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FOUNDATIONS OF STATISTICAL LEllRNING THEORY, I.

THE LINEAR MODEL FOR SIMPLE LEARNINc;2/

By

W.K. Estes, Indiana University

and

Patrick Suppes, Stanford University

1. Introduction.

By simple learning we refer to the changes in behavioral proba-

bilities which occur as a function of trials in the following type of

situation. Each trial of a series begins with presentation of the same

stimulating situation (e.g., a ready signal, conditioned stimulus, or

the like). The organism responds to the stimulus with one or another of

a set of alternative actions (responses). T)J.en the trial terminates with

occurrence of some one of a set of outcomes (e.g., reward, non-reward,

unconditioned stimulus and response, knowledge of reSUlts). In con-

temporary learning theories (see, e.g., [4], [14]), it is assumed that

if other parameters of the situation are fixed, the course of learning

is determined by the trial outcomes. These outcomes can be classified,

relative to any given response, according to their effects on response

probability. We shall speak of events which increase probability of a

given response as reinforcing events for that response and of events

which leave response probabilities unchanged as instances of non-

reinforcement.

'2/ This research was begun while the authors were Fellows at the Center
for Advanced Study in the Behavioral Sciences during the academic
year 1955-56. Subsequent research has been supported in part by the
Group Psychology Branch of ONR.
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In the following sections we shall present the primitive notions,

axiomatic structure, and important general theorems of a model which

formalizes and generalizes the models for simple learning that have

developed within contemporary statistical learning theory. Several

considerations suggest the desirability of examining rigorously the

mathematical foundations of these models. Almost without exception,

contemporary theories that deal quantitatively with simple learning have

in their development tended to follow the lead of experimental explora­

tions. Thus they have for the most part proceeded from simplified

special cases to more general ones and the common mathematical struc­

ture of the models has not received detailed analysis in its own

right. Our formulation will draw upon the concepts and methods developed

by Bush and Mosteller [3] and Estes and Burke [6], and we anticipate that

it may clarify the set-theoretical foundations of the entire group of

models associated with these investigators and their associates. Since

all of the models are in one way Or another probabilistic, we shall

address ourselves first of all to the problem of characterizing exactly

and explicitly the sample spaces of the stochastic processes involved

and the methods of defining events and probabilities. In the matter of

deriving theorems, we shall rely primarily upon set-theoretical and

probabilistic techniques which have not heretofore appeared in the

literature of learning theory.

This report will be limited to linear models, i.e., those which

assume that response probabilities undergo linear transformations, exactly

one such transformation representing the effects of any given type of
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reinforcing event. The level of generality at which we have aimed is

that of a model just broad enough to include as special cases all of the

particular linear models that have been applied to learning experiments.

We do not, for example, consider any of the obvious generalizations that

could be achieved by including free parameters which have no definite

interpretations in existing learning theories. It will be seen that even

without the luxury of extra parameters, the linear model presented here,

involving as it does a stochastic process with an infinite number of

states, poses mathematical problems of a higher order of difficulty

than do the stimulus sampling models which we shall treat in a later

report.
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2. Primitive and Defined Notions.

The main point of this section is to discuss the three primitive

notions on which our analysis of simple probability learning is based

and to define a number of further notions in terms of these three.

However) some mathematical concepts are required for this discus-

sion, and to these we first turn. To begin with, we use the familiar

notation of elementary set theory: A~X means that A is a subset of

X; 0 designates the empty set (as well as the number zero); An B

designates the intersection of sets A and B, that is, the set of all

elements common to A and B; AU B designates the union of sets A

and B, that is, the set of all elements which belong to at least one of

two sets; we also make use of the corresponding notation for the inter-

section and union of families of sets; x € A means that x is a member

of the set A, and x ~A means that x is not a member of A. We use

the notation:

to designate the set of all elements x satisfying the property ~. For

example)

{x: x is an integer & °< x < 6 }

{O,1,2,3,4,5}. We use the notation < xl ,x2'·· .,xn >

to designate the ordered n-tuple whose first member is Xl' second

member x
2

' etc. Similarly, the notation < xl ,x
2

, ••• ,x
n

' •.. > designates

the infinite sequence whose first term is Xl' second term x2' etc.

A family :f of subsets of a set X is a field if and only if for
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every A and B in '1-

(i) AUB€3

(ii) A€ "t ,

N

where A is the complement of A relative to X, that is

A = 1X: x € X & x Ii' A 1 0

A field "J of subsets of X is a Borel~ if for any sequence

< ~,A2' 00o,An , 000 > of elements of j- ,

ro
U A E"Jn
n=l

For explicit subsequent reference we formalize in a numbered defini-

i<ion the standard notion of a probability measure on a fieldo The axioms

are those of Kolmogorov [10]0 The last axiom, asserting that the pro-

bability measure is continuous from above at zero, is easier to verify

in constructing measures than the equivalent axiom that the measure is

countably additiveo

Definition 201. Let X be ~ set and "J a field of subsets of

Xo Then a real-valued function P is ~ probability measure on

and only if, the following axioms are satisfied:

Axiom P1. For every A in "3-, peA) > 0;

Axiom P20 P(X) = 1;

Axiom P30 For~ A and B in j- if AnB = 0 then
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P(AUB) ~ peA) + PCB);

Axiom p4. If < Al ,A2, .•• ,An' ••• > is ~ decreasing sequence of

elements of "1, i. e., An+l (;;An for every n, and

con A ~ 0,
n~l n

then

lim P(A) ~ 0.
n

n->co

Some further mathematical notions we want to introduce are most

easily explained by considering the first of our primitive notions, the

sample space. Let r be a positive integer--the intuitive interpreta-

tion of r is that it is the number of possible responses on any

trial--, and let

Z(r) ~ -\.< x,y >: x,y are integers & 1 < x < r & °:::: y :::: r}

that is, Z(r) is the set of all ordered couples of the indicated

integers. The intuitive significance of Z(r) is that on a given

trial what actually happens can be represented by one of the ordered

couples in Z(r). For example, < 3,4> would represent the occurrence

of the third response followed by the fourth reinforcing event on a

given trial. The special case when ° is the second member of a

couple should be mentioned: < 1,0 > would represent occurrence of

the first response followed by no reinforcing event.

The set Z(r) of ordered couples is adequate onlY for a single
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trial. To obtain the basic sample space for a sequence of trials we

consider the denumerable Cartesian product of Z(r) with itself, that

is the set X defined as:

X ,
n

where for every n, X ~ Z(r).
n

Thus in an experiment with two possible

responses, a typical element of X would be a sequence

«1,1 >, < 1,2 >, < 2,0 >, < 2,1 >, ... >.

Here on the first trial the first response and the first reinforcing

event occurred; on the second trial the first response and the second

reinforcing event occurred, etc. We call the sample space X the

r-response space.

More-term of this sequence.is thex
n

X, then

If x € X, 1.e., if x :i.s a sequence which is a member of the

th
nsample space

designatesandj
~,n

to pick out the first and

x designatesA,n
have been used

over, if x ~ < j,k >, then
n

k. The letters 'A' and 'E'

second members respectively of the ordered couple in deference to the

use in the psychological literature of 'A' to designate responses and

'E' to designate reinforcing events. The rather cumbersome notation

x is not used extensively in the remainder of the paper, but it orA,n

its equivalent is needed to define the basic notions we need.

Certain subsets of X are of particular interest to us, namely,

the cylinder sets. Intuitively a cylinder set of X is a subset

restricted on a finite number of "dimensions", that is, restricted for
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a finite number of the X 'so For instance, the set of all sequences
n

having response 1 on the first trial is a cylinder set. Formally this

set is defined as

jx: XE X & xA 1 ; 1 \ •,

As a second example of a cylinder set, the set of all sequences having

response 2 on the third trial and reinforcing event 1 on the fifth trial

would be defined as

The formal definition of cylinder sets of X generalizes on these

examples. Moreover, we formally define the notion of an n-cylinder

set, which is a cylinder set restricted on no more than the first n

dimensions. This notion of an n-cylinder set is important in properly

formulating various facts about conditional probabilities, as we shall

see in subsequent sections.

Definition 2.2. c is an n-cylinder set of X

there is a finite set---

on I such that

(i) max I; n

I ~ positive integers and ~ function T defined

(ii) For each

(iii) C; {x: x e X & xi E Ti for i E I} •

Moreover, C is ~ cylinder set if for~ n, C

In the first example above of a cylinder set

is ~ n-cylinder set.
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and

Tl ~ {< 1,0 >, < 1,1 >, •.• ,< l,r>\ •

In the second example,

T
3

~ t< 2,0 >, < 2,1 >, ••• ,< 2,r > ~

T
5

~ i< 1,1 >, < 2,1 >, ••• ,< r,l >\ •

In terms of the notion of n-cylinder set, the first example is a

l-cylinderset and the second a 5-cylinder set. Note that if a set

is an n-cylinder set and m> n then it is also an m-cylinder set.

In defining various special cylinder sets in the sequel, we use the

kind of notation used in the two examples rather than the less intuitive

notation which requires listing the various sets T.• However, it will
~

al~ays be obvious that it is a trivial matter to re-cast our definitions

in a form explicitly agreeing with the requirements of Definition 2.2.

An experimentally minded psychologist reflecting on these cylinder

sets, might soon raise the following objection: it is not clear that

every conceivable experiment can be described by means of cylinder

sets. In the kind of experiments relevant here the experimenter has

control over the pattern of reinforcing events, and his rule for

generating the sequence of reinforcing events may be defined for all n.

Consider, for instance, a two response experiment in which the first
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reinforcing event occnrs on all odd trials and the second reinforcing

event on all even trials, that is, the experimenter's rule is simply

to alternate the two reinforcing events. The set of seqnences which

wonld represent possible ontcomes of this experiment is not a cylinder

set, and certainly we want onr theory to be adeqnate to handle snch an

experiment•.2/ By a slight extension this may be accomplished. We

first observe that the family of all cylinder sets of X forms a

field, for clearly the nnion of two cylinder sets is a cylinder set,

and the complement of a cylinder set is a cylinder set. Now it is

well known that given any field there is a nniqne smallest Borel field

containing the given field. It is the smallest Borel field containing

the field of cylinder sets of X with which we want to work. We

designate this Borel field by G5 (X) • The set of seqnences represent-

ing possible ontcomes of the experiment jnst described is clearly a

member of this Borel field, for consider the seqnence of cylinder sets

Cn ~{x: XEX &"E,n = 1 if n is odd &x- =2 if n is evenl.J>,n

t8(X).
00

Each Cn is a cylinder set, hence the nnion U C
n

is in
n=l

We have been able to think of no empirically realizable experiment which

Althongh any actnal experiment terminates in a finite nnmber of
trials, we will want to deal with concepts snch as asymptotic
response probability which are defined relative to infinite
seqnences of trials.
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~(X) to represent it.21
Since none of the existing literature on statistical learning theory

seems to be explicitly concerned with cylinder sets, it is natural to

wonder why they have been introduced in this paper. Fortunately or

unfortunately we were forced to introduce them once it became apparent

that the theory should be so set up that the initial probabilities of

response of the subject and the experimenter-controlled conditional pro-

babilities of reinforcement determine a unique model of simple probability

learning. If the basic probability measure of the theory is defined on

some broader family of subsets of X than a (X) it is in general not

possible to prove it is uniquely determined by the initial probabilities

Of response and the conditional probabilities of reinforcement. Details

are to be found in 'the proof of Theorem 4.7.

These remarks about probability lead us directly to our second

primitive notion: a probability measure P on G3 (X) • It is

particularly important to note that all probability notions in which

we are interested can be defined in terms of the basic probability

measure P. Philosophers of science (see, e.g., [8]) have recently

emphasized the importance of theoretical concepts which are tied to

experimental facts only in terms of certain defined notions. In our

opinion the basic probability measure P affords a clearcut example of

such a concept in psychology. The measure P cannot be observed directly,

but both the probability of a response and conditional probabilities of

In fact there is no obvious construction of a subset of
6B(X) which does not require the axiom of choice.

X not in
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reinforcing events are defined in terms of it.

Before defining any special probabilities, we need first to define

-the special events to which they are attached. Here as usual in pro-

bability theory events are certain subsets of X, our basic sample space.

We begin with the event of response

Definition 2.3.

j on trial 'Yn.

A. =lx:X€X&xA =j}.J,n ,n

Similarly, we define the event of reinforcing event k on trial n.

Definition 2.4.

E = (x:
k,n ~

The probability of response

less familiar notation.

Definition 2.5.

XE:X&x.... =k}.
l',n

j on trial n we define in more or

Since our axioms for learning are concerned with particular sequences

of reinforcing events, we want to define the eqUivalence class of

sequences which have the same outcomes through the thn trial. We

use a notation of square brackets common in mathematics.

:/ It is understood ~hroughout this paper that the range of the vari­
able 'j' is 1, ... ,r and the range of 'k' is 0,1, ... ,r.
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Definition 2.6.

Some obvious relations are:

and there is a j and a k such that

[X]n; [x] l(\A. nEk .
n- J,n ,n

Furthermore, in terms of the notation: x
A and ~, [xA]n is simply

the set of sequences y in X identical in the first n responses

with x, and [~]n is the set of sequences y in X identical in

the first n reinforcing events with x.

We next define the probability of response j on trial n given

the first n-l responses and the first n-l reinforcing events.

Definition 2.7.

Here and subsequently we use one of the standard notations for conditional

probability, and the elementary theory of conditional probabilities is

assumed throughout this paper. However, to avoid a lot of unimpOrtant

technicalities, contrary to the usual practice we define conditional

probabilities when the given event has a probability of zero. Namely,

if P(B); 0
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o
=(5

We take

that

(2)

o
(5 as a mathematical entity whose only known useful property is

o
(5' 0 - o.

Adopting (1) and (2) greatly simplifies later work with summations of

products. From a working standpoint a convention close to ours is

usually adopted by most writers.

Some further probability notions are needed later, but we reserve

their statement until after consideration of our axioms for simple

learning.

We do need to characterize our third and final primitive notion

9. The mathematical entity e is a real number between 0 and 1

with the intended interpretation that it is the learning parameter.

In statistical learning theories ([4], [6]), it is assumed that the

value of e in any experiment is determined both by characteristics

of the organism, e.g., sensory acuity,and by characteristics of

environmental stimulus sources. In deriVing experimental implications

of the model developed in this paper, we assume always that e is a

fixed constant throughout an experiment; consequently, the model should

be applied only to situations for which this assumption appears reason-

able. Consequences of systematic variation in value of the parameter

e over a series of learning trials have been discussed by Restle

[13] and LaBerge [11].
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3. Axioms.

Our three axioms for simple probability learning are embodied in

the following definition.

Definition 3.1. An ordered triple X =< X,P,9 > is ~ (single

parameter) linear model for simple learning if, and only if, there is

an r such that X is the r-response space, P is ~ probability

measure on r:E (X), e is ~ the open interval (0,1) and the following

three axioms are satisfied for every n, every x in X with p([x]J> 0

and every j and k:

Axiom 1. If x E E
k

& j = k & k f 0 then
,n

Axiom 2. If XE Ek,n & j f k & k ~ 0 then

Axiom 3. If XE EO then,n

= (l-a)p. .
xJ,n

The three axioms express assumptions concerning the effects of

reinforcement and non-reinforcement. The first two say, in effect,

that when a reinforcing event occurs, the response class corresponding

to it increases in probability and all others decrease. This is the

same assumption utilized in a number of contemporary stochastic and

statistical models for learning ([4], [6], [13]). The difference
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equations expressing Axioms 1 and 2 are derivable, in quite different

ways, as special cases of learning functions which occur in Estes and

Burke's set-theoretical model [6] and in Bush and Mosteller's linear

operator model [3]; a general model elaborating the implications of

this pair of equations for reinforcement theory has been reported by

one of the writers [~]. The third axiom expresses the assumption

that response probabilities are unchanged on nonreinforced trials.

In empirical applications of the model defined by 3.1, the term

Pxj,n is to be interpreted as the probability of response Aj for a

In practice, however, it is

can be predicted for all sequences and all

In principle the values of

ep. l' rJ,
impracticable

n, given

n.particular subject on trial

(see Theorem ~.l below).

to evaluate trial by trial probabilities for individual subjects, so

in experimental tests of the model we usually deal only with the

average value of Pxj,n over all sequences terminating on a given

trial, i.e., with p .• The latter can be predicted for all n,
J,n

given the values of p. l' r, and 8, and sufficient information con-J, .

cerning probabilities or reinforcement and nonreinforcement (see

Theorem ~.7 below).

It may appear at first reading because we define only one reinforc-

ing event corresponding to each response A., together with the
J

event EO' we will be greatly restricted, as compared say to Bush and

Mosteller [3], in the variety of empirical situations we can interpret

by means of the model. However, this restriction is only apparent;

actually the reinforcing effects of innumerable different experimental
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outcomes of a learning trial can be represented in terms of the model.

Firstly, one should note that all experimentally distinguishable outcomes

which are assumed to produce the same effects on response probabilities

will be represented by the same event E.
J

in the model. Secondly, if

a trial on which a given response A
j

occurs may terminate in several

different ways, each of which has a different effect on response pro-

bability, the different outcomes may be represented by different proba-

bilistic combinations of Ej , Ek(k~j), and EO' To illustrate this

last consideration by means of a simple example, consider a two-choice

situation, e.g., a T-maze, in which A
l

and A
2

responses are

followed by different magnitudes of reward. Applying Bush and

Mosteller's model to this hypothetical situation, one might define a pair

of operators ~ and ~,to represent the effect of the two outcomes.

Then

would be the new probability of Al after an A
l

occurrence and

would be the new probability of an ~ after an A2 occurrence. These

operators lead to the recursive expression

where V2,n is the second raw moment of the Al response probabilities

on trial n. Applying our linear model to the same situation, we might
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assume that the reward given on Al trials produces events El , E2 , and

EO with probabilities cll' c12 ' and clO respectively, while the

reward given on A
2

trials produces El , E
2

, and EO events with pro­

babilities c21' c22 ' and c20 respectively. Using results of a later

section (5.2) one can show that with these interpretations, the model

yields the following recursive expression for probability of an ~

response

where have the same interpretations as in the Bush andPn

Mosteller

and V
2 ,n

model. (In the notation of Section 5, V
2

=
,n

a .)
2,1,n

It

appears to be the case that for any experiment which has an interpre-

tation in the Bush and Mosteller model, one can find an interpretation

in the present linear model which yields the same recursive expression

(Although not in general the same expressions for higherfor Pj •,n

order moments of the response probabilities). We should add that the

example just discussed gives a possible interpretation of the differential

reward experiment, not necessarily the interpretation that would be

dictated by an analysis of, the problem in terms of any particular learn-

ingtheory.
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4. General Theorems.

We now turn to some general theorems which do not lead immediately

to experimental tests of the theory, but rather have the function of

clarifying the structure of linear models for simple learning. We begin

p r andj,l'

x and all

with the theorem, already alluded to, which says that if

e are given, then p. is determined for all sequences
xJ,n

trials n. In formulating the theorem we make this idea precise by

considering two models of the theory for which p. l' rJ,
and e are

the same (we get identity of r by having the same r-response space

X in both models).

Theorem 4.1. Let x = < x,p,e > and x' =<x,p',e> be two

linear models for simple learning such that Pj,l = Pj,l

p([x]n_l) > 0 and P'([x]n_l) > 0, we have:

Then if

Proof: Suppose the theorem is false. Let n be the smallest

integer such that (for some j and x)

(1)

(By hypothesis of the theorem, n> 1.) Now if

and
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then by our hypothesis on n we have:

(4 ) = p'xj,n-l

There are now three cases to consider:

and k f 0, and X€ EO,n Since the

x€E. , X€Ek with k f j
J,n ,n

proof is similar for all three

cases, each requiring application of the appropriate one of the three

axioms, we consider only the first case:

x€E.
J,n

From (2), (3), (5) and Axiom 1 we infer immediately:

(6)

(l-e)p. 1 + e
xJ,n-

(l-e)p'. 1 + e
XJ,U-

From (4) and (6) we conclude:

which contradicts (1) and establishes our supposition as false. Q.E.D.

The next theorem establishes the fundamental result that given the

initial probabilities of response of the subject, and the conditional

probabilities of reinforcement, then a unique model of simple learning

is determined. Moreover, no restrictions on these probabilities are

required to establish the theorem. The significant intuitive content

of this last assertion is that the experimenter may conditionalize the
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probabilities of reinforcement upon preceding events of t~e sample space

in whatever manner he pleases.

Some preliminary definitions and lemmas are needed. The third

definition introduces the notion of an experimenter's partition of X.

The intuitive idea is that the conditional probabilities of reinforcing

events on trial n depend on any

and responses on the th
n

partition

trial..::!

of the equivalence classes

The most general cases as

yet studied experimentally are those for which the conditional probability

of a reinforcing event depends on the response V trials earlier. Such

cases are treated in some detail in .section 5. It is important to empha-

size· that the results in the present section are in no way restricted to

conditionalization on a single previous response; the probability pattern

of reinforcement may depend on any selected sequence of prior responses

and reinforcements.

Definition 4.2.

=(n) = ~j there is an x inXandaj such that

~ = [xl InA. \n- J,n

It is immediately obvious thaton the

__ (n) is the finest experimenter's partition of X which we can use

th
n trial.

For every n, (n) is ~ partition of X.

A partition of a non-empty set X is a family of pairwise disjoint,
non-empty subsets of X whose union is equal to X.
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We now use :=::(n) to define the general notion of an experimenter's

partition H(n), but for this definition we explicitly need the notion

of one partition of a set being finer than another. (The definition is

sO phrased that any partition is finer than itself.)

Definition 4.4. If a and ci3 ~ partitions of X, then a
is finer than t8 if, and only if, for every set A in a
a set B in t8 such that AS B.

We then have:

there is

Definition 4.5. H(n) is an experimenter's partition of X (at

trial n) if, and only if, H(n) is ~ partition ~ X and 3n) is

finer than H(n).

Finally, we need a lemma which provides a recursive equation for

p([x]) in terms of a given experimenter's partition on trial n.
n

Notice that (iv) of the hypothesis of the lemma is a condition con-

.trolled by the experimenter, not by the sUbject.

Lemma 4.6. Let H(n) be ~ experimenter's partition of X. Let

(i)

(ii)

(i:l,i)

(iv)

I] E H(n)

[x] SA. nE
k

()I]
n J,n ,n

P(A. n[x] 1»0J,n n-

P(Ek I A.. n [x] 1) = P(E \ n).,nJ,n n- k,n "
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Then

Proof: By (ii) of the hypothesis

p([x] ) = P(Ek () A. () [x] 1)'n In J,n n-

whence:;

p([x]n) = P(Ek IA. n[x] l)P(A. [[x] l)P([x] 1)'Jln J,n n- J,n n- n-

Applying (iii) and (iv) to the first term on the right and Definition

2.7 to the second, we obtain the desired result. Q.E.D.

We are now prepared to state and prove the uniqueness theorem. Regard-

ing the notation of the theorem it may be helpful to keep in mind that

q. 1 is the a priori probability of making response j on the first
J,

trial, and
l'T1k,n

is the conditional probability of reinforcing event

k on trial n given the event ~ of an experimenter's partition H(n).

It should be obvious why we use the notation q. 1 rather than p. 1 (and
J, J,

at the beginning of the proof
~j,n

rather than P ) • namely, the
xj,n '

function p is defined in terms of the measure P whose unique existence

we are establishing.

Theorem 4.7. Let X be an r-response space and let e be a real

number in the open interval

that-.--

(0,1), ~ let the numbers

q. _ > 0
J,J. -

q. 1J,
be such
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.~ every n let H(n) be ~ experimenter's partition of X, ~ let

Y be.~ function defined for every nand k and every I) EH(n) such

that

Y k > 0I) ,n -

Then there exists ~ unique probability measure P on 68(x) such that

(i) < x,p,e > is a linear model of simple learning,

(iii) Yl)k,n = P(Ek,nll)

(iv) If I)EH(n). and W is an n-l cylinder set such~ WS;;Tl

and peW) > 0 then

peEk II).,n

Proof: We first define recursively a function q intuitively

corresponding to

(l)

p, i.e., o. = p. •
"XJ,n xJ,n

(2)

where 5

o. = (l-e)o, l + e 5(j, C(x,n-l» + eo. l 5(0, c(x,n-l»,
""X.J,n ""XtJ,n- ""XJ,n-

is the usual Kronecker delta function:
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'(j,k) • {: :

j ; k

j ~ k ,

E(x,n) ; kif, and only if, [x]n c;Ek n',

(In effect, (2) combines all three axioms of Definition 3.1 into one to

provide this recursive definition.)

For subsequent use we prove by induction that

(4)

For n; 1, the proof follows at once from (1) and the hypothesis of the

theorem that

L'l",1; 1.
j xJ

Suppose' now that

La ;1.
" "Xj,n-l
J

There are two cases to consider. If X€ R for some k ~ 0 then
K,n

from (2) and (3) we have at once:

L ~j,n
; L.(l-e)~. 1 + e

j j J,n-

; (l~e) 2;= ~j,n-l + e
J

; (l-e) + e

; 1.
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If' x € EO ' then,n

LC1 j = L:[(l-e)a. 1 + eo. 1]. ""X ,n. ":KJ,n- ""XJ,n-
J J

Following Lemma 4.6 we now recursively def'ine p([x] )
n

in terms

of'q and the function 7 introduced in the hypothesis of the theorem.

P([x]l) = q 7j,l 'llc,(x,l),l

p( [xIn) = 71] C( x,n) ,n '<xj' ,n-l p( [x]n_l)'

where

[x] s;;,A.,
n J ,n

We first need to show that the function P may be extended in a well­

defined manner to any cylinder set C':;) To this end we prove by

:./ In connection with the remarks in Section 2 on cylinder sets it may
be pointed out that it is impossible to extend P in a well-defined
manner to every subset of X.
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induction that if

c: If
i:l

then

(6) p([x.] )
l n

l

When the proof is trivial. Without loss of generality we

such

that the family of sets

may assume than nl < n
2

; i.e., there is a positive integer t

that n
l

+ t : n
2

. We proceed by induction on t. But first we observe

[x.] constitutes a partition of C, as does
l n

l

the family of sets [Yi]n +t' and the latter is a refinement of the
1

former. Whence for each set [xi] there is a subset I of the
n

l

first m
2

positive integers such that

[x. ]
l n

l
= U

h EI

And on the basis of (7) to establish (6) it is obviously sufficient to

show that

p([x i ] : L P([Yh] t·
n l hEI nl +

Now if t = 1 then
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Since for h € I, [y 1 ~ [xi ln ' we infer from the above and (5) that
h nl l

= p( [x. 1 )
l n

l

by hypothesis on 7

by (4).

Suppose now that (6) holds for t. Then there are sets 1
l

and 1
2

of positive integers such that

~

.Since for each g € 12 there is an h in 1l such that
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similarly to the case for t = 1 we infer that

= p([x.] ),
~ nl

by our inductive hypothesis, which completes the proof of (6) and

justifies the extension ofP to any cylinder set: if

then

m

C =U
i=l

[x.] .
~ n

(8)

We now -"ant to show that

m */p(C) = LP([X.] ) ,-
. 1 ~ n
~=

P is a probability measure (in the

sense of Definition 2,1) on the field of cylinder sets of X, Since

the functions q and r are non-negative it follows at once from

In using throughout this paper the notation

we always assume the sets [xi]n are distinct; otherwise the

extension ofP would be incorrect,
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(5) and (8) that Axiom Pl is satisfied, i.e., for every cylinder set

C, p(c) ::: o.

Now it is easy to select a subset Y of X such that

x = U [x l l ,
XE Y

whence by virtue of (5) and (8)

= L q. 1 L :r"k,l
j J, k 'I

= 1·1

= 1,

which establishes Axiom P2.

To verify Axiom P3, let Cl and C2 be two cylinder sets such

that Cl n C2 = O. Without loss of generality we may assume they are

both non-empty n-cylinder sets, and we may represent them each by

C
l = V- [xilni=l

m
C2 = U2

[~ln'
h=~+l

and by hypothesis, for each i=l, ...,~ and h=~+1, ... ,m2
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[x. J (l [X
h J = O.

1 n n

Whence

m
2

= LP([x.J)
1=1 l n

~
= L. p([x. J )

'1 l n1=

Now for Axiom p4. Let < C
l

,C
2

, ..• ,C
n

, ... > be a decreasing

sequence of cylinder sets, that is,

C cC
n+l- n

and

(10)

Suppose now that

00n Cn = O.
n=l

(11) lim
n->oo

p(C ) I 0 •
n

(This limit must exist since the sequence is bounded and monotone

decreasing. The monotonicity follows from (9) and Axioms PI and P3.)
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In fact, let

lim p(C) = s > O.
n

n-->oo

Hence for every n

and it follows at once from Axioms PI-P3 that

(12) C ,;, o.
n

We now use a top610gical argument to show that

00n C ,;, 0,
n=l n

contrary to (10). The idea is simple; details will be omitted to

avoid too serious a diversion. We know from Section 2 that X is

the countably infinite product of the finite set Z(r). Hence every

cylinder set of X is compact in the product topology of the discrete

topology on Z(r); in particular for every n, C
n

is compact. Also

by virtue of (12) every C· is non-empty. But it is a well-known
n

theorem of topology that a decreasing sequence of non-empty compact

sets has a non-empty intersection, which contradicts (5). Thus our

supposition (n) is false and P satisfies Axiom p4.

Finally, the unique extension of P to the Borel field ~(X)

follows fr6m the standard theorem on this extension (see [10], p. 17).

The verification that the measure P defined by (5), (8) and the

extension just mentioned has properties (ii)-(iv) 6f the theorem is
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straightforward and will be omitted. Q.E.D.

We now want to show that the probability of a given response On

trial n depends only on the probability of the response on the first

trial and the sequence of preceding reinforcing events, and is independent

of the sequence of preceding responses.

Theorem 4.8. If W
n

is an

and p(W) > 0, then
n

P(A. llW) = P(A. ll[x]).J,n+ n J,n+ n

Proof: The proof is by induction on n.For n=l the proof

follows immediately from the axioms. Suppose now that the theorem

holds for n. There are three cases to consider: x E E . 1;
J,n+

x EE
O

1; XE E
k

1 with k,J j and k,J O. Since the proof for,n+ ,n+

all three cases is the same we consider only the last one.

may be of the form

Now W 1n+

(1)

or

(2)

W ()E
n -k,n+l

W nEk lnA., l'n ,n+ J ,n+

The proof is similar for (1) and (2), so we shall consider only (2).

We then have the following equalities:
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P(A. 2!W n Ek In A., 1)J,n+ n ,n+ J ,n+

peEk 1 nA. , 1 n[x'] ),n+ J ,n+ n

by elementary theorems about
conditional probability

peEk 1 riA. , 1 n[x'] )
= L. (1-8)P(A . 1 \[ x '] ) ~~'::.n+:"=--;;--iJf--""n=-+=--;;-;c;--T'n=-

[x'] ~w J,n+ n P(~,n+l (IA j ',n+l nWnJ
n n

by Axiom 2

= (1-8)P(A. llW)J,n+ n

= (1-8)P(A. llw )J,n+ n

L
[x'] sW

n n

peEk 1 nA. , 1 n[x'] ),n+ J ,n+ n
peEk InAj , Inw J.1u+ ,n+ n

by inductive hypothesis

by summing over W
n

= (l-e)p(A. ll[x])
J,n+ n

by inductive hypothesis

by Axiom 2 and hypothesis that
xeEk 1· Q.E.D.,n+

It follows immediately from this theorem that the three axioms (of

Definition 3.1) hold for such cylinder setsW. Since this result is
n
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sometimes useful, we state it as a corollary.

Corollary 4.9. If' Wn is ~ n-cylinder set such that Wn c,;[":E]n

and P(W
n

) > 0, then:

(i) if W = W. InE.- n n- J,n

P(Aj,n+l1wn) = (l-e)p(A. IW 1) + e
J,n n-

(ii) if W = Wn _l nEk,n with k ~ j and k ~ 0,n

P(Aj,n+lIWn) = (l-e)p(A. IW 1)J,n n-

(iii) if W = W nEn n-l O,n

P(A. llW) = P(A. !W 1)'J,n+ n J,n n-

The next two theorems show that the linear model possesses the

property which Luce [12] has designated "independence of irrelevant

alternatives." That is, given that the response made on trial n of

an experiment belongs to a subset T of the set of possible responses,

the relative probabilities of any two responses in the subset are the

same as their relative probabilities in the complete set. The first of

the two theorems guarantees this property for the conditional probabilities

Pxj,n and the second for the unconditional probabilities p. .
J,n

Definition 4.10. If T~N(r) where N(r) is the set consisting

of the first r positive integers then



PT(A. I[x] 1) = P(A. [[x] In U A., ).
J,n n- J,n n- ., T J ,n

J E

Theorem 4.11. If JET and .~T P(Aj , ,n I[x]n_l) > 0, then
J E

PT(A. I [x] 1)J,n n-
= p(Aj,nl [x]n_l)

t= P(A., I[xl 1)
., T J ,n n-
J E

Proof: By definition of conditional probability,

P(A. I[x] InJ,n n- u
j' E T

A., )
J ,n

U
P(A. n[x] I n J.'ET A., )

= J,n n- J ,n

p( [x] 1 n U A.. )
n- j' E T J ,n

Distributing the set unions in the numerator and denominator, this

last expression reduces to

P(A. I[x] 1)J,n n-

L P(A j , ![x] -1)
j' E T ,n n

Definition 4.12. If T~N(r) then



Theorem 4.l3. If JET and
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=j' E T
P(A., ) > 0, then

J ,n

The proof is analogous to that of 4.ll.





5. Recursive ~xpression for Moments.

In this section we derive a recursive expression for the moments

of p. (i.e., P(A. I[x] 1))' The results are then used in the
xJ,n J,n n-

analysis of various special cases which have been studied experimentally.

We first need to introduce a notation for the partition of the sample

space X into sets agreeing .on the first n trials, n responses or n

reinforcing events.

Definition 5.1.

x(n) = {[x] : x € X I
n

~(n)

We formally define the moments of Pxj,n

Definition 5.2.

as follows:

= >-.. pV(A. I[x] l)P([x] 1)'
[x]n_l€ x(n..J..) J,n n- n-

The first moment is simply Pj,n' that is,

= peA. ).
J,n

Naturally the variable v ranges over positive integers. The general

recursive expression we first establish is computationally unworkable,

but it specializes in different directions to something manageable. Note
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that in this general expression the evaluation of a . 1v, J,-n+
depends

upon summing over the partition x(n). Generally speaking, any expres-

sion which depends in this way on the partition x(n) cannot feasibly

be computed for any n beyond the first few positive integers.

Theorem 5.3.

a .
v,J,n+l

= (1_6)v a . + > [i:(1.)(1_6)V_iEfpxV~in
v, J,n [x] 1 € X(n-l) i=l J,

n-

. P(E. n [x] 1) + (l-(l-e)v)pv. P(EO n [x] 1)].J,n n- xJ,u,n n-

Proof: By Definition 5.2

(1) 2::::= pV(A. 11 [x] )p( [x] ).
[x] €x(n) J,n+ n n

n .

Since for every x in X and for every n there is exactly one j'

and one k such that

[x] <;;.A., nEk '
n J,n ,n

we may re-write the right-hand side of (1) to obtain:

(2) a . 1 = eLL pV(A. l[[x] lnA., ()Ek ).
v,J,n+ x(n-l) j' k J,n+ n- J,n ,n

. p([x] lrlA., () Ek ).
n- J,n ,n

(For brevity in (2) and hence forth we write: L. rather than:
x(n-l)
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> .) Applying to (2) the axioms of Definition 3.l we
[X)n_l eX(n-l)

infer that

a . l =v,J,u+
C

X(n-l)

[(l-S)P(A. I[x) l))v p( [x) lilA., OEk ) +J,n n- n- J ,u,u

pV(A. /[x] l)P([x) lrlA
j

, ()E
O

)l
J,n n- u-,n 'UJ

Since the various terms of the right-hand side of (3) which are

raised to the power v are independent of the summation over j' we

may eliminate this summation, using the fact that for any Y S;;X

Moreover, we may use the following binomial expansion for the first

term on the right of (2), writing here and hereafterp. for
xJ,n

ptA. I[x) l):J,n n-

(:)(l_S)V-i Si v-i
1 Pxj,n

Finally, adding and subtracting the term

(l_S)v pV. p([x) l()E
O

),
xJ,n n- ,n
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we infer from (3) as the result of these three changes

(4 ) a = L
v,j,n+l x(n-l) [

(1_6)V pV. p([x]. In E. ) +
xJ,n n- J,n

v
L
i=l

(V)( )V-i i v-i ( )
i 1-6 6 p. P [x] 10 E. +xJ,n n- J,n

L(1-6r pV. p([xl,OR )+(1_6)v pv. p([x] lnEo )
k,£j xJyil "h-_ Kyil xJ,n n- ,n

k~O

+ (1_(1_6)v)pv. p([x] l()E
O

)J
xJ,n n- ,n

Combining now the first, third and fourth terms on the right of (4) and

spmming k out, ~e get:

(5) = L
x(n-l)

v .
L C') (1-6) V-l
. 1 ll=

Since the first term on the right of (5) is simply

have our desired result. Q.E.D.

(1_6)V a . ,we
v,J,n

It is natural to ask what is the most general special case for

which we can derive a recursive expression for the moments that doe.s

not depend on the partition X(n-l). The following corollary is

addressed to this question. We restrict the number of responses to two;
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we make the conditional probability of reinforcement depend only on the

immediately preceding response (condition (ii) below), and independent

of the trial number «iii) below); and we make the probability of EO

non-contingent, that is, independent of previous responses. Note that

(ii) requires the notion of an (n-l)-cylinder set.

Corollary 5.4. If

(i) r = 2

(ii) if "W is an (n-l)-cylinder set and p(WnA. ) > 0 then
--"---- -- -- J, n

then

(rrll - rr21 )a . 1 1 .
V-1.+ , ,-n

by the theorem, we first note that on the specialized

givenProof; To simplify the recursive expression for a
v,l,n+l

hypothesis of

the corollary



and

P(EI n [xlI) = P(EI nU A. f) [x] 1)
,n n- ,n", J,n n-

J

Using (ii) and (iii) of the hypothesis and the fact that

we get:

P(EI n[xlI) = [1(llP 1 + 1(21(1-p 1 ) ]p( [xlI)',n n- x J>n. x ,n n-

Substituting these two results in 5.3 we have:

a = (l_e)v a 1 + L [z (:')(l_e)V-i
v,l,n+l v, ,n x(n-l) i=l l .

i v-i
e Pxl,n

L. PvI p([x] 1)'
x(n-l) x ,n n-

Applying Definition 5.2 to the right-hand side we infer:
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a
v,l,n+l

= (l_e)v a
vyl,n

rr la . 1 - rr21
a ill + (l-(l-e)V)rroa 1 .2 v-J., ,n v- + , yn v, ,n

Simple rearrangement of terms of the right-hand side immediately yields

the desired conclusion. Q.E.D.

As a second corollary we want to derive a general recursive

expression for

X(n-l). It is

a - p which does not depend on the partition
1, j,n - j,n

possible to obtain a recursive expression in terms of

an arbitrary experimenter's partition. However, practically no

asymptotic results can be derived at this level of generality, so

that it is convenient to specialize to conditionalization of the

probability of a reinforcing event to a single previous response. To

this end, we introduce the notation:

Definition 5.5. If n > V then

Thus cjk(n,v) is the probability that reinforcing event k will

occur on trial n given that response j occurred V trials earlier.

It is understood throughout that 'V' is a variable ranging over non-

negative integers. The probabilities cjk(n,v) are ordinarily com­

pletely determined by the experimenter. If V > 0 we say that there

is a lag V in the probability pattern of reinforcing events. The

corollary covers the case where the reinforcing events l, ••. ,r are

contingent with lag, and the occurrence of no reinforcing event on
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trial n, that is, EO ,has a fixed probability independent of pre­
,n

viousresponses or reinforcing events.

An obvious but cumbersome definition formalizing use of the

Definition 5,6. A linear model X = < X,P,8 > satisfies the

simple contingent condition with lag and with non-contingent EO trials

if, and only if, (i) for every n there is !: unique V such that for

all

then

j, k and W if W is an (n-l)-cylinder set and P(WilA, ) > 0
J,n-v

peEk IWnA, ) = cJ'k(n,v),,n J,n-v

(ii) there is a number such that for all j, n, and V with n > v,

The phrase in (i) of the definiens "for every n there is a unique

v .•. II indicates that we are permitting V to depend on n, that is,

the amount of lag may vary from trial to trial. The lag could be 1 on

odd-numbered trials and 2 on even-numbered trials for instance.

Corollary 5.7. If the simple contingent condition with lag and

with ~-contingent EO trials is satisfied, then

PJ',n+l = (l+8cO-8)p. + e Lc.,.(n,v)p., ,
J,n j' J J J ,n-v
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where y depends on n.

Proof: We have from Theorem 5.3 that

(1) p =a = (1-6)p. +~ 6P(E. n[x] 1)
j,n+l 1,j,n+l J,n x(n-i) J,n n-

+ (1-(1-6») ::L:. p. P(EO () [x] 1)'
x(n-l) xJ,n ,n n-

Applying (ii) of Definition 5.6, summing over the partition x(n-l)

(since

~
x(n-l)

P(E. n[x] 1) = P(E. n U
J,n n- J,n x(n-l)

[x] 1) = P(E. )n- J,n

and rearranging terms, we have:

(2) p. 1 = (1+6cO-6)p. + 6 P(E. ).
J,n+ J,n J,n

We obtain the desired result from (2) by using (i) of 5.6 and observing

that

ptE. ) = P(E. nU A., )
J,n Jjn. I J ,n-v

J

= L P(E . IA. , )P(A. , )
j' J,n J ,n-y J ,n-y

=L c.,.(n,y)p., .
j' J J J ,n-y

Q.E.D.
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In the special case for which cj.j(n,v) is independent of n, we

can derive from the recursive expression of Corollary 5.7 various experi-

mentally useful relations involving the Ces~ro means (arithmetic means

over trials) of the response probabilities. These means are defined as

follows:

Definition 5.8.

1 N
= N 2:::"PJ' n'

n=l '

We restrict ourselves here to one asymptotic theorem, for which

v is fixed as well as independent of n. To make clear what we mean

by V being constant or fixed, we may describe an experiment in which

it is not: on each trial the experimenter uses lag 1 with probability

1
2

and lag 2 with probability 1
2' In this case the lag would be inde-

pendent of n but not fixed.

Theorem 5.9. Let the simple contingent condition with lag and with

non-contingent EO trials be satisfied, and let the lag V be fixed

and independent of n (with lag~~ the first V trials) • Then in

order for the limit of p.(N), for
J -

j=l, ..• ,r, to exist ~ N. --> CD and

to be independent of the initial probabilities p. l' it is necessary
J, --

and sufficient that unity be ::: simple~ of the matrix

Co + cll
c

21
c
rl

c12 Co + c22 cr2
C = . . . .

clr c
2r Co + crr
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Moreover, if the~ of ii}N) does exist and is independent of

p. IJ,

lim Pj(N) = A. j
N-tro

where the A.
j

are the unique solutions of the r+l equations

(l-cO)A.. = L: c., .(V)A..,
. J j' J J J

for j=l, ... ,r

= 1.

Proof: If we sum both sides of 5.7 from I to N, and then divide

by N, we obtain:

_ e v
(l+eCO-e)p.(N) + N L. c., .(0)= p.

J j' J J n=l J,n

N-V
+ -N

e L: c j ' .(V) L p .. , J I J,n
J n=

= (l+ecO-e)p.(N) + ~ Le., .(O)P.(V)
J j' J J J

_ e . N
+ eL"c.,.(V)P.(N)-N LC.,.(V) ~ PJ.,n·

j , J J J j' J J n=N-v+1

Clearly as N -t OC



I

lim ~ L c., .(O)P.(v) = 0
j' J J J

1 . 8L:c.,.(V)
lm N j' JJ

N

L:=. Pj,n = O.
n=N-v+l

Consequently as N --> 00, we have r linear homogeneous equations,

writing P
j

for lim p .(N):
N-->oo J

which reduce to:

L: -e c. , . (V)p . ,
j' J J J

(1) L ()-= C. I. V p.,
j' J J J

for j=l, ..• )r.

The r homogeneous linear equations (1) have a non-trivial solution

if and only if the rank of the matrix C-I (where C is defined as

in the statement of the theorem and I is the identity matrix) is

less than r. That the rank of C-I is less than r is easily seen

by adding every row to the first, thereby obtaining a row of zeros.

Clearly the limit of Pj(N) exists and is independent of p. 1J)

if, and only if, there is a unique non-trivial solution of the r+l

equations (1) and ~ P
j

= 1. To complete the proof of the theorefu

we thus need to show that in order for there to be a unique non-trivial

solution it is necessary and sufficient that the matrix C have unity
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as a simple root. Now it is well known ([7a], p. 111) from the

literature of Markov processes that the r+l equations

r
(2) Pj = LP. c ..

. 1 l lJl=

)::=. Pj = 1,
j

where (Cij ) is the matrix C, have a unique solution if and only if

unity is a simple root of the matrix C. Moreover, the r equations

(1) are equivalent to the r equations (2) since

Thus the proof of our theorem is complete.
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6. Some Random Variables.

In this section we define some useful random variables and assert

some obvious general theorems about them. Certain theorems of experi­

mental interest are proved in Section 8 for special conditions of

reinforcement.

Since this report is partially methodological we give a rather

explicit treatment of several elementary questions. To begin with, we

recall some familiar facts about random variables. A random variable

is a (measurable) function defined on the sample space.~/ The common

notation for the probability that a random variable U has a certain

value u is ordinarily devoted by:

(1)

and this probability is equal to the probability

p(tx: XEX & U(x) ~ u}).

For the expected value of a random variable U 7 we use the standard

notation E(U).

A random variable is discrete if the set of its possible values

is countable, Le., either finite or denumerable. If U is a discrete

random variable then its discrete density is the function q such that

for any possible value u of U

q(u) = p(U = u) .

Problems of measurability will not arise here.
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All the random variables considered here are discrete. We shall not

introduce an explicit notation for their discrete density functions, but

it is well to remember that the quantities computed, e.g., expected

values and variances, are defined with respect to these density functions.

Corresponding to events A
j,n

variables denoted by corresponding

Definition 6.1. If x E X

and E
k,n

letters.

we now introduce random

=

\

10A. (x)
-J,n

and

if x EA.
J,n

otherwise

if x €E
k ,n _

otherwise

We shall also be interested in the sum of random variables A.
-J,n

Definition 6.2. If x EX

n+N
=L

m=n+l

Some obvious general results concerning these random variables

are formulated in the following theorem. The main object of the

theorem is to relate expected values and variances to probabilities

of events in the sample space.
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Theorem 6.3.

(i)

(ii)

(iii)

(iv)

E(A. ) = P(A. )
-J,n J,n

Var (A. ) = P(A. ) (l-P(A. ) )
-J,n J,n J"n

E(A. A. 1 •• ·A. ) = peA. nA. In ... nA. )
-J,n -J,n+ -J,n+r J,n J,n+ J,n+r

(v) E(§.j N),n,
n+N

=L
lli=n+l

P(A
j

),m

(vi) Var
n+N

(s. N) =~ P(A. )(l-P(A. )) + 2
-J,n, lli=n+l J,m J,m

Proof: A few remarks will suffice.

(iii) follows from the equalities:

(i) and (ii) are obvious.

var(A. ) _ (l-P(A. ))2 peA. ) + (O-P(A. ))2 (l-P(A. ))
-J,n J,n J,n J,n J,n

_ [l-P(A. )]P(A. ).
J,n J,n

(iv) follows at once from the fact that the product of the various

possible values of the random variable is zerO except when they all have

the value one. (v) may be inferred from (ii) and the familiar fact that

the expected value of a sum of random variables is equal to the sum of

their expected values. Finally, (vi) is a consequence of (iii) and the

familiar relationship between the variance of a random variable which

is a linear function of certain random variables and the variance and

covariances of these latter random variables (cf. [7]). Q.E.D.
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7. Some General Limit Theorems.

It is of intrinsic interest to know how responses and reinforcing

events are related under very general conditions of reinforcement. The

following four theorems describe in a precise way the kind of asymptotic

matching relationships which obtain between them.

The first theorem asserts that for a given outcome x of an experi-

ment the li~ting ratio of the sum (With respect to n) of Pxj,n to the

sum of E. reinforcements is 1, provided that there are no EO trials
J

and that E. trials do not stop occurring after some n. (It does not
J

matter how rare the density of these Ej occurrences is, so long as

there is an infinite number of them.)

Theorem 7.1. If X~EO,n for every n and if
N

L E. (x)
n=l -J,n

diverges ~ N ..... m, then

lim
N ..... oo

exists and is equal to 1.

Proof:

our axioms:

(1)

Since x i EO by hypothesis, we have immediately from
,n

Px,n+l = (l-B)p + BE (x)x,n -n

(we have dropped the subscript j throughout the proof.) Summing both
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sides of (1) from 1 to N, we get:

N
2-1' +p - p
n=l x,n x,N+l x,l

We may derive immediately from (2):

N

~Pxn
n=l '
N

L E (x)
n=l n

= 1 +
Px,l- Px,N+l

N
8 L~n(x)

n=l

,

provided only that we choose N large enough. to have E (x) = 1 forn
N

at least one n < N. Since L E (x) diverges as N-> 00 the second
-nn=l

term on the right-hand side of (3) has zero as a limit as N ->.00 and

the theorem is proved.

The second theorem asserts a corresponding result for the ratio

of the sum of the mean probabilities peA. ) of responses and the
J,n

sum of the mean probabilities peE. ) of reinforcements. It should
J,n

be noted that if the quantity

(1 )
1 N
-N ~ peE. )

n=l J,n

is bounded away from zerO as N ->00, then the theorem holds as well

for the Cesaro mean probabilities of responses and reinforcements; it

is not necessary that the limit of (1) exist.
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Theorem 7.2.

as N -> co, then

If p(
00

U
n=l

and
N

L)(E. )
n=l J,n

diverges

lim
n->oo

N
L peA. )
n=l J,n

N
L peE. )
n=l J,n

:::;: l~

Proof: By Theorem 5.3 and the hypothesis that the probability of

EO trials is zero,

(1) PJ',n+l = (l-e)p. + ep(E. ).J"n J,n

The same sequence of operations is applied to (1) as to the corresponding

equation of the previous proof. Q.E.D.

We now turn to the consideration of the same kind of theorems when

the conditions of reinforcement do not assign zero probabilities to

EO trials. For this purpose we introduce some notation whose intuitive

meaning is clear. If x is a possible experimental outcome, i.e., a

sequence which is a member of X, then x* is the subsequence of x

which results from deleting all EO trials and no others. Clearly

x* is a well defined sequence only if the number of non-EO trials

in x is infinite; this condition is equivalent to the divergence of

N r
the sum L L ~ k, n (x) as N -> 00. Formally we thus have:

n=l k=l

Definition 7.3. If x,y E X and the sum
N r

L LE (x) diverges
n=l k=l -k,n



-57-

as N .... CO then x* = y if, ~ only ifJ there exists ~ increasing

sequence ~ of positive integers such that for every n

(ii) ~O,n(Y) = 0

(iii) g ~OJn(x) = 0 then n is in the range of ~.

Condition (iii) of the definiens simply insures that the subsequence

y generated by ~ from x does not omit any non-EO trials.

Analogous to the first theorem we then have a corresponding limit

theorem for the sUbsequence x*.

Theorem 7.4.- If
N
L. E. (x)
n=l - J,n

diverges as N .... 00, then
~

lim
N .... co

=1.

Proof: In order to apply the argument used in the proof of

Theorem 7.1, we need to prove that

(1)
---------- _... _--_.

But as in the case of 7.1, (1) follows at once from our basic axioms

and the fact that for all n, x* iEO • Q.E.D.
,n

The analogue of Theorem 7.2 requires in a rather interesting way
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direct consideration of countable intersections and unions of cylinder

The theorem concerns the mean probabilities andsets.

P(E': ), where
J)n

A*
j)n

and E*
j,n

P(A': )
J,n

are events yet to be defined in an

exact manner but whose intuitive significance should be clear. It

will be convenient to define at this point the set F of sequences

with only a finite number of non-Eo trials. F is the countable

union of a countable intersection of cylinder sets. We first define

the cylinder sets F (k).
n

Definition 7.6.

F (k) ;{x: XEX &E
O

(x) ~ 0 and
n - In

for n < m < n+k, E!o,m(X) ~ 11 .

Evidently F (k) is the set of all sequences whose th trial isn a nan-n

EO trial and whose next k trials are Eo trials. F is defined
n

simply as the countable intersection of sets F (k).n

Definition 7.7.

F
n

00

n
k~l

F (k).
n

Clearly F
n

is the set of all sequences whose last non-EO trial was

trial n. Finally, then, we define F as the countable union of sets

F , and obviously F is the set of sequences which have a finite number
n

of non-EO trials. For completeness and explicitness we need the set FO



-59-

to define F. As expected F
O

is the set of all sequences which have

nothing but EO trials; it is, like any Fn for n:::: l, a countable

intersection of cylinder sets.

Definition 7.8.

Fa = {x: for every n, ~O,n(x) = l} .

Definition 7.9.

00

F = U
n=O

F .
n

We may now use F to define A*
j,n

and E
k
* , as well as
,n

[x]*.
n

Definition 7.l0.

A"': ='x: X€X &xiF &A. (x*) = l}.
J,n '- -J,n

Thus A*: is the set of all sequences which have the
J,n

th
on the n non-EO trial.

Definition 7.ll.

E* =lx: X€X &xiF &!kn(x*) = l}.k,n ,

response

Clearly R*-k,n

event on the

is the set of all sequences which have the

th
n non-EO trial.

reinforcing

Definition 9.l2. If x iF then
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[XJ:~{Y:Y€X&yiF& for every m<n

Thus [xJ* is the equivalence class of sequences which have the same
n

first n non-EO trials that x does. Finally, we define x*(n)

in the expected manner.

Definition 7.13.

It is obvious that for each n, x*(n) is a partition of X'UF, where

X is the sample space. Clearly sequences in F which do have n

non-EO trials could have been included in [xJ* for some x, and thus
n

in the partition x*(n), but it is technically simpler to exclude them.

The simplest restrictive hypothesis under which the final theorem

of the four may be proved is that the probability of the set F of

sequences with only a finite number of non-EO trials is zero.

then

Theorem 7.14. If P(F) ~ 0
N

and L peE: )
n~l J,n

diverges as N->ro

lim
N -> 00

== 10

Proof, To apply directly the method of proof of 7.1 and the other
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two theorems (7.2 and 7.4), we need to show that

(1) P(A~ 1) = (l-e)p(A~ ) + 8P(E~ ).J,n+ J,n· J,n

We may regard our theorem as complete when we have established (1).

In terms of the notation defined above, the whole sample space

X may be represented by:

x = U
x*(n)

On the basis of (2) we have:

[x]*UF.
n

P(A~ 1':) = P(A~ 1 n( U [x]* UF»
J,n+ J,n+ x*(n) n

=L
x*(n)

P(A~ In[x]*)+P(A~ 1M).J,n+ n J,n+

By virtue of the hypothesis that P(F) = 0, the second term on the

right is zero, and we get:

peA;; 1) = :L:: P(A~ In [x]*).
J,n+ x*(n) J,n+ n

Now as in the case of the proof of 7.4 it is obvious that

(4 ) P(A~ 11 [x]*) = (l-e)p(A~ I[x]* 1) + 8E (x*).J,n+· n J,n n- . -n

We use (4) to operate on (3):
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; 'L=.

x*(n-l)

~
x*(n-l)
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I:: > peA': It A':, () Ek* n [x]* 1)
j' k~O J,n+ J ,n ,n n-

peA':, nEk* n [x]* 1)J,u ,u n-

[(l-e)p(A~ I[x]* l)P([xj* 1) +J,n n- n-

epeE': n [x]* l)P( [x]* 1)]
J.l'nn- n-

which establishes (1). Q.E.D.

It will be use:ful to sUl!lJllarize the experimental implications o:f

the :four theorems proved in this section. By virtue of 7.1 we can

predict that for any experiment in which EO trials do not occur,

the proportion of A. occurrences will approach the proportion of
J

Ej occurrences for each individual subject as the number of trials

becomes large. Similarly, using 7.4 we can predict the same re~t

,

:for any experiment in which EO trials do occur, provided that we

delete the EO trials from the subject's protocol before computing

the proportion of responses and reinforcing events. Corresponding

predictions concerning mean proportions o:f A
j

responses and E
j

reinforcing events for populations o:f subjects follow :from 7.2 and

7.14. Experimental applications of (.1 and 7.2 are illustrated in [5].
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8. The Non-Contingent Case.

Of the various special cases that may be derived from the general

linear model, the constant event-probability, non-contingent case is

the simplest from a mathematical viewpoint and also has been the most

studied experimentally. We can conveniently illustrate numerous

derivational techniques and at the same time assemble a variety of

experimentally useful results by giving a detailed analysis of this

case, which we now define in the obvious manner.

Definition 8.1. A linear model X; < X,P,8 > satisfies the

simple, non-contingent condition if, and only if, for every k there

is a lt
k
~ that for every n ~ every I) in an experimenter's

partition H(n) if p(l)) > 0 then

and

P(EO ); o.,n

In order to simplify our notation, we shall adopt the following

conventions throughout this section. We shall be concerned with pro-

babilities and various statistical quantities associated with some

arbitrarily selected response A. (and its reinforcing event E.). When
J J

only A
j

is explicitly involved in a derivation, we shall drop the

subscript j, yielding A
n

for the event IiA.
J

occurs on trial n ",

P(An ) or Pn for "probability of A
j

on trial n," and so on. Also,

in the interest of brevity, we shall omit from the numerous theorems
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to follow the standard hypothesis nif X = < x,p,e > is a simple, non-

·contingent, linear model, then-no

Moments of the Response Probabilities

.A recursive expression for the raw moments 0:
v,n

of the response

probabilities is obtainable simply by specialization of Theorem 5.3.

Theorem 8.2. If v is ~ positive integer, then

0: = (l_e)v 0: +
v,n+l v,n

v 0 •

rr :LJ:) (l-e )V-l rf 0: 0

o 1 1 v-l,n
l=

Since the first and second raw moments will frequently be required in

later derivations, we include explicit expressions for them here. For

the first moment, we have:

Corollary 8.3.

0: = (1-8)0:
1

+ err,l,n+l ,n

£!: equivalently

= (1-8) p + 8 rr •
n

It can readily be shown by induction that this difference equation has

the solution:

Corollary 8.4.

0: = Pn = rr-(rr-Pl)(1-8)n-l.
l,n

For the second moment we have:



Corollary 8.5.

a = (1_8)2 a + rr[2(1-8)8a
l

+ 82 ],
2,n+l 2,n ,n

and it can be shown by induction that this difference equation has the

solution,

Corollary 8.6.

a
2,n

Asymptotic moments appear so ubiquitously in experimental applications

of the model that it is desirable to introduce special notation for them.

Definition 8.7. If lim a exists, then
n~oov,n

a = lim
v

n ---t 00

a
v,n

It is an obvious consequence of Corollaries 8.4 and 8.6 that for 6 > 0,

Corollary 8.8.

(i) a l = rr,

and

(ii) a
2 = rr [2(1-e)rr+e]

2-6

Taking these results together with the recursive relation of
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Theorem 8.2, we see immediately that asymptotic moments of all orders

exist for this case of the linear model.

Concerning such properties as dispersion, skewness, etc, central

moments are usually more instructive than raw moments. For the

distribution of response probabilities, central moments are defined

in the standard manner:

Definition 8.9. If v is ~ ~-negative integer, then

Ilv n= ~
, x(n-l)

p _p)v p([x] 1)'x,n n . n-

To obtain a useable recursive expression for the

we proceed as follows:

th
v central moment,

=L
x(n)

>
x(n-l)

v
rr[(l-e)p + e-(l-e)p -err] +x,n n

(l-rr)[(l-e)p - (l-e)p - err]vx,n n
,

where we have substituted for Px,n+l in terms of the axioms and for

Pn+l in terms of Corollary 8.3. Expanding the bracketed terms by the

binomial theorem and simplifying, we arrive at

Theorem 8.10. For v > 2 (£! course, ]..La n, = 1 and = a

for all n) ,
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f.L -1 = (1_8)v f.L + :n:(l-:n:) 1(2V )(1-e) v-2 62
f.L 2 +

v,n+ v,n 1 v- ,n

Specialization of Theorem 8.10 yields relatively simple expressions for

the first few central moments.

Corollary 8.11.

[Or, in conventional notation,

·i = (1_e)2
n+l

Asymptotically,

2 2cr + :n:(l-:n:)e ].
n

Corollary 8.12.

and asymptotically,

:n:(1-:n:)e3 (1-2:n:)
f.L 3 = 1_(1_8)3
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Corollary 8.13.

and asymptotically,

The properties of two limiting special cases are immediately apparent.

If 6 = 0, all of the central moments vanish; i.e., for every n, all

density of the distribution of response probabilities is concentrated

at the point p = Pl'x,n
If 6 = 1, the central moments reduce to those

of a binomial distribution; i.e., for all n> 2,

This last relation can be shown to be the solution of a recursive expres-

sian given by Kendall ([9J, p. u8) for central moments of the binomial

distribution. For 6 between zero and unity, the distribution of

asymptotic response probabilities has a smaller dispersion and less

skewness· than a point binomial distribution having the same mean.

Covariance in the Response Sequence

We now derive the doublet, triplet and quadruplet probability,

peA l[) A ), peA 2()A lilA), and peA 3rlA 2nA l()A), whichn+ n n+ n+ n n+ n+ n+ n

may be used to check the experimental adequacy of the model with

respect to sequential effects. It is to be emphasized, for those who

like random variables formulations, that .in~ew of Theorem 6.3 the
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following theorem could just as well be expressed in terms of expecta-

tions of random variables, namely,

E(A A A A).
-n+3 -n+2 -rn-l -n

Our method of derivation may be compared with that which is used when

the random variable approach is followed and expectations are first

taken with respect to a fixed sequence of responses and reinforcements,

for our method appears somewhat more direct and simple from a

mathematical viewpoint.

Theorem 8.14.

(i)

(ii)

(iii)

ptA InA)~(1-e)a2 +ell a
l 'n+ n ,u ,n

ptA 2 11A InA) ~ e 11 ptA InA) + (1_8)3 a l +
n+ n+ n n+ n In

ptA 3 II A 2() A lilA) ~ 611 P (A 2 n A 1 (\ A ) +n+ n+ n+ n n+ n+ n

(1_6)2 e3 11 [(l-e) + 21l]a
l

•
,n
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Proof:

P(A j InA .. ) = I::.. LP(A j InA. nEk f\[x] 1)
,n+ J,n x(n~I) k ,n+ J,n ,n n-

= L:.. [peA. IIA. OE. ()[x] I):It.
j x(n-I) J,n+ J,n J,n n- J

+ L peA. IIA. OEk 0 [x] I)(I-d]·
k ~ j J,n+ J,n ,n n- J

=L. [{I-8)P(A. ([x] 1) + 8:1t.]P(A. I[x] I)P([x] 1)
t .). J,n n- J J,n n- n-X\n-I

= (I-8)a2 · + 8:1t. a l . .
,J,n J ,J,n

As for the secOnd part,

P(A.· OA. i1A.) = L LLP(A. OA. OE. nA. liE ()[xh)
JJn+2 JJn+I J,n X(n-I) k k' J,n+2 J,n+I k ,n+I J,n k,n -1:

= L :L[(I-8)P(A. IIA. nEk i1[x] 1) + 8:1t.]P(A. lOA. OEk \IPc] 1)
x(n-I) k JJn+ JJn ,n n- J J,n+ J,n ,n n-

=8rt.P(A. lOA. ) + (I-8)L. S[I-e)p(A. I[x] 1) + 8]2:1t. +
J JJn+ JJn x(n-I) l J,n n- J

(I_e)2p2(A. I[x] I)(I-d} peA. I[x] I)P([x] ,)J,n n- J J,n n- n-~
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And the desired result follows immediately from the right-hand side.

Finally, we consider the quadruplet term.

peEk' liA. lnA. ()Ek O[x] l)P(A. l()A. (Uk n[x] 1),0+ J,n+ J,n ,ll n- J, n+ J,n ,n n-

~ err .P(A . 20 A . 1 ()A . )+ (l-e) L z:f[(l-e )P(A. 1 1 A. (I Ek (I [x] ,)+ef\.
J J,n+ J,n+ J,n x(n-l) k·~ J.,n+ J,n ,n n-.L J

2 2 }+ (1-6) P (A. liA. \\Ek (l[X] l)(l-rr.) peA. lOA. nEk (l[x] ,)
J,n+ J,nJn n- JJ,n+ a,n ,ll n-.L
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= 81£
j
P(A. 211A. lnA

j
) + (1_8)e2 1£.P(A. 111 A. ) +

J,n+ J,n+,n J J,n+ J,n

(l-e) =- L [(1_8)2 P3 (A. 11 A. nE
k

n [x] 1) +
x(n-l) k J,n+ J,n ,n n-

2
2(1-8)8 1£.P (A. liA. OE

k
O[x] 1)] .J J,n+ J,n ,n n-

P(E
k

IA. () [xl 1) P(A. n [x] 1)',n J,n n- J,n n-

To facilitate analysis of this last expression, let

y=P(A. I[x] 1)'J,n n-

Thus by applying the axioms we now have the term summed over the parti-

tion x(n-l) equal to:

(1-9) L
x(n-i)

2 3 2 2
+ (1-9) [(1-9)9 1£. + 281£. e Tal j

J J , ,n.



-73-

which combines with preceding results to yield the desired expression.

Q.E.D.

The same methods used in the proof of the above theorem may be

applied to obtain terms like

P(A 0 10 A 0' )J,n+ J ,n

where j ~ j'. On the other hand, the cases studied in the theorem are

cases for which the results also hold for the simple contingent model

P(E
k

lAo ) =
,n J,n

To extend the results to this model, merely replace by

Naturally the raw moments a 0 are different, but the same expres-
v,J,u

sions in terms of the moments hold. Unfortunately, for obvious reasons,

this ready generalization does not hold for doublets

(or for triplets or quadruplets).

P(A 0 1 (J A 0 , )J,n+ J ,n

The results of Theorems 8.2 and 8.14 may be combined to yield

asymptotic results in terms solely of 8 and rr
j

for the doublets,

triplets and quadruplets of 8.14. We shall not formulate these results

as a theorem because of their lengthy form. Even the doublet term is

lim
n--7OO

(1-8)rr.[2(1-8)rr. + 8]
P(A 0 1 nA . ) = ---,J'--"""2_-;e,.--.....J,---

J,n+ J,n
2

+ err ..
J
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The covariance of the random variables A and A is of-n -nrm

interest in its own right and also as a term entering into the deriva-

As a preliminary to calculationtion of an expression for the sum

of the covariance, we require the

Sn,N
following theorem concerning probability

of the compound event

Theorem 8.l5.

A nA
n n+m

;peA ()A) = :rrP(A ) - [rrP(A ) - peA l(l A ) ](l_e)m-l.
n+m n n n n+ n

Proof: The proof proceds by induction on m. For m=l, we have an

identity. Suppose now the theorem holds for m. Utilizing the usual

technique in order to apply the axioms (via 4.9 ) we have:

peA. n A. )
J,n+m+l J,n

= L::. L. peA. () E nA. mx] )
( l) k J,n+m+l k,n+m J)n n+m-lX n+m-

= >
x(n+m-l)

+ err.]p([x] _(lA.)
J n+m-.L J,n

= (l-e)p(A. [IA.) + err.)P(A. ).
J,n+m J,n J J,n

Applying now our inductive hypothesis to the last expression we obtain

= (l-e) S rr.P(A. ) - [rr.P(A. ) - peA. lnA. )](l_e)m-l?
l J J,n J J,n J)n+ J)n' J

+ err .P(A. )
J J,n
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= :Tr.P(A. ) - [:Tr.P(A. ) - peA. InA. )](l_e)m.
J J,n J J,n J,n+ J,n

Q.E.D.

Using the results of Section 6, this theorem may be rewritten in

terms of expectations of random variables.

Corollary 8.16.

Applying the usual definition of a covariance and making the appropriate

substitutions from 8.16, 6.3 and 8.4, we have, after simplification

Theorem 8.17.

Cov(A A) = :Tr(l-:Tr) eel_elm [1_(1_e)2(n-l)j.
-nt-m -n 2-e

As one would expect the covariance tends to zero as e ~ 0, e ~l, or

m ~ co. An outcome one might well have failed to anticipate is that for

all ~, the covariance is independent of PI' the initial probability of

an A
j

response, but depends in a very simple way on the variance of

the response probabilities. (Referring back to 8.11, we see that

Cov(A A) = (l_e)m cr2 .) Using 8.17 together with 8.11, we can
-ntm -n n

now write an asymptotic expression for the serial correlation coef-

ficient with lag m, conventionally defined

{

Cov(A A)-nrm -n
rm=E~1/2

([l2,n+m [l2,n)
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where the expectation is taken over n. Making the appropriate sub-

stitutions and taking the limit as n .... 00, we obtain

Theorem 8.18. In the limit ~ n .... 00,

Proof: We let n .... 00 in 8.17 and 8.11. Then

and we have

lim ~2 = lim ~2:;n+m ,u =
n:(l-n:)fl

2-fl

r = E f n:(1-n:)fl(1-8)m/n:(1-n:)fl l = (l_fl)m.
III l 2-6 2-fl j

This statistic may prove useful for estimation of the parameter fl

from asymptotic data.

Also, we are now in a position to give a general formula for the

variance of S N' the variance of A. response frequency in the
n, J

block of N trials following any arbitrary trial n.

Theorem 8.19.

N
Var(S N) = Nn:(l-n:) - (1-2n:)(n:-p )(1_6)n [l-(l-fl) ]

n, 1 8

[l_(l_fl)2N] 2(1-fl)n:\l-n:)
fl(2-fl) + 2-8

N
[N-2: + (l-e) ]

e fl
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S is the sum of N random variables
n,N

A (m=1,2, ••. ,N), we can use the well known expression for the
-t>l-m

variance of a sum of random variables:

N
Var(S N) = L var(A )

n, m=l -t>l-m

From 6.3 we have

+ 2 L. Cov(A. A k)'
1< j < k< N -t>l-J -t>I-
= :;:;

substituting for peA ) from 8.4 and summing over !!':, we obtainn+m

2n[l_(1_8)2N]
2

1-(1-8)

Secondly, we substitute for Cov(A . A k) from 8.17 and sum over j
-ntJ-rl[-

and k, obtaining

:rr(1-:rr) (1-8)
= 2-8

1-+e

(1_8)2n N 1 N )
- 6(2-8) [1-(1-8) - ][1-(1-8) ] S'



A number 'of special cases of 8.19 are of experimental interest.

To obtain an expression for the variance of A
j

frequency in N trials

at the limit of learning, we take the limit of

Corollary 8.20.

Var(S N)n,
as n --7(J) ~

var(soo ,N) = lim
n---7CO

V (S ) - N (1-) 2(1-9),(1-:rr) [N- ~+ (1_9)N ]
ar n,N - :rr :rr + 2-6 e 9

If 9 = 1 or 6 = 0 in 8.20, Var(S N) reduces to N:rr(l-:rr), the
00,

variance of a sum of N independent random variables.
,

Letting n = 0 in 8.19, we obtain an expression for variance of

Corollary 8.21.

A
j

frequency over the first N

i,

trials of a series:

2N
_ ~_ )2 [1-(1-6~ ]

ry 9(2-9

Finally, dividing the right side of either 8.20 or 8.21 by ~,we find

that for large N, the variance of the proportion of A. responses in
J
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N trials is approximately equal to n(l-rr) (4-36)
N 2-9

The approximation

fails at e = 0, but it should be relatively good over the range of 6

values commonly observed experimentally.

Covariance of Responses and Reinforcing Events

In the simple non-contingent case, the probability of a response

given that it was reinforced on the preceding trial takes the following

very simple form:

Theorem 8.22. If rr> 0, then

peA liE) = (l-e)p(A ) + e.
n+ n n

Proof:

peA lrlE) = L
n+ n x(n-l)

peA ln E () [x] 1)n+ n n-

And obviously

= [(l-e)p(A ) + 9]rr.
. n

peA liE) = 2:. P(A 11\E)n+ n rr n+ n

Q.E.D.
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More generally, the probability of a response given that it _s

reinforced on the
thV preceding trial can be expressed as follows:

Theorem 8.23. If V is ~ positive integer and rr> 0 then,

Proof: The proof is inductive. We know from 8.22 that the theorem

holds for V = L Preparatory to introducing our inductive hypothesis,

we apply the learning axioms (via 4.9) as follows:

peA IE) =n+v+l n

P(An+V+l () En)

rr

l [> Lp(A (JE n[x] )]
rr n+v+l k n+v n+v-l

[x] leE k 'n+v- - n

~ [f ~P(An+V+lIEk,n+Vn [x]n+v_l)P(Ek,n+v I[x]n+V-l)
n

. p([x] l)]n+v-

+ 8rr] p([x] l)n+v-

_ l [(l-8)P(A IE) + elrr] . rr
rr n+v n

= (l-8)P(A IE) + 8rt.n+v n
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Applying now the inductive hypothesis to the right-hand side of the

last line, we infer:

Q.E.D.

·Similarly, we have for the probability of a response given that

some alternative response was reinforced on the thV preceding trial:

Theorem 8.24. If V is.~ positive integer and 11
k

> ° and

j ~ k

The proof is analogous to that of 8.23.

We conclude this section with two theorems concerning the repeti-

tion of "correct" and "incorrect" responses. The first of these specifies

probability of a response given that it occurred and was reinforced on

the preceding trial:

Theorem 8.25. Provided both n> ° and a > 0,l,n

ptA 1 1A nE )n+ n· n
; (1-6)

a
2,na:-- +
l,n

6 .
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Proof:

P(A lOA nE ) = L:- P(A l()A liE nIx] 1)
n+ n n X(n-l) n+ n n n-

= ==- P(A llA (IE n [x] l)"P(A I[xl 1)P([xl 1 )
( ) n+ n n n- n -n- -n-x n-l

= L: [(1-8 )P(A I[x] 1) + 8]" P(A I[x] 1) P([x] 1)
()

n n- n n- n-
X n-l

= ,,[(1-8)0
2

~ 80
1

],
,u ,:q.

By virtue of the fact that

P(A llA (IE ) = P(A ll1A (IE )/P(A (IE )n+ n n n+ n n n n

and

P(A (I E ) = P(E IA )P(A ) = ,,0 ,
n n n n n 1,n

we infer from the last line of the above identities:

,,[ (1-8)0: + eo: ]
P(A IA nE ) = 2,n 1,n

n+l n n ,,0:1,n

o
= (1-8) 02,n + S,

l,n



The second of these theorems specifies probability of a response given

that it occurred but ~ not reinforced on the preceding trial:

Theorem 80260 Provided that PCA. OEk ) > 0 and j ~ k,
J,n ,u

P(A. l!A. nEk )J,n+ J,n ,n
: (l-e)

The proof is analogous to that of 8.25.

It may be noted that the difference between the two conditional

probabilities of 8025 and 8.26 equals e; consequently the difference

between the two corresponding conditional relative frequencies provides

an additional estimator for this parameter.

•





represented by a payoff matrix
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9. Applications to Two-Person Game Situations.

By an obvious generalization of the primitive notions and axioms

of Sections 2 and 3 we may apply the linear model to two-person game

situations (for experimental results, see [1], [2], [5]). As might be

expected, we restrict ourselves to games in normal form with a finite

number of strategies available to each player. Each play of the game

cOnstitutes a trial in the learning sense. The choice of a strategy

for each trial corresponds to the choice of a response. To avoid the

problem of measuring utility we assume a unit reward which is assigned

on an all-or-none basis. Rules of the game are taken to be such that

on each trial there is exactly one correct choice leading to the unit

reward for each player. (For simplicity we are omitting non-reinforced

trials.) However, it should be noted that from a game standpoint, this

unit reward is not the payoff on a trial, but rather the payoff is the

expected value of the reward. This expected value depends on the

reinforcement scheme selected by the experimenter; this scheme may be

(a.. b
i

.) where i=l,. .. ,r
l

and
l.J, J

j=1, .•• ,r2 with r l the number of responses available to the first

player, player A, and r
2

the number available to the second player,

player B. Thus the entries in the payoff matrix are pairs of numbers

(aij,bi ) • The number a .. is the probability that player A wins
l.J

when A makes response i and B response j. Correspondingly,

bij is the probability that player B wins when A makes response i

and B response j.

Just as for the one-person linear model, the axioms are independent

of the selection of any particular probabilistic scheme of reinforcement,
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and they apply to more complicated two-person situations than the

game paradigm just described. Moreover, although the axioms are

stated for two sUbjects, it is apparent that all notions generalize

immediately to n-person situations. The restriction to n=2 has

been imposed here because all the interesting deductive consequences

of the axioms whtch we have yet considered are for two-person situations.

We turn now to a rapid capitulation of formal developments cor-

responding to those in Sections 2 and 3. The result of any trial may

be represented by an ordered quadruple < jl,kl ,j2,k2 >, where jl is

the response of A, j2 the response of B, k
l

the reinforcing event

for A, and k
2

the reinforcing event for B, with jl,kl=l, .•• ,r
l

and j2,k2=1, ••• ,r2 • Our first primitive notion is then the sample

space X which is the set of all sequences of such ordered quadruples.

We call X the < r l' r 2 > - response space. As before, our second

primitive notion is a countably additive probability measure P on the

Borel field Qj(X) of cylinder sets. Our third and fourth primitive

notiOnS are the two learning parameters 6
A

and 6
B

for players A

and B ~espectively.

A notation which is essentially needed only for the definitions

immediately to follow is that if x € X and xn = < jl,k
l

, j2,k
2

> is

the nth term of the sequence x, then

x(l) = jlA,n

(1)
= k

l"E,n
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(2)
j2x ~A,n

(2)
k2 ·"E,n =

(This dual use of the subscript A for responses in the next few

lines should not be confusing; subsequently A refers once again to

player A.) The event consisting of response j by' subject i on

trial n is defined as might be expected.

Definitlon 9.1.

Similarly, we define the event of reinforcing event k by subject i

on trial n.

Definition 9.2.

x: {XE X& xii) ~. k} .
E,n

Our next definition is for the p'~obahjJ<ty of respon~~~·2·€=~~t~---------------

i on trial n.

Definition 9.3.

Since we shall be concerned with sequences which are identical, or

identical for a given subject, through the th
n trial, we want to
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define the appropriate equivalence classes.

Definition 9.4.

ill .::: n, y = x 1
ill m j

We next define the probability of response j by subject i on

trial n given the first n-l responses and the first n-l reinforc-

ing events for this subject.

Defini"t;ion 9.5.

We are now in a position to state our axioms. It is understood

that if i=l, and 9(i) - 9
- B if i=2.

Definition 9.6. An ordered quadruple X = < X,P,9A,8B > is a

two-person linear model if, and only if, there ~ integers r
l

and

r 2 such that X is the < r l ,r2 > - response space; P is.':!:. proba­

bility measure on G(X); 9A, 8Be (O,l); and the following ~ axioms

~ satisfied for~ positive integer n, for i=l,2, for every x

in X ~ p( [x]~i)) > 0, and for every j and k:
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Axiom 2. If XE E(i)
k,n and j ,;, k then

In subsequent developments the superscript i will be mainly replaced

by other devices. In any case it must not be thought of as an exponent.

We may now formally define the special reinforcement scheme yielding

the payoff matrix (a..,b
i

.).
lJ J

Definition 9.7.

In addition to 9.7 we also need:

·Definition 9.8. A two-person linear model X = < x,p,eA,eB > has

a simple payoff matrix if, and only if, for every n and for every set

W which is an n-l cylinder set if then



and

In the remainder of this section we consider only two-person linear

models which have simple payoff matrices and exactly two responses for

each player, i.e., r
l

= r
2

= 2.

Finally, one last definition to eliminate continual use Of the super-

script 1. We denote player AI S probability by a and player B IS

by II, whereas we denote the joint pI10bability of an Ail) and Ai2 )

response by 'Y'

Definition 9.9.

a _ (1)
n - Pl n,

N
aN = -N

l > a
n=l n

Coming now to our first theorem of this section we derive recursive

expressions for a and II. It is an unfortunate fact, and enormously
n n
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complicating to the mathematics of two~person situations, that both

a
n+l and ~ 1 depend on the joint probability term 7 •w n

But this

awkward mathematical consequence of the theory is psychologically

sound: if the two subjects are interacting at all it would be surpris-

ing indeed if their probabilities of responses were statistically

independent.

Theorem 9.10.

Proof: It will suffice to derive the difference equation for

an+l since the derivation for ~n+l is identical. To begin with we

observe that

(1)
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We next observe that

(2)

Similarly,

and

(4 )
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From (l)-(4) we conclude:

+ (1-a22 )(1-a -~ +7 )n n n

Now by a proof similar to that of Theorem 503 we may show that

(6) a 1 ~ (l-eA)a + e P(E(l)o
n+ n A l,n

Substituting (5) into (6) we have:

The investigation of the asymptotes of a and ~ J or even the
n n

asymptotes of the mean probabilities (over trials) aN and ]3N is

QoE oD 0
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difficult and complicated. The reasOn is not hard to find. The pair

of simultaneous recursive equations of the preceding theorem contain

three, rather than two, expressions depending on n, namely, a , ~
n n

and r
n

. And a recursive expression for r
n

in terms of these three

quantities cannot be derived. Fortunately, without pursuing these

questions we may prove directly that an asymptotic linear sum of aN

and ~N exists and is independent of 8
A

and 8
B

. Moreover this

linear relationship requires no restrictive hypotheses and may be

compared in a strai~htforward manner with experimental data.

Theorem 9.11.

lim [(ag-ce)a
N

+ (bg-Cf)~N] = ch-dg,
N-.oo

where

a = 2-a
12

-a
22

b = a
22

-a
21

c = an+a21-a12-a22

d = l-a
22

e = b22-b12

f = 2-b21-b22

I

I
I
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Proof: From Theorem 9.10 and the definitions of the numbers a

to h above, we have:

and

(1)

(2)

0: - 0:
n+l n

eA
= aO: + bt3 + cy + dn n n

= eO: +ft3 +gy +h.n n n

Summing both (1) and (2) from 1 to N and dividing by N, we obtain:

(3)

and

(4)

Multiplying (3) by g and (4) by c, and then subtracting (4) from (3),

rearranging terms slightly, and letting N --> 00 we obtain the desired

result, since the left-hand side of (3) and of (4) goes to zero. Q.E.D.

By imposing various restrictions on the experimental parameters

and b ..
lJ

a variety of results can be obtained. We restrict
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ourselves here to the consideration of one such case: choice of the

parameters so that the coefficients of 7
n

in the two recursive equa­

tions of Theorem 9.10 vanish. Moreover, we compute only the asymptotes

of an and ~n' although it is not difficult to find explicit expres­

sions for arbitrary n. The method of proof proceeds via consideration

of the mean probabilities aN and ~N' Direct solution of the differ-

ence equations is possible, but more tedious.

Theorem 9.12. Let numbers a to h be defined ~ in 9.11, and let

af-be;io

then

and

lim
n _---? ro

lim
n->CX)

a
n

bh-df
= af-be

ah-de
- af-be

Proof: From Theorem 9.10, the definition of a to ~, and the

hypothesis that c = g = 0, we have:

(1) _ aa
n

+ b~
n

+ d
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and

(2) + f~ + h.
n

Summing both (l) and (2) from l to N and dividing by N we obtain:

and

(4 )

Multiplying (3) by f and (4) by b, subtracting then (4) from (3),

and letting N .... Q), we get:

lim [afaN + df - beaN - bh] = 0,
N .... oo

whence

Since (l) and (2) are simultaneous linear difference equations with

constant coefficients, we know that the asymptotes of an and ~n

exist. Hence by the well known theorem t hat if a sequence

< Yl'Y2'" "Yn"" > of numbers converges to a finite limit y then



lim
N ... co

we conclude from (5) that
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IN.
N LYn = Y,

n=l

(6) lim
n ... ro

bh-dfa =
n af-be

The argument establishing the limit of ~n is similar in character.

Some experimental cases falling within the province of this theorem

have been studied by Atkinson and Suppes [2].



-98-

REFERENCES

[l] Atkinson, R. C. and Suppes, P. An analysis of two-person game situa­

tions in terms of statistical learning theory. Technical report

No.8, Contract Nonr 225(l7), Applied Mathematics and Statistics

Laboratory, Stanford University, Stanford, California, 1957.

[2] Atkinson, R. C. and Suppes, P. An analysis of a two-person game

situation in terms of a Markov process. Technical report No.9,

Contract Nonr 225(l7), Applied Mathematics and Statistics

Laboratory, Stanford University, Stanford, California, 1957·

[3] Bush, R. R. and Mosteller, F. Stochastic models for learning.

New York: Wiley, 1955.

[4] Estes, W. K. Theory of learning with constant, variable, or con­

tingent probabilities of reinforcement. Psychometrika, 1957,

22, ll3-l32.

[5] Estes, W. K. Of Models and men. Amer. Psychologist, 1958, in

press.

[6] Estes, W. K. and Burke, c.;r. A theory of stimulus variability

in learning. Psychol. Rev., 1953, 60, 276-286.

[7] Feller, W. Probability theory and its applications. New York:

Wiley, 1950.

[7a] Fr~chet, M. Recherches th~oriques modernes ~ le calcul des

probabilit§s, Vol. 2. Paris: Gauthier-Villars, 1938.

[8] Hempel, C. G. Fundamentals of concept formation in enpirical

science. Chicago: University Chicago Press, 1952.

[9] Kendall, M. G. The advanced theory of statistics. London:

Griffin, 1947.



-99-

REFERENCES (CONT.)

[10] Kolgomorov, A. N. Foundations of the theory of probability.

New York: Chelsea, 1950.

[11] LaBerge, D. L. A statistical learning model with neutral

elements. In preparation.

[12] Luce, R. D. A theory of individual choice behavior. Mimeo­

graphed. Bureau of Applied Social Research, Columbia University,

New York City, 1957.

[13] Restle, F. A theory of discrimination learning. Psychol. ~.,

1955, 62, 11-19.

[14] Spence, K. W. Behavior theory and conditioning. New Haven:

Yale university Press, 1956.



STANFORD UNIVERSITY

Technical Reports Distribution List

Contract Nonr 225(17)

(NR 171-034)

Commanding Officer
Office of Naval Research

Branch Office
Navy No. 100, Fleet Post Office
New York) New York 35

Operations Research Office
7100 Connecticut Avenue
Chevy Chase, Maryland
Attn: The Library 1

ASTrA Documents Service Center
Knott Building
Dayton 2, Ohio 5

Office of Naval Research
Mathematics Division, Code 430
Department of the Navy
Washington 25, D. c. 1

Director, Naval Research
Laboratory

Attn: Technical Information
Officer

Washington 25) D. c. 6

Office of Naval Research
Group Psychology Branch
Code 452
Department of the Navy
Washington 25, D. c. 5

Office of Naval Research
Branch Office

346 Broadway
New York 13, New York 1

Office of Naval Research
Branch Office

1000 Geary Street
San Francisco 9, Calif. 1

Office of Naval Research
Branch Office

1030 Green Street
Pasadena 1, California 1

Office of Naval Research
Branch Office

Tenth Floor
The John Crerar Library Building
86 East Randolph Street
qhicago 1) Illinois 1

Office of Naval Research
Logistics Branch, Code 436
Department'of the Navy
Washington 25) D. c. 1

Office of Technical Services
Department of Commerce
Washington 25, D. C. 1

The Logistics Research Project
The George Washington University
707 - 22nd Street, N. W.
Washington 7, D. C. 1

The RAND Corporation
1700 Main Street
Santa Monica, Calif.
Attn: Dr. John Kennedy 1

Library
Cowles Foundation for Research

in Economics
Box 2125
Yale Station
New Haven, Connecticut 1

Center for Philosophy of
Science

University of Minnesota
Minneapolis 14, Minnesota 1

Professor Ernest Adams
Department of Philosophy
University of California
Berkel:y.Jl,._€'al'tI'ornia 1

Professor Maurice Allais
15 Rue des Gates-Ceps
Saint-Cloud) (S.-O.)
France 1



Professor C. West Churchman
Department of Industrial Engineering
Case Institute of Technology
University Circle
Cleveland 6, Ohio 1

Professor Norman H. Anderson
Department of Psychology
Yale University
333 Cedar Street
New Haven, Connecticut

Professor T. W. Anderson
Center for Behavioral Sciences
202 Junipero Serra Blvd.
Stanford, California

Professor K. J. Arrow
Department of Economics
Stanford University
Stanford, California

Professor Richard C. Atkinson
Department of Psychology
University of California
Los Angeles 24, California

Dr. R. F. Bales
Department of Social Relations
Harvard University
Cambridge, Massachusetts

Dr. Alex Bavelas
Bell Telephone Laboratories
Murray Hill, New Jersey

Professor Gustav Bergman
Department of.Philosophy
State University of Iowa
Iowa City, Iowa

Professor E. W. Beth
Bern, Zweerskade 23, I
Amsterdam, Z.,
The Netherlands

Professor Max Black
Department of Philosophy
Cornell University
Ithaca, New York

Professor David Blackwell
Department of Statistics
University of California
Berkeley 4, California

1

1

1

1

1

1

1

1

1

1

-ii-

Mr. Gordon Bower
Department of Psychology
Yale University
New Haven, Connecticut

Professor R. B. Braithwaite
King's College
Cambridge, England

Professor C. J. Burke
Department of Psychology
Indiana University
Bloomington, Indiana

Professor R. R. Bush
The New York School of Social

Work
Columbia University
2 East Ninety-first Street
New York 28, New York

Dr. Donald Campbell
Department of Psychology
Northwestern University
Evanston, Illinois

Professor Rudolf Carnap
Department of Philosophy
U.C.L.A.
Los Angeles 24, California

Dr. Clyde H. Coombs
Department of Psychology
University of Michigan
Ann Arbor, Michigan

Dr. Mort Deutsch
Graduate School of Arts

and Sciences
New York University
Washington S~uare

New York 3, New York

1

1

1

1

1

1

1

1



-iii-

Dr. Francis J. Di Vesta
Department of Psychology
Syracuse University
123 College Place
Syracuse, New York 1

Professor Robert Dorfman
Department of Economics
Harvard University
Cambridge 38, Massachusetts 1

Dr. Ward Edwards
Lackland Field Unit No. 1
Operator Laboratory
Air Force Personnel and Training

Research Center
San Antonio, Texas 1

Dr. Jean Engler
Institute of Statistics
University of North Carolina
Chapel Hill) North Carolina 1

Professor W. K. Estes
Department of Psychology
Indiana University
Bloomington, Indiana 1

Professor Robert Fagot
Department of Psychology
University of Oregon
Eugene, Oregon 1

Dr. Leon Festihger
Department of Psychology
Stanford University 1

Professor M. Flood
Willow Run Laboratories
Ypsilanti, Michigan 1

Professor Maurice Fr~chet
Institut H. Poincar€
11 Rue P. Curie
Paris 5, France 1

Dr. Eugene Ga1anter
Department of Psychology
University of Pennsylvania
Philadelphia 4, Pa.

Dr. Murray Gerstenhaber
University of Pennsylvania
Philadelphia, Pennsylvania

Dr. Leo A. Goodman
Statistical Research Center
University of Chicago
Chicago 37, Illinois

Professor Nelson Goodman
Department of Philosophy
University of Pennsylvania
Philadelphia, Pa.

Professor Harold Gul1iksen
Educational Testing Service
20 Nassau Street
Princeton, New Jersey

Professor Louis Guttman
Israel Institute of Applied

Social Research
David Hamlech No.1
Jerusalem, Israel

Dr. T. T. ten Have
Social - Paed. Instituut
Singe1 453
Amsterdam, Netherlands

Dr. Harry He1son
Department of Psychology
University of Texas
Austin, Texas

Professor Carl G. Hempel
Department of Philosophy
Princeton University
Princeton, New Jersey

1

1

1

1

1

1

1

1

1



Dr. Ian P. Howard
Department of Psychology
University of Durham
7, Kepier Terrace
Gilesgate
Durham, England

Professor Leonid Hurwicz
School of Business
University of Minnesota
Minneapolis 14, Minn.

Professor Lyle V. Jones
Department of Psychology
University of North Carolina
Chapel Hill, North Carolina

Professor Donald-Kalish
Department of Philosophy
University of California
Los Angeles 24, -California

Dr. William E. Kappauf
Department of Psychology
University of Illinois
Urbana, Illinois

Dr. Leo Katz
Department of Mathematics
Michigan State College
East Lansing, Michigan

Professor John G. Kemeny
Department of Mathematics
Dartmouth College
Hanover, New Hampshire

Professor T. C. Koopmans
Cowles Foundation for Research

in Economics
Box 2125, Yale Station
New Haven, Connecticut

Dr. David.La Berge
Department of Psychology
University of Indiana
Bloomington, Indiana

-iv-

1

1

1

1

1

1

1

1

1

Professor Douglas Lawrence
Department of Psychology
Stanford University

Dr. Duncan Luce
Department of Social Relations
Harvard University
Cambridge 38, Massachusetts

Dr. Nathan Maccoby
Boston University Graduate

School
Boston .15, Massachusetts

Professor Jacab Marschak
Box 2125 Yale Station
New Haven, Connecticut

Dr. Samuel Messick
Educational Testing Service
Princeton University
Princeton, New Jersey

Professor G. A. Miller
Department of Psychology
Harvard University
Cambridge 38, Massachusetts

Dr. O. K. Moore
Department of Sociology
Box 1965
Yale Station
New Haven, Connecticut

Professor Sidney Morgenbesser
Department of Philosophy
Columbia University
New York 27, New York

Professor Oskar Morgenstern
Department of Economics and

Social Institutions
Princeton University
Princeton, New Jersey

Professor Frederick Mosteller
Department of Social Relations
Harvard University
Cambridge 38, Massachusetts

1

1

1

1

1

1

1

1

1

1



ProfessbrErnest Nagel
Department of Philosophy
Columbia Uni~ersity

New York 27, New York

Dr. Theoq.ore M,Newcomb
Department. of Psychology
University of Michigan
Ann Arbor,. Michigilll

Dr. Helen Peak
Department of Psychology
University of Michig~

Ann Arbor,Michigan

Dr•.Hilary Putnam
Department of Philosophy
Princeton University
Princeton, New Jersey

Professor Willard V. Quine
Department of Philosophy
EDlerson Hall
Harvard University
Cambric'l.ge 38, Mass.

Professor Howard Raiffa
Department of Statistics
Harvard University
Cambridge 38, .Mass.

Professor Nicholos Rashevsky
University of chicago
Chicago 37, Illinois

Dr. Fr~ Restle
Department of Psychology
Michigan State University
East Lansing,Michigan

Professor David Rosenblatt
American University
Washington. 6 , .D. C.

Professor Alan J. Rowe
Management Sciences Research

Project
University of CEl.Ufornia
Los Angeles 24, Cali:rornia

-v-

1

1

1

1

1

1

1

1

l

1

Professor Herman Rubin
Department of Mathematics
University of Oregon
Eugene, Oregon 1

Dr. George Saslow
Department of Psychiatry
University of Oregon Medical

School
Po;rt1.and, Oregon l

Dr. I. Richard Savage
School of Business
University of Minnesota
Minneapolis, Minn. l

Professor L. J. Savage
Committee .on Statistics
University of Chicago
Chicago, Illinois 1

Mr. Dana Scott
Department of Mathematics
Princeton University
Princeton, New Jersey 1

Dr. C. P. Seitz.
Special Devices Center
Office of Naval Research
Sands Point
Port Washington
Long Island, New York 1

Dr. Marvin Shaw
School of Industrial Management
Massachusetts Institute of

TechnologY
50 Memorial Drive
Cambridge 39, Massachusetts 1

Dr. Sidney Siegel
Center for Behavioral Sciences
202 Junipero Serra BlVd.
Stanford, California 1

Professor Herbert Simon
Carnegie Institute of Technology
Schenley Park
Pittsburgh, Pennsylvania 1



Dr. Herbert Solomon
Teachers College
Columbia University
New York, New York

Professor K. W. Spence
Psychology Department
State University of Iowa
Iowa City, Iowa

Dr. F. F. Stephan
Box 337
Princeton University
Princeton, New Jersey

Mr. Saul Sternberg
Department of Social Relations
Emerson Hall
Harvard University
Cambridge 38, Mass.

Professor S. Smith Stevens
Memorial Hall
Harvard University
Cambridge 38, Mass.

Dr. Donald W. Stilson
Department of Psychology
University of Colorado
Bo.ulder, Colorado

Professor Alfred Tarski
Department of Mathematics
University of California
Berkeley 4, California

Professor G. L. Thompson
Department of Mathematics
Dartmouth College
Hanover, New Hampshire

Dr. Robert L. Thorndike
Teachers College
Columbia University
New York, New York

Professor R. M. Thrall
University of Michigan
Engineering Research Institute
Ann Arbor, Michigan

-vi-

1

1

1

1

1

1

1

1

1

1

Dr. Masanao Toda
Department of Experimental

Psychology
Faculty of Letters
Hokkaido University
Sapporo, Hokkaido, Japan

Dr. E. Paul Torrance
Survival Research Field Unit
Crew Research Laboratory
AFP and TRC
Stead Air Force Base
Reno, Nevada

Professor A. W. Tucker
Department of Mathematics
Princeton University, Fine Hall
Princeton, New Jersey

Dr. Ledyard R. Tucker
Educational Testing Service
20 Nassau Street
Princeton, New Jersey

Professor Edward L. Walker
Department of Psychology
University of Michigan
Ann Arbo.r, Michigan

Professor Morton White
Department of Philosophy
Harvard University
Cambridge 38, Mass.

Dr. John T.o Wilson
National Science Foundation
1520 H Street, N. W.
Washington 25, Do C.

Professor Kellog Wilson
Department of Psychology
Duke University
Durham, North Carolina

Professor J. Wolfowitz
Department of Mathematics
Cornell University
Ithaca, New York

1

1

1

1

1

1

1

1

1

I
I

r



-vii-

Professor O. L. Zangwill
Psychology Laboratory
Downing Place
Cambridge J England l

Additional copies for project
leader and assistants and
reserve for future requirements 25




	1499_001.pdf
	1500_001
	1501_001

