STAR Laboratory of Adva on Software Technology

Foundations of Software Testing

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 1
— —
Speaker Biographical Sketch
— —

* Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

* Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIS

* Vice President, IEEE Reliability Society
» Secretary, ACM SIGAPP (Special Interest Group opliggl Computing)

* Principal Investigator, NSF TUES (Transforming Urgtaduate Education in
Science, Technology, Engineering and MathematiosjeBt
— Incorporating Software Testing into Multiple Comgu$cience and Software
Engineering Undergraduate Courses

* Founder & Steering Committee co-Chair for the SEREference
(IEEE International Conference on Software Secuaity Reliability
(http://paris.utdallas.edu/serel13)

B -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 2

Learning Objectives
e Errors, testing, debugging, test process, CFGectiress, reliability,
oracles.

 Testing techniques

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 3

Error

* Errors are a part of our daily life.

* Humans make erroiis their thoughts, actions, and in the products tha
might result from their actions.

 Errors occur wherever humans are involved in takictipns and making
decisions.

* These fundamental facts of human existence makegtas essential
activity.

R e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 5
R e -
Errors: Examples
. R e -
Area Error
Hearing Spoken: He has a garage for repairing foreign cars,
Heard: He has a garage for repaiting falling cara,

Medicine Incorrect antibictic preseribed.

Musiz performance | Insarrect note played.

Mumerical analysis | Incorrect algorithm for matrix inversion.

Obesrvation Operator fails to recognize that a relief valve is stuck opsn.
Softwars Operator used: £, correct oparator: =,

Identifier used: new_line, cormect identifier: nexi_line.

Expragsion used: a A (b ¢), oorrect expression: {as bjv e
Diata comversion from G4-bit foating point to 16-bit integer not
protactad (resulting in & softwars exception).

Specch Spoken: waple malnut, intent: maple walnug,
Bpoken: We need @ new refrigerator, intent: We need o new waah-
g e

Sports Incorrect call by the referes in a tennis match.

Writing Written: What kind of pans did you use?

Intent: What kind of pands did you usa?

R e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 6

Error, Faults, Failures

starting point

luvris to

Observed Desired
e D>~
(B

the same?!

Yes. Program behaves as No.Program does not behave
desired. as desired. A failure
has occured.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Software Quality (1) o

e Static quality attributes: structured, maintainable, testabtedeas well
as the availability of correct and completecumentation

* Dynamic quality attributes: software reliability, correctness,
completeness, consistency, usability, and perfocaan

—
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Software Quality (2)

* Reliability: To be discussed

* Correctness. A program is considered correct if it behavedesired on
all possible test inputs

—valid input
—invalid inputs

e Questions

— Can we prove the correctness of a program by tgatin
— Correctness versus Reliability:

-
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Software Quality (3

» Completenessrefers to the availability of all features listedthe
requirements, or in the user manugh. incomplete software is one that
does not fully implement all features required.

* Consistency refers toadherence to a common set of conventions and
assumptionsFor example, all buttons in the user interfacghtfollow a
common color coding convention.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 1m

Software Quality (4)

* Usability refers tothe ease with which an application can be uJdts
is an area in itself and there exist techniquesiability testing.
Psychologyplays an important role in the design of techngjfoe
usability testing.

* Perfor mance refers to the time the application takes to perfarm
requested task. It is considered ama-functional requirementt is
specified in terms such as “This task must be peréal at the rate of X
units of activity in one second on a machine rugrahspeed Y, having Z
gigabytes of memory.”

I -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 12

Requirements, Behavior, Correctness

* Requirements leading to two different programs:

* Requirement 1: It is required to write a program that inputs twtegers
and outputs thenaximumof these.

* Requirement 2: It is required to write a program that inputsegusence
of integers and outputs tlserted versiomf this sequence.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 14

Requirements: Incompleteness

* Suppose that the programax is developed to satisfy Requirement 1.
The expected output ofiax when the input integers are 13 and 19 can b
easily determined to be 19.

* Suppose now that the tester wants to know if theeitiegers are to be
input to the programn one line followed by a carriage return, or orotw
separate lines with a carriage return typed in aft@ach numberThe
requirement as stated abdweds to provide an answer to this question.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 15

112

Requirements: Ambiguity

* Requirement 2 is ambiguous. It is not clear whetihe input sequence is
sorted inascending or descending orddte behavior of theort
program, written to satisfy this requirement, widipend on the decision
taken by the programmer while writirsgrt.

e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 16

Input Domain (1)

* The set oéll possible input$o a programP is known as
theinput domain or input spacefP.

* Using Requirement 1 above we find the input donadimax to bethe
set of all pairs of integenshere each element in the pair integers is in th
range -32,768 through 32,767.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 1w

Input Domain (2)

* Modified Requirement 2:

— It is required to write a program that inputs ausstge of integers and outputs
the integers in this sequence soiitedither ascending or descending order
The order of the output sequence is determinechbg@ut request character
which should béA” when an ascending sequence is desired;@&hd
otherwise.

— While providing input to the prograrthe request character is input first
followed by the sequenad integers to be sorted; the sequenderisiinated
with a period

e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 18

(1]

Input Domain (3)

* Based on the above modified requirement, the idputain forsort is
a set of pairsThe first elemenof the pair is a character. The second
elementof the pair is a sequence of zero or more integeding with a
period.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Valid/Invalid Inputs

* The modified requirement faort mentions that the request characters
can be “A” and “D,” but fails to answer the questiatihat if the user
types a different character ?”

* When usingsort it is certainly possible for the user to type areloter
other than “A” and “D."Any character other than “A” and “D” is
considered as invalid input sort. The requirement fogort does not
specifywhat action it should take when an invalid inpuéiEountered.

B -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 20

Correctness vs. Reliability

* Though correctness of a program is desirable atnost never the
objective of testing.

* To establish correctness via testing wonaigly testing a program on all
elements in the input domaim most cases that are encountered in

practice, this ismpossibleto accomplish.

* Thus correctness is established via mathematigabfgof programs.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 21
o — —
Correctness and Testing
—

» Correctness attempts to establish that the proggamor free

* Testing, debugging, and the error removal processgstherincrease
our confidencen the correct functioning of the program undetrttes

B e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 2

Software Reliability: Two Definitions

* Softwar ereliability [ANSI/IEEE Std 729-1983]: is therobability of

failure free operatiorof software over a given time interval and under
given conditions

» Softwar ereliability is the probability of failure free operation of
software inits intended environment

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

gperationa[Profile (1)

* An operational profileis a numerical description of how a program is
used.

* Consider a sort program which, on any given exeaytllows any one
of two types of input sequences (numbers only phahumeric strings).
Sample operational profiles for sort follow.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Operational Profile (2)
* Operational profile #1
Sequence Proligbil
Numbers only 0.9
Alphanumeric strings 0.1
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 25
Operational Profile (3)
* Operational profile #2
Sequence Proligbil
Numbers only 0.1
Alphanumeric strings 0.9

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

26

Testing and Debugging

* When testing reveals a bug, the process used ¢ondiee the cause of
this bug and to remove it, is knownda@ebugging

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 2B

A Test/Debugging Cycle

—
! Operational
. profile
Test case
Behavior
Update?
Cause of error to
be determined now?,
File test
session report|
Yes
(B matie [et
—
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 29
—
—

A test cycle is often guided bytast plan.

* Example: Thesortprogram is to be tested to meet the requirememengi
earlier. Specifically, the following needs to bendo
— Executesorton at least two input sequences,
one with “A” and the other with “D” as the requestcacter.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Plan (2) -

» Execute the program on ampty inpusequence. Special case!

* Test the program faobustness against erroneous inpsich as “R”
typed in as the request character.

* All failures of the test prograrahould be recordeih a suitable file using
the Company Failure Report Form.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) an

Test Case/Data

* A test case is a pair consisting of test data tmpetto the program and
the expected outpuThetest datads a set of values, one for each input
variable.

* A test seis a collection of zero or more test cases.

» Sample test case feprt
— Test data: <"A” 12, -29, 32 >
— Expected output: - 29, 12, 32

e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) k-]

Program Behavior
» Can be specified in several ways: plain naturajlage, a state diagram,
formal mathematical specification, etc.

* A state diagramspecifies program states and how the program clsatge
state on an input sequence.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) =
— —
Behavior: Observation and Analysis
— —

* |n the first step onebserveghe behavior.

* In the second step om@alyzeghe observed behavior to check if it is
correct or not. Both these steps could be quiteptexrfor large
commercial programs.

* The entity that performs the task of checking theectness of the
observed behavior is known as@macle.

B -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 34

Oracle: Example

Input

!

T

Program under
Lest

Observed
behavios

Oracle

Does the ohserved behavior
mateh the expected behavior ?

Yes or No withan
explanation.

o — —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) E
o — —
.
Oracle: Programs
o — —

* Oracles can alsbe programs designed to check the behavior of other
programs.

* For example, one might use a matrix multiplicagiwagram to check if a
matrix inversiorprogram has produced the correct output. In thée ca
the matrix inversion program inverts a given mafiand generates B as
the output matrix.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Oracle: Construction

* Construction of automated oracles, such as theémaeeck a matrix

multiplication program or a sort prograrmegquires the determination of
input-output relationship.

* In general, the construction of automated orade@sdomplex
undertaking.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Testing and Verification (1) :

* Program verificatiormims at proving the correctness of programs by
showing that it contains no errors. This is vefffedent fromtestingthat
aims at uncovering errors in a program.

* Program verification and testing are best consiflessomplementary
techniquesin practice, one can shed program verificatian, ot testing.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Testing and Verification (2)

* Testing isnot a perfect techniquia that a program might contain errors
despite the success of a set of tests.

* Verification might appear to be perfect technigaétaromises to verify
that a program is free from errors. Howevbe person who verified a
program might have made mistakes in the verificaimcessthere
might be arincorrect assumptioon the input conditions; incorrect
assumptions might be made regarding the compotigattinterface with
the program, and so on.

* Verified and published programs have been showretimcorrect.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) ")

@rogramﬁepresentatwn
~ Control Flow Graphs

Program Representation: Basic Blocks

* A basic blockin program P is a sequence of consecutive statsmeth
a single entry and a single exit point. Thu$lock has unique entry and
exit points

 Control always enters a basic block at its entiptoand exits from its
exit point. There isi0 possibility of exit or a halt at any point insithe
basic block except at its exit paifithe entry and exit points of a basic
block coincide when the block contains only onéesteent.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) o
Basic Blocks: Example (1)
* Example: Computing x raised to y
1 begin
2 int x, y, power; 10 while (power! =0){
3 float z; 11 z=z2"%;
4 input (x, y); 12 power=power—1;
5 if (y<0) 13 }
6 power=-y; 14 if (y<0)
7 else 15 z=1/z;
8 power=y; 16 output(z);
9 z=1; 17 end

I -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) V)

®Basic Blocks: Examf[e (2)

* Basic blocks

Block | Lines Entry point | Exit point
1 2,3,4,5|1 5

2 6 6 6

3 8 8 8

4 9 9 9

5 10 10 10

6 11,12 11 12

7 14 14 14

8 15 15 15

9 16 16 16

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The Universitymas) _4;

Control Flow Graph (CFG) (1)

* A control flow graph(or flow graph) G is defined as a finite set N of
nodes and a finite set E of edges. An edge
(i,) in E connects two nodesand nin N. We often write G= (N, E) to

denote a flow graph G with nodes given by N angesdy E.

e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) a4

Control Flow Graph (CFG) (2)

* In a flow graph of a programeach basic block becomes a nauahel
edges are used to indicate the flow of controlieeh blocks

* Blocks and nodes are labeled such that blpclrresponds to node.
An edge (i, j) connecting basic blodgsandb, implies thatcontrol can
go from block pto block b

¢ We also assume that there is a node lab®iedin N that has no

incoming edge, and another node labéled, also in N, that has no
outgoing edge.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

CFG Examfﬁz (1)

e N={Start, 1, 2, 3, 4,5, 6, 7, 8,9, End}

« E={(Start,1), (1, 2), (1, 3), (2.4), (3, 4), i
4,5), (5,6),(6,5),(5,7),(78),(7, ey A8
(9, End)}

if fy0)

e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

CFG Example (2)

* Same CFG with statements removed

* N={Start, 1, 2, 3, 4, 5, 6, 7, 8, 9, End}

e E={(Start,1), (1, 2), (1, 3), (2,4),
(3.4),(4,5), (5, 6),(6,5),
(5,7),(7,8), (7,9), (9, End)}

— —

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) a7
— —
—

* Consider a flow graph G= (N, E). sequence of k edgdz0,
(e, e, ... 8) , denotes path of length khrough the flow graph
if the following sequence condition holds.

* Given thatn,, n,, n,, andng are nodes belonging to N, and <Kk,

if &= (n,ny) ande,, = (0, n) thenn, =n}

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) V)

Paths (2)

* Two feasibleandcompletepaths:
°p,=(Start, 1,2,4,5, 6,5,7,9, End)
° p,=(Start, 1, 3, 4,5, 6,5,7,9, End)

* Specified unambiguously using edges:

* p=((Start, 1), (1, 2), (2, 4), (4,5), (5,
(6,5), (5,7),(7,9), (9, End))

* Bold edgescomplete path

* Dashed edgesubpath

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 0
— —
.
Paths: Feasible Paths
—

* A path p through a flow graph for programis consideredeasibleif
there existat least one test casehich when input ta@ cause$ to be
traversed.

*p,=(Start, 1,3,4,5,6,5,7,8,9, End Im.@m. 1
*p=(Start, 1,1, 2,4, 5,7, 9,, End) foats
If (w=0)

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) L)

Paths: Infeasible Paths (Defensive Code)

-
#include <ic.h>
vold i=0ddiint i) £
suitch (1 % 2 £
caze (0
printf{"The input value i= evenlin®i:
break
caze 13
printf {"The input value i= oddin!"):
hreak:
default;
printf{"Mo such valuein"):
break
3
3
vold main{l £
int i =02
scanf ("Ed". ail;z
is0dd{ii;
3
- -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 51
-
Paths: Infeasible Paths (Program Bug)
- -
. if (k< 2)
if (k>3) [should bek> -3]
X=xxK;
efor(i=0;i<0;i++) [should bei<10]
total = total + valud];
B L
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 52

Number of Paths

* There can benany distinct paththrough a program.
A programwith no condition contains exactly one péthat begins at
node Start and terminates at node End.

e Each additional condition in the program can insesathe number of
distinct paths byt least one

* Depending on their locationpnditions can have a multiplicative effect
on the number of paths.
—two nested if-then-else
—while loop
— for loop

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 53

Test Generation

* Any form of test generation uses a source docunietite most informal
of test methodshe source document resides in the mind of thertedio
generates tests based on a knowledge of the rewgrits.

* In most commercial environments, the process is mare formal. The
tests are generateding a mix of formal and informal methddsm the
requirements documeseérving as the sourck more advanced test
processes, requirements serve as a source forabelapment of test
plans.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) -3
Test Generation Strategies (1)

* Model basedrequire that a subset of the requirementmbdeled using
a formal notation (usually graphicalModels: Finite State Machines,
Timed automata, Petri net, SDL, UML, etc.

* Specification basedequire that a subset of the requirementmbdeled
using a formal mathematical notatioBxamples: B, Z, and Larch.

» Code basedyenerate testirectly from the code

B -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 55

S
Test Generation Strategies (2)
e -]
| Requirements I Test generation
algerithm
Zin . Test generation
——I Finite state machines |—'~ slgonithmm }—*
Test generation
e [statechars}————~
i
algorithm
Test generation
—| Timed I/0 Automata
Algebraic and logic Test generation
specifications algerithm

Test generation
Run-time data [----

rithm

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) =7

Types of Testing

* One possible classification is based on the follmwour classifiers:
— C1: Source of test generation.

— C2: Lifecycle phase in which testing takes place
— C3: Goal of a specific testing activity

— C4: Characteristics of the artifact under test

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) o
— —
C1: Source of Test Generation
—
Artifact Technique Example
Requirements (informal) Black-box Ad-hoc testing

Boundary value analysis
Category partition
Classification trees
Cause-effect graphs
Equivalence partitioning
Partition testing
Predicate testing
Random testing

Code White-box Adequacy assessment
Coverage testing
Data-flow testing
Domain testing
Mutation testing
Path testing
Structural testing
Test minimization using coverage

Requirements and code Black-box and
White-box
Formal model: Model-hased Statechart testing
Graphical or mathematical Specification FSM testing
specification Pairwise testing
Syntax testing
Component interface Interface testing Interface mutation

Pairwise testing

I -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) GD

C2: Lifecycle Phase in Which Testing Takes Place

Phase Technique
Coding Unit testing
Integration Integration testing

System integration System testing

Maintenance Regression testing

Post system, pre-release

Beta-testing

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) Gl
C3: Goal of Specific Testing Activity

Goal Technique Example
Advertised features Functional testing

Security Security testing

Invalid inputs Robustness testing

Vulnerabilities Vulnerability testing

Errors in GUI GUI testing Capture/plaback

Operational correctness
Reliability assessment
Resistance to penetration
System performance
Customer acceptability
Business compatibility

Peripherals compatibility

Operational testing
Reliability testing
Penetration testing
Performance testing
Acceptance testing
Compatibility testing

Configuration testing

Event sequence graphs

Complete Interaction Sequence

Transactional-flow

Stress testing

Interface testing
Installation testing

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Functional Testing

* Testing either arlemenof or thecompleteproduct to determine whether
it will function as planned.

* Thesystem testingf anintegrated, black-box systeagainst its
operational (i.e., functional) requirements.

 Testing theadvertised featuresf a system for correct operation.

» Geared towards verifying that a product/applicationforms to all
functional specifications.

* Entail the following tasksest generatiorfrom requirements or some
model of the requirementigest executionandtest assessment

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The UniversityofTsatDallas) _B
C4: Artifact Under Test
Characteristics Technique
Application component Component testing
Client and server Client-server testing
Compiler Compiler testing
Design Design testing
Code Code testing
Database system Transaction-flow testing
00 software 0O testing
Operating system Operating system testing
Real-time software Real-time testing
Requirements Requirement testing
Software Software testing
Web service Web service testing

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) [~

Test Methodology

Program Specifications-----------;

Clues i Expected behavior - Program output
i is correct
Test requirements
1 m——— Oracle { or
Test specifications
) Test driver Actual behavior Program has
Until specs. .
hausted 1 failed; make a
exhauste Program note and proceed
with testing or
enter the debug
mode
- N]
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) @&

Test Requirements Checklist

* Obtainingcluesand deriving test requirements can become a tedisls

* To keep it from overwhelming us it is a good ideaake a checklist of
clues.

* This checklist is then transformed irdachecklist of test requiremerky
going through each clue and deriving test requirgmfrom it.

e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) (-

Test Specifications (1)

* A test requirement indicate®dw'’ to test a program.
But it does not provide exact values of inputs.

* A test requirement is used derive test specificatigwhich is theexact
specificationof values of input and environment variables.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) &7
— —
Test Specifications (2)
= —

* There maynot be a one-to-one correspondebetween test requirements
and test specifications.

* A test requirement checklist might contain 50 estriThese might result
in only 22 test specifications.

* The fewer the tests the better but only if theséstare ofjood quality
— We will discusgest qualitywhen discussingest assessment

R e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 6B

Test Requirements to Specifications (1)

* The test requirementhecklistguides the process of deriving test
specifications.

* Initially all entries in the checklist are unmarkedset to 0.

* Each time a test is generated from a requiremésnniiarked or the count
incremented by 1.

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications (2)

* Thus, at any point in time, om®uld assess the progresmade towards
the generation of test specifications.

* One could also determine how many tests have beeerated using any
test requirement.

e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications (3)

* Once a test requirement has been marked or its oorore than 0 we
say that it has been satisfied.

* Somerules of thumb to use while designing tests:
— Try to satisfy multiple requirements using only dest.
— Try to satisfy each requirement by more than oee te
— Satisfy all test requirements.
— Avoid reuse of same values of a variable in diffietests.

* | n testing, variety helps!

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) T
—

Test Requirements to Specifications (4)

* Though we try to combine several test requiremenggenerate one test
case, this isot advisable when considering error conditions

R e -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) >

Test Requirements to Specifications (5)

* For example, consider the following:
—speed_dial, an interval
aspeed_dial<0 ,error
o speed_dial>120, error
—zones, an interval
o zones <5, error
o zones>10, error

— —
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications (6)

* One test specification obtained by combining the tequirements above
is:

—speed_dial = -1
—Zone =3

* Now, if the code to handle these error conditiens i

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications (7)

* if (speed_dial<0 || speed_dial>120)
error_exit (“Incorrect speed_dial”)

* For our testthe program will exit before it reaches the seciénd
statementThus, it will miss detecting the error in coding fmne

o — —

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) =
o — —
o — —

We have dealt with some of the most

basic concepts in software testing.

I -
Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 3

