
11

W. Eric Wong
Department of Computer Science
The University of Texas at Dallas

ewong@utdallas.edu
http://www.utdallas.edu/~ewong

Foundations of Software Testing

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Speaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical SketchSpeaker Biographical Sketch

� Professor & Director of International Outreach
Department of Computer Science
University of Texas at Dallas

� Guest Researcher
Computer Security Division
National Institute of Standards and Technology (NIST)

� Vice President, IEEE Reliability Society

� Secretary, ACM SIGAPP (Special Interest Group on Applied Computing)

� Principal Investigator, NSF TUES (Transforming Undergraduate Education in
Science, Technology, Engineering and Mathematics) Project
– Incorporating Software Testing into Multiple Computer Science and Software

Engineering Undergraduate Courses

� Founder & Steering Committee co-Chair for the SERE conference
(IEEE International Conference on Software Security and Reliability)
(http://paris.utdallas.edu/sere13)

2Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

333

Learning ObjectivesLearning ObjectivesLearning ObjectivesLearning Objectives

� Errors, testing, debugging, test process, CFG, correctness, reliability,
oracles.

� Testing techniques

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Errors, Faults, Failures

555

ErrorErrorErrorError

� Errors are a part of our daily life.

� Humans make errorsin their thoughts, actions, and in the products that
might result from their actions.

� Errors occur wherever humans are involved in taking actions and making
decisions.

� These fundamental facts of human existence make testing an essential
activity.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

666

Errors: ExamplesErrors: ExamplesErrors: ExamplesErrors: Examples

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

777

Error, Faults, FailuresError, Faults, FailuresError, Faults, FailuresError, Faults, Failures
starting point

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Software Quality

999

Software Quality Software Quality Software Quality Software Quality (1)
� Static quality attributes: structured, maintainable, testable codeas well

as the availability of correct and complete documentation

� Dynamic quality attributes: software reliability, correctness,
completeness, consistency, usability, and performance

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

101010

Software Quality Software Quality Software Quality Software Quality (2)
� Reliability: To be discussed

� Correctness: A program is considered correct if it behaves as desired on
all possible test inputs.
– valid input

– invalid inputs

� Questions
– Can we prove the correctness of a program by testing?

– Correctness versus Reliability:

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

111111

� Completeness refers to the availability of all features listed in the
requirements, or in the user manual. An incomplete software is one that
does not fully implement all features required.

� Consistency refers to adherence to a common set of conventions and
assumptions. For example, all buttons in the user interface might follow a
common color coding convention.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Software Quality Software Quality Software Quality Software Quality (3)

121212

� Usability refers to the ease with which an application can be used.This
is an area in itself and there exist techniques for usability testing.
Psychologyplays an important role in the design of techniques for
usability testing.

� Performance refers to the time the application takes to perform a
requested task. It is considered as a non-functional requirement. It is
specified in terms such as “This task must be performed at the rate of X
units of activity in one second on a machine running at speed Y, having Z
gigabytes of memory.”

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Software Quality Software Quality Software Quality Software Quality (4)

Requirements, Input Domain, Behavior,

Correctness, Reliability

141414

Requirements, Behavior, CorrectnessRequirements, Behavior, CorrectnessRequirements, Behavior, CorrectnessRequirements, Behavior, Correctness

� Requirements leading to two different programs:

� Requirement 1: It is required to write a program that inputs two integers
and outputs the maximumof these.

� Requirement 2: It is required to write a program that inputs a sequence
of integers and outputs the sorted versionof this sequence.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

151515

Requirements: IncompletenessRequirements: IncompletenessRequirements: IncompletenessRequirements: Incompleteness

� Suppose that the program max is developed to satisfy Requirement 1.
The expected output of max when the input integers are 13 and 19 can be
easily determined to be 19.

� Suppose now that the tester wants to know if the two integers are to be
input to the program on one line followed by a carriage return, or on two
separate lines with a carriage return typed in after each number. The
requirement as stated above fails to provide an answer to this question.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

161616

Requirements: AmbiguityRequirements: AmbiguityRequirements: AmbiguityRequirements: Ambiguity

� Requirement 2 is ambiguous. It is not clear whether the input sequence is
sorted in ascending or descending order. The behavior of the sort
program, written to satisfy this requirement, will depend on the decision
taken by the programmer while writing sort.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

171717

Input Domain Input Domain Input Domain Input Domain (1)
� The set of all possible inputs to a program P is known as

the input domain or input space, of P.

� Using Requirement 1 above we find the input domain of max to be the
set of all pairs of integerswhere each element in the pair integers is in the
range -32,768 through 32,767.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

181818

� Modified Requirement 2:

– It is required to write a program that inputs a sequence of integers and outputs
the integers in this sequence sorted in either ascending or descending order.
The order of the output sequence is determined by an input request character
which should be “A” when an ascending sequence is desired, and “D”
otherwise.

– While providing input to the program, the request character is input first
followed by the sequenceof integers to be sorted; the sequence is terminated
with a period.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Input Domain Input Domain Input Domain Input Domain (2)

191919

� Based on the above modified requirement, the input domain for sort is
a set of pairs. The first elementof the pair is a character. The second
elementof the pair is a sequence of zero or more integers ending with a
period.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Input Domain Input Domain Input Domain Input Domain (3)

202020

Valid/Invalid InputsValid/Invalid InputsValid/Invalid InputsValid/Invalid Inputs

� The modified requirement for sort mentions that the request characters
can be “A” and “D,” but fails to answer the question “What if the user
types a different character ?’’

� When using sort it is certainly possible for the user to type a character
other than “A” and “D.”Any character other than “A” and “D” is
considered as invalid input to sort. The requirement for sort does not
specifywhat action it should take when an invalid input is encountered.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

212121

Correctness vs. ReliabilityCorrectness vs. ReliabilityCorrectness vs. ReliabilityCorrectness vs. Reliability

� Though correctness of a program is desirable, it is almost never the
objective of testing.

� To establish correctness via testing would imply testing a program on all
elements in the input domain. In most cases that are encountered in
practice, this is impossibleto accomplish.

� Thus correctness is established via mathematical proofsof programs.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

222222

Correctness and TestingCorrectness and TestingCorrectness and TestingCorrectness and Testing

� Correctness attempts to establish that the program is error free.

� Testing, debugging, and the error removal processes together increase
our confidencein the correct functioning of the program under test.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

232323

Software Reliability: Two DefinitionsSoftware Reliability: Two DefinitionsSoftware Reliability: Two DefinitionsSoftware Reliability: Two Definitions

� Software reliability [ANSI/IEEE Std 729-1983]: is the probability of
failure free operationof software over a given time interval and under
given conditions.

� Software reliability is the probability of failure free operation of
software in its intended environment.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

242424

Operational Profile Operational Profile Operational Profile Operational Profile (1)

� An operational profileis a numerical description of how a program is
used.

� Consider a sort program which, on any given execution, allows any one
of two types of input sequences (numbers only or alphanumeric strings).
Sample operational profiles for sort follow.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

� Operational profile #1

Sequence Probability

Numbers only 0.9

Alphanumeric strings 0.1

25Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Operational Profile Operational Profile Operational Profile Operational Profile (2)

� Operational profile #2

Sequence Probability

Numbers only 0.1

Alphanumeric strings 0.9

26Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Operational Profile Operational Profile Operational Profile Operational Profile (3)

Testing, Debugging, Verification

282828

Testing and DebuggingTesting and DebuggingTesting and DebuggingTesting and Debugging

� When testing reveals a bug, the process used to determine the cause of
this bug and to remove it, is known as debugging.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

292929

A Test/Debugging CycleA Test/Debugging CycleA Test/Debugging CycleA Test/Debugging Cycle

Yes

Yes

No

No

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

303030

Test Plan Test Plan Test Plan Test Plan (1)
� A test cycle is often guided by a test plan.

� Example: The sortprogram is to be tested to meet the requirements given
earlier. Specifically, the following needs to be done.
– Execute sorton at least two input sequences,

one with “A” and the other with “D” as the request character.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

313131

� Execute the program on an empty inputsequence. Special case!

� Test the program for robustness against erroneous inputssuch as “R”
typed in as the request character.

� All failuresof the test program should be recordedin a suitable file using
the Company Failure Report Form.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Plan Test Plan Test Plan Test Plan (2)

323232

Test Case/DataTest Case/DataTest Case/DataTest Case/Data

� A test case is a pair consisting of test data to be input to the program and
the expected output. The test datais a set of values, one for each input
variable.

� A test set is a collection of zero or more test cases.

� Sample test case for sort:
– Test data: <“A” 12, −29, 32 >

– Expected output: − 29, 12, 32

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

333333

Program BehaviorProgram BehaviorProgram BehaviorProgram Behavior

� Can be specified in several ways: plain natural language, a state diagram,
formal mathematical specification, etc.

� A state diagram specifies program states and how the program changes its
state on an input sequence.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

343434

Behavior: Observation and AnalysisBehavior: Observation and AnalysisBehavior: Observation and AnalysisBehavior: Observation and Analysis

� In the first step one observesthe behavior.

� In the second step oneanalyzesthe observed behavior to check if it is
correct or not. Both these steps could be quite complex for large
commercial programs.

� The entity that performs the task of checking the correctness of the
observed behavior is known as an oracle.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

353535

Oracle: ExampleOracle: ExampleOracle: ExampleOracle: Example

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

363636

Oracle: ProgramsOracle: ProgramsOracle: ProgramsOracle: Programs

� Oracles can also be programs designed to check the behavior of other
programs.

� For example, one might use a matrix multiplicationprogram to check if a
matrix inversionprogram has produced the correct output. In this case,
the matrix inversion program inverts a given matrix A and generates B as
the output matrix.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

373737

Oracle: ConstructionOracle: ConstructionOracle: ConstructionOracle: Construction

� Construction of automated oracles, such as the one to check a matrix
multiplication program or a sort program, requires the determination of
input-output relationship.

� In general, the construction of automated oracles is a complex
undertaking.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

383838

Testing and Verification Testing and Verification Testing and Verification Testing and Verification (1)
� Program verification aims at proving the correctness of programs by

showing that it contains no errors. This is very different from testingthat
aims at uncovering errors in a program.

� Program verification and testing are best considered as complementary
techniques. In practice, one can shed program verification, but not testing.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

393939

� Testing is not a perfect techniquein that a program might contain errors
despite the success of a set of tests.

� Verification might appear to be perfect technique as it promises to verify
that a program is free from errors. However, the person who verified a
program might have made mistakes in the verification process; there
might be an incorrect assumptionon the input conditions; incorrect
assumptions might be made regarding the components that interface with
the program, and so on.

� Verified and published programs have been shown to be incorrect.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Testing and Verification Testing and Verification Testing and Verification Testing and Verification (2)

Program Representation:

Control Flow Graphs

414141

Program Representation: Basic BlocksProgram Representation: Basic BlocksProgram Representation: Basic BlocksProgram Representation: Basic Blocks

� A basic block in program P is a sequence of consecutive statements with
a single entry and a single exit point. Thus a block has unique entry and
exit points.

� Control always enters a basic block at its entry point and exits from its
exit point. There is no possibility of exit or a halt at any point inside the
basic block except at its exit point. The entry and exit points of a basic
block coincide when the block contains only one statement.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

424242

Basic Blocks: Example Basic Blocks: Example Basic Blocks: Example Basic Blocks: Example (1)
� Example: Computing x raised to y

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

434343

� Basic blocks

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Basic Blocks: Example Basic Blocks: Example Basic Blocks: Example Basic Blocks: Example (2)

444444

Control Flow Graph (CFG) Control Flow Graph (CFG) Control Flow Graph (CFG) Control Flow Graph (CFG) (1)
� A control flow graph (or flow graph) G is defined as a finite set N of

nodes and a finite set E of edges. An edge
(i, j) in E connects two nodes ni and nj in N. We often write G= (N, E) to
denote a flow graph G with nodes given by N and edges by E.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

454545

Control Flow Graph (CFG) Control Flow Graph (CFG) Control Flow Graph (CFG) Control Flow Graph (CFG) (2)
� In a flow graph of a program, each basic block becomes a nodeand

edges are used to indicate the flow of control between blocks.

� Blocks and nodes are labeled such that block bi corresponds to node ni.
An edge (i, j) connecting basic blocks bi and bj implies that control can
go from block bi to block bj

� We also assume that there is a node labeled Startin N that has no
incoming edge, and another node labeled End, also in N, that has no
outgoing edge.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

464646

CFG Example CFG Example CFG Example CFG Example (1)
� N={Start, 1, 2, 3, 4, 5, 6, 7, 8, 9, End}

� E={(Start,1), (1, 2), (1, 3), (2,4), (3, 4),

(4, 5), (5, 6), (6, 5), (5, 7), (7, 8), (7, 9),

(9, End)}

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

474747

CFG Example CFG Example CFG Example CFG Example (2)
� Same CFG with statements removed.

� N={Start, 1, 2, 3, 4, 5, 6, 7, 8, 9, End}

� E={(Start,1), (1, 2), (1, 3), (2,4),

(3, 4), (4, 5), (5, 6), (6, 5),

(5, 7), (7, 8), (7, 9), (9, End)}

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

484848

Paths Paths Paths Paths (1)
� Consider a flow graph G= (N, E). A sequence of k edges, k>0,

(e1, e2, … ek) , denotes a path of length kthrough the flow graph
if the following sequence condition holds.

� Given that np, nq, nr, and ns are nodes belonging to N, and 0< i < k,
if ei = (np, nq) and ei+ 1 = (nr, ns) then nq = nr}

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

494949

Paths Paths Paths Paths (2)
� Two feasibleand completepaths:

� p1= (Start, 1, 2, 4, 5, 6, 5, 7, 9, End)

� p2= (Start, 1, 3, 4, 5, 6, 5, 7, 9, End)

� Specified unambiguously using edges:

� p1= ((Start, 1), (1, 2), (2, 4), (4, 5), (5, 6),

(6, 5), (5, 7), (7, 9), (9, End))

� Bold edges: complete path

� Dashed edges: subpath

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

505050

Paths: Feasible PathsPaths: Feasible PathsPaths: Feasible PathsPaths: Feasible Paths

� A path p through a flow graph for program P is considered feasibleif
there exists at least one test casewhich when input to P causes p to be
traversed.

� p1= (Start, 1, 3, 4, 5, 6, 5, 7, 8, 9, End)

� p2= (Start, 1, 1, 2, 4, 5, 7, 9, , End)

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

515151

Paths: Infeasible Paths (Defensive Code)Paths: Infeasible Paths (Defensive Code)Paths: Infeasible Paths (Defensive Code)Paths: Infeasible Paths (Defensive Code)

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Paths: Infeasible Paths (Program Bug)Paths: Infeasible Paths (Program Bug)Paths: Infeasible Paths (Program Bug)Paths: Infeasible Paths (Program Bug)

� if (k < 2)

{

if (k > 3) [should be: k > −3]

x = x × k;

}

� for (i = 0; i < 0; i ++) [should be: i < 10]

{

total = total + value[i];

}

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 52

535353

Number of PathsNumber of PathsNumber of PathsNumber of Paths

� There can be many distinct pathsthrough a program.
A program with no condition contains exactly one paththat begins at
node Start and terminates at node End.

� Each additional condition in the program can increases the number of
distinct paths by at least one.

� Depending on their location, conditions can have a multiplicative effect
on the number of paths.
– two nested if-then-else

– while loop

– for loop

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Generation

555555

Test GenerationTest GenerationTest GenerationTest Generation

� Any form of test generation uses a source document. In the most informal
of test methods, the source document resides in the mind of the tester who
generates tests based on a knowledge of the requirements.

� In most commercial environments, the process is a bit more formal. The
tests are generated using a mix of formal and informal methodsfrom the
requirements documentserving as the source. In more advanced test
processes, requirements serve as a source for the development of test
plans.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

565656

Test Generation Strategies Test Generation Strategies Test Generation Strategies Test Generation Strategies (1)
� Model based: require that a subset of the requirements be modeled using

a formal notation (usually graphical).Models: Finite State Machines,
Timed automata, Petri net, SDL, UML, etc.

� Specification based: require that a subset of the requirements be modeled
using a formal mathematical notation. Examples: B, Z, and Larch.

� Code based: generate tests directly from the code.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

575757

Test Generation Strategies Test Generation Strategies Test Generation Strategies Test Generation Strategies (2)

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Types of Software Testing

595959

Types of TestingTypes of TestingTypes of TestingTypes of Testing

� One possible classification is based on the following four classifiers:
– C1: Source of test generation.

– C2: Lifecycle phase in which testing takes place

– C3: Goal of a specific testing activity

– C4: Characteristics of the artifact under test

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

606060

C1: Source of Test GenerationC1: Source of Test GenerationC1: Source of Test GenerationC1: Source of Test Generation

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

616161

C2: Lifecycle Phase in Which Testing Takes PlaceC2: Lifecycle Phase in Which Testing Takes PlaceC2: Lifecycle Phase in Which Testing Takes PlaceC2: Lifecycle Phase in Which Testing Takes Place

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

626262

C3: Goal of Specific Testing ActivityC3: Goal of Specific Testing ActivityC3: Goal of Specific Testing ActivityC3: Goal of Specific Testing Activity

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

636363

Functional TestingFunctional TestingFunctional TestingFunctional Testing

� Testing either an elementof or the completeproduct to determine whether
it will function as planned.

� The system testingof an integrated, black-box systemagainst its
operational (i.e., functional) requirements.

� Testing the advertised featuresof a system for correct operation.

� Geared towards verifying that a product/application conforms to all
functional specifications.

� Entail the following tasks: test generationfrom requirements or some
model of the requirements, test execution, andtest assessment.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

646464

C4: Artifact Under TestC4: Artifact Under TestC4: Artifact Under TestC4: Artifact Under Test

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

656565

Test MethodologyTest MethodologyTest MethodologyTest Methodology

Clues

Test requirements

Test specifications

Test driver

Program

Oracle

Expected behavior

Actual behavior

Program output
is correct

or

Until specs.

exhausted.

Program Specifications

Program has
failed; make a
note and proceed
with testing or
enter the debug
mode.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

666666

Test Requirements ChecklistTest Requirements ChecklistTest Requirements ChecklistTest Requirements Checklist

� Obtaining cluesand deriving test requirements can become a tedious task.

� To keep it from overwhelming us it is a good idea to make a checklist of
clues.

� This checklist is then transformed into a checklist of test requirementsby
going through each clue and deriving test requirements from it.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

676767

Test Specifications Test Specifications Test Specifications Test Specifications (1)
� A test requirement indicates “how” to test a program.

But it does not provide exact values of inputs.

� A test requirement is used to derive test specification, which is the exact
specificationof values of input and environment variables.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

686868

� There may not be a one-to-one correspondencebetween test requirements
and test specifications.

� A test requirement checklist might contain 50 entries. These might result
in only 22 test specifications.

� The fewer the tests the better but only if these tests are of good quality
– We will discuss test quality when discussing test assessment.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Specifications Test Specifications Test Specifications Test Specifications (2)

696969

Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications (1)
� The test requirements checklistguides the process of deriving test

specifications.

� Initially all entries in the checklist are unmarked or set to 0.

� Each time a test is generated from a requirement it is marked or the count
incremented by 1.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

707070

� Thus, at any point in time, one could assess the progressmade towards
the generation of test specifications.

� One could also determine how many tests have been generated using any
test requirement.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications (2)

717171

� Once a test requirement has been marked or its count is more than 0 we
say that it has been satisfied.

� Some rules of thumb to use while designing tests:

– Try to satisfy multiple requirements using only one test.

– Try to satisfy each requirement by more than one test.

– Satisfy all test requirements.

– Avoid reuse of same values of a variable in different tests.

� In testing, variety helps!

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications (3)

727272

� Though we try to combine several test requirements to generate one test
case, this is not advisable when considering error conditions.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications (4)

737373

� For example, consider the following:
– speed_dial, an interval

� speed_dial<0 ,error

� speed_dial>120, error

– zones, an interval
� zones <5, error

� zones>10, error

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications (5)

747474

� One test specification obtained by combining the two requirements above
is:
– speed_dial = −1

– Zone = 3

� Now, if the code to handle these error conditions is:

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications (6)

757575

� if (speed_dial<0 || speed_dial>120)
error_exit (“Incorrect speed_dial”)

if (zone<6 ||zone>10)
error_exit (“Incorrect zone”);

� For our test, the program will exit before it reaches the second if
statement.Thus, it will miss detecting the error in coding for zone.

Bug!

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas)

Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications Test Requirements to Specifications (7)

SummarySummarySummarySummary

We have dealt with some of the most

basic concepts in software testing.

Foundations of Software Testing (© 2013 Professor W. Eric Wong, The University of Texas at Dallas) 767676

