when excited in states qi and qj, respectively, yield identical output sequences.

States qi and qj are said to be equivalent if O1(qi, r)=O2(qj, r) for any set V. If qi and

qj are not equivalent then they are said to be distinguishable. This definition of

equivalence also applies to states within a machine. Thus, machines M1 and M2

could be the same machine.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

260

Contents

Properties of FSM: Machine Equivalence

Machine equivalence: Machines M1 and M2 are said to be equivalent if (a) for each

state σ in M1 there exists a state σ ' in M2 such that σ and σ ' are equivalent and (b)

for each state σ in M2 there exists a state σ ' in M1 such that σ and σ ' are

equivalent.

Machines that are not equivalent are considered distinguishable.

Minimal machine: An FSM M is considered minimal if the number of states in M

is less than or equal to any other FSM equivalent to M.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

261

Contents

Properties of FSM: k-equivalence

k-equivalence: Let M1=(X, Y, Q1, m1
0, T1, O1) and M2=(X, Y, Q2, m2

0, T2, O2) be

two FSMs.

States qiε Q1 and qjε Q2 are considered k-equivalent if, when excited by any input

of length k, yield identical output sequences.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

262

Contents

Properties of FSM: k-equivalence (contd.)

States that are not k-equivalent are considered k-distinguishable.

Once again, M1 and M2 may be the same machines implying that k-

distinguishability applies to any pair of states of an FSM.

It is also easy to see that if two states are k-distinguishable for any k>0 then

they are also distinguishable for any n≥ k. If M1 and M2 are not k-

distinguishable then they are said to be k-equivalent.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

263

Contents

Example: Completely specified machine

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

264

Contents

5.4 A fault model

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

265

Contents

Faults in implementation

An FSM serves to specify the correct requirement or design of an application. Hence

tests generated from an FSM target faults related to the FSM itself.

What faults are targeted by the tests generated using an FSM?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

266

Contents

Fault model

q0

q1

a/1

b/0

b/1
a/1

Correct design

q0

q1

a/0

b/0

b/1
a/1

Operation error Transfer error

q0

q1

a/1

b/0

b/1 a/1

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

267

Contents

Fault model (contd.)

q0

a/0
b/0

Missing state error Extra state error

q0

q1

a/1

b/0

b/1

a/1 q2

a/1

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

268

Contents

5.5 Characterization set
5.6 The W-method

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

269

Contents

Assumptions for test generation

Minimality: An FSM M is considered minimal if the number of states in M is less

than or equal to any other FSM equivalent to M.

Completely specified: An FSM M is said to be completely specified if from each state

in M there exists a transition for each input symbol.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

270

Contents

Chow’s (W) method

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M.

Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P

from the testing tree.

Step 4: Construct set Z from W and m.

Step 5: Desired test set=P.Z

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

271

Contents

Step 1: Estimation of m

This is based on a knowledge of the implementation. In the absence of any such

knowledge, let m=|Q|.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

272

Contents

Step 2: Construction of the W-set

Let M=(X, Y, Q, q1, δ, O) be a minimal and complete FSM.

Given states qi and qj in Q, W contains a string s such that:

 O(qi, s)≠O(qj, s)

W is a finite set of input sequences that distinguish the behavior of any pair of

states in M. Each input sequence in W is of finite length.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

273

Contents

Example of a W-set

W={baaa,aa,aaa}

O(baaa,q1)=1101

O(baaa,q2)=1100

Thus, baaa distinguishes state q1 from q2 as O(baaa,q1) ≠ O(baaa,q2)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

274

Contents

Steps in the construction of W-set

Step 1: Construct a sequence of k-equivalence partitions of Q denoted as P1, P2, …Pm,

m>0.

Step 2: Traverse the k-equivalence partitions in reverse order to obtain

 distinguishing sequence for each pair of states.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

275

Contents

What is a k-equivalence partition of Q?

A k-equivalence partition of Q, denoted as Pk, is a collection of n finite sets Σk1, Σk2 …

Σkn such that

∪n
i=1 Σki =Q

States in Σki are k-equivalent.

If state u is in Σki and v in Σkj for i≠j, then u and v are k-distinguishable.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

276

Contents

How to construct a k-equivalence partition?

Given an FSM M, construct a 1-equivalence partition, start with a tabular

representation of M.

Current
state

Output Next state

a b a b
q1 0 1 q1 q4

q2 0 1 q1 q5

q3 0 1 q5 q1

q4 1 1 q3 q4

q5 1 1 q2 q5

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

277

Contents

Construct 1-equivalence partition

Group states identical in their Output entries. This gives us 1-partition P1 consisting

of Σ1={q1, q2, q3} and Σ2 ={q4, q5}.	

Σ Current
state

Output Next state

a b a b
1 q1 0 1 q1 q4

q2 0 1 q1 q5

q3 0 1 q5 q1

2 q4 1 1 q3 q4

q5 1 1 q2 q5

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

278

Contents

Construct 2-equivalence partition: Rewrite P1 table

Rewrite P1 table. Remove the output columns. Replace a state entry qi by qij where j

is the group number in which lies state qi.

Σ Current
state

Next state

a b
1 q1 q11 q42

q2 q11 q52

q3 q52 q11

2 q4 q31 q42

q5 q21 q52

Group number
P1 Table

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

279

Contents

Construct 2-equivalence partition: Construct P2 table

Group all entries with identical second subscripts under the next state column. This

gives us the P2 table. Note the change in second subscripts.	

Σ Current
state

Next state

a b
1 q1 q11 q43

q2 q11 q53

2 q3 q53 q11

3 q4 q32 q43

q5 q21 q53

P2 Table

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

280

Contents

Construct 3-equivalence partition: Construct P3 table

Group all entries with identical second subscripts under the next state column. This

gives us the P3 table. Note the change in second subscripts.	

Σ Current
state

Next state

a b
1 q1 q11 q43

q2 q11 q54

2 q3 q54 q11

3 q4 q32 q43

4 q5 q21 q54

P3 Table

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

281

Contents

Construct 4-equivalence partition: Construct P4 table

Continuing with regrouping and relabeling, we finally arrive at P4 table.	

Σ Current
state

Next state

a b
1 q1 q11 q44

2 q2 q11 q55

3 q3 q55 q11

4 q4 q33 q44

5 q5 q22 q55

P4 Table

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

282

Contents

k-equivalence partition: Convergence

The process is guaranteed to converge.	

When the process converges, and the machine is minimal, each state will be in a

separate group.	

The next step is to obtain the distinguishing strings for each state.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

283

Contents

Finding distinguishing sequences: Example

Let us find a distinguishing sequence for states q1 and q2.	

Find tables Pi and Pi+1 such that (q1, q2) are in the same group in Pi and different

groups in Pi+1. We get P3 and P4.	

Initialize z=ε. Find the input symbol that distinguishes q1 and q2 in table P3. This

symbol is b. We update z to z.b. Hence z now becomes b.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

284

Contents

Finding the distinguishing sequences: Example (contd.)

The next states for q1 and q2 on b are, respectively, q4 and q5.	

We move to the P2 table and find the input symbol that distinguishes q4 and q5. Let

us select a as the distinguishing symbol. Update z which now becomes ba.	

The next states for states q4 and q5 on symbol a are, respectively, q3 and q2.

These two states are distinguished in P1 by a and b. Let us select a. We update z to

baa.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

285

Contents

Finding the distinguishing sequences: Example (contd.)

The next states for q3 and q2 on a are, respectively, q1 and q5.	

Moving to the original state transition table we obtain a as the distinguishing

symbol for q1 and q5	

We update z to baaa. This is the farthest we can go backwards through the various

tables. baaa is the desired distinguishing sequence for states q1 and q2. Check that

o(q1,baaa)≠o(q2,baaa).	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

286

Contents

Finding the distinguishing sequences: Example (contd.)

Using the procedure analogous to the one used for q1 and q2, we can find the

distinguishing sequence for each pair of states. This leads us to the following

characterization set for our FSM.

W={a, aa, aaa, baaa}	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

287

Contents

Chow’s method: where are we?

Step 4: Construct set Z from W and m.	

Step 5: Desired test set=P.Z	

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M.	

Step 2: Construct the characterization set W for M.	

Done	

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P

from the testing tree.	

Next (a)	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

288

Contents

Step 3: (a) Construct the testing tree for M

A testing tree of an FSM is a tree rooted at the initial state. It contains at least one

path from the initial state to the remaining states in the FSM. Here is how we

construct the testing tree.

State q0, the initial state, is the root of the testing tree. Suppose that the testing tree has

been constructed until level k . The (k+1)th level is built as follows.

Select a node n at level k. If n appears at any level from 1 through k , then n is a leaf

node and is not expanded any further. If n is not a leaf node then we expand it by

adding a branch from node n to a new node m if δ(n, x)=m for x∈ X . This branch

is labeled as x. This step is repeated for all nodes at level k.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

289

Contents

Example: Construct the testing tree for M

Start here, initial
state is the root.	

q1 becomes leaf, q4
can be expanded.	

No further expansion
possible	

.

.

.

M

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

290

Contents

Chow’s method: where are we?

Step 4: Construct set Z from W and m.	

Step 5: Desired test set=P.Z	

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M.	

Step 2: Construct the characterization set W for M.	

Done	

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P

from the testing tree.	

Next, (b)	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

291

Contents

Step 3: (b) Find the transition cover set from the testing tree

A transition cover set P is a set of all strings representing sub-paths, starting at the

root, in the testing tree. Concatenation of the labels along the edges of a sub-path is

a string that belongs to P. The empty string (ε) also belongs to P.

P={ε, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

292

Contents

Chow’s method: where are we?

Step 5: Desired test set=P.Z	

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M.	

Step 2: Construct the characterization set W for M.	

Done	

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P

from the testing tree.	

Done	

Step 4: Construct set Z from W and m.	
 Next	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

293

Contents

Step 4: Construct set Z from W and m

For m=n, we get	

Z = X0.W=W	

Given that X is the input alphabet and W the characterization set, we have:	

	

Z = X0.W ∪ X1.W ∪ ….. Xm-1-n.W ∪ Xm-n.W	

For X={a, b}, W={a, aa, aaa, baaa}, m=6	

Z = W ∪ X1.W ={a, aa, aaa, baaa} ∪ {a, b}.{a, aa, aaa, baaa}	

={a, aa, aaa, baaa, aa, aaa, aaaa, baaaa, ba, baa, baaa, 	
bbaaa}	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

294

Contents

Chow’s method: where are we?

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M.	

Step 2: Construct the characterization set W for M.	

Done	

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P

from the testing tree.	

Done	

Step 4: Construct set Z from W and m.	
 Done	

Step 5: Desired test set=P.Z	
 Next	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

295

Contents

Step 5: Desired test set=P.Z

The test inputs based on the given FSM M can now be derived as:	

	
T=P.Z	

Do the following to test the implementation:	

1.  Find the expected response to each element of T.	

2.  Generate test cases for the application. Note that even though the application

is modeled by M, there might be variables to be set before it can be exercised

with elements of T.	

3.  Execute the application and check if the response matches. Reset the

application to the initial state after each test.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

296

Contents

Example 1: Testing an erroneous application

Correct design

M1 M2

M

t1=baaaaaa

M1(t1)=1101001

M(t1)=1101001

t2=baaba

M2(t2)=11001

M(t2)=11011
Error revealing

test cases

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

297

Contents

Example 2: Extra state. N=5, m=6.

M1 M2

t1=baaba M(t1)=11011 M1(t1)=11001

t2=baaa M(t2)=1101 M2(t2)=1100

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

298

Contents

Error detection process: in-class discussion

Given m=n, each test case t is of the form r.s where r is in P and s in W. r

moves the application from initial state q0 to state qj. Then, s=as’ takes it

from qi to state qj or qj’.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

299

Contents

5.7 The Partial W method

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

300

Contents

The partial W (Wp) method

Tests are generated from minimal, complete, and connected FSM.	

Size of tests generated is generally smaller than that generated using the W-method.	

Test generation process is divided into two phases: Phase 1: Generate a test set using

the state cover set (S) and the characterization set (W). Phase 2: Generate additional

tests using a subset of the transition cover set and state identification sets.	

What is a state cover set? A state identification set?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

301

Contents

State cover set

Given FSM M with input alphabet X, a state cover set S is a finite non-empty set of

strings over X* such that for each state qi in Q, there is a string in S that takes M from

its initial state to qi.	

S={ε, b, ba, baa, baaa}	

S is always a subset of the transition

cover set P. Also, S is not

necessarily unique.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

302

Contents

State identification set

Given an FSM M with Q as the set of states, an identification set for state qi∈Q is

denoted by Wi and has the following properties:

(a) Wi⊆ W , 1≤ i≤n [Identification set is a subset of W.]

(b) O(qi, s)≠ O(qj, s) , for 1≤j≤ n , j≠ i , s∈ Wi [For each state other than qi, there is

a string in Wi that distinguishes qi from qj.]

(c) No subset of Wi satisfies property (b). [Wi is minimal.]

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

303

Contents

State identification set: Example

Si Sj X o(Si,x) o(Sj,x)
1 2 baaa 1 0

3 aa 0 1
4 a 0 1
5 a 0 1

2 3 aa 0 1
4 a 0 1
5 a 0 1

3 4 a 0 1
5 a 0 1

4 5 aaa 1 0

Last element of the output string	

W1=W2={baaa, aa, a}

W3={a aa} W4=W5={a, aaa}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

304

Contents

Wp method: Example: Step 1: Compute S, P, W, Wi,W

W1=W2={baaa, aa, a}	

W3={a aa} W4=W5={a, aaa}	

S={ε, b, ba, baa, baaa}	

P={ε, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}	

W={a, aa, aaa, baaa}	

W={W1, W2, W3, W4, W5}	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

305

Contents

Wp method: Example: Step 2: Compute T1 [m=n]

T1=S. W={ε, b, ba, baa, baaa}.{a, aa, aaa, baaa}	

Elements of T1 ensure that the each state of the FSM is covered and

distinguished from the remaining states.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

306

Contents

Wp method: Example: Step 3: Compute R and δ [m=n]

R=P-S={ε, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}-{ε, b, 	

	
 	
ba, baa, baaa}	

	
={a, bb, bab, baab, baaab, baaaa}	

Let each element of R be denoted as ri1, ri2,…rik.

δ(rik, m)=qij , where m∈X (the alphabet)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

307

Contents

Wp method: Example: Step 4: Compute T2 [m=n]

T2=R⊗W=∪k
(j=1) (rij}. Wij , where Wij is the identification set for state qij.

δ(q1, a)=q1 δ(q1, bb)=q4 δ(q1, bab)=q5

δ(q1, baab)=q5 δ(q1, baaab)=q5 δ(q1, baaaa)=q1

T2=({a}. W1)∪ ({bb}.W4) ∪ ({bab}.W5) ∪ ({baab}.W5) ∪
 {baaab}.W5) ∪ ({baaaa}. W1)

 ={abaaa, aaa, aa} ∪ {bba, bbaaa} ∪ {baba, babaaa} ∪

 {baaba, baabaaa} ∪ {baaaba, baaabaaa} ∪ {baaaabaaa, baaaaaa, baaaaa}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

308

Contents

Wp method: Example: Savings

Test set size using the W method= 44	

Test set size using the Wp method= 34 (20 from T1+14 from T2)	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

309

Contents

Testing using the Wp method

Testing proceeds in two phases.	

While tests from phase 1 ensure state coverage, they do not ensure all transition

coverage. Also, even when tests from phase cover all transitions, they do not apply

the state identification sets and hence not all transfer errors are guaranteed to be

revealed by these tests.	

Tests from T1 are applied in phase 1. Tests from T2 are applied in phase 2.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

310

Contents

Wp method:

T1=S. X[m-n], where X[m-n] is the set union of Xi , 1≤i≤ (m-n)	

T2= T2=R. X[m-n] ⊗W	

Both sets T1 and T2 are computed a bit differently, as follows:	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

311

Contents

5.8 The UIO sequence method [See the text]

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

312

Contents

5.9 Automata theoretic versus control flow based

techniques

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

313

Contents

Automata-theoretic vs. Control theoretic techniques

The W and the Wp methods are considered automata-theoretic methods for test

generation. 	

In contrast, many books on software testing mention control-theoretic techniques

for test generation. Let us understand the difference between the two types of

techniques and their fault detection abilities. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

314

Contents

Control theoretic techniques

State cover: A test set T is considered adequate with respect to the state cover

criterion for an FSM M if the execution of M against each element of T causes

each state in M to be visited at least once.

Transition cover: A test set T is considered adequate with respect to the branch/

transition cover criterion for an FSM M if the execution of M against each

element of T causes each transition in M to be taken at least once

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

315

Contents

Control theoretic techniques (contd.)

Switch cover: A test set T is considered adequate with respect to the 1-switch

cover criterion for an FSM M if the execution of M against each element of T

causes each pair of transitions (tr1, tr2) in M to be taken at least once, where for

some input substring ab tr1: qi=δ(qj, a) and tr_2: qk= δ(qi, b) and qi, qj, qk

are states in M.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

316

Contents

Control theoretic techniques (contd.)

Boundary interior cover: A test set T is considered adequate with respect to the

boundary-interior cover criterion for an FSM M if the execution of M against each

element of T causes each loop (a self-transition) across states to be traversed zero times

and at least once. Exiting the loop upon arrival covers the ``boundary" condition and

entering it and traversing the loop at least once covers the ``interior" condition.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

317

Contents

Control theoretic technique: Example 1

Consider the following machines, a correct one (M1) and one with a transfer error

(M1’).	

t=abba covers all states but does not not

reveal the error. Both machines

generate the same output which is 0111.	

Will the tests generated by the W

method reveal this error? Check it out!	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

318

Contents

Control theoretic technique: Example 2

Consider the following machines, a correct one (M2) and one with a transfer error

(M2’).	

There are 12 branch pairs, such as (tr1,

tr2), (tr1, tr3), tr6, tr5).	

Consider the test set: {bb, baab, aabb,

aaba, abbaab}. Does it cover all

branches? Does it reveal the error?	

Are the states in M2 1-distinguishable?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

319

Contents

Control theoretic technique: Example 3

Consider the following machines, a correct one (M3) and one with a transfer error

(M3’).	

Consider T={t1: aab, t2: abaab}. T1

causes each state to be entered but loop

not traversed. T2 causes each loop to be

traversed once.	

Is the error revealed by T?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

320

Contents

Summary

Behavior of a large variety of applications can be modeled using finite state

machines (FSM). GUIs can also be modeled using FSMs	

The W and the Wp methods are automata theoretic methods to generate tests from

a given FSM model. 	

Tests so generated are guaranteed to detect all operation errors, transfer errors, and

missing/extra state errors in the implementation given that the FSM representing

the implementation is complete, connected, and minimal. What happens if it is not?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

321

Contents

Summary (contd.)

Automata theoretic techniques generate tests superior in their fault detection ability

than their control-theoretic counterparts.

Control-theoretic techniques, that are often described in books on software testing,

include branch cover, state cover, boundary-interior, and n-switch cover.

The size of tests sets generated by the W method is larger than generated by the Wp

method while their fault detection effectiveness are the same.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

322

Contents

Chapter 6

Test Generation: Combinatorial Designs

Updated: July 16, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

323

Contents

Learning Objectives

§  What are Latin squares and mutually orthogonal Latin squares (MOLS)?

§  What are test configurations? How do they differ from test sets?

§  Why combinatorial design?

§  How does one generate test configurations from MOLS?

§  What are orthogonal arrays, covering arrays and mixed-level covering
arrays?

§  How to generate mixed-level covering arrays and test configurations from
them?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

324

Contents

6.1.1. Test configuration and test set

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

325

Contents

Test configuration

§  Software applications are often designed to work in a variety of environments.

Combinations of factors such as the operating system, network connection, and

hardware platform, lead to a variety of environments.

§  Each environment corresponds to a given set of values for each factor, known

as a test configuration.

§  An environment is characterized by combination of hardware and software.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

326

Contents

Test configuration: Example

§  Windows XP, Dial-up connection, and a PC with 512MB of main memory, is one

possible configuration.

§  To ensure high reliability across the intended environments, the application must

be tested under as many test configurations, or environments, as possible.

§  Different versions of operating systems and printer drivers, can be combined to

create several test configurations for a printer.

 The number of such test configurations could be exorbitantly large making it

impossible to test the application exhaustively.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

327

Contents

Test configuration and test set

§  While a test configuration is a combination of factors corresponding to hardware

and software within which an application is to operate, a test set is a collection of

test cases. Each test case consists of input values and expected output.

§  Techniques we shall learn are useful in deriving test configurations as well as test

sets.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

328

Contents

Motivation

§  While testing a program with one or more input variables, each test run of a

program often requires at least one value for each variable.

§  For example, a program to find the greatest common divisor of two integers x and

y requires two values, one corresponding to x and the other to y.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

329

Contents

Motivation [2]

 While equivalence partitioning discussed earlier offers a set of guidelines to

design test cases, it suffers from two shortcomings:

 (a) It raises the possibility of a large number of sub-domains in the partition.

 (b) It lacks guidelines on how to select inputs from various sub-domains in the

partition.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

330

Contents

Motivation [3]

 The number of sub-domains in a partition of the input domain increases in direct

proportion to the number and type of input variables, and especially so when

multidimensional partitioning is used.

 Once a partition is determined, one selects at random a value from each of the sub-

domains. Such a selection procedure, especially when using uni-dimensional

equivalence partitioning, does not account for the possibility of faults in the program

under test that arise due to specific interactions amongst values of different input

variables.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

331

Contents

Motivation [4]

 While boundary values analysis leads to the selection of test cases that test a

program at the boundaries of the input domain, other interactions in the input

domain might remain untested.

 We will learn several techniques for generating test configurations or test sets that

are small even when the set of possible configurations or the input domain and the

number of sub-domains in its partition, is large and complex.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

332

Contents

6.1.2. Modeling the input and configuration spaces

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

333

Contents

Modeling: Input and configuration space [1]

 The input space of a program P consists of k-tuples of values that could be input

to P during execution.

 Consider program P that takes two integers x>0 and y>0 as inputs. The input space of

P is the set of all pairs of positive non-zero integers.

 The configuration space of P consists of all possible settings of the environment

variables under which P could be used.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

334

Contents

Modeling: Input and configuration space [2]

 The configuration space of P consists of triples (X, Y, Z) where X represents an

operating system, Y a browser, and Z a local or a networked printer.

 Now suppose that this program is intended to be executed under the Windows and the

MacOS operating system, through the Netscape or Safari browsers, and must be able

to print to a local or a networked printer.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

335

Contents

Factors and levels

 Let us assume that each factor may be set at any one from a total of ci, 1≤ i ≤ n

values. Each value assignable to a factor is known as a level. |F| refers to the

number of levels for factor F.

 Consider a program P that takes n inputs corresponding to variables X1, X2, ..Xn. We

refer to the inputs as factors. The inputs are also referred to as test parameters or as

values.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

336

Contents

Factor combinations

 For example, suppose that program P has two input variables X and Y. Let us say

that during an execution of P, X and Y may each assume a value from the set

{a, b, c} and {d, e, f}, respectively.

 A set of values, one for each factor, is known as a factor combination.

 Thus, we have 2 factors and 3 levels for each factor. This leads to a total of 32=9

factor combinations, namely (a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e),

and (c, f).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

337

Contents

Factor combinations: Too large?

 Suppose now that each factor combination yields one test case. For many

programs, the number of tests generated for exhaustive testing could be

exorbitantly large.

 In general, for k factors with each factor assuming a value from a set of n values, the

total number of factor combinations is nk.

 For example, if a program has 15 factors with 4 levels each, the total number of

tests is 415 ~109. Executing a billion tests might be impractical for many software

applications.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

338

Contents

Example: Pizza Delivery Service (PDS) [1]

 A customer is required to specify the following four items as part of the online

order: Pizza size, Toppings list, Delivery address and a home phone number. Let

us denote these four factors by S, T, A, and P, respectively.

 A PDS takes orders online, checks for their validity, and schedules Pizza for delivery.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

339

Contents

Pizza Delivery Service (PDS): Specs

 There is a list of 6 toppings from which to select. In addition, the customer can

customize the toppings.

 Suppose now that there are three varieties for size: Large, Medium, and Small.

 The delivery address consists of customer name, one line of address, city, and the

zip code. The phone number is a numeric string possibly containing the dash

(``--") separator.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

340

Contents

PDS: Input space model

The total number of factor

combinations is 24+23=24.

Suppose we consider 6+1=7 levels for Toppings. Number of combinations=

24+5x23+23+5x22=84.

Different types of values for Address and Phone number will further increase the

combinations

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

341

Contents

Example: Testing a GUI

The Graphical User Interface of application T consists of three menus labeled File,

Edit, and Format.

We have three factors in T. Each of these three factors can be set to any of four

levels. Thus, we have a total 43=64 factor combinations.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

342

Contents

Example: The UNIX sort utility

The sort utility has several options and makes an interesting example for the

identification of factors and levels. The command line for sort is given below.

sort [-cmu] [-ooutput] [-Tdirectory] [-y [kmem]] [-zrecsz] [-dfiMnr] [-b] [tchar] [-

kkeydef] [+pos1[-pos2]] [file...]

We have identified a total of 20 factors for the sort command. The levels listed in

Table 11.1 of the book lead to a total of approximately 1.9x109 combinations.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

343

Contents

Example: Compatibility testing

There is often a need to test a web application on different platforms to ensure that

any claim such as ``Application X can be used under Windows and Mac OS X” are

valid.

Here we consider a combination of hardware, operating system, and a browser as a

platform. Let X denote a Web application to be tested for compatibility.

Given that we want X to work on a variety of hardware, OS, and browser

combinations, it is easy to obtain three factors, i.e. hardware, OS, and browser.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

344

Contents

Compatibility testing: Factor levels

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

345

Contents

Compatibility testing: Combinations

There are 75 factor combinations. However, some of these combinations are infeasible.

For example, Mac OS10.2 is an OS for the Apple computers and not for the Dell

Dimension series PCs. Similarly, the Safari browser is used on Apple computers and not

on the PC in the Dell Series.

While various editions of the Windows OS can be used on an Apple computer using an

OS bridge such as the Virtual PC, we assume that this is not the case for testing

application X.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

346

Contents

Compatibility testing: Reduced combinations

The discussion above leads to a total of 40 infeasible factor combinations corresponding

to the hardware-OS combination and the hardware-browser combination. Thus, in all

we are left with 35 platforms on which to test X.

Note that there is a large number of hardware configurations under the Dell Dimension

Series. These configurations are obtained by selecting from a variety of processor types,

e.g. Pentium versus Athelon, processor speeds, memory sizes, and several others.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

347

Contents

Compatibility testing: Reduced combinations-2

While testing against all configurations will lead to more thorough testing of application

X, it will also increase the number of factor combinations, and hence the time to test.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

348

Contents

6.2. Combinatorial test design process

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

349

Contents

Combinatorial test design process

Modeling of input space or the environment is not exclusive and one might apply either

one or both depending on the application under test.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

350

Contents

Combinatorial test design process: steps

Step 1: Model the input space and/or the configuration space. The model is expressed in

terms of factors and their respective levels.

Step 2: The model is input to a combinatorial design procedure to generate a

combinatorial object which is simply an array of factors and levels. Such an object is also

known as a factor covering design.

Step 3: The combinatorial object generated is used to design a test set or a test

configuration as the requirement might be.

Steps 2 and 3 can be automated.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

351

Contents

Combinatorial test design process: test inputs

Each combination obtained from the levels listed in Table 6.1 can be used to generate

many test inputs.

t1: sort -o afile bfile

t2: sort -o cfile dfile

For example, consider the combination in which all factors are set to ``Unused" except

the -o option which is set to ``Valid File" and the file option that is set to ``Exists.” Two

sample test cases are:

Is one of the above tests sufficient?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

352

Contents

Combinatorial test design process: summary

Combination of factor levels is used to generate one or more test cases. For each test

case, the sequence in which inputs are to be applied to the program under test must be

determined by the tester.

Further, the factor combinations do not indicate in any way the sequence in which the

generated tests are to be applied to the program under test. This sequence too must be

determined by the tester.

The sequencing of tests generated by most test generation techniques must be determined

by the tester and is not a unique characteristic of test generated in combinatorial testing.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

353

Contents

6.3. Fault model

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

354

Contents

Fault model

Faults aimed at by the combinatorial design techniques are known as interaction faults.

We say that an interaction fault is triggered when a certain combination of t≥1 input

values causes the program containing the fault to enter an invalid state.

Of course, this invalid state must propagate to a point in the program execution where it

is observable and hence is said to reveal the fault.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

355

Contents

t-way interaction faults

Faults triggered by some value of an input variable, i.e. t=1, regardless of the values of

other input variables, are known as simple faults.

For t=2, the faults are known as pairwise interaction faults.

In general, for any arbitrary value of t, the faults are known as t--way interaction faults.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

356

Contents

Pairwise interaction fault: Example

Correct output: f(x, y, z)-g(x, y) when X=x1 and Y=y1.

This is a pairwise interaction fault due to the interaction between factors

X and Y.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

357

Contents

3-way interaction fault: Example

This fault is triggered by all inputs such that x+y≠x-y and z ≠ 0. However,

the fault is revealed only by the following two of the eight possible input

combinations: x=-1, y=1, z=1 and x=-1, y=-1, z=1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

358

Contents

Fault vectors

Given a set of k factors f1, f2,.., fk, each at qi, 1≤ i ≤ k levels, a vector V of factor

levels is (l1, l2,.., lk), where li, 1 ≤ i ≤ k is a specific level for the corresponding

factor. V is also known as a run.

A run V is a fault vector for program P if the execution of P against a test case

derived from V triggers a fault in P. V is considered as a t-fault vector if any t ≤ k

elements in V are needed to trigger a fault in P. Note that a t-way fault vector for P

triggers a t-way fault in P.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

359

Contents

Fault vectors: Example

 The input domain consists of three factors x, y, and z each

having two levels. There is a total of eight runs. For

example, (1,1, 1) and (-1, -1, 0) are two runs.

Of these eight runs, (-1, 1, 1) and (-1, -1, 1) are three fault vectors that trigger the 3-way

fault. (x1, y1, *) is a 2-way fault vector given that the values x1 and y1 trigger the two-

way fault.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

360

Contents

Goal reviewed

The goal of the test generation techniques described in this chapter is to generate a

sufficient number of runs such that tests generated from these runs reveal all t-way

faults in the program under test.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

361

Contents

Goal reviewed

The number of such runs increases with the value of t. In many situations, t is set to 2

and hence the tests generated are expected to reveal pairwise interaction faults.

Of course, while generating t-way runs, one automatically generates some t+1, t+2, .., t

+k-1, and k-way runs also. Hence, there is always a chance that runs generated with t=2

reveal some higher level interaction faults.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

362

Contents

6.4. Latin squares

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

363

Contents

Latin Squares

Let S be a finite set of n symbols. A Latin square of order n is an n x n matrix such

that no symbol appears more than once in a row and column. The term ``Latin

square" arises from the fact that the early versions used letters from the Latin

alphabet A, B, C, etc. in a square arrangement.

S={A, B}. Latin squares of order 2.

S={1, 2, 3}. Latin
squares of order 3.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

364

Contents

Larger Latin Squares

Larger Latin squares of order n can be constructed by creating a row of n distinct

symbols. Additional rows can be created by permuting the first row.

For example, here is a Latin square M of order 4

constructed by cyclically rotating the first row and

placing successive rotations in subsequent rows.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

365

Contents

Modulo arithmetic and Latin Squares

A Latin square of order n>2 can also be constructed easily by doing modulo

arithmetic. For example, the Latin square M of order 4 given below is constructed

such that M(i, j)=i+j (mod 4), 1≤ (i, j) ≤ 4.

0

A Latin square based on integers 0, 1… n is said to

be in standard form if the elements in the top row

and the leftmost column are arranged in order.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

366

Contents

6.5. Mutually orthogonal Latin squares

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

367

Contents

Mutually Orthogonal Latin Squares (MOLS)

Let M1 and M2 be two Latin squares, each of order n. Let M1(i, j) and M2(i, j)

denote, respectively, the elements in the ith row and jth column of M1 and M2.

We now create an n x n matrix M from M1 and M2 such that the L(i, j) is M1(i,

j)M2(i, j), i.e. we simply juxtapose the corresponding elements of M1 and M2.

If each element of M is unique, i.e. it appears exactly once in M, then M1 and M2 are

said to be mutually orthogonal Latin squares of order n.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

368

Contents

MOLS: Example

There are no MOLS of order 2. MOLS of order 3 follow.

Juxtaposing the corresponding elements gives us L.

Its elements are unique and hence M1 and M2 are

MOLS.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

369

Contents

MOLS: How many of a given order?

MOLS(n) is the set of MOLS of order n. When n is prime, or a power of prime,

MOLS(n) contains n-1 mutually orthogonal Latin squares. Such a set of MOLS is a

complete set.

MOLS do not exist for n=2 and n=6 but they do exist for all other values of n>2.

Numbers 2 and 6 are known as Eulerian numbers after the famous mathematician

Leonhard Euler (1707-1783). The number of MOLS of order n is denoted by N(n).

When n is prime or a power of prime, N(n)=n-1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

370

Contents

MOLS: Construction [1]

Example: We begin by constructing a Latin square of order 5 given the symbol set

S={1, 2, 3, 4, 5}.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

371

Contents

MOLS: Construction [2]

Next, we obtain M2 by rotating rows 2 through 5 of M1 by two positions to the left.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

372

Contents

MOLS: Construction [3]

M3 and M4 are obtained similarly but by rotating the first row of M1 by 3 and 4

positions, respectively.

Thus, we get MOLS(5)={M1, M2, M3, M4}. It is easy to check that indeed the elements

of MOLS(5) are mutually orthogonal by superimposing them pairwise.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

373

Contents

MOLS: Construction, limitation

The method illustrated in the previous example is guaranteed to work only when

constructing MOLS(n) for n that is prime or a power of prime. For other values of n, the

maximum size of MOLS(n) is n-1.

There is no general method available to construct the largest possible MOLS(n) for n

that is not a prime or a power of prime. The CRC Handbook of Combinatorial Designs

gives a large table of MOLS.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

374

Contents

6.6. Pairwise designs: Binary factors

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

375

Contents

Pairwise designs

We will now look at a simple technique to generate a subset of factor combinations from

the complete set. Each combination selected generates at least one test input or test

configuration for the program under test.

Only 2-valued, or binary, factors are considered. Each factor can be at one of two levels.

This assumption will be relaxed later.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

376

Contents

Pairwise designs: Example

Suppose that a program to be tested requires 3 inputs, one corresponding to each input

variable. Each variable can take only one of two distinct values.

Considering each input variable as a factor, the total number of factor combinations is 23.

Let X, Y, and Z denote the three input variables and {X1, X2}, {Y1, Y2}, {Z1, Z2} their

respective sets of values. All possible combinations of these three factors follow.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

377

Contents

Pairwise designs: Reducing the combinations

Now suppose we want to generate tests such that each pair appears in at least one test.

There are 12 such pairs: (X1, Y1), (X1, Y2), (X1, Z1), (X1, Z2), (X2, Y1), (X2, Y2),

(X2, Z1), (X2, Z2), (Y1, Z1), (Y1, Z2), (Y2, Z1), and (Y2, Z2). The following four

combinations cover all pairs:

The above design is also known as a pairwise design. It is a balanced design because

each value occurs exactly the same number of times. There are several sets of four

combinations that cover all 12 pairs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

378

Contents

Example: ChemFun applet

A Java applet ChemFun allows its user to create an in-memory database of chemical

elements and search for an element. The applet has 5 inputs listed after the next slide

with their possible values.

We refer to the inputs as factors. For simplicity we assume that each input has exactly

two possible values.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

379

Contents

Example: ChemFun applet

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

380

Contents

Example: ChemFun applet: Factor identification

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

381

Contents

ChemFun applet: Input/Output

Input: n=5 factors

Output: A set of factor combinations such that all pairs of input

values are covered.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

382

Contents

ChemFun applet: Step 1

Compute the smallest integer k such that n≤ |S2k-1|

For k=3 we have S5= 10 and for k=2, S3= 3. Hence the desired integer k=3.

S2k-1: Set of all binary strings of length 2k-1, k>0.

S2k-1=

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

383

Contents

ChemFun applet: Step 2

Select any subset of n strings from S2k-1. We have, k=3 and we have the following

strings in the set S5.

We select first five of the 10

strings in S5.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

384

Contents

ChemFun applet: Step 3

Append 0's to the end of each selected string. This will increase the size of each

string from 2k-1 to 2k.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

385

Contents

ChemFun applet: Step 4

Each combination is of the kind (X1, X2,…, Xn), where the value of each variable is

selected depending on whether the bit in column i, 1≤ i ≤ n, is a 0 or a 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

386

Contents

ChemFun applet: Step 4 (contd.)

The following factor combinations by replacing the 0s and 1s in each column by the

corresponding values of each factor.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

387

Contents

ChemFun applet: tests

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

388

Contents

ChemFun applet: All tests

Recall that the total

number of

combinations is 32.

Requiring only

pairwise coverage

reduces the tests to

6.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

389

Contents

6.7. Pairwise designs: Multi-valued factors

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

390

Contents

Pairwise designs: Multi-valued factors

Next we will learn how to use MOLS to construct test configurations when:

•  The number of factors is two or more,

•  The number of levels for each factor is more than two,

•  All factors have the same number of levels.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

391

Contents

Multi-valued factors: Sample problem

DNA sequencing is a common activity amongst biologists and other researchers.

Several genomics facilities are available that allow a DNA sample to be submitted

for sequencing.

One such facility is offered by The Applied Genomics Technology Center (AGTC)

at the School of Medicine in Wayne State University.

The submission of the sample itself is done using a software application available

from AGTC. We refer to this software as AGTCS.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

392

Contents

Sample problem (contd.)

AGTCS is supposed to work on a variety of platforms that differ in their hardware

and software configurations. Thus, the hardware platform and the operating system

are two factors to be considered while developing a test plan for AGTCS.

In addition, the user of AGTCS, referred to as PI, must either have a profile

already created with AGTCS or create a new one prior to submitting a sample.

AGTCS supports only a limited set of browsers.

For simplicity we consider a total of four factors with their respective levels given

next.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

393

Contents

DNA sequencing: factors and levels

There are 64 combinations of the factors listed. As PCs and Macs run their

dedicated operating systems, the number of combinations reduces to 32.

We want to test under enough configurations so that all possible pairs of factor levels

are covered.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

394

Contents

DNA sequencing: Approach to test design

We can now proceed to design test configurations in at least two ways. One way is to

treat the testing on PC and Mac as two distinct problems and design the test

configurations independently. Exercise 6.12 asks you to take this approach and

explore its advantages over the second approach used in this example.

The approach used in this example is to arrive at a common set of test configurations

that obey the constraint related to the operating systems.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

395

Contents

DNA sequencing: Test design algorithm

Input: n=4 factors. |F1’|=2, |F2’|=4, |F3’|=4, |F4’|=2, where F1’, F2’, F3’, and F4’

denote, respectively, hardware, OS, browser, and PI.

Output: A set of factor combinations such that all pairwise combinations are covered.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

396

Contents

Test design algorithm: Step 1

Reliable the factors as F1, F2, F3, F4 such that |F1|≥|F2| ≥ |F3| ≥ |F4|.

Doing so gives us F1=F2', F2=F3', F3=F1', F4=F4', b=k=4. Note that a different

assignment is also possible because |F1|=|F4|and |F2|=|F3|.

Let b=|F1|=4 and k=|F2|=4

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

397

Contents

Test design algorithm: Step 2

Prepare a table containing 4 columns

and b x k=16 rows divided into 4

blocks. Label the columns as F1, F2,

… Fn. Each block contains k rows.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

398

Contents

Test design algorithm: Step 3 (contd.)

Fill column F1 with 1's in Block 1, 2's in

Block 2, and so on. Fill Block 1 of column

F2 with the sequence 1, 2,.., k in rows 1

through k (k=4).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

399

Contents

Test design algorithm: Step 4

Find MOLS of order 4. As 4 is a power of prime, we can use the procedure

described earlier.

We choose the following set of MOLS of order 4.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

400

Contents

Test design algorithm: Step 5

Fill the remaining two columns of the table

constructed earlier using columns of M1 for

F3 and M2 for F4.

A boxed entry in each row indicates a pair

that does not satisfy the operating system

constraint. An entry marked with an

asterisk (*) indicates an invalid level.

From M1 From M2

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

401

Contents

Test design algorithm: Step 6 [1]

Using the 16 entries in the table above, we can obtain 16 distinct test configurations

for AGTCS. However, we need to resolve two problems before we get to the design

of test configurations.

Problem 1: Factors F3 and F4 can only assume values 1 and 2 whereas the table above

contains other infeasible values for these two factors. These infeasible values are marked

with an asterisk.

Solution: One simple way to get rid of the infeasible values is to replace them by an

arbitrarily selected feasible value for the corresponding factor..

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

402

Contents

Test design algorithm: Step 6 [2]

Problem 2: Some configurations do not satisfy the operating system constraint. Four

such configurations are highlighted in the design by enclosing the corresponding numbers

in rectangles. Here is an example:

F1: Operating system=1(Win 2000) F3:

Hardware=2 (Mac) is infeasible.

Here we are assume that one is not using

Virtual PC on the Mac.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

403

Contents

Test design algorithm: Step 6 [3]

Delete rows with conflicts?: Obviously we cannot delete these rows as that would leave

some pairs uncovered. Consider block 3.

Removing Row~3 will leave the following five pairs uncovered: (F1=3, F2=3), (F1=3,

F4=2), (F2=3, F3=1), (F2=3, F4=2), and (F3=1, F4=2).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

404

Contents

Test design algorithm: Step 6 [4]

Proposed solution: We follow a two step procedure to remove the highlighted

configurations and retain complete pairwise coverage.

Step 1: Modify the four highlighted rows so they do not violate the constraint.

Step 2: Add new configurations that cover the pairs that are left uncovered when we

replace the highlighted rows.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

405

Contents

Test design algorithm: Step 6 [5]

F1: OS F2: Browser F3: Hardware F4: PI

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

406

Contents

Test design algorithm: Design configurations

We can easily construct 20 test configurations from the design obtained. This

is in contrast to 32 configurations obtained using a brute force method.

Can we remove some rows from the design without

affecting pairwise coverage?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

407

Contents

Shortcomings of using MOLS

A sufficient number of MOLS might not exist for the problem at hand.

While the MOLS approach assists with the generation of a balanced design in

that all interaction pairs are covered an equal number of times, the number of

test configurations is often larger than what can be achieved using other

methods.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

408

Contents

6.8. Orthogonal Arrays

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

409

Contents

Orthogonal arrays

An orthogonal array, such as the one above, is an N x k matrix in which the entries

are from a finite set S of s symbols such that any N x t sub array contains each t-tuple

exactly the same number of times. Such an orthogonal array is denoted by OA(N, k,

s, t).

Examine this matrix and extract as many properties as you can:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

410

Contents

Orthogonal arrays: Example

The following orthogonal array has 4 runs and has a strength of 2. It uses symbols

from the set {1, 2}. This array is denoted as OA(4, 3, 2, 2). Note that the value of

parameter k is 3 and hence we have labeled the columns as F1, F2, and F3 to indicate

the three factors.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

411

Contents

Orthogonal arrays: Index

The index of an orthogonal array is denoted by λ and is equal to N/st. N is referred to

as the number of runs and t as the strength of the orthogonal array.

λ =4/22=1 implying that each pair (t=2) appears

exactly once (λ =1) in any 4 x 2 sub array. There is

a total of st=22=4 pairs given as (1, 1), (1, 2), (2, 1),

and (2, 2). It is easy to verify that each of the four

pairs appears exactly once in each 4 x 2 sub array.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

412

Contents

Orthogonal arrays: Another example

It has 9 runs and a strength of 2. Each of the

four factors can be at any one of 3 levels. This

array is denoted as OA(9, 4, 3, 2) and has an

index of 1.

What kind of an OA is this?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

413

Contents

Orthogonal arrays: Alternate notations

Orthogonal array of N runs where k factors take

on any value from a set of s symbols.

Arrays shown earlier are

LN denotes an orthogonal array of 9 runs. t, k, s are determined from the

context, i.e. by examining the array itself.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

414

Contents

6.9. Mixed-level Orthogonal Arrays

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

415

Contents

Mixed level Orthogonal arrays

So far we have seen fixed level orthogonal arrays. This is because the

design of such arrays assumes that all factors assume values from the

same set of s values.

In many practical applications, one encounters more than one factor, each

taking on a different set of values. Mixed orthogonal arrays are useful in

designing test configurations for such applications.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

416

Contents

Mixed level Orthogonal arrays: Notation

Strength=t. Runs=N.

k1 factors at s1 levels, k2 at s2 levels, and so on.

Total factors:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

417

Contents

Mixed level Orthogonal arrays: Index and balance

The balance property of orthogonal arrays remains intact for mixed level

orthogonal arrays in that any N x t sub array contains each t-tuple corresponding to

the t columns, exactly the same number of times, which is λ.

The formula used for computing the index λ of an orthogonal array does not apply

to the mixed level orthogonal array as the count of values for each factor is a

variable.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

418

Contents

Mixed level Orthogonal arrays: Example

This array can be used to design test

configurations for an application that contains 4

factors each at 2 levels and 1 factor at 4 levels.

Balance: In any sub array of size 8 x 2, each possible pair occurs exactly the same number

of times. In the two leftmost columns, each pair occurs exactly twice. In columns 1 and 3,

each pair also occurs exactly twice. In columns 1 and 5, each pair occurs exactly once.

Can you identify some properties?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

419

Contents

Mixed level Orthogonal arrays: Example

This array can be used to generate

test configurations when there are

six binary factors, labeled F1

through F6 and three factors each

with four possible levels, labeled

F7 through F9.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

420

Contents

Mixed level Orthogonal arrays: Test generation: Pizza
delivery

We have 3 binary factors and one factor at 3 levels. Hence we can use the

following array to generate test configurations:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

421

Contents

Test generation: Pizza delivery: Array

Check that all possible pairs of

factor combinations are covered

in the design above. What kind of

errors will likely be revealed

when testing using these 12

configurations?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

422

Contents

Test generation: Pizza delivery: test configurations

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

423

Contents

6.9. Covering and mixed-level covering arrays

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

424

Contents

The “Balance” requirement

Observation [Dalal and Mallows, 1998]: The balance requirement is often

essential in statistical experiments, it is not always so in software testing.

For example, if a software application has been tested once for a given pair of

factor levels, there is generally no need for testing it again for the same pair, unless

the application is known to behave non-deterministically.

For deterministic applications, and when repeatability is not the focus, we can relax

the balance requirement and use covering arrays, or mixed level covering arrays for

combinatorial designs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

425

Contents

Covering array

A covering array CA(N, k, s, t) is an N x k matrix in which entries are from a finite

set S of s symbols such that each N x t sub-array contains each possible t-tuple at

least λ times.

 N denotes the number of runs, k the number factors, s, the number of levels for

each factor, t the strength, and λ the index

While generating test cases or test configurations for a software application, we use

λ=1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

426

Contents

Covering array and orthogonal array

While an orthogonal array OA(N, k, s, t) covers each possible t-tuple λ times in any N

x t sub array, a covering array CA(N, k, s, t) covers each possible t-tuple at least λ

times in any N x t sub array.

Thus, covering arrays do not meet the balance requirement that is met by orthogonal

arrays. This difference leads to combinatorial designs that are often smaller in size than

orthogonal arrays.

Covering arrays are also referred to as unbalanced designs. We are interested in

minimal covering arrays.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

427

Contents

Covering array: Example

A balanced design of strength 2 for 5 binary factors, requires 8 runs and is denoted by

OA(8, 5, 2, 2). However, a covering design with the same parameters requires only 6

runs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

428

Contents

Mixed level covering arrays

A mixed-level covering array is denoted as

and refers to an N x Q matrix of entries such that, Q= and each N x t sub-

array contains at least one occurrence of each t-tuple corresponding to the t columns.

s1, s2,,… denote the number of levels of each the corresponding factor.
€

ki
i=1

p

∑

Mixed-level covering arrays are generally smaller than mixed-level orthogonal arrays

and more appropriate for use in software testing.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

429

Contents

Mixed level covering array: Example

Comparing this with we notice a reduction of 6 configurations.

Is the above array balanced?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

430

Contents

6.10. Arrays of strength >2

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

431

Contents

Arrays of strength >2

Designs with strengths higher than 2 are sometimes needed to achieve higher

confidence in the correctness of software. Consider the following factors in a

pacemaker.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

432

Contents

Pacemaker example

Due to the high reliability requirement of the pacemaker, we would like to test it to

ensure that there are no pairwise or 3-way interaction errors.

Thus, we need a suitable combinatorial object with strength 3. We could use an

orthogonal array OA(54, 5, 3, 3) that has 54 runs for 5 factors each at 3 levels and is

of strength 3. Thus, a total of 54 tests will be required to test for all 3-way

interactions of the 5 pacemaker parameters

Could a design of strength 2 cover some triples

and higher order tuples?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

433

Contents

Generating mixed level covering arrays

We will now study a procedure due to Lei and Tai for the generation of mixed level

covering arrays. The procedure is known as In-parameter Order (IPO) procedure.

Inputs: (a) n ≥2: Number of parameters (factors). (b) Number of values (levels) for

each parameter.

Output: MCA

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

434

Contents

6.11. Generating covering arrays

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

435

Contents

IPO procedure

Consists of three steps:

Step 1: Main procedure.

Step 2: Horizontal growth.

Step 3: Vertical growth.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

436

Contents

IPO procedure: Example

Consider a program with three factors A, B, and C. A assumes values from the set

{a1, a2, a3}, B from the set {b1, b2}, and C from the set {c1, c2, c3}. We want to

generate a mixed level covering array for these three factors..

We begin by applying the Main procedure which is the first step in the

generation of an MCA using the IPO procedure.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

437

Contents

IPO procedure: main procedure

Main: Step 1: Construct all runs that consist of pairs of values of the first two

parameters. We obtain the following set.

Let us denote the elements of as t1, t2,…t6.

The entire IPO procedure would terminate at this point if the number of parameters

n=2. In our case n=3 hence we continue with horizontal growth.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

438

Contents

IPO procedure: Horizontal growth

HG: Step 1: Compute the set of all pairs AP between parameters A and C, and

parameters B and C. This leads us to the following set of fifteen pairs.

HG: Step 2: AP is the set of pairs yet to be covered. Let T’ denote the set of runs

obtained by extending the runs in T. At this point T’ is empty as we have not

extended any run in T.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

439

Contents

Horizontal growth: Extend

HG: Steps 3, 4: Expand t1, t2, t3 by appending c1, c2, c3. This gives us:

t1’=(a1, b1, c1), t2’=(a1, b2, c2), and t3’=(a2, b1, c3)

Update T’ which now becomes {a1, b1, c1), (a1, b2, c2), (a2, b1, c3)}

Update pairs remaining to be covered AP={(a1, c3), (a2, c1), (a2, c2), (a3, c1), (a3,

c2), (a3, c3), (b1, c2), (b2, c1), (b2, c3)}

Update T’ which becomes {(a1, b1, c1), (a1, b2, c2), (a2, b1, c3)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

440

Contents

Horizontal growth: Optimal extension

HG: Step 6: Expand t4, t5, t6 by suitably selected values of C.

If we extend t4=(a2, b2) by c1 then we cover two of the uncovered pairs from AP,

namely, (a2, c1) and (b2, c1). If we extend it by c2 then we cover one pair from AP.

If we extend it by c3 then we cover one pairs in AP. Thus, we choose to extend t4 by

c1.

HG. Step 5: We have not extended t4, t5, t6 as C does not have enough elements. We

find the best way to extend these in the next step.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

441

Contents

Horizontal growth: Update and extend remaining

HG: Step 6: Similarly we extend t5 and t6 by the best possible values of parameter

C. This leads to:

 t5’=(a3, b1, c3) and t6’=(a3, b2, c1)

T’={(a1, b1, c1), (a1, b2, c2), (a2, b1, c3), (a2, b2, c1)}

AP= {(a1, c3), (a2, c2), (a3, c1), (a3, c2), (a3, c3), (b1, c2), (b2, c3)}

T’={(a1, b1, c1), (a1, b2, c2), (a2, b1, c3), (a2, b2, c1), (a3, b1, c3), (a3, b2, c1)}

AP= {(a1, c3), (a2, c2), (a3, c2), (b1, c2), (b2, c3)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

442

Contents

Horizontal growth: Done

We now move to the vertical growth step of the main IPO procedure to cover the
remaining pairs.

We have completed the horizontal growth step. However, we have five pairs
remaining to be covered. These are:

AP= {(a1, c3), (a2, c2), (a3, c2), (b1, c2), (b2, c3)}

Also, we have generated six complete runs namely:

T’={(a1, b1, c1), (a1, b2, c2), (a2, b1, c3), (a2, b2, c1), (a3, b1, c3), (a3, b2,
c1)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

443

Contents

Vertical growth

Next , consider p=(a2, c2). This is covered by the run (a2, *, c2)

For each missing pair p from AP, we will add a new run to T’ such that p is

covered. Let us begin with the pair p= (a1, c3).

The run t= (a1, *, c3) covers pair p. Note that the value of parameter Y does not

matter and hence is indicated as a * which denotes a don’t care value.

Next , consider p=(a3, c2). This is covered by the run (a3, *, c2)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

444

Contents

Vertical growth (contd.)

Next , consider p=(b2, c3). We already have (a1, *, c3) and hence we can modify it

to get the run (a1, b2, c3). Thus, p is covered without any new run added.

Finally, consider p=(b1, c2). We already have (a3, *, c2) and hence we can modify it

to get the run (a3, b1, c2). Thus, p is covered without any new run added.

We replace the don’t care entries by an arbitrary value of the corresponding factor

and get:

T={(a1, b1, c1), (a1, b2, c2), (a1, b1, c3), (a2, b1, c2), (a2, b2, c1), (a2, b2, c3), (a3,

b1, c3), (a3, b2, c1), (a3, b1, c2)}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

445

Contents

Final covering array

MCA(9, 21 32, 2)
Run F1(X) F2(Y) F3(Z)

1 1 1 1

2 1 2 2

3 1 2 3

4 2 1 2

5 2 1 3

6 2 2 1

7 3 1 2

8 3 1 3

9 3 2 1

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

446

Contents

Practicalities

That completes our presentation of an algorithm to generate covering arrays. A

detailed analysis of the algorithm has been given by Lei and Tai.

Lei and Tai offer several other algorithms for horizontal and vertical growth that are

faster than the algorithm mentioned here.

Lei and Tai found that the IPO algorithm performs almost as well as AETG in the

size of the generated arrays.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

447

Contents

Tools

AETG from Telcordia is a commercial tool to generate covering arrays. It allows

users to specify constraints across parameters. For example, parameter A might not

assume a value a2 when parameter B assumes value b3.

Publicly available tool: ACTS from Jeff Lie’s group a UT Arlington.

AETG is covered by US patent 5,542,043.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

448

Contents

Summary

Combinatorial design techniques assist with the design of test configurations and

test cases. By requiring only pair-wise coverage and relaxing the “balance

requirement,” combinatorial designs offer a significant reduction in the number of

test configurations/test cases.	

MOLS, Orthogonal arrays, covering arrays, and mixed-level covering arrays are

used as combinatorial objects to generate test configurations/test cases. For

software testing, most useful amongst these are mixed level covering arrays.	

Handbooks offer a number covering and mixed level covering arrays. We

introduced one algorithm for generating covering arrays. This continues to be a

research topic of considerable interest.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

449

Contents

Chapter 7

Test Adequacy Measurement and Enhancement:
Control and Data flow

Updated: July 16, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

450

Contents

Learning Objectives

§  Data flow coverage

§  What is test adequacy? What is test enhancement? When to measure test

adequacy and how to use it to enhance tests?

§  Control flow based test adequacy; statement, decision, condition, multiple

condition, LCSAJ, and MC/DC coverage

§  Strengths and limitations of code coverage based measurement of test

adequacy

§  Tools for the measurement of code coverage
§  The “subsumes” relation amongst coverage criteria

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

451

Contents

7.1 Test adequacy: basics

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

452

Contents

What is adequacy?

§  Suppose now that a set T containing k tests has been constructed to test P to

determine whether or not it meets all the requirements in R . Also, P has been

executed against each test in T and has produced correct behavior.

§  Consider a program P written to meet a set R of functional requirements. We

notate such a P and R as (P, R). Let R contain n requirements labeled R1,

R2,…, Rn .

§  We now ask: Is T good enough? This question can be stated differently as: Has

P been tested thoroughly?, or as: Is T adequate?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

453

Contents

Measurement of adequacy

§  Adequacy is measured for a given test set designed to test P to determine

whether or not P meets its requirements.

§  In the context of software testing, the terms ``thorough," ``good enough," and

``adequate," used in the questions above, have the same meaning.

§  This measurement is done against a given criterion C . A test set is considered

adequate with respect to criterion C when it satisfies C. The determination of

whether or not a test set T for program P satisfies criterion C depends on the

criterion itself and is explained later.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

454

Contents

Example
Program sumProduct must meet the following requirements:

R1 Input two integers, say x and y , from the standard input device.

R2.1 Find and print to the standard output device the sum of x and y if x<y .

R2.2 Find and print to the standard output device the product of x and y if x≥
 y.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

455

Contents

Example (contd.)

Suppose now that the test adequacy criterion C is specified as:

 C : A test T for program (P, R) is considered adequate if for each requirement r

in R there is at least one test case in T that tests the correctness of P with

respect to r .

Obviously, T={t: <x=2, y=3> is inadequate with respect to C for program

sumProduct. The lone test case t in T tests R1 and R2.1, but not R2.2.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

456

Contents

Black-box and white-box criteria

For each adequacy criterion C , we derive a finite set known as the coverage domain

and denoted as Ce .

A criterion C is a white-box test adequacy criterion if the corresponding coverage

domain Ce depends solely on program P under test.

A criterion C is a black-box test adequacy criterion if the corresponding

coverage domain Ce depends solely on requirements R for the program P

under test.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

457

Contents

Coverage
We want to measure the adequacy of T. Given that Ce has n≥ 0 elements, we say

that T covers Ce if for each element e' in Ce there is at least one test case in T

that tests e'. The notion of “tests” is explained later through examples.

T is considered adequate with respect to C if it covers all elements in the coverage

domain. T is considered inadequate with respect to C if it covers k elements of

Ce where k<n .

The fraction k/n is a measure of the extent to which T is adequate with respect

to C . This fraction is also known as the coverage of T with respect to C , P , and

R .

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

458

Contents

Example

Let us again consider the following criterion: “A test T for program (P, R) is

considered adequate if for each requirement r in R there is at least one test case in

T that tests the correctness of P with respect to r.”

In this case the finite set of elements Ce={R1, R2.1, R2.2}. T covers R1 and

R2.1 but not R2.2 . Hence T is not adequate with respect to C . The coverage of

T with respect to C, P, and R is 0.66.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

459

Contents

Another Example

Consider the following criterion: “A test T for program (P, R) is considered

adequate if each path in P is traversed at least once.”

Assume that P has exactly two paths, one corresponding to condition x<y and the

other to x≥ y. We refer to these as p1 and p2, respectively. For the given adequacy

criterion C we obtain the coverage domain Ce to be the set { p1, p2}.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

460

Contents

Another Example (contd.)

To measure the adequacy of T of sumProduct against C , we execute P against

each test case in T .

As T contains only one test for which x<y , only the path p1 is executed. Thus,

the coverage of T with respect to C, P , and R is 0.5 and hence T is not adequate

with respect to C. We can also say that p1 is tested and p2 is not tested.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

461

Contents

Code-based coverage domain

In the previous example we assumed that P contains exactly two paths. This

assumption is based on a knowledge of the requirements. However, when the

coverage domain must contain elements from the code, these elements must be

derived by analyzing the code and not only by an examination of its requirements.

Errors in the program and incomplete or incorrect requirements might cause the

program, and hence the coverage domain, to be different from the expected.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

462

Contents

Example

This program is obviously incorrect as per the

requirements of sumProduct.

There is only one path denoted as p1. This path traverses all the statements. Using

the path-based coverage criterion C, we get coverage domain Ce={ p1}. T={t:

<x=2, y=3> }is adequate w.r.t. C but does not reveal the error.

sumProduct1

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

463

Contents

Example (contd.)

This program is correct as per the requirements of

sumProduct. It has two paths denoted by p1 and p2.

Ce={ p1, p2}. T={t: <x=2, y=3>} is inadequate w.r.t.

the path-based coverage criterion C.

sumProduct2

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

464

Contents

Lesson

An adequate test set might not reveal even the most obvious error in a

program. This does not diminish in any way the need for the measurement

of test adequacy as increasing coverage might reveal an error!.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

465

Contents

7.1.3 Test enhancement

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

466

Contents

Test Enhancement

While a test set adequate with respect to some criterion does not guarantee an error-

free program, an inadequate test set is a cause for worry. Inadequacy with respect to

any criterion often implies test deficiency.

Identification of this deficiency helps in the enhancement of the inadequate test set.

Enhancement in turn is also likely to test the program in ways it has not been tested

before such as testing untested portion, or testing the features in a sequence different

from the one used previously. Testing the program differently than before raises the

possibility of discovering any uncovered errors.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

467

Contents

Test Enhancement: Example

For sumProduct2, to make T adequate with respect to the path coverage criterion we

need to add a test that covers p2. One test that does so is {<x=3>, y=1>}. Adding

this test to T and denoting the expanded test set by T' we get:

T'={t1: <x=3, y=4>, t2: <x=3, y=1>}

Executing sum-product-2 against the two tests in T’ causes paths p1 and p2 are

traversed. Thus, T' is adequate with respect to the path coverage criterion.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

468

Contents

Test Enhancement: Procedure

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

469

Contents

Test Enhancement: Example

Consider a program intended to compute xy

given integers x and y. For y<0 the program

skips the computation and outputs a suitable

error message.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

470

Contents

Test Enhancement: Example (contd.)

Suppose that test T is considered adequate if it tests the exponentiation

program for at least one zero and one non-zero value of each of the two

inputs x and y.

The coverage domain for C can be determined using C alone and without any

inspection of the program For C we get Ce={x=0, y=0}, x≠0, y≠ 0. Again, one

can derive an adequate test set for the program by an examination of Ce. One

such test set is

 T={t1: <x=0, y=1>, t2: <x=1, y=0>}.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

471

Contents

Test Enhancement: Example: Path coverage

Criterion C of the previous example is a black-box coverage criterion as it does not

require an examination of the program under test for the measurement of adequacy

Let us now consider the path coverage criterion defined in in an earlier example.

An examination of the exponentiation program reveals that it has an

indeterminate number of paths due to the while loop. The number of paths

depends on the value of y and hence that of count.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

472

Contents

Example: Path coverage (contd.)

Given that y is any non-negative integer, the number of paths can be arbitrarily

large. This simple analysis of paths in exponentiation reveals that for the path

coverage criterion we cannot determine the coverage domain.

The usual approach in such cases is to simplify C and reformulate it as follows: A

test T is considered adequate if it tests all paths. In case the program contains a

loop, then it is adequate to traverse the loop body zero times and once.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

473

Contents

Example: Path coverage (contd.)

The modified path coverage criterion leads to

C‘e={p1, p2, p3}. The elements of Ce’ are

enumerated below with respect to flow graph for the

exponentiation program.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

474

Contents

Example: Path coverage (contd.)

We measure the adequacy of T with respect to C'.

As T does not contain any test with y<0, p3

remains uncovered. Thus, the coverage of T with

respect to C' is 2/3=0.66.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

475

Contents

Example: Path coverage (contd.)

Any test case with y<0 will cause p3 to be traversed. Let

us use t:<x=5, y=-1>. Test t covers path p3 and P behaves

correctly. We add t to T. The loop in the enhancement

terminates as we have covered all feasible elements of Ce’.

The enhanced test set is:

 T={<x=0, y=1>, <x=1, y=0>, <x=5, y=-1>}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

476

Contents

7.1.4 Infeasibility and test adequacy

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

477

Contents

Infeasibility

An element of the coverage domain is infeasible if it cannot be covered by any test

in the input domain of the program under test.

There does not exist an algorithm that would analyze a given program and

determine if a given element in the coverage domain is infeasible or not. Thus, it is

usually the tester who determines whether or not an element of the coverage

domain is infeasible.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

478

Contents

Demonstrating feasibility

Feasibility can be demonstrated by executing the program under test against a test

case and showing that indeed the element under consideration is covered.

Infeasibility cannot be demonstrated by program execution against a finite number

of test cases. In some cases simple arguments can be constructed to show that a

given element is infeasible. For complex programs the problem of determining

infeasibility could be difficult. Thus, an attempt to enhance a test set by executing

a test aimed at covering element e of program P, might fail.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

479

Contents

Infeasible path: Example

This program inputs two integers x and y, and

computes z. Ce={p1, p2, p3}.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

480

Contents

Example: Flow graph and paths

p1 is infeasible and cannot be traversed by any test case.

This is because when control reaches node 5, condition

y≥0 is false and hence control can never reach node 6.

Thus, any test adequate with respect to the path

coverage criterion for the exponentiation program will

only cover p2 and p3

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

481

Contents

Adequacy and infeasibility
In the presence of one or more infeasible elements in the coverage domain, a test is

considered adequate when all feasible elements in the domain have been covered.

While programmers might not be concerned with infeasible elements, testers

attempting to obtain code coverage are. Prior to test enhancement, a tester usually does

not know which elements of a coverage domain are infeasible. Unfortunately, it is only

during an attempt to construct a test case to cover an element that one might realize

the infeasibility of an element.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

482

Contents

7.1.5 Error detection and test enhancement

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

483

Contents

Test enhancement

The purpose of test enhancement is to determine test cases that test the untested

parts of a program or exercise the program using uncovered portions of the input

domain. Even the most carefully designed tests based exclusively on requirements

can be enhanced.

The more complex the set of requirements, the more likely it is that a test set designed

using requirements is inadequate with respect to even the simplest of various test

adequacy criteria.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

484

Contents

Example

A program to meet the following requirements is to be developed.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

485

Contents

Example (contd.)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

486

Contents

Example (contd.)
Consider the following program written to meet the requirements stated earlier.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

487

Contents

Example (contd.)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

488

Contents

Example (contd.)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

489

Contents

Example (contd.)

Suppose now that the following set containing three tests has been developed to test

whether or not our program meets its requirements.

T={<request=1, x=2, y=3>, <request=2, x=4>, <request=3>}

For the first two of the three requests the program correctly outputs 8 and 24,

respectively. The program exits when executed against the last request. This program

behavior is correct and hence one might conclude that the program is correct. It will

not be difficult for you to believe that this conclusion is incorrect.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

490

Contents

Example (contd.)

Let us now evaluate T against the path coverage criterion.

In class exercise: Go back to the example

program and extract the paths not covered by T.

The coverage domain consists of all paths that traverse each of the three loops zero

and once in the same or different executions of the program. This is left as an exercise

and we continue with one sample, and “tricky,” uncovered path.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

491

Contents

Example (contd.)

Consider the path p that begins execution at line 1, reaches the outermost while at

line 10, then the first if at line 12, followed by the statements that compute the

factorial starting at line 20, and then the code to compute the exponential starting at

line 13.

p is traversed when the program is launched and the first input request is to compute

the factorial of a number, followed by a request to compute the exponential. It is easy

to verify that the sequence of requests in T does not exercise p. Therefore T is

inadequate with respect to the path coverage criterion.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

492

Contents

Example (contd.)

To cover p we construct the following test:

T’={<request=2, x=4>, <request=1, x=2, y=3>, <request=3>}

When the values in T' are input to our example program in the sequence given, the

program correctly outputs 24 as the factorial of 4 but incorrectly outputs 192 as the value

of 23 .

This happens because T' traverses our “tricky” path which makes the computation of the

exponentiation begin without initializing product. In fact the code at line 14 begins with

the value of product set to 24.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

493

Contents

Example (contd.)

In our effort to increase the path coverage we constructed T' . Execution of the

program under test on T' did cover a path that was not covered earlier and revealed an

error in the program.

This example has illustrated a benefit of test enhancement based on code coverage.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

494

Contents

7.1.6 Single and multiple executions

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

495

Contents

Multiple executions

In the previous example we constructed two test sets T and T' . Notice that both T

and T' contain three tests one for each value of variable request. Should T (or T’) be

considered a single test or a sequence of three tests?

T’={<request=2, x=4>, <request=1, x=2, y=3>, <request=3>}

we assumed that all three tests, one for each value of request, are input in a sequence

during a single execution of the test program. Hence we consider T as a test set

containing one test case and write it as follows:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

496

Contents

Multiple executions (contd.)

We assumed that all three tests, one for each value of request, are input in a sequence

during a single execution of the test program. Hence we consider T as a test set

containing one test case and write it, it as follows:

T”=T∪T’

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

497

Contents

7.2.1 Statement and block coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

498

Contents

Declarations and basic blocks

Any program written in a procedural language consists of a sequence of statements.

Some of these statements are declarative, such as the #define and int statements in C,

while others are executable, such as the assignment, if, and while statements in C and

Java.

Recall that a basic block is a sequence of consecutive statements that has exactly one

entry point and one exit point. For any procedural language, adequacy with respect to

the statement coverage and block coverage criteria are defined next.

Notation: (P, R) denotes program P subject to requirement R.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

499

Contents

Statement coverage

The statement coverage of T with respect to (P, R) is computed as Sc/(Se-Si) , where

Sc is the number of statements covered, Si is the number of unreachable statements,

and Se is the total number of statements in the program, i.e. the size of the coverage

domain.

T is considered adequate with respect to the statement coverage criterion if the

statement coverage of T with respect to (P, R) is 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

500

Contents

Block coverage

The block coverage of T with respect to (P, R) is computed as Bc/(Be -Bi) , where Bc

is the number of blocks covered, Bi is the number of unreachable blocks, and Be is

the total number of blocks in the program, i.e. the size of the block coverage domain.

T is considered adequate with respect to the block coverage criterion if the statement

coverage of T with respect to (P, R) is 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

501

Contents

Example: statement coverage

Statements covered:

t1: 2, 3, 4, 5, 6, 7, and 10

t2: 2, 3, 4, 9, and 10.

Sc=6, Si=1, Se=7. The statement coverage for T is
6/(7-1)=1 . Hence we conclude that T1 is adequate
for (P, R) with respect to the statement coverage
criterion. Note: 7b is unreachable.

Coverage domain: Se={2, 3, 4, 5, 6, 7, 7b, 9, 10}

Let T1={t1:<x=-1, y=-1>,t 2:<x=1, y=1>}

(b)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

502

Contents

Example: block coverage

Blocks covered:

t1: Blocks 1, 2, 5

t2, t3: same coverage as of t1.

Be=5 , Bc=3, Bi=1.

Block coverage for T2= 3/(5-1)=0.75.

Hence T2 is not adequate for (P, R) with respect to
the block coverage criterion.

Coverage domain: Be={1, 2, 3, 4, 5

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

503

Contents

Example: block coverage (contd.)

T1 is adequate w.r.t. block coverage criterion. In

class exercise: Verify this statement!

Also, if test t2 in T1 is added to T2, we obtain a test

set adequate with respect to the block coverage

criterion for the program under consideration. In

class exercise: Verify this statement!

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

504

Contents

Coverage values

The formulae given for computing various types of code coverage, yield a

coverage value between 0 and 1. However, while specifying a coverage

value, one might instead use percentages. For example, a statement coverage

of 0.65 is the same as 65% statement coverage.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

505

Contents

7.2.2 Conditions and decisions

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

506

Contents

Conditions

Any expression that evaluates to true or false constitutes a condition. Such an

expression is also known as a predicate.

Note that in programming language C, x and x+y are valid conditions, and

the constants 1 and 0 correspond to, respectively, true and false.

Given that A , and B are Boolean variables, and x and y are integers, A ,

x > y , A OR B , A AND (x<y), (A AND B), are all sample conditions.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

507

Contents

Simple and compound conditions

A simple condition does not use any Boolean operators except for the not

operator. It is made up of variables and at most one relational operator from

the set {<, ≤ >, ≥, ==, ≠ }. Simple conditions are also referred to as atomic

or elementary conditions because they cannot be parsed any further into two

or more conditions.

A compound condition is made up of two or more simple conditions joined

by one or more Boolean operators.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

508

Contents

Conditions as decisions

Any condition can serve as a decision in an appropriate context within a program. most

high level languages provide if, while, and switch statements to serve as contexts for

decisions.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

509

Contents

Outcomes of a decision

A decision can have three possible outcomes, true, false, and undefined. When the

condition corresponding to a decision to take one or the other path is taken.

In some cases the evaluation of a condition might fail in which case the corresponding

decision's outcome is undefined.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

510

Contents

Undefined condition

The condition inside the if

statement at line 6 will remain

undefined because the loop at lines

2-4 will never terminate. Thus, the

decision at line 6 evaluates to

undefined.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

511

Contents

Coupled conditions

How many simple conditions are there in the compound condition: Cond=(A AND B)

OR (C AND A)? The first occurrence of A is said to be coupled to its second

occurrence.

Does Cond contain three or four simple conditions? Both answers are correct

depending on one's point of view. Indeed, there are three distinct conditions A , B ,

and C. The answer is four when one is interested in the number of occurrences of

simple conditions in a compound condition.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

512

Contents

7.2.3 Decision coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

513

Contents

Conditions within assignments

Strictly speaking, a condition becomes a decision only when it is used in the

appropriate context such as within an if statement.

At line 4, x<y does not constitute a decision and neither does A*B.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

514

Contents

Decision coverage

A decision is considered covered if the flow of control has been diverted to all

possible destinations that correspond to this decision, i.e. all outcomes of the decision

have been taken.

This implies that, for example, the expression in the if or a while statement has

evaluated to true in some execution of the program under test and to false in the same

or another execution.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

515

Contents

Decision coverage: switch statement

A decision implied by the switch statement is considered covered if during one or

more executions of the program under test the flow of control has been diverted to all

possible destinations.

Covering a decision within a program might reveal an error that is not revealed by

covering all statements and all blocks.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

516

Contents

Decision coverage: Example

This program inputs an integer x, and if necessary,

transforms it into a positive value before invoking

foo-1 to compute the output z. The program has an

error. As per its requirements, the program is

supposed to compute z using foo-2 when x≥0.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

517

Contents

Decision coverage: Example (contd.)

Consider the test set T={t1:<x=-5>}. It is adequate

with respect to statement and block coverage

criteria, but does not reveal the error.

Another test set T'={t1:<x=-5> t2:<x=3>} does

reveal the error. It covers the decision whereas T

does not. Check!

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

518

Contents

Decision coverage: Computation

The previous example illustrates how and why decision coverage might help in

revealing an error that is not revealed by a test set adequate with respect to statement

and block coverage.

The decision coverage of T with respect to (P, R) is computed as Dc/(De -Di) , where

Dc is the number of decisions covered, Di is the number of infeasible decisions, and

De is the total number of decisions in the program, i.e. the size of the decision coverage

domain.

T is considered adequate with respect to the decisions coverage criterion if the decision

coverage of T with respect to (P, R) is 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

519

Contents

Decision coverage: domain

The domain of decision coverage consists of all decisions in the program under test.

Note that each if and each while contribute to one decision whereas a switch

contribute to more than one.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

520

Contents

7.2.4 Condition coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

521

Contents

Condition coverage

A decision can be composed of a simple condition such as x<0 , or of a more

complex condition, such as ((x<0 AND y<0) OR (p≥q)).

AND, OR, XOR are the logical operators that connect two or more simple

conditions to form a compound condition.

A simple condition is considered covered if it evaluates to true and false in one or

more executions of the program in which it occurs. A compound condition is

considered covered if each simple condition it is comprised of is also covered.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

522

Contents

7.2.5 Condition/decision coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

523

Contents

Decision and condition coverage

Decision coverage is concerned with the coverage of decisions regardless of whether

or not a decision corresponds to a simple or a compound condition. Thus, in the

statement

there is only one decision that leads control to line 2 if the compound condition

inside the if evaluates to true. However, a compound condition might evaluate to true

or false in one of several ways.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

524

Contents

Decision and condition coverage (contd)

The condition at line 1 evaluates to false when x≥0 regardless of the value of y.
Another condition, such as x<0 OR y<0, evaluates to true regardless of the value of
y, when x<0.

With this evaluation characteristic in view, compilers often generate code that uses
short circuit evaluation of compound conditions.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

525

Contents

Decision and condition coverage (contd)

We now see two decisions, one corresponding to each simple condition in the if
statement.

Here is a possible translation:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

526

Contents

Condition coverage

The condition coverage of T with respect to (P, R) is computed as Cc/(Ce -Ci) ,

where Cc is the number of simple conditions covered, Ci is the number of infeasible

simple conditions, and |Ce is the total number of simple conditions in the program, i.e.

the size of the condition coverage domain.

T is considered adequate with respect to the condition coverage criterion if the

condition coverage of T with respect to (P, R) is 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

527

Contents

Condition coverage: alternate formula

An alternate formula where each simple condition contributes 2, 1, or 0 to Cc

depending on whether it is covered, partially covered, or not covered, respectively. is:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

528

Contents

Condition coverage: Example

Partial specifications for computing z:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

529

Contents

Condition coverage: Example (contd.)

Consider the test set:

Check that T is adequate with respect to the

statement, block, and decision coverage criteria

and the program behaves correctly against t1 and

t2.

Cc=1, Ce=2, Ci=0. Hence condition coverage for

T=0.5.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

530

Contents

Condition coverage: Example (contd.)

Add the following test case to T:

t3: <x=3, y=4>

Check that the enhanced test set T is adequate

with respect to the condition coverage criterion

and possibly reveals an error in the program.

Under what conditions will a possible error at

line 7 be revealed by t3?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

531

Contents

Condition/decision coverage

When a decision is composed of a compound condition, decision coverage does not

imply that each simple condition within a compound condition has taken both

values true and false.

Condition coverage ensures that each component simple condition within a

condition has taken both values true and false.

However, as illustrated next, condition coverage does not require each decision to

have taken both outcomes. Condition/decision coverage is also known as branch

condition coverage.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

532

Contents

Condition/decision coverage: Example

Consider the following program and two test sets.

In class exercise: Confirm that T1 is adequate with respect to

to decision coverage but not condition coverage.

In class exercise: Confirm that T2 is adequate with respect to

condition coverage but not decision coverage.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

533

Contents

Condition/decision coverage: Definition

The condition/decision coverage of T with respect to (P, R) is computed as (Cc

+Dc)/((Ce -Ci) +(De-Di)) , where Cc is the number of simple conditions covered,

Dc is the number of decisions covered, Ce and De are the number of simple

conditions and decisions respectively, and Ci and Di are the number of infeasible

simple conditions and decisions, respectively.

T is considered adequate with respect to the multiple condition coverage criterion if
the condition coverage of T with respect to (P, R) is 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

534

Contents

Condition/decision coverage: Example

In class exercise: Check that the following test set is

adequate with respect to the condition/decision

coverage criterion.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

535

Contents

7.2.6 Multiple Condition coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

536

Contents

Multiple condition coverage

Consider a compound condition with two or more simple conditions. Using condition

coverage on some compound condition C implies that each simple condition within C

has been evaluated to true and false.

However, does it imply that all combinations of the values of the individual simple

conditions in C have been exercised?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

537

Contents

Multiple condition coverage: Example

Consider D=(A<B) OR (A>C) composed of two simple conditions A< B and A> C .

The four possible combinations of the outcomes of these two simple conditions are

enumerated in the table. Consider T:

Check: Does T cover all four combinations?

Check: Does T’ cover all four combinations?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

538

Contents

Multiple condition coverage: Definition

Suppose that the program under test contains a total of n decisions. Assume also that

each decision contains k1, k2, …, kn simple conditions. Each decision has several

combinations of values of its constituent simple conditions.

For example, decision i will have a total of 2ki combinations. Thus, the total

number of combinations to be covered is

€

2ki
i=1

n

∑

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

539

Contents

Multiple condition coverage: Definition (contd.)

The multiple condition coverage of T with respect to (P, R) is computed as Cc/(Ce -

Ci) , where Cc is the number of combinations covered, Ci is the number of infeasible

simple combinations, and Ce is the total number of combinations in the program.

T is considered adequate with respect to the multiple condition coverage criterion if the
condition coverage of T with respect to (P, R) is 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

540

Contents

Multiple condition coverage: Example

Consider the following program with specifications in the table.

There is an obvious error in the program, computation of S for one of

the four combinations, line 3 in the table, has been left out.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

541

Contents

Multiple condition coverage: Example (contd.)

Is T adequate with respect to decision coverage? Multiple

condition coverage? Does it reveal the error?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

542

Contents

Multiple condition coverage: Example (contd.)

To improve decision coverage we add t3 to T and obtain T’.

Does T’ reveal the error?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

543

Contents

Multiple condition coverage: Example (contd.)

In class exercise: Construct a table showing the simple conditions covered by T’. Do

you notice that some combinations of simple conditions remain uncovered?

Now add a test to T’ to cover the uncovered combinations. Does your test reveal the

error? If yes, then under what conditions?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

544

Contents

7.2.7 LCSAJ coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

545

Contents

Linear Code Sequence and Jump (LCSAJ)

Execution of sequential programs that contain at least one condition, proceeds in pairs

where the first element of the pair is a sequence of statements, executed one after the

other, and terminated by a jump to the next such pair.

A Linear Code Sequence and Jump is a program unit comprised of a textual code

sequence that terminates in a jump to the beginning of another code sequence and

jump.

An LCSAJ is represented as a triple (X, Y, Z) where X and Y are, respectively,

locations of the first and the last statements and Z is the location to which the

statement at Y jumps.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

546

Contents

Linear Code Sequence and Jump (LCSAJ)

Consider this program.

The last statement in an LCSAJ (X, Y, Z) is a jump and Z

may be program exit. When control arrives at statement X,

follows through to statement Y, and then jumps to statement

Z, we say that the LCSAJ (X, Y, Z) is traversed or covered

or exercised.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

547

Contents

LCSAJ coverage: Example 1

t1 covers (1,4,7) and (7, 8, exit). t2 covers (1, 6, exit)

is executed. T covers all three LCSAJs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

548

Contents

LCSAJ coverage: Example 2

In class exercise: Find all LCSAJs

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

549

Contents

LCSAJ coverage: Example 2 (contd.)

Verify: This set covers all LCSAJs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

550

Contents

LCSAJ coverage: Definition

The LCSAJ coverage of a test set T with respect to (P, R) is computed

as

T is considered adequate with respect to the LCSAJ coverage criterion if

the LCSAJ coverage of T with respect to (P, R) is .

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

551

Contents

7.2.8 Modified condition/decision coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

552

Contents

Modified Condition/Decision (MC/DC) Coverage

Obtaining multiple condition coverage might become expensive when there are many

embedded simple conditions. When a compound condition C contains n simple

conditions, the maximum number of tests required to cover C is 2n .

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

553

Contents

Compound conditions and MC/DC

MC/DC coverage requires that every compound condition in a program must be

tested by demonstrating that each simple condition within the compound condition

has an independent effect on its outcome.

Thus, MC/DC coverage is a weaker criterion than the multiple condition coverage

criterion.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

554

Contents

MC/DC coverage: Simple conditions

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

555

Contents

7.2.9 MC/DC adequate tests for compound conditions

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

556

Contents

Generating tests for compound conditions

Let C=C1 and C2 and C3. Create a table with five columns and four rows. Label the

columns as Test, C1, C2 , C3 and C, from left to right. An optional column labeled

“Comments” may be added. The column labeled Test contains rows labeled by test

case numbers t1 through t4 . The remaining entries are empty.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

557

Contents

Generating tests for compound conditions (contd.)

Copy all entries in columns C1 , C2 , and C from the table for simple conditions into

columns C2, C3, and C of the empty table.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

558

Contents

Generating tests for compound conditions (contd.)

Fill the first three rows in the column marked C1 with true and the last row with false.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

559

Contents

MC/DC coverage: Generating tests for compound
conditions (contd.)

Fill the last row under columns labeled C2 , C3 , and C with true, true, and false,

respectively.

We now have a table containing MC/DC adequate tests for C=(C1 AND C2 AND C3)

derived from tests for C=(C1 AND C2) .

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

560

Contents

MC/DC coverage: Generating tests for compound
conditions (contd.)

The procedure illustrated above can be extended to derive tests for any compound

condition using tests for a simpler compound condition (solve Exercises 7.15 and

7.16).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

561

Contents

7.2.10 Definition of MC/DC coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

562

Contents

MC/DC coverage: Definition

A test set T for program P written to meet requirements R, is considered adequate

with respect to the MC/DC coverage criterion if upon the execution of P on each test

in T, the following requirements are met.

•  Each block in P has been covered.

•  Each simple condition in P has taken both true and false values.

•  Each decision in P has taken all possible outcomes.

•  Each simple condition within a compound condition C in P has been shown to
independently effect the outcome of C. This is the MC part of the coverage we
discussed.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

563

Contents

Analysis

The first three requirements above correspond to block, condition, and decision

coverage, respectively.

The fourth requirement corresponds to ``MC" coverage. Thus, the MC/DC coverage

criterion is a mix of four coverage criteria based on the flow of control.

With regard to the second requirement, it is to be noted that conditions that are not part

of a decision, such as the one in the following statement A= (p<q) OR (x>y) are also

included in the set of conditions to be covered.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

564

Contents

Analysis (contd.)

With regard to the fourth requirement, a condition such as (A AND B) OR (C AND A)

poses a problem. It is not possible to keep the first occurrence of A fixed while varying

the value of its second occurrence.

Here the first occurrence of A is said to be coupled to its second occurrence. In such

cases an adequate test set need only demonstrate the independent effect of any one

occurrence of the coupled condition

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

565

Contents

Adequacy

Let C1, C2, .., CN be the conditions in P. ni denote the number of simple conditions

in Ci , ei the number of simple conditions shown to have independent affect on the

outcome of Ci, and fi the number of infeasible simple conditions in Ci .

The MC coverage of T for program P subject to requirements R, denoted by MCc, is

computed as follows.

Test set T is considered adequate with respect to the MC coverage if MCc=1 of T

is 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

566

Contents

Example

R1.1: Invoke fire-1 when (x<y) AND (z * z > y) AND (prev=``East").

R1.2: Invoke fire-2 when (x<y) AND (z * z ≤ y) OR (current=``South").

R1.3: Invoke fire-3 when none of the two conditions above is true.

R2: The invocation described above must continue until an input Boolean

variable becomes true.

Consider the following requirements:

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

567

Contents

Example (contd.)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

568

Contents

Example (contd.)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

569

Contents

Example (contd.)

Verify that the following set T1 of four tests, executed in the given order, is

adequate with respect to statement, block, and decision coverage criteria but not

with respect to the condition coverage criterion.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

570

Contents

Example (contd.)

Verify that the following set T2, obtained by adding t5 to T1, is adequate with respect

to the condition coverage but not with respect to the multiple condition coverage

criterion. Note that sequencing of tests is important in this case!

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

571

Contents

Example (contd.)

Verify that the following set T3, obtained by adding t6, t7, t8, and t9 to T2 is adequate

with respect to MC/DC coverage criterion. Note again that sequencing of tests is

important in this case (especially for t1 and t7)!

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

572

Contents

7.2.12 Error detection and MC/DC adequacy

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

573

Contents

MC/DC adequacy and error detection
We consider the following three types of errors.

Incorrect Boolean operator: One or more Boolean operators is incorrect. For example,

the correct condition is (x<y AND done) which has been coded as (x<y OR done).

Missing condition: One or more simple conditions is missing from a compound

condition. For example, the correct condition should be (x<y AND done) but the

condition coded is (done).

Mixed: One or more simple conditions is missing and one or more Boolean operators is

incorrect. For example, the correct condition should be (x<y AND z*x ≥ y AND

d=``South") has been coded as (x<y OR z*x ≥ y).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

574

Contents

Example

Suppose that condition C=C1 AND C2 AND C3 has been coded as C'=C1 AND C2. Four

tests that form an MC/DC adequate set are in the following table. Verify that the

following set of four tests is MC/DC adequate but does not reveal the error.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

575

Contents

MC/DC and condition coverage

Several examples in the book show that satisfying the MC/DC adequacy criteria does not

necessarily imply that errors made while coding conditions will be revealed. However,

the examples do favor MC/DC over condition coverage.

The examples also show that an MC/DC adequate test will likely reveal more errors

than a decision or condition-coverage adequate test. (Note the emphasis on “likely.”)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

576

Contents

MC/DC and short circuit evaluation

Consider C=C1 AND C2.

The outcome of the above condition does not depend on C2 when C1 is false. When

using short-circuit evaluation, condition C2 is not evaluated if C1 evaluates to false.

Thus, the combination C1=false and C2=true, or the combination C1=false and

C2=false may be infeasible if the programming language allows, or requires as in

C, short circuit evaluation.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

577

Contents

MC/DC and decision dependence

Dependence of one decision on another might also lead to an infeasible combination.

Consider, for example, the following sequence of statements.

Infeasible condition A<5

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

578

Contents

Infeasibility and reachability

In this case the second decision is not reachable

due an error at line 3. It may, however, be

feasible.

Note that infeasibility is different from reachability. A decision might be reachable but

not feasible and vice versa. In the sequence above, both decisions are reachable but the

second decision is not feasible. Consider the following sequence.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

579

Contents

7.2.15 Tracing test cases to requirements

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

580

Contents

Test trace back

Advantages of trace back: Assists us in determining whether or not the new test

case is redundant.

When enhancing a test set to satisfy a given coverage criterion, it is desirable to ask the

following question: What portions of the requirements are tested when the program

under test is executed against the newly added test case? The task of relating the new

test case to the requirements is known as test trace-back.

It has the likelihood of revealing errors and ambiguities in the requirements.

It assists with the process of documenting tests against requirements.

See example 7.27.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

581

Contents

7.3 Concepts from data flow
7.3.1 Definitions and uses

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

582

Contents

Basic concepts

Test adequacy criteria based on the flow of data are useful in improving tests that

are adequate with respect to control-flow based criteria. Let us look at an example.

We will now examine some test adequacy criteria based on the flow of “data” in a

program. This is in contrast to criteria based on “flow of control” that we have

examined so far.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

583

Contents

Example: Test enhancement using data flow

Here is an MC/DC adequate test set that does not
reveal the error.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

584

Contents

Example (contd.)

Neither of the two tests force the use of z defined on

line 6, at line 9. To do so one requires a test that causes

conditions at lines 5 and 8 to be true.

An MC/DC adequate test does not force the

execution of this path and hence the divide by

zero error is not revealed.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

585

Contents

Example (contd.)

Verify that the following test set covers all def-use pairs of z and reveals the

error.

Would an LCSAJ adequate test also reveal the error?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

586

Contents

Definitions and uses

A program written in a procedural language, such as C and Java, contains variables.

Variables are defined by assigning values to them and are used in expressions.

Statement x=y+z defines variable x and uses variables y and z.

Declaration int x, y, A[10]; defines three variables.

Statement scanf(``%d %d", &x, &y) defines variables x and y.

Statement printf(``Output: %d \n", x+y) uses variables x and y.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

587

Contents

Definitions and uses (contd.)

A parameter x passed as call-by-value to a function, is considered as a use of, or a

reference to, x.

A parameter x passed as call-by-reference, serves as a definition and use of x

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

588

Contents

Definitions and uses: Pointers

Consider the following sequence of statements that use pointers.

The first of the above statements defines a pointer variable z the second defines y

and uses z the third defines x through the pointer variable z and the last defines y

and uses x accessed through the pointer variable z.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

589

Contents

Definitions and uses: Arrays

Arrays are also tricky. Consider the following declaration and two statements in C:

The first statement defines variable A. The second statement defines A and uses i , x,

and y. Alternate: second statement defines A[i] and not the entire array A. The

choice of whether to consider the entire array A as defined or the specific element

depends upon how stringent is the requirement for coverage analysis.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

590

Contents

7.3.2 C-use and p-use

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

591

Contents

c-use

Uses of a variable that occur within an expression as part of an assignment

statement, in an output statement, as a parameter within a function call, and in

subscript expressions, are classified as c-use, where the ``c" in c-use stands for

computational.

How many c-uses of x can you find in the following statements?

Answer: 5

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

592

Contents

p-use

The occurrence of a variable in an expression used as a condition in a branch

statement such as an if and a while, is considered as a p-use. The ``p" in p-use

stands for predicate.

How many p-uses of z and x can you find in the following statements?

Answer: 3 (2 of z and 1 of x)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

593

Contents

p-use: possible confusion

Consider the statement:

The use of A is clearly a p-use.

Is the use of x in the subscript, a c-use or a p-use? Discuss.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

594

Contents

C-uses within a basic block

While there are two definitions of p in this block, only the second definition will

propagate to the next block. The first definition of p is considered local to the block

while the second definition is global. We are concerned with global definitions, and

uses.

Consider the basic block

Note that y and z are global uses; their definitions flow into this block from some

other block.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

595

Contents

7.3.4 Data flow graph

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

596

Contents

Data flow graph

A data-flow graph of a program, also known as def-use graph, captures the flow of

definitions (also known as defs) across basic blocks in a program.

It is similar to a control flow graph of a program in that the nodes, edges, and all

paths thorough the control flow graph are preserved in the data flow graph. An

example follows.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

597

Contents

Example

Given a program, find its basic blocks, compute defs, c-uses and p-uses in each

block. Each block becomes a node in the def-use graph (this is similar to the

control flow graph).

Attach defs, c-use and p-use to each node in the graph. Label each edge with the

condition which when true causes the edge to be taken.

We use di(x) to refer to the definition of variable x at node i. Similarly, ui(x) refers to

the use of variable x at node i.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

598

Contents

Example (contd.)

Unreachable node

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

599

Contents

7.3.5 Def-clear paths

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

600

Contents

Def-clear path
Any path starting from a node at which variable x is

defined and ending at a node at which x is used,

without redefining x anywhere else along the path, is a

def-clear path for x.

Path 2-5 is def-clear for variable z defined at node 2

and used at node 5. Path 1-2-5 is NOT def-clear for

variable z defined at node 1 and used at node 5.

Thus, definition of z at node 2 is live at node 5 while

that at node 1 is not live at node 5.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

601

Contents

Def-clear path (another example)

Find def-clear paths for defs and uses of x and z.

Which definitions are live at node 4?

P7.16

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

602

Contents

7.3.6 def-use pairs

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

603

Contents

Def-use pairs

Def of a variable at line l1 and its use at line l2 constitute a def-use pair. l1 and l2

can be the same.

dcu (di(x)) denotes the set of all nodes where di(x)) is live and used.

dpu (di(x)) denotes the set of all edges (k, l) such that there is a def-clear path from node i

to edge (k, l) and x is used at node k.

We say that a def-use pair (di(x), uj(x)) is covered when a def-clear path that includes

nodes i to node j is executed. If uj(x)) is a p-use then all edges of the kind (j, k) must also

be taken during some executions.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

604

Contents

Def-use pairs (example)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

605

Contents

Def-use pairs: Minimal set

Def-use pairs are items to be covered during testing. However, in some cases, coverage

of a def-use pair implies coverage of another def-use pair. Analysis of the data flow

graph can reveal a minimal set of def-use pairs whose coverage implies coverage of all

def-use pairs.

Exercise: Analyze the def-use graph shown in the previous slide and determine a

minimal set of def-uses to be covered.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

606

Contents

Data flow based adequacy

CU: total number of c-uses in a program.

PU: total number of p-uses.

Given a total of n variables v1, v2…vn each defined at di nodes.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

607

Contents

7.4 Adequacy criteria based on data flow
7.4.1, c-use coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

608

Contents

C-use coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

609

Contents

C-use coverage: path traversed

Path (Start, .. q, k, .., z, .. End) covers the c-use at node z

of x defined at node q given that (k …, z) is def clear

with respect to x

c-use of x

Exercise: Find the c-use coverage when program

P7.16 is executed against the following test:

t1: <x=5, y=-1, count=1>

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

610

Contents

7.4 Adequacy criteria based on data flow
7.4.2 p-use coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

611

Contents

p-use coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

612

Contents

p-use coverage: paths traversed

Exercise: Find the p-use coverage

when program P7.16 is executed

against the following test:

t2: <x=-2, y=-1, count=3>

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

613

Contents

7.4 Adequacy criteria based on data flow
7.4.3, all-uses coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

614

Contents

All-uses coverage

Exercise: Is T={t1, t2} adequate w.r.t. to all-uses coverage for P7.16?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

615

Contents

Infeasible p- and c-uses

Coverage of a c- or a p-use requires a path to be traversed through the program.

However, if this path is infeasible, then some c- and p-uses that require this path

to be traversed might also be infeasible.

Infeasible uses are often difficult to determine without some hint from a test

tool.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

616

Contents

Infeasible c-use: Example

Consider the c-use at node 4 of z defined

at node 5.

Show that this c-use is infeasible.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

617

Contents

7.4.4 k-dr chain coverage

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

618

Contents

Other data-flow based criteria

There exist several other adequacy criteria based on data flows. Some of these are

more powerful in their error-detection effectiveness than the c-, p-, and all-uses

criteria.

Examples: (a) def-use chain or k-dr chain coverage. These are alternating sequences

of def-use for one or more variables. (b) Data context and ordered data context

coverage.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

619

Contents

7.6 The “subsumes” relation

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

620

Contents

Subsumes relation

Subsumes: Given a test set T that is adequate with respect to criterion C1, what can

we conclude about the adequacy of T with respect to another criterion C2?

Effectiveness: Given a test set T that is adequate with respect to criterion C, what can

we expect regarding its effectiveness in revealing errors?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

621

Contents

Subsumes relationship

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

622

Contents

Summary

We have introduced the notion of test adequacy and enhancement.

Two types of adequacy criteria considered: one based on control flow and the other

on data flow.

Control flow based: statement, decision, condition, multiple condition, MC/DC, and

LCSAJ coverage. Many more exist.

Data flow based: c-use, p-uses, all-uses, k-dr chain, data context, elementary data

context. Many more exist.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

623

Contents

Summary (contd.)

Use of any of the criteria discussed here requires a test tool that measures coverage

during testing and displays it in a user-friendly manner. xSUDS is one such set of

tools. Several other commercial tools, such as PaRTe, Cobertura, and Bullseye, are

available.

Several test organizations believe that code coverage is useful at unit-level. This is a

myth and needs to be shattered. Incremental assessment of code coverage and

enhancement of tests can allow the application of coverage-based testing to large

programs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

624

Contents

Summary (contd.)

Even though coverage is not guaranteed to reveal all program errors, it is the perhaps

the most effective way to assess the amount of code that has been tested and what

remains untested.

Tests derived using black-box approaches can almost always be enhanced using one

or more of the assessment criteria discussed.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

625

Contents

Chapter 8

Test Adequacy Measurement and
Enhancement Using Mutation

Updated: July 18, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

626

Contents

Learning Objectives

§  Competent programmer hypothesis and the coupling effect.

§  What is test adequacy? What is test enhancement? When to measure test

adequacy and how to use it to enhance tests?

§  What is program mutation?

§  Strengths and limitations of test adequacy based on program mutation.

§  Tools for mutation testing

§  Mutation operators

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

627

Contents

What is adequacy?

§  Suppose now that a set T containing k tests has been constructed to test P to

determine whether or not it meets all the requirements in R . Also, P has been

executed against each test in T and has produced correct behavior.

§  Consider a program P written to meet a set R of functional requirements. We

notate such a P and R as (P, R). Let R contain n requirements labeled R1,

R2,…, Rn .

§  We now ask: Is T good enough? This question can be stated differently as: Has

P been tested thoroughly?, or as: Is T adequate?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

628

Contents

What is program mutation?

§  Suppose that program P has been tested against a test set T and P has not failed

on any test case in T. Now suppose we do the following:

Changed to

P P’

What behavior do you expect from P’ against tests in T?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

629

Contents

What is program mutation? [2]

§  P’ is known as a mutant of P.

§  There might be a test t in T such that P(t)≠P’(t). In this case we say that t

distinguishes P’ from P. Or, that t has killed P’.

§  There might be not be any test t in T such that P(t)≠P’(t). In this case we say that

T is unable to distinguish P and P’. Hence P’ is considered live in the test

process.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

630

Contents

What is program mutation? [3]

§  If there does not exist any test case t in the input domain of P that distinguishes P

from P’ then P’ is said to be equivalent to P.

§  If P’ is not equivalent to P but no test in T is able to distinguish it from P then T

is considered inadequate.

§  A non-equivalent and live mutant offers the tester an opportunity to generate a

new test case and hence enhance T.

We will refer to program mutation as mutation.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

631

Contents

Test adequacy using mutation [1]

§  Given a test set T for program P that must meet requirements R, a test adequacy

assessment procedure proceeds as follows.

§  Step 1: Create a set M of mutants of P. Let M={M0, M1…Mk}. Note that we have

k mutants.

§  Step 2: For each mutant Mi find if there exists a t in T such that Mi(t) ≠P(t). If

such a t exists then Mi is considered killed and removed from further

consideration.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

632

Contents

Test adequacy using mutation [2]

§  Step 3: At the end of Step 2 suppose that k1 ≤ k mutants have been killed and (k-

k1) mutants are live.

Case 1: (k-k1)=0: T is adequate with respect to mutation.

Case 2: (k-k1)>0 then we compute the mutation score (MS) as follows:

MS=k1/(k-e)

where e is the number of equivalent mutants. Note: e ≤ (k-k1).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

633

Contents

Test enhancement using mutation

§  One has the opportunity to enhance a test set T after having assessed its

adequacy.

§  Step 1: If the mutation score (MS) is 1, then some other technique, or a different

set of mutants, needs to be used to help enhance T.

§  Step 2: If the mutation score (MS) is less than 1, then there exist live mutants that

are not equivalent to P. Each live mutant needs to be distinguished from P.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

634

Contents

Test enhancement using mutation [2]

§  Step 3: Hence a new test t is designed with the objective of distinguishing at least

one of the live mutants; let us say this mutant is m.

§  Step 4: If t does not distinguish m then another test t’ needs to be designed to

distinguish m. Suppose that t does distinguish m.

§  Step 5: It is possible that t also distinguishes other live mutants.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

635

Contents

Test enhancement using mutation [3]

§  Step 6: Add t to T and re-compute the mutation score (MS).

§  Repeat the enhancement process from Step 1.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

636

Contents

Error detection using mutation

§  As with any test enhancement technique, there is no guarantee that tests derived

to distinguish live mutants will reveal a yet undiscovered error in P. Nevertheless,

empirical studies have found to be the most powerful of all formal test

enhancement techniques.

§  The next simple example illustrates how test enhancement using mutation detects

errors.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

637

Contents

Error detection using mutation [2]

§  Consider the following function foo that is required to return the sum of two

integers x and y. Clearly foo is incorrect.

int foo(int x, y){

return (x-y);

}

This should be return (x+y)

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

638

Contents

Error detection using mutation [3]

§  Now suppose that foo has been tested using a test set T that contains two tests:

 T={ t1: <x=1, y=0>, t2: <x=-1, y=0>}

§  First note that foo behaves perfectly fine on each test in, i.e. foo returns the

expected value for each test case in T. Also, T is adequate with respect to all

control and data flow based test adequacy criteria.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

639

Contents

Error detection using mutation [4]

§  Note that M1 is obtained by replacing the - operator by a + operator, M2 by

replacing y by 0, and M3 by replacing x by 0.

int foo(int x, y){

return (x+y);

}

M1: int foo(int x, y){

return (x-0);

}

M2: int foo(int x, y){

return (0+y);

}

M3:

Let us evaluate the adequacy of T using mutation. Suppose that the following

three mutants are generated from foo.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

640

Contents

Error detection using mutation [4]

Next we execute each mutant against tests in T until the mutant is distinguished

or we have exhausted all tests. Here is what we get.

Test (t) foo(t) M1(t) M2(t) M3(t)

t1 1 1 1 0

t2 -1 -1 -1 0

Live Live Killed

T={ t1: <x=1, y=0>, t2: <x=-1, y=0>}

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

641

Contents

Error detection using mutation [5]

After executing all three mutants we find that two are live and one is

distinguished. Computation of mutation score requires us to determine of any of

the live mutants is equivalent.

In class exercise: Determine whether or not the two live mutants are equivalent

to foo and compute the mutation score of T.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

642

Contents

Error detection using mutation [6]

Let us examine the following two live mutants.

int foo(int x, y){

return (x+y);

}

M1: int foo(int x, y){

return (x-0);

}

M2:

Let us focus on M1. A test that distinguishes M1 from foo must

satisfy the following condition:

 x-y≠x+y implies y ≠0.

Hence we get t3: <x=1, y=1>

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

643

Contents

Error detection using mutation [7]

Executing foo on t3 gives us foo(t3)=0. However, according to the requirements

we must get foo(t3)=2. Thus, t3 distinguishes M1 from foo and also reveals

the error.

int foo(int x, y){

return (x+y);

}

M1: int foo(int x, y){

return (x-0);

}

M2:

In class exercise: (a) Will any test that distinguishes also reveal the error? (b)

Will any test that distinguishes M2 reveal the error?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

644

Contents

Guaranteed error detection

Sometimes there exists a mutant P’ of program P such that any test t that

distinguishes P’ from P also causes P to fail. More formally:

Let P’ be a mutant of P and t a test in the input domain of P. We say

that P’ is an error revealing mutant if the following condition holds

for any t.

P’(t) ≠P(t) and P(t) ≠R(t), where R(t) is the expected response of P

based on its requirements.

Is M1 in the previous example an error revealing mutant? What about

M2?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

645

Contents

Distinguishing a mutant

A test case t that distinguishes a mutant m from its parent program P program

must satisfy the following three conditions:

Condition 1: Reachability: t must cause m to follow a path that arrives at the

mutated statement in m.

Condition 2: Infection: If Sin is the state of the mutant upon arrival at the

mutant statement and Sout the state soon after the execution of the mutated

statement, then Sin≠ Sout.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

646

Contents

Distinguishing a mutant [2]

Condition 3: Propagation: If difference between Sin and Sout must propagate to

the output of m such that the output of m is different from that of P.

Exercise: Show that in the previous example both t1 and t2 satisfy

the above three conditions for M3.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

647

Contents

Equivalent mutants

•  The problem of deciding whether or not a mutant is equivalent to its

parent program is undecidable. Hence there is no way to fully automate

the detection of equivalent mutants.

•  The number of equivalent mutants can vary from one program to another.

However, empirical studies have shown that one can expect about 5% of

the generated mutants to the equivalent to the parent program.

•  Identifying equivalent mutants is generally a manual and often time
consuming--as well as frustrating--process.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

648

Contents

A misconception
There is a widespread misconception amongst testing educators, researchers, and

practitioners that any “coverage” based technique, including mutation, will not be

able to detect errors due to missing path. Consider the following programs.

int foo(int x, y){

int p=0;

if(x<y)

 p=p+1;

return(x+p*y)

}

int foo(int x, y){

int p=0;

if(x<y)

 p=p+1;

else

 p=p-1;

return(x+p*y)

}

Missing else

Program under test Correct program

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

649

Contents

A misconception [2]
(a)  Suggest at least one mutant M of foo that is guaranteed to reveal the error;

in other words M is an error revealing mutant.

(b) Suppose T is decision adequate for foo. Is T guaranteed to reveal the error?

(c) Suppose T is def-use adequate for foo. Is T guaranteed to reveal the error?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

650

Contents

Mutant operators

•  A mutant operator O is a function that maps the program under test to a set

of k (zero or more) mutants of P.

O(P)

M1

M2

Mk

….

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

651

Contents

Mutant operators [2]

•  A mutant operator creates mutants by making simple changes in the

program under test.

•  For example, the “variable replacement” mutant operator replaces a

variable name by another variable declared in the program. An “relational

operator replacement” mutant operator replaces relational operator wirh

another relational operator.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

652

Contents

Mutant operators: Examples

Mutant operator In P In mutant
Variable replacement z=x*y+1; x=x*y+1;

z=x*x+1;
Relational operator
replacement

if (x<y) if(x>y)
if(x<=y)

Off-by-1 z=x*y+1; z=x*(y+1)+1;
z=(x+1)*y+1;

Replacement by 0 z=x*y+1; z=0*y+1;
z=0;

Arithmetic operator
replacement

z=x*y+1; z=x*y-1;
z=x+y-1;

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

653

Contents

Mutants: First order and higher order

•  A mutant obtained by making exactly “one change” is considered first

order.

•  A mutant obtained by making two changes is a second order mutant.

Similarly higher order mutants can be defined. For example, a second

order mutant of z=x+y; is x=z+y; where the variable replacement operator

has been applied twice.

•  In practice only first order mutants are generated for two reasons: (a) to

lower the cost of testing and (b) most higher order mutants are killed by

tests adequate with respect to first order mutants. [See coupling effect

later.]

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

654

Contents

Mutant operators: basis

•  A mutant operator models a simple mistake that could be made by a

programmer

•  Several error studies have revealed that programmers--novice and

experts--make simple mistakes. For example, instead of using x<y+1 one

might use x<y.

•  While programmers make “complex mistakes” too, mutant operators

model simple mistakes. As we shall see later, the “coupling effect”

explains why only simple mistakes are modeled.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

655

Contents

Mutant operators: Goodness
•  The design of mutation operators is based on guidelines and experience. It

is Thus, evident that two groups might arrive at a different set of mutation

operators for the same programming language. How should we judge

whether or not that a set of mutation operators is “good enough?”

•  Informal definition:

•  Let S1 and S2 denote two sets of mutation operators for language L.

Based on the effectiveness criteria, we say that S1 is superior to S2 if

mutants generated using S1 guarantee a larger number of errors

detected over a set of erroneous programs.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

656

Contents

Mutant operators: Goodness [2]

•  Generally one uses a small set of highly effective mutation operators

rather than the complete set of operators.

•  Experiments have revealed relatively small sets of mutation operators for

C and Fortran. We say that one is using “constrained” or “selective”

mutation when one uses this small set of mutation operators.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

657

Contents

Mutant operators: Language
dependence

•  For each programming language one develops a set of mutant operators.

•  Languages differ in their syntax thereby offering opportunities for making

mistakes that duffer between two languages. This leads to differences in

the set of mutant operators for two languages.

•  Mutant operators have been developed for languages such as Fortran, C,

Ada, Lisp, and Java. [See the text for a comparison of mutant operators

across several languages.]

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

658

Contents

Competent programmer hypothesis
(CPH)

•  CPH states that given a problem statement, a programmer writes a

program P that is in the general neighborhood of the set of correct

programs.

•  An extreme interpretation of CPH is that when asked to write a program

to find the account balance, given an account number, a programmer is

unlikely to write a program that deposits money into an account. Of

course, while such a situation is unlikely to arise, a devious programmer

might certainly write such a program.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

659

Contents

Competent programmer hypothesis
(CPH) [2]

•  A more reasonable interpretation of the CPH is that the program written

to satisfy a set of requirements will be a few mutants away from a correct

program.

•  The CPH assumes that the programmer knows of an algorithm to solve

the problem at hand, and if not, will find one prior to writing the program.

•  It is Thus, safe to assume that when asked to write a program to sort a list

of numbers, a competent programs knows of, and makes use of, at least

one sorting algorithm. Mistakes will lead to a program that can be

corrected by applying one or more first order mutations.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

660

Contents

Coupling effect

•  The coupling effect has been paraphrased by DeMillo, Lipton, and

Sayward as follows: “Test data that distinguishes all programs differing

from a correct one by only simple errors is so sensitive that it also

implicitly distinguishes more complex errors”

•  Stated alternately, again in the words of DeMillo, Lipton and Sayward

``..seemingly simple tests can be quite sensitive via the coupling effect."

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

661

Contents

Coupling effect [2]

•  For some input, a non-equivalent mutant forces a slight perturbation in

the state space of the program under test. This perturbation takes place at

the point of mutation and has the potential of infecting the entire state of

the program.

•  It is during an analysis of the behavior of the mutant in relation to that of

its parent that one discovers complex faults.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

662

Contents

Tools for mutation testing

•  As with any other type of test adequacy assessment, mutation based

assessment must be done with the help of a tool.

•  There are few mutation testing tools available freely. Two such tools are

Proteum for C from Professor Josè Maldonado and muJava for Java from

Professor Jeff Offutt. We are not aware of any commercially available

tool for mutation testing. See the textbook for a more complete listing of

mutation tools.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

663

Contents

Tools for mutation testing: Features

•  A typical tool for mutation testing offers the following features.

§  A selectable palette of mutation operators.

§  Execution of the program under test against T and saving the output for

comparison against that of mutants.

§  Generation of mutants.

§  Management of test set T.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

664

Contents

Tools for mutation testing: Features
[2]

§  Mutant execution and computation of mutation score using user identified

equivalent mutants.

§  Incremental mutation testing: i.e. allows the application of a subset of

mutation operators to a portion of the program under test.

§  Mothra, an advanced mutation tool for Fortran also provided automatic

test generation using DeMillo and Offutt’s method.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

665

Contents

Mutation and system testing

§  Adequacy assessment using mutation is often recommended only for

relatively small units, e.g. a class in Java or a small collection of functions

in C.

§  However, given a good tool, one can use mutation to assess adequacy of

system tests.

§  The following procedure is recommended to assess the adequacy of

system tests.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

666

Contents

Mutation and system testing [2]

§  Step 1: Identify a set U of application units that are critical to the safe and

secure functioning of the application. Repeat the following steps for each

unit in U.

§  Step 2: Select a small set of mutation operators. This selection is best

guided by the operators defined by Eric Wong or Jeff Offutt. [See the text

for details.]

§  Step 3: Apply the operators to the selected unit.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

667

Contents

Mutation and system testing [3]

§  Step 4: Assess the adequacy of T using the mutants so generated. If

necessary, enhance T.

§  Step 5: Repeat Steps 3 and 4 for the next unit until all units have been

considered.

§  We have now assessed T, and perhaps enhanced it. Note the use of

incremental testing and constrained mutation (i.e., use of a limited set of

highly effective mutation operators).

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

668

Contents

Mutation and system testing [4]

§  Application of mutation, and other advanced test assessment and

enhancement techniques, is recommended for applications that must meet

stringent availability, security, safety requirements.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

669

Contents

Summary

§  Mutation testing is the most powerful technique for the assessment and

enhancement of tests.

§  Identification of equivalent mutants is an undecidable problem--similar

the identification of infeasible paths in control or data flow based test

assessment.

§  Mutation, as with any other test assessment technique, must be applied

incrementally and with assistance from good tools.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

670

Contents

Summary [2]

§  While mutation testing is often recommended for unit testing, when done

carefully and incrementally, it can be used for the assessment of system

and other types of tests applied to an entire application.

§  Mutation is a highly recommended technique for use in the assurance of

quality of highly available, secure, and safe systems.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

671

Contents

Chapter 9

Test Selection, Minimization, and Prioritization
for Regression Testing

Updated: July 17, 2013

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

672

Contents

Learning Objectives

 How to select a subset of tests for regression testing?

How to select or minimize a set of tests for regression testing?

How to prioritize a set of tests for regression testing?

What is regression testing?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

673

Contents

9.1. What is regression testing?

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

674

Contents

Regression testing

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

675

Contents

What tests to use?

All valid tests from the previous version and new tests created to test
any added functionality. [This is the TEST-ALL approach.]	

Idea 1:	

What are the strengths and shortcomings of this approach?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

676

Contents

The test-all approach

The test-all approach is best when you want to be certain that the the
new version works on all tests developed for the previous version
and any new tests.	

But what if you have limited resources to run tests and have to meet
a deadline? What if running all tests as well as meeting the deadline
is simply not possible?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

677

Contents

Test selection

Select a subset Tr of the original test set T such that successful
execution of the modified code P’ against Tr implies that all the
functionality carried over from the original code P to P‘is intact.	

Idea 2:	

Finding Tr can be done using several methods. We will discuss two
of these known as test minimization and test prioritization.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

678

Contents

9.3. Regression test selection: The problem

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

679

Contents

Regression Test Selection problem

Given test set T, our goal is to determine Tr such
that successful execution of P’ against Tr
implies that modified or newly added code in P’
has not broken the code carried over from P. 	

Note that some tests might become obsolete
when P is modified to P’. Such tests are not
included in the regression subset Tr. The task of
identifying such obsolete tests is known as test
revalidation. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

680

Contents

Regression Test Process

Now that we know what the regression test selection problem is, let us
look at an overall regression test process. 	

Test selection	
 Test setup	
 Test sequencing	

Test execution	

Output analysis	
Error correction	

In this chapter we will learn how to select tests for regression testing.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

681

Contents

 9.5. Test selection using execution trace

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

682

Contents

Overview of a test selection method

Step 1: Given P and test set T, find the execution trace of P for each test in T.	

Step 2: Extract test vectors from the execution traces for each node in the
CFG of P 	

Step 3: Construct syntax trees for each node in the CFGs of P and P’. This
step can be executed while constructing the CFGs of P and P’.	

Step 4: Traverse the CFGs and determine the a subset of T appropriate for
regression testing of P’.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

683

Contents

Execution Trace [1]

Let G=(N, E) denote the CFG of program P. N is a finite set of nodes and E
a finite set of edges connecting the nodes. Suppose that nodes in N are

numbered 1, 2, and so on and that Start and End are two special nodes as
discussed in Chapter 1.	

Let Tno be the set of all valid tests for P’. Thus, Tno contains only tests valid
for P’. It is obtained by discarding all tests that have become obsolete for

some reason.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

684

Contents

Execution Trace [2]

An execution trace of program P for some test t in Tno is the sequence of nodes in
G traversed when P is executed against t. As an example, consider the following

program. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

685

Contents

Execution Trace [3]

Here is a CFG for our example program.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

686

Contents

Execution Trace [4]

Now consider the following set of three tests and the corresponding trace.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

687

Contents

Test vector

A test vector for node n, denoted by test(n), is the set of tests that traverse node n
in the CFG. For program P we obtain the following test vectors.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

688

Contents

Syntax trees

A syntax tree is constructed for each node of CFG(P) and CFG(P’). Recall that
each node represents a basic block. Here sample syntax trees for the example

program. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

689

Contents

Test selection [1]

Given the execution traces and the CFGs for P and P’, the following three steps
are executed to obtain a subset T’ of T for regression testing of P’. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

690

Contents

Test selection [2]

The basic idea underlying the SelectTests procedure is to traverse the two CFGs
from their respective START nodes using a recursive descent procedure. 	

The descent proceeds in parallel and the corresponding nodes are compared. If
two two nodes N in CFG(P) and N’ in CFG(P’) are found to be syntactically

different, all tests in test (N) are added to T’. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

691

Contents

Test selection example

Suppose that function g1 in P is modified as follows. 	

Try the SelectTests algorithm and check if you get T’={t1, t3}.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

692

Contents

Issues with SelectTests

Think:	

What tests will be selected when only, say, one declaration is modified? 	

Can you think of a way to select only tests that correspond to variables in the
modified declaration? 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

693

Contents

 9.6. Test selection using dynamic slicing

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

694

Contents

Dynamic slice

Let L be a location in program P and v a variable used at L.	

Let trace(t) be the execution trace of P when executed against test t.	

The dynamic slice of P with respect to t and v, denoted as DS(t, v, L), is the
set of statements in P that (a) lie in trace(t) and (b) effected the value of v at
L.	

Question: What is the dynamic slice of P with respect to v and t if L is not in
trace(t)?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

695

Contents

Dynamic dependence graph (DDG)

Step 1: Initialize G with a node for each declaration. There are no edges

among these nodes.

The DDG is needed to obtain a dynamic slice. Here is how a DDG G is

constructed.

Step 2: Add to G the first node in trace(t).

Step 3: For each successive statement in trace(t) a new node n is added to

G. Control and data dependence edges are added from n to the existing

nodes in G. [Recall from Chapter 2 the definitions of control and data

dependence edges.]

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

696

Contents

Construction of a DDG: Example [1]

Let t: <x=2, y=4>	

	

Assume successive values of x to be 2, 0 and 5, and for these
values f1(x) is 0, 2, and 3 respectively.	

trace(t)={1, 2, 3, 4, 6, 7, 2, 3, 5, 6, 7, 2, 8}	

Ignore declarations for simplicity. Add a node to G
corresponding to statement 1.	

1

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

697

Contents

Construction of a DDG: Example [2]

trace(t)={1, 2, 3, 4, 6, 7, 2, 3, 5, 6, 7, 2, 8}	

Add another node corresponding to statement 2 in trace(t).
Also add a data dependence edge from 2 to 1 as statement 2 is
data dependent on statement 1.	

1 2

Add yet another node corresponding to statement 3 in trace(t).
Also add a data dependence edge from node 3 to node 1 as
statement 3 is data dependent on statement 1 and a control
edge from node 3 to 2.	

1 2 3

3 if(f1(x)==0)
should be…

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

698

Contents

Construction of a DDG: Example [3]

trace(t)={1, 2, 3, 4, 6, 7, 2, 3, 5, 6, 7, 2, 8}	

3 if(f1(x)==0)
should be…

Continuing this way we obtain the following DDG for
program P and trace(t).	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

699

Contents

Obtaining dynamic slice (DS)

Step 2: Construct the dynamic dependence graph G from P and trace(t).	

Step 1: Execute P against test t and obtain trace(t).	

Step 3: Identify in G node n labeled L that contains the last assignment to v.
If no such node exists then the dynamic slice is empty, other wise execute
Step 4.	

Step 4: Find in G the set DS(t, v, n) of all nodes reachable from n, including
n. DS(t, v, n) is the dynamic slice of P with respect to v at location L and
test t.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

700

Contents

Obtaining dynamic slice: Example

We already have the DDG of P for t. 	

Suppose we want to compute the dynamic slice of P with respect to variable w
at line 8 and test t shown earlier. 	

First identify the last definition of w in the DDG. This occurs at line 7 as
marked. 	

Traverse the DDG backwards from node 7 and collect all nodes reachable from
7. This gives us the following dynamic slice: {1, 2, 3, 5, 6, 7, 8}.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

701

Contents

Test selection using dynamic slice

Find DS(t) for P. If any of the modified nodes is in DS(t) then add t to T’. 	

Let T be the test set used to test P. P’ is the modified program. Let n1, n2, ..nk

be the nodes in the CFG of P modified to obtain P’. Which tests from T should

be used to obtain a regression test T’ for P’? 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

702

Contents

In class exercise

Suppose line 4 in the example program P shown earlier is modified to obtain

P’. 	

(a)  Should t be included in T’?	

(b)  Will t be included in T’ if we were to use the execution slice instead of

the dynamic slice to make our decision?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

703

Contents

Teasers [1]

	
You may have noticed that a DDG could be huge, especially for large

programs. How can one reduce the size of the DDG and still obtain the

correct DS?	

	
The DS contains all statements in trace(t) that had an effect on w, the

variable of interest. However there could be a statement s in trace(t) that

did not have an effect but could affect w if changed. How can such

statements be identified? [Hint: Read about potential dependence.]	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

704

Contents

Teasers [2]

	
Suppose statement s in P is deleted to obtain P’? How would you find

the tests that should be included in the regression test suite?	

	
Suppose statement s is added to P to obtain P’? How would you find the

tests that should be included in the regression test suite?	

	
In our example we used variable w to compute the dynamic slice. While

selecting regression tests, how would you select the variable for which

to obtain the dynamic slice?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

705

Contents

 9.8 Test selection using test minimization

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

706

Contents

Test minimization [1]

	
Test minimization is yet another method for selecting tests for regression

testing.	

	
To illustrate test minimization, suppose that P contains two functions,

main and f. Now suppose that P is tested using test cases t1 and t2.

During testing it was observed that t1 causes the execution of main but

not of f and t2 does cause the execution of both main and f. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

707

Contents

Test minimization [2]

	
Now suppose that P’ is obtained from P by making some modification
to f.	

	
Which of the two test cases should be included in the regression test
suite?	

	
Obviously there is no need to execute P’ against t1 as it does not cause
the execution of f. Thus, the regression test suite consists of only t2. 	

	
In this example we have used function coverage to minimize a test suite
{t1, t2} to a obtain the regression test suite {t2}. 	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

708

Contents

Test minimization [3]

	
Test minimization is based on the coverage of testable entities in P.	

	
Testable entities include, for example, program statements, decisions,

def-use chains, and mutants.	

	
One uses the following procedure to minimize a test set based on a

selected testable entity.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

709

Contents

A procedure for test minimization

Step 1: Identify the type of testable entity to be used for test minimization.

 Let e1, e2, ..ek be the k testable entities of type TE present in P. In

 our previous example TE is function.

Step 2: Execute P against all elements of test set T and for each test t in T

 determine which of the k testable entities is covered.

Step 3: Find a minimal subset T’of T such that each testable entity is

 covered by at least one test in T’.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

710

Contents

Test minimization: Example

Step 1: Let the basic block be the testable entity of interest. The basic

 blocks for a sample program are shown here for both main and

 function f1.
Step 2: Suppose the coverage of the basic

 blocks when executed against three

 tests is as follows:

t1: main: 1, 2, 3. f1: 1, 3

t2: main: 1, 3. f1: 1, 3

t1: main: 1, 3. f1: 1, 2, 3

Step3: A minimal test set for regression

 testing is {t1, t3}.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

711

Contents

Test minimization: Teasers

	
Is the minimal test set unique? Why or why not?	

	
Is test minimization NP hard? How is the traditional set cover problem in

mathematics related to the test minimization problem?	

	
What criteria should be used to decide the kind of

testable entity to be used for minimization?	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

712

Contents

 9.9 Test selection using test prioritization

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

713

Contents

Test prioritization

Note that test minimization will likely discard test cases. There is a small
chance that if P’ were executed against a discarded test case it would reveal
an error in the modification made.

When very high quality software is desired, it might not be wise to discard
test cases as in test minimization. In such cases one uses test prioritization.

Tests are prioritized based on some criteria. For example, tests that cover the
maximum number of a selected testable entity could be given the highest
priority, the one with the next highest coverage m the next higher priority
and so on.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

714

Contents

A procedure for test prioritization

Step 1: 	
Identify the type of testable entity to be used for test minimization.

	
Let e1, e2, ..ek be the k testable entities of type TE present in P. In

	
our previous example TE is function.	

Step 2: 	
Execute P against all elements of test set T and for each test t in T.

	
For each t in T compute the number of distinct testable entities

	
covered.	

Step	
 3: 	
Arrange the tests in T in the order of their respective coverage. Test

	
with the maximum coverage gets the highest priority and so on.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

715

Contents

Using test prioritization

	
Once the tests are prioritized one has the option of using all tests for

regression testing or a subset. The choice is guided by several factors

such as the resources available for regression testing and the desired

product quality.	

	
In any case test are discarded only after careful consideration that does

not depend only on the coverage criteria used.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

716

Contents

 9.10. Tools

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

717

Contents

Tools for regression testing

 Methods for test selection described here require the use of an

automated tool for all but trivial programs.

 xSuds from Telcordia Technologies can be used for C programs to

minimize and prioritize tests.

 Many commercial tools for regression testing simply run the tests

automatically; they do not use any of the algorithms described here for

test selection. Instead they rely on the tester for test selection. Such tool

are especially useful when all tests are to be rerun.

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

718

Contents

Summary [1]

Regression testing is an essential phase of software product development.	

In a situation where test resources are limited and deadlines are to be met,
execution of all tests might not be feasible.	

In such situations one can make use of sophisticated technique for selecting
a subset of all tests and hence reduce the time for regression testing.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

719

Contents

Summary [2]

Test selection for regression testing can be done using any of the following
methods:	

Select only the modification traversing tests [based on CFGs].	

Select tests using execution slices [based on execution traces].	

Select tests using dynamic slices [based on execution traces and dynamic
slices].	

Select tests using code coverage [based on the coverage of testable entities].	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

720

Contents

Summary [3]

Select tests using a combination of code coverage and human judgment
[based on amount of the coverage of testable entities].	

Use of any of the techniques mentioned here requires access to sophisticated
tools. Most commercially available tools are best in situations where test
selection is done manually and do not use the techniques described in this
chapter.	

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

721

Contents

Chapter 10

Unit Testing

[Under Construction]

Foundations of Software Testing 2E Author: Aditya P. Mathur

C
op

yr
ig

ht
 ©

 2
01

3
D

or
lin

g
K
in

de
rs

le
y

(I
nd

ia
)

Pv
t.

 L
td

722

Contents

Chapter 11

Integration Testing

[Under Construction]

