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FOUNDATIONS OF STATISTICAL. LEARNING THEORY, I.
*
THE LINEAR MODEL FCOR SIMPLE_LEARNING—/

By
W.-K. Estes, Indiana University
and

Patrick Suppes, Stanford University

1. Introduction.

By simple learning we refer to the changes in behavioral proba-

bilities which occur as a function of ftrials in therfollowing type of
‘situation. Each trial of a series begins with presentation of the same
stimilating situation (e.g., a ready signal, conditioned stimulus, or
the like). The organism responds to the stimulus with one or another of
a set of alfernative actions (responses). Then the trial terminates with
occurrence of some one of a set of outcomes (eaga, reward, non-reward,
unconditiqneq stimulus and response, knowledge of results). -In con-
tem@orarj learning theories (see; e.g., [4]; [14]), it is assumed that
Af other parameters of the situation are fixed, the course of learning
is determined by the trial outcomes. These outcomes can be elassified,
relative to any given response, according to their effects on response
probability. We shall spéak of events which increase probabllity of =a
given responge as reinforcing events for that response and of events
which leave response probabilities unchanged as instances of non-

reinforcement.

* .
—/ This research was begun while the authors were Fellows at the Center
for Advanced Study in the Behavioral Sciences during the academic

year 1955-56. Subsequent research has been supported in part by the

Group Psychology Branch of ONR.
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In the following sections we shall present the primitive notions,
axiomatic structure, and important general theorems of a model which
-formalizes and generalizes the models for simple learning that have
developed within contemporary statistical learning theory. Several
considerations suggest the desirability of examining rigorously the
mathematical foundations of these models. Almost without exception,
contemporary theories that deal quantitatively with simple learning have
in their development tended to follow the lead of experimental explora-
tions. Thue they have for the most part proceeded from simplified
special cases to more general ones and the commoﬁ mathematical struc-
‘ture of the models has not received detailed analysis in its own
right. Our formulsation #ill draw upon the concepts and methods developed
by Bush and Mosteller [3] and Estes and Burke [6], and we snticipate that
it mey clarify the set-theoretiéal foundetions of the entire group of
models asscciated with these investigators and their assoc;ates, Since
all of the models are in one way or another probabilistic, we shall
address ourselves first of all to the problem of characterizing exactly
and explicitly the sample spaces of the stochastic processes involved
and the methods of defining events and probabilities. In the matter of
deriving theorems, we shall rely primarily upon set-theoretical and
probabilistlc technigues which have not heretofore appeared in the
literature of learning theory.

This report will be limited to linear models, i.e., those which
gssume that response probabilities undergo linear transformations, exactly

one such transformation representing the effects of any given type of




reinforcing event. The level of generality at which we have aimed is
that of a model Jjust broad encugh to include as special cases all of the
particular linear models that have been applied to learning experiments.
We do not, for example, comsider any of the obvious generalizations that
could be achieved by including free parameters which have no definite
Interpretations in existing learning theories. It will be seen that even
without the luxury of extra parsmeters, the linear model presented here,
involving as it does.a stochastic process with an infinite number of

states,; poses mathematical problems of a higher order of difficulty

+than do the stimulus sampling models which we shall treat in a later

report.






2. Primitive and Defined Notions.

The main point of this section 1s to discuss the three primitive
notions on which our analysis of simpile probability learning is based
and to define = number of further notions in terms of these three.

However, some mathematical concepts are required for this discus-
gion, and to these we first turn. To begin with, we use the familiar
notation of elementary set theory: ACY means that A 1is a subset of
~X; O designates the empty set (as well as the number zero); A()B

designates the intersection of sets A and B, that is, the set of sll

elements common to A and B; AUB designates the union of sets A
and B, that is, the set of all elements which belong to at least one of
two sets; we also make use of the corresponding notation for the intef—
" section and union of families cof gets; xeA means that x 1s a member
of the set A, and :xé!& mesns that x 1s not a member of A. We use

the notation:

{xs o{x)}

to designate the set of all elements x satisfying the property @. For

example,
{x: x is an integer & 0<x <6}

is simply the set  {0,1,2,3,4,5}. We use the notation < x

13X e esX, >

to designate the ordered n-tuple whose first member is X35 second

member X2, ete. Simllarly, the notation < Xl’x2’°°"xn’°"“ > designates

the infinite seguence whose first term is Xl’ second term Xy

A family “F of subsets of & set X is a field if and only if for

s etc.




every A apd B in °F ' _

(1) AuBeF
(11) EeF ,
where :ﬂ: is the complement qf A relative to X, that is
o= x: xeX &xgAl.

A field °% of subsets of X is a Borel field if for any sequence ]

<_A1,A2,?00,An,a,o > of elements of ‘I ,

n=1

o o
U aeF . |

For explicit subsequent referencé we formalize in a numbered defini-
tion the standard notion of a probability measure on a field. The axioms
are those of Kolmogorov [10]. The last axiom, asserting that the pro-
bability measure is continuous,from above at zero, is easier to verify_
in constfucting measures than the equivalent axiom that the measure is

countably additive.

Definition 2.1. Let X be a set and “F a field of subsets of

X. -Then a real-valued function P 1is & probability measure'gg 3 if,

and only if, the following axioms are satisfied:

Axiom P1. For every A in I , P(A) > 05 - ' N
Axiom P2. P(X) = 1;

Axiom P3. For every A and B in “F if ANB =0 then




P{(AUB) = P{A) + P(B);

Axiom Ph. If < Al,AE,,,,yAn,uo; > is a decreasing sequence of

elements - of % , i.e., A

c
nel An for every n, and

then

lim P(An) = 0.
n — oo

Some further mathematical notions we want to introduce are most
easily explained by considerirg the first of our primitive notions, the
sample space. Let r be a positive integer--the intuitive interpreta-
tion of r 1is that it is the number of'péssible responses on any

trial--; and let

Z{r) = {< x,y >: x,y arve integers &l <x<r &0<y<r}

that is, Z(r) 1is the set ofrall ordered couples of the indicated
integers. The intuitive significance of %(r) is that on a given
trial what actually happens can be represented by one of the ordered
couples in Z{r). For example, < 3,4 > would represent the occurrence
‘of the third response followed by the fourth reinforeing event on a
given trisl. The special case when 0 1s the second member of a
couple should be menticned: <« 1,0 > would represeﬁt occurrence of
the first response followed by no reinforcing_event°

The set %(r) of ordered couples is adequate only for a single




trial. To obtain the basic sample space for a sequence of trials we

consider the denumersble Cartesian product of Z(r) with itself, that

is the set X defined as:

where for every n, X = Z{r}. Thus in an experiment with two possible

responses, a typical element of X would be a sequence
K 11>, <125, 2,03, < 2,1l >5... >

Here on the first trial the Tirst response snd the first reinforecing
event occurred; on the second trial the first response and the second
reinfofcing event occurred, etc. We call the sample space X the

r-responge space.

If xe X, i.e., if x 18 a seguence which is a member of the
sample spage X, then X is the nth term of this sequence. More-
Qv§r, if x = < Jsk >, then XA,n degignates J sand KE,n designates
k. The letters ‘A" apnd ‘E° have been used to pick out the first and
second members respectively of the ordered couple in deference to the
uge in the psychological litersture of 'A' +to degignate responses énd
'E' to designate reinforcing events. The rather cumbersome notation }
XA,n is not used extensively in the remainder of the paper, but it or :
its equivalent is needed to define the basic notions we need.

Certain subsets of X are of particular interest to us, namely,

the cylinder sets. Intuitively & cylinder set of X is a subset

restricted on & finite number of "dimensions", that is; restricted for



a finite number of the Xn”sq -For ‘instance; the set of all seguences
having response 1 on the first trial is a cylinder get. PFormally this

set i defined as

fx: xe X &};Ajl =11 .

As 8 second example of a cylinder set, the set of all seguences having
response 2 on the third trial and reinforcing event 1 on the fifth trial

would be defined as
: xeX &x =2 & =15.
ix € XE,5 I

The formal definition of cylinder sets of X generalizes on these
exampleso Moreover, we formally define the notion of an n-cylinder
set, which is a cylinder set restricted on no more than the first n
dimensions. This notion of an n-cylinder set is important in properly
lfomulating various facts sbout conditional probabilities, as we shall

see in subsequent sections.

Definition 2.2. € is an n-cylinder set of X 1if, and only if,

there is & finite set I of positive integers and a function T defined

on I such that
(i) max I =n
(i1) For each ie I, =

(i1} € = {x: xe X &x,eT, for ieI}.

Moreover, C 1is & cylinder set if for some n, C is an n-cylinder set.

In the first example above of a cylinder set




T = {1}
and

Ti = {<1,0>, < 1,1 >;...5< Lyr>7 -

In the second example,

I= i3;5}
T3 = {< 2,03, < 2,1 S5..05< 2,75
T5 =< L,1 >, 2,1 >,..,<r,1>}.

In terms of the notion of n-cylinder set, the first example is a
l=cylinder set and the second a 5-cylinder set. Note-that if a set
is an n-cylinder set and m > n +then it is also an m-cylinder set.
In defining various speclal cylinder sets in the sequel, we use the
kind of notation used in the two examples rather thanAthe less intuitive
notation which requires listing the vérious sets Ti' However, it will
.always be cbvious that it is a trivial matter to re-cast our definitions
Cin a_forﬁ explicitly agreeing with the requirements of Definition 2.2.
-'-An experimentally minded psychologist reflecting on these cylinder
‘sets, might soon raise the following cbjection: it is not clear that
every conceivable experiment can be described by means of cylinder
sets. In the kind of ekpériments-relevant here the experimenter has
control over the pattern of reinforcing events, and his rule for
generating the sequence of reinforeing events may be defined‘for all n.

Consider, for instance, a two response experiment in which the first
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reinforeing event occurs on all odd trials and the second reinforeing
event on all even trials; that is, the experimenter's rule is gimply
to alternate the two reinforcing events. The set of sequences which
would represent possible‘outcomes of this experiment is not a cylinéer
‘set; and certainly we want our theory to be adeguate to handle suéh an
experimentlf/ By a slight extension this may be accoﬁplished. We
first observe that the family of all cylinder sets of X forms a
field, for clearly the union of two cylinder sets is a cylinder get,
and the complement of a eylinder seft is a cylinder sef. Now it is
well known that given any field there is a unique smallest Borel field
contagining the given field. It is the smallest Borel field containing
the field of cylinder sets of X with which we want to work. We
designate this Borel field by (EB(X). The set of seguences represent-
ing possible outcomes of the experiment just described is clearly a
member of'this Borel field, for consider the sequence of cylinder éets

< C CE,_“n,Cn,..o> where

l)

C, =4x: xe¥X & xE,n =1 if n is odd & XE’H =2 if n 1is eveni.

Qo
EBach Cp 1isa cylinder set, hence the union () €, is in A(x).
‘ n=1

We have been able to think of no empirically realizsble experiment which

*./ .

~ Although any actual experiment terminates in a finite number of s
trials; we will want to deal with concepts such as asymptotic

response probability which are defined relative to infinite
sequences of trials. '
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would require a set not in # (%) to represent ituf/

Since none of the existing literature on statistical learning theory
seems to be explicitly concerned with cylinder sets, 1t 1s natural to
wonder why they have been introduced in this paper. Fortunately or
unfortunately we were forced to introduce them once it became spparent
that the theory should be so set up that the initial probabilities of
regponse of the subject and the experiménter—controlled conditional pro-
babilities of reinforcement determine a unique model of simple probability
learning. If the basic probability measure of the theory is defined on
some broader family of subsets of X than C;B(X) it is in general not
"possible to prove it is uniguely determined by the initial probabilities
of response and the conditipnal probabllities of reiﬁforcemento Details
are to be found in ‘the proof of Theorem 4.7,

These remarks about probability lead us directly to our second
primitive notion: = prdbability meagure P on é?(x), It is
-particularly important to note that all probability noticns in which
we are interested.can be defined in terms of the basgic probability

measure P. Philosophers of science {see, e.g., [8]) have recently
emphasized the -importance of theoretical concepts which are tied_to
expErimentéi.facts only in terms of certain defined notions. In our
opinion the basic probability measure P affords a clearcut example of
such a concept in psycholegy. The measure P cannot be observed directly,

but both the probability of a response and conditional probabilities.of

* _ .
—/ In fact there iz no cbvious construction of s subset of X not in
_QB(X) which does not require the axiom of choice.
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reinforcing events are defined in terms of it.

Before defining any special probabilities, we need first to define
-the special events to which they are attached. Here as usual in pro-
bébility thgpry events are certain subsets of X, our basic sample space.

*
We begin with the event of response j on trial no—/

Definition 2.3.

Aj;n = {x: xeX &XA,H =Jt.

‘Similarly, we define the event of reinforcing event k on trial n.

Definition 2.4,

Ek,n={xz xeX &;LE,H=}<}.

The probability of respomse J on trial n we define in more or

less familiar notation.
Definition 2.5.

, . = P(A,
szn ( d

o

,n)

Since our sxioms for learning are concerned with particulasr gequences
of reinforcing"events, we want to define the equivalence clags of

_ . t ;
sequences whieh have the same outcomes through the n b trial. We

use a notation of square brackets common in mathematics.

% _
—/ It is.understood. throughout this paper that the range of the vari-
able 'j" -is 1,...,r and the range of 'k' is 0,1,...,r.



-13-

‘Definition 2.6.

[x]n = {y: yeX & for m<mn, y =x 7.

Some obvious relstlons are:

[x], <Ix] i3

and there is. 2 J and a %k such that

Furthermore, in terms of the notation: x, and x, [:;A]n is simply
the set of sequences y in X identicel in the first n responses
with x, and [xE]n is the set of sequences y in X identical in
the first n reinforcing events with x.

We next define the probability of response § omn trial n given

the first n-1 responses and the first n-1 reinforcing events.

.Definition 2.7.

ij?n = P(Aj)nl [X]n—l)e

Here and subsequently we use one of the standard notations for conditional
probability, and the elementary theory of conditionsl probabilities is
assumed throughout this paper. However, to avoid a lot of unimportant
technicalities, contfary to the usual practice we define conditional
probabilities when the given event has & probability of zero. Namely,

if P(B) =0




w1

(1) P(AIB) = 3 .

We take ag & mathematical entity whose only known useful property is

[
0
that

0
(2) "6“0:00

Adopting (1) and (2) greatly simplifies later work with summations of
‘products. From a working standpoint a conventicon close to ours is
usually adopted by most writers.

Some further probability notions are needed later, but we reserve
their statement until after consideration of our axioms for simple
learning,

We do need to characterize our.third and final primitive notion
®. The mathematical entity © i1s & real number between 0O and 1
with the intended interpretastion that it is the léarning parameter.

In statistical learning theories {[4], [6]), it is assumed that the
value of © in any experiment is determined both by characteristics

of the organism, e.g., sénsory acuity, and by characteristiecs of
environmental stimulusg sources. In dexriving experimental implications
of the model developed in this paper, we assume always that © is a
fixed constant throughout an experiment; consequently, the model should
be applied only to situations for which this aséumption appears reason-
able. C{onseguences of gystematic variation in value of the parameter

8 over a series of learning trials have been discussed by Restle

[13] and LaBerge [11].
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3. Axioms.
Our three axioms for simple probability learning are embodied in

the .following definition.

Definition 3.1. An ordered triple X =< X,P,6 > is s (single

parameter) linear model for simple learning if, and only if, there is

an r guch that X 1is the r-response space, P 1is a probability

measure on é?(x), © 1is in the open interval (0,1) and the following

three axioms are satisfied for every n, every x in X with P([X%Q >0

and every J and k:

Axiom 1. If xeE & 3 =k &k £ 0 then
L= X, 1 ——

pXj,ﬂ-ﬂ-}_ = (l_e)pxj,n + 8.

“Axiom 2. If xeE n&j,-ék&k,éo then

- K,

Pxj,n+l = (l-e)ij,n ’
 Axiom_3n Eg XeﬁEo’n then

ijyn+l = ij,n ’

The three axioms express assumptions concerning the effects of
reinforcement and non-reinforcement. The first two say, in effect,
that when a reinforeing event occurs, the response class correspondiﬁg
to it increases in probability and all others decrease. This is the
same assumption utilized in a number of contemporary stochastic and

statistical models for learning ([41, [6], [13]). The difference
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équations expressing Axloms 1 and 2 are derivable, in quite different
ways, as special cases of learning functions which occur in Estes and
Burke's get-theoretical model [6] and in Bush and Mosteller's linear
operator model [3); a general model elaborating the implieations of
this pair of equations for reinforcement theory has been reported by
one of the writers [4]. The third axiom expresses the assumption
that response probabilities are unchenged on nonreinforced.trials.

In empiricél applications of the.model'defined by 3.1, the term
.P

x3,n ig to be interpreted as the probability of response Aj for a
H

particular subject on trial n. In principle the values of ij,n
can be predicted for all sequences and all n, given pj}l, r and ©
(see Theorem 4.1 below). In practice, however, it is impracticable
to evaluate trial by trial probabilitiesIfor‘individual subjects, so
in experimental tests of the model we usually deal only with the
average value of pxj,n over all sequences terminating on a given .
trial, i.e., with pj,n" The latter can be predicted for a1l n,
given the values of pj,l’ ry, and ©; and sufficient infqrmatioq con-

cerning probabilities or reinforcement and nonreinforcement (see

Theorem 4.7 below).

It may appear at first reading because we define only one reinfore-

ing event Ej corresponding to each response Aj, together with the
event 'EO, we will be greatly restricted, as compared-say to Bush and
Mosteller [3]; in the variety of empirical situations we can interpret
by means of the model. However; this restriction is only apparent;

actually the reinforcing effects'of innumerable different experimental
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outcomes of a learning trial can be represented in terms of the model.
Firstly, one should note that all experimentally distinguishablé outcomes
which are assumed to produce the same effects on response probabilities
will be represented by the same event Ej in the model. Secondiy, if

a trial on which a‘given response Aj occurs may terminate in several
different ways, each of which hag a different effect on response pro-
bability; the different outcomes may be represented by different proba-

bilistic combinations of Ej, Ek(k#j)g and E To illustrate this

o°
last considerstion by means of a simple example, consider a two-choice
situation; e.g., a T-maze, in which Al and A2 responses are

followed by different magnitudes of reward. Applying Bush and
Mosteller's model to this hypothetical situation, one might define a pair

of operators Ql and QE’ to represent the effect of the two outcomes.

Then

YP = 4P+ 3

would be the new probsbility of Al after an Al occurrence and

R =P ey

would be the new probability of an Al after an A2 occurrence. . These

operators lead to the recursive expression

Ppy1 = (8780 + ay + (0 -0V,

where Vé n is the second raw moment of the Al response probabilities
2

on trial n. Applying our linear model to the same situation, we might
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assume that the reward given on Al trials produces events El’ EE’ and

E. with probabilities , and ¢ respectively, while the

€117 %12 10

reward given on A2 trials produces El’ Ea, and E

0

o events with pro- ;

babilities ¢ 15 Coos and c regpectively. Using results of a later

2 20
section (5.2) one can show that with these interpretations, the model
yields the following'recursive expression for probability of an Al

response

P = (1-94—9011-9ﬁ2+ ecao)Pn*F90214'e(clo"cgo)vg’n

where P, and ‘Vé n have the same interpretations as in the Bush and
: 2,

Mosteller model. {In the notation of Section 5, Vé ) It

,n a2,l,n°
" appears to be the case that for any experiment which has an interpre-
tation in the Bush and Mosteller model, one can find an interpretation

in the present linear model which yilelds the same recursive expression
-for PJ,n“ (Although not in general the same expressions for higher
order moments of the response probabilities). We should add that the
example just discussed gives s possible interpretation of the differential
reward experiment, not necessarily the interpretation that would be
dictated by an analysis of, the problem in terms of any particular learn-

t

ing theory.
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4. Generasl Theorems.

We now turn to some general theorems which do not lead immediately
to experimental tests of the theory, but rather have the function of
clarifying the structure of linear models for simple learning. We begin
with the theorem, already alluded to, which says that if Pj,l’.r anq
& are given, then pxjpn is determined for all sequences x  and all
trials n. In formulating the theorem we make this ides precise by
considering two models of the thecory for which Pj,l’ r and © are

the same (we get identity of r by having the same r-response space

X in both models).

Theorem 4.1. Let X =< X,P,0 > and X' =<X,P';,0> be two

linear models for simple learning such that pj 1= pj 1° Then if
» 2 -

P([x]n_l) >0 and P'([x]n_l) > 0, we have:

o i‘
ij,n h ij,n :

Proof': BSuppose the theorem is false. ILet n be the smallest

integer such that (for some Jj and x)

S Pyegn F Pyynt

XJj.,n
(By hypothesis of the theorem, n > 1.) Now if

(2) | | P([x] ) >0

and

(3) P([x]_,) > 0,
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then by our hypothesis on n we have:

— 1]
(&) ijgn—l - pxj,n——l °

There are now three cases 4o consider: }ceEj n’3CEE%'n with k.# J
k) ¥

and k # 0, and xe E, . Since the proof is similar for all three

O,n

cases, each requiring application of the appropriate one of the three

axioms, we consider only the first case:

.(5) xeB, .

From (2), (3), (5) and Axiom 1 we infer immediately:

Pejm = (1“9)ij,n~1 + 9
(6)
P _ 1]
ij?n =@ e)ij,-n-l e
From (&) end (6) we conclude:
—— 1]
Pyjm ™ ij,n ’

which contradicts {1) and estsblishes cur supposition as false. Q.E.D.
The next theorem establishes the fundamental result that givén the
initial probabilities of response of the subject, and the conditional
probabilities of reinforcement, then a unique model of simple learning
is determined. Moreover, no restrictions cn these probabilities are
required to establish the theorem. The gignificant Intuitive contenﬁ

of this lest assertion is that the experimenter may conditionalize the
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probabilities of reinforcement upon preceding events of the sample space
in whatever manney he pleases.

Some preliminary definitions and lemmas are needed. The third

definition introduces the notion of an experimenter's partition of X.

The intuitive idea iz that the conditional probabilities bf reinforcing
events on trial n depend on any partition of the eguivalence classes
[x]n;l and responses on the nth trial,f/ The most general cases as

yet studied experimentally are those for which the conditional probability
of a reinforcing event depends on the response vy +trials earlier. Such
cases are treated in some detail in Section 5. It is Important to empha-
size-that the results in the present section are in no way restricted to
conditionalization on a single previcus response; the probability pattern
of reinforcement may depend on any selected sequence of prior responses

and reinforcements.
Definition %.2.
=(n) = {§:thereisan x in X anda J such that

5 = [X]n—l()Aj,nk

EE(n) is the finest experimenter's partition of X which we can use

on the nth trial. It is immediately obvicus that

Lemma 4.3. For every n, —(n) is a partition of X.

¥
u/ A partition of a non-empty set X is a family of pairwise disjoint,
non-empty subsets of X whose union is equal to X.
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We now use =(n) to define the general notion of an experimenter's
partition H(n), but for this definition we explicitly need thé notion
of one partition of a set being finer than another. (The definition is

so phrased that eny partition is finer than itself.)

Definition 4.4. If (] and @ =re partitions of X, then (]

is finer than é? if, and only if, for every set A in [ there is

aset B in 4 such that ACBE.

We then have:

Definition 4.5. H{n) is an experimenter's partition of X (EE

trisl n) if, and only if, H(n) is a partition of X and —=(n) is

finer than H(n).

Finally, we need a lemma which provides a recursive equation for
'P([x]n) in terms of & given experimenter's partition on trisl =n.
Notice that (iv) of the hypothesis of the lemmsa is a condition con-

trolled by the experimenter, not by the subject.

Lemma 4.6. Let H(n)} Dbe an experimenter's partition of X. Let

(1) neH(n)
(11) [x] =4, NE, Nn

(111) P(a, O[x] ;) >0

(iv) P(Ekgn 1 Ay N [x], 1) = P(E.k’n | n)- |
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Then
P([x]) = (8 |nde,; , P([x] ).
lgzgggz By (1i) of the hypothesis
P([X]n) = P(EkjnfrAj,anEX]n_l),
whence,

P([x] ) = P(E

n k,n]Aj,n()[X]n-l)P(Aj,nr[X]n-l)P([X]n-l)'

Applying (iii) snd (iv) to the first term on the right and Definition
2.7 to the second, we obtain the desired result. Q.E.D.

We are now prepared to state and prove the uniqueness theorem. Regard-

“ing the notation of the theorem it may be helpful to keep in mind that

qj 1 is the a priori probability of making response J on the first
3

triail, and ig the conditional probability of reinforcing event

7‘qk,n
k on trial n given the event 1 of an experimenter's partition H(n).
It should be obvious why we use the notation qj 1 rather than pj.l (znd
b 3
. . . h
at the beginning of the proof qxj,n rather than pxj,n)f narpely, the

function p is defined in terms of the measure P whose unigue existence

we are establishing.

Theorem %.7. Let X be an r-response space and let © be a real

number in the open interval (O,l), and let the numbers q, 1 be such
3

that

j:l -




ol

For every n let H(n) be an experimenter's partition of X, and let

y be a function defined for every n rand k and every eH(n) such

that

Then there exists a unique probsbility measure P on @A (X) such that

(1) <X,P,6 > 1is a linear model of simple learning,
[ . =D.
(11) a4, =2,

(iii) _— P(Ekgnln)

(1v) If neH(n). and W is an n-1 cylinder set such that Wgn

‘and P(W) > O then
P(Ekﬂnlm = P(Ekjnm),

Proof: We first define recursively a function ¢ intuitively

corresponding to p, i.e., qxj,n = pxj,n°
1 . = g,
( ) _ q'stl qul
(@) gy = (-8)ay, g+ 0803, E(xm-1)) + eq, 4 8(0, E(x,n-1)),

where B 1is the usual Kronecker delta function;
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1 if j=k
5(J,k) =
lo if j#4x ,
and
(3) E(x,n) = k if, and only if, [x] cE

n= k,n’

(In effect, (2) combines all three axioms of Definition 3.1 into one to
provide this recursive definition.)

For subsequent use we prove by induction that
(%) §§:qxjfn = 1.

‘For n.= 1, the proof follows at once from (1) and the hypothesis of the

theorem that

Suppose now that

>:J.qxj,n—l =1

There are two cases to consider. If xe Ek n for some k # 0 then
. .

from (2) and (3) we have at once:

32 (-8)a oy + 8
J

Zj qxj,n

i

(1-6) S oy + ©
J

| (1-8) + ©

il

= 1.
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.I'f- erO

o’ then
¥

> L%im T J:[(l-e)q'xj,n-l + 0%y

J

§3——(1:»53),11--1.

Following Lemma 4.6 we now recursively define P({X]n) in terms

of 'gq and the function v introduced in the hypothesis of the theorem.

i

(5) -

P{Ixl) = 7 g(x,n),n Gegr,n-1 Pl )5
where
[x], =4, 4
[x], €9y € (1) ' ‘
[x]nﬁAJ,’n
[x] cneH(n).

We first need to show that the function P may be extended in a well-

* .
defined manner to any cylinder set Cu-—/ To this end we prove by

*/

= In connec'tion with the remarks in Section 2 on cylinder sets it may
be pointed out that it is impossible to extend P in a well-defined
manner to every subset of X.
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induction that if

then

"1
(6) > H(Ix

oy
= P(ly.1 ).
> ) g ([y;1,

. ]
Ty 2

When ny =n, the proof is trivial. Without loss of generality we

may assume than n, < n.; i.e., there is a positive integer + such

1 2

that n. + t = n_. We proceed by induction on +%. But first we observe

1 2
that the family of sets [Xi]n constitutes a partition of C, as dces
1.
the family of sets [yi]n i’ and the latter is a refinement of the
1
former. Whence for each set [xi]n there is a subset I of the
1
first m.2 positive integers such that
(7) 15,1 = J Iy, 1 e
+t
'y per B

And on the basis of (7) to establish (6) it is obviocusly sufficient to

show that

P(lx,] =2 P(ly

] )
1 hel h'n,+t

Now if + = 1 then
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: = [
[Xi]nl [X_i]nln Aj,nl+l ~ Ek,nl+l
= NE
%J LJ ([X ] l ,nl+l Ek,n+l)
= hkeJI [yh]nl+l°
Since for hel, [y 1 =[x ] , we infer from the sbove and (5) that
h oy i o,
T Iyl ) ZZ? o Pl )
et h ny +1 kK nl+l qxg,nl %nl

JZ ESEN P([Xi]nl)

by hypothesis on ¥

= P([x,1 ) by (1)
1
Suppose now thaﬁ (6) holds for t. Then there are sets Il and 12
of positive integers such that
1, = 1l MU A a
i'n) kLeIl h nl+t 3 J,nl+t+l T Ek,nl+t+l i
g512 gnl+t+l
Since for each g ele there is an h in Il such that
[= g]n +t [yh ny +t7
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similarly to the case for t = 1 we Infer that

> P(lz,] ) =335 7 9, P([y,], 4)
ge I ny +t+1 T E ne Il qk,nl+t+l xg,nl+t h nl+t

> Pyl n, +t)

he Il

P( [Xi]nl):

by our inductive hypothesis, which completes the proof of (6) and '

Justifies the extension of P +to any cylinder set: if

C —U [x,1
i=1
then
(8) p(c) —ZlPux 1)

We now want to show that P is a probability measure {in the
sense of Definition 2.1) on the field of cylinder sets of X. Since

the functions g and 9y are non-negative it follows at once from

*/

In using throughout this paper the notation

m

C = [x,]
191 "i'n

we always assume the sets [xi]n are distinct; otherwise the

extension of P would be incorrect.
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(5) and (8) that Axiom Pl is satisfied, i.e., for every cylinder set
¢, P(c) > 0.
. Now 1t is easy to select a subset Y of X such that

X = U [X]lﬁ

xe ¥

whence by virtue of (5) and (8)

P(X) = > P([X]l) =>t5% 94,1 7nk,l

xe¥Y

JZ 95,1 Zk YN

1-1

=1,

which establishes Axiom P2,
‘To verify Axiom P3, let Cl and 02 be two cylinder sets such
that Clr302 = 0. Without loss of generality we may assume they are

both non-empty n-cylinder sets, and we may represent them each by

o
H
|
C
M
H
ed
o

(o}

av]
i

[ aam |
o

—
B

a

and by hypothesis, for each..i=l,ou,,m1 and h=m1+l,f, m
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[xi]n(foh]n = 0.

Whence

T
P() Ix,1)

P(CiU 02) . i'n
i=1

]

"o
> P(Ix])

Ty B ?
= > B(Ixl)+ Y p(lx])
i=1 h=ml+l

P(Cl) + P(Ce).

Now for Axiom Pk. Let < C,,C C y... > be a decreasing

2,..'., n

sequence of cylinder sets, that is,

(9) | c

n+l = Cn
and
' oo
(10) N ¢ =o.
n=1
Suppose now that
(11) lim P(Cn) £0 .

n — 0o

(This limit must exist since the seguence is bounded and monotone

decreasing. The monotonicity follows from (9) and Axioms Pl and P3.)
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In fact, let

lim P{C ) = s > 0.
n — 00 a

Hence for every n

P{C ) > x,

-and 1t follows at once from Axioms PlL-P3 that

(12) c, £ 0.

-We now use a topological argument to show that

o0
() ¢, # 0

n=1

contrary to (10)9 The idea is simple; details will'be omitted to
avoid too serious a diversion. We know from Sectioﬁ 2 that X 1is

the countebly infinite product of the finite set Z(r). Hence every
eylinder set of X 1s compact in the product topology of the discrete
topology on Z{r}; in particular for every n, C, 1is compact. Also
by virtue of (12) every C, is non-empty. But it is a well-known
theorem of topélogy that a decreasing sequence of non-empty compact
sets has a non-empty intersection, which contradicts (5). Thus our
supposition (ll) is false and P satisfies Axiom Ph.

Finally, the unique extension of P to the Borel field ég(X)

2

follows frém the standard theorem on this extension (see [10], p. 17).
The verification that the measure P defined by (5), (8) and the

extension Jjust mentioned has properties (11)-{iv) of the ‘theorem is
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straightforward and will be omitted. Q.E.D.

We now want to show that the probsbility of a given response on
trial =n depends only on the probability of the response on the first
trial and the sequence of preceding reinforcing events, and ls independent

of the seguence of preceding responses.

Theorem 4.8. If W  1is an n-cylinder set such that W&[x,l)

and P’(Wn) > 0, then

P{A W} = P(A

: J,n+l| n j,n-:—ll[x]n)"

Proof: The proof is by induction on n. ‘For n=1 the proof
follows immediately Ffrom the axioms. Suppose now that the theorem

holds for n. There are three cases to consider: x eEJ. n+ls
. r

xeB xe¢ E with k # j eand k # O. Since the proof for

0,n+1’ k,n+l

all three cases is the same we consider only the last one . Now Wn+l

may be of the form

(l) WnnEk,n+l
or
(2) W11(\|Ek,n+l(hﬂij',,n+l°

The proof is similar for (1) and (2), so we shall consider only (2).

We then have the following equalities:
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P(Aj,n+2|wnr1Ek n+lﬂ‘A ,n+l)
P(E MNA, Nlxt
T, T By e 7)) el
[x] W 32 Fena M n’ P(By N By p 0
by elementary theorems about
conditional probability
P(E NA 0[x*] )
- : (1-8)P(A, n+l\[xl]n P(k,n+l ﬂjﬂjx s+l ~ )n
[x'] =W ds Beonir "By na ¥y
by Axiom 2
P(E L NA, Nix'] )
= (1-)p(a, . |W ) S _Pl{{ﬁnﬁl nJ.A,n+1 . 1;
4 {x-’]ngwn kynel T j'y,n+dl T n
by inductive hypothesis
= (1- e)P(AJ n+1|Wn)

by summing over W

]

(1-)p(a, o {lx],)

by inductive hypothesis

J n+2][ ]n+l

by Axiom 2 and hypothesis that
x.eEk,m_l° ‘QuEwa

It follows immediately from this theorem that the three axioms (of

Definition 3.1) hold for such cylinder sets ‘qu Since this result is

S U
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sometimes useful, we state it as a corollary.

Corollary 4.9. If W, oois an n-cylinder set such that WﬁEEEXE]n

and P(W ) > O, then:

(1) if W

i

WPIi»—lmEj,n

P(A |Wn) = _(l—e)P(Aj’n[W l) + 8

Jyn+l n-

(ii) if W = Wn_lﬂEk,n with k£ j and k # O,

P(A W)= (l—G)P(AJ’nlWﬁ_l)

j,n—!—ll n

(i1i) if W ?"Wn—lﬂEO,n

p(A ) = p(A

j,n+liwn J,nlwﬁ—l)°

The next two theorems show that the linear model possesses the
property which Luce [12] hag designated "independence of irrelevant
alternatives.” That is, given that the response made on trial n of
an experiment belongs to a subset T of the set of possible responses,
-the relative probabilities of any two responses in the subéet are the
same as their relative probabilities in the complete set. The first of
the two theorems guarantees this property for the conditional probabilities

ﬁ . and the second for the unconditional probabilities p. .
XJj,n. Jsn

Definition 4.10. If TE&N(r), where N(r) is the set consisting

'9£ the first r positive integers then
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oAy 1], ) = B(ay ] )0 U Ay )

Js T J ,Il

‘Theorem 4.11. If JjeT and 2 P(AJ., rl|[x]rl 1) > 0, then
Zheorem It and ,n! - then

‘Proof ¢

P(A.
('J)

J'e T

P{ J»n|[ 1 l)

isn E:: POAS, oIl )
J'eT
By definition of conditional probsbility,
P(A, x] 0 U A,
l[x] ﬂ U A )* ( J,HOE ]n—l JIET Jl,n)
n n-1 j',n’

J'eT
wel 0 U a0

j'eT J}n

pa, 0 U o (1, 3 R(Tx], )

j'e®T

B( L) Ajrsn‘[xjn-l)P([X]n-l)

J'e T

Distributing the set unions in the numerator and denominator; this

last expression reduces to

i)
E:?h P(A. |[x]n_l)

J'eT

Definition 4.12. If TCN(r) then

U s, ).

jte T <

P

n(A; ) = P(a,

Js‘nl

Dy A
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Theorem 4.13. If jeT and 2 _ P(AJ_, )} >0, then
jle T 3

P(AJJH)

r,0) = 2 pla,, )

1
J.IET JJn

The proof is analogous to that of 4.11.
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5.  Recursive Expression for Moments.

-In this gection we derive a recursive expression for the moments

of (i.e.;, P(A, '[x]n_l)). The results are then used in the

dsll

analysis of variocus special cases which have been studied experimentally.

xJ;n

We first need to introduce a notation for the partition of the sample
space X into sets agreeing on the first n trials, n respbnéés or n

reinforeing events.
Definition 5.1.

X{n)

{[x]n: xeX]

"

xﬂn) UXMD2X€X}

'xE(n) {[xE]n: xeX}.

We Tormslly define the moments of pxj L Bas follows:
2

Definition 5.2.

a = Z PV(A-n_'[x]n-l)P([X]n-l)°

Vsdon [X]n_le x(n-1) ds

The first moment is simply pJ n’ that is,
b4

. = P, = P(A .
1,d,n ern ( J;Il)

Naturally the variable v ranges over positive integers. -The general

recursive expression we first estsblish is computationally unworkable,

but it specializes in different directions to something manageable. Note
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that in this géneral.expression the evaluation of Q-

. as a
v, J,n+l cpencs

upon summing over the partition X(n). Generally speaking, any expres-
sion which depends in this way on the partition 'x(n)' cannot feaslibly

be computed for any n beyond the first few positive integers.

Theorem 5.3.

a . 1-8)" 2 1-6 v'lel vt
v,d,n+l AR [x] _;ex(n-1) %;EF (-0 .
. P(Ej, f\[x ) + (l (1-8)" )? P( O,nr)[x] )

‘Proof: By Definition 5.2

w 2 Pa ll[x] )P(x]_)-

V,J,n+l [x] eX(n) J,n+

Since for every x in X and for every n there is exactly one '

and one k such that

c B
[x]n'_Aj*,n(\Ek,n’

we may re-write the right-hand side of (1) to obtain:

(2) R B MCI| e 0B, o)

a o,
v,J,n+l X(n l) 3 t,n

< B([x],  NAy, NE ).

(For brevity in (2) and hence forth we write: ¢ ___  rather than:
| x(n-1)
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o > .) Applying to (2) the axioms of Definition 3.1 we
[x]n_lefx(nnl) ' : :

infer that

X(n:—l) J: [(1-8)p(a 5 l[x]n_l) +6]" P([X]n_lﬂAj ',n“Ej, )+

(3)

04 . =
vy Jsn+l

k% [(1-e)p(a, |0x] )17 R([x], NA., 0B, )+

J'yn E,n”

k £ 0
Pv(Aj,n ,[X}n-]_)P([X]rhln AJ ’_,nﬂ EO,n)]

Since the various terms of the right-hand side of (3) which are
raised to the power v are independent of the summation over J' we

may eliminate this summation, using the fact that for any Y&X

Y pxna,, )y=rixo U a, ) =r.
N | J 0 3t d 0

Moreover; we may use the following binomisl expansion for the first

term on the right of (2), writing here and hereafter P for

xJj,n
P(A. |[x] )

dsn

v . : . . -

v vV hTS Vel 1 V=1

1-8)p . 8]V = (1-o . 2 (NH(-e 9 Lo
[.( )PXJ)H + 8] = (1-9) Pesn * — (;)(1-8) Pei,n

Finally, adding and subtracting the term

v v
1.8 .
( ) PXJ:

n P( {}.cln-lﬂ EO,IJ.)’ .
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we infer from (3) as the result of these three changes

(&)

Vi gyl =

> [(1~e)" Py o PIxL 0B, )+

X(n"‘l) Jsit

v .
v v=i i v-i
Z:.l ()(a-8) "o, B(Ix] 4 NE, )+

k?ézj(l-e)vp;jynP([xl_‘_lﬂEkyn)i-(l—@)vpv P([x] NE, )

xj,n n-1 0O,n

k40
+ (J.-(l-@)v)p;j’n P([X]n—lﬂEO:n):l '

Combining now the first, third and fourth terms on the right of (&) and

summing k out, we get:

(5)

o = (1-e)" p’,
Wy Jan+l x(:l;l) [‘ ) PXJ,n

P([x] ;) +

v . s
v vei 1 wv-i
E ()1-8)"" o p o BUx] 40E, )+

1 -(1-0))py, | ¥ [X]n—lnEoyn)J °

Since the Pirst term on the right of (5) is simply (1-6) «

. s We
Vidohl

have our desired result. Q.E.D.

It is natural to ask what is the most general special cése for
which we can derive a recursive expression for the moments that does
not depend on the partition x{n-1). The folldwing corollary is

addressed to this question. We restrict the number of responses to two;
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we make the conditional probability of reinforcement depend only on the

immediately preceding response (condition (ii) below), and independent

§ of the trial pumber ((iii) below); and we meke the probability of E,

non-contingent, that is, independent of previous responses. Note that

F (1i) requires the notion of an (n-1)-cylinder set.

Corollary 5.%. If

] (1) r=2

(i1) if W is an (n-1)-cylinder set and P(erAJ n) > 0 then
: an ) taen

P(E, |WNA; ) =P(E, 14, )

(iii) P(E, _la. )

; 1,0 1,0’ T M1
%
£ j =
P(El,nIAQ,n) = T
P(EO,H|A1,R) = P(EO,DIAEQn) = Tgs

then

v o
v v v-i i
. (94 = - 1~ - (84
| v 1,mL (ﬂo + {1 ﬂo)( 8) )av,l,n + E_i (i)(l ) 0 (“21 it

o

(mpq = 3)% 441,0,m

Proof: To simplify the recursive expression for « given
e ‘ vyl,n+l

by the theorem, we first note that on the specialized hypothesis of

the coroilary

B(s,,0[x], ;) = B(8, 1], )e(lx, ) = sgp(Tx], ),
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and
Py pNIxly ) = BB nl?) Agn 0l
oo J’ ’
= BBy 4,0 1x], R0, ol

+ (B 18, O0x] )8, | |[x],_)P(Tx], )

Using {i1) and (iii) of the hypothesis and the fact that

P(AE n| [X}n—l) = l—P(Al,nl[x]n—l)’

we get:

P(E 0

Substituting these two results in 5.3 we have:

i

-
%, 1,041 (1-6) %,1,n

x(n-1) | i=1

> Z()(le el

e Nl = Trggpg oo+ mp (T IR )

Vi

(13 Py, 0t TPy M BAxD )+ (1-(1-6))p ) (1

1-0) e, +5S (Da-e) et | S (x
e i=1 X(n-l

1B TP, m ln-l):} P e )

Applying Definition 5.2 to the right-~-hand side we infer:

. v-i+l
ll xl,n

DRIl )

X]n-l)

+

).




b

v

v v v-i 1
% a1 = (1€)7 A o %EE(i)cl“e) Ol %i,1,0 *

. v
- 1 -{1- (97 .
To1%-1,1,n = "21%-141,1,n * (1-(1-6) )=y v,1,n

Simple rearrangement of terms of the right-hand side immediately yields
the desired conclusion. Q.E.D.
As a second corollary we want to derive a general recursive

expression for «

, which does not depend on the partition
1,3sn

= Pj,n
X(n-l)- It is posgsible to obtain a recursive expression in terms of
én arbitiary exﬁerimenter's partition. However, practically no
aéymptotic.results can be aerived,at this level of generality, so
that it is convenient to specialize to conditicnalization of the

probability of a reinforcing event to & single previous response. To

this end, we introduce the notation:
Definition 5.5. If n > v then

).

cjk(nﬁv) = P(Ek,nlAjyn*V

Thus cjk(n,v) is the prﬁbability that reinforcing event k will
occur on trial n given that response occﬁrred y trials earlier.
It is understood throughout that 'v' 41is a variable ranging over non-
hegative integers. The probgbilities cjk(n,v) are ordinarily com-
pletely determined by the experimenter. If v > 0 we ssy that there
is a lag v in the probablility pattern of reinforcing events. The
cqrollary covers the case where the reinforcing events 1,...,r are

contingent with lag, and the occurrence of no reinforcing event on
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trial n, that is, ¥ ; has a fixed probsbility independent of pre-

O;n
vious responses or reinforcing events.

An obvious but cumbersome definition formalizing use of the
conditional probsbilities cjk(nyv) is needed. Since we consider

only the case with non-contingent E trials, this special condition

0

is included in the definition.

Definition 5.6. A linear model X =< X,;P,8 > satisfies the

simple contingent condition with lag and with non-contingent EO trials

if, and only if, (i) for every n there is a unique v such that for

all j, k and W if W is an (n-1)-cylinder set and P(WNA, o) >0 !
all and if is an ,n- .

_ then

P(E

]c{,n‘wﬁA

Jonmy) = Sl

(ii) there is a number c, such that for all j, n, and vy with n > v,

0
Cjo(ﬂp‘v) = Con
The phrase in (i) of the definiens "for every n there is a unique

V... indicates that we are permitting v to depend on ny that is;

the amount of lag may vary from trial to trial. The lag could be 1 on

odd-numbered trials and 2 on even-numbered trisls for instance.

Corcllary 5.7. If the simple contingent condition with lag and

with non—dontingent 'EO

trials is satisfied, then

B5nel = (l+ec0-6)pj’n + © ? CJ?J(n’v)pj',_n-v’ , !
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where vy depends on n.

Proof': We have from Theorem 5.3 that

(l) Pjsn+l = ai;an+l (1 S)PJy ;%igi) © P(E [x n—l)
+(1-(1-0)) 2_ »  P(E, O[x], ).

¥({n-1)
“Applying (ii) of Definition 5.6, summing over the partition x(n-1)

(since

> P(E f)[x]n_l) =P(E, 0O \_J [x1 ) = P(E; )

x(n-1) JoB s (na1) o0

and rearranging terms, we have:

(2) P (1+ec _e)p ot 8 P(Ej rl).

Jj,n+l

‘We obtain the desired result from (2) by using (i) of 5.6 and observing

that

P(E, ) . A,
J;I Jsn 1 od ARV

!
X
&=
-

=

I
o
—
=

Q.E.D.



47

In the special case for which cj,j(n,v) is independent of n; we

can derive from the recursive expression of Corcllary 5.7 various experi-

mentally useful relations invelving the Cesdrc mesans (arithmetic means
‘over trials) of the response probabilities. These means are defined as

follows:
Definition 5.8.
N

— 1
p,(N) =% > p, -
AJ Nﬂzl JsB

We restrict ourselves here to one asymptotic theorem, for which
v is fixed as well as independent of n. To make clear what we mean o
by v being constant or fiked, we may describe an experiment in which
it is not: on each trial the experimenter uses lag 1 with probability
L and lag 2 with probability %n In this case the lag would be inde-

2
pendent of n but not fixed.

Theorem 5.9. Let the simple contingent condition with lag and with

non-contingent E trials be satisfied, and let the lag v be fixed

0

and independent of n {with lag zerc on the first v trials). Then in

order for the limit of pj(m), for J=l,...,r, to exist as N - oo and

to be independent of the initial probabilities pj 17 it is necessary o
= : 5 Roahiiodsdianticts kol b é

-and sufficient that unity be a gimple root of the matrix

0 11 21 rl
c12 QO + 022 oo cr2

€=
clr ger c0 + crr



L8

Moreover, i1f the limit of 'pj(N) does exist and is independent of

—r — ———

P51

.

lim Dp.(N) = A,
N — J d

where the hj are the unique solutions of the r+l equations

(1-c o), '5;; e (VA for =1, ...,r

J

1]
l_l

YA

Proof: If we sum both sides of 5.7 from 1 to N, and then divide

by N, we cbtain:

P, - P,
= J, W1 J>1 _ _oVe o
pj(N) + = = (l+9co 9)pj(N) * ¥ > e,

= (1+eco-e)§j(N) +

?‘ ¢414(0)2,(v)

d

=@

N
_ 0 — -
+ 0> - cj,j(v)pj(m -5 %cj,j(v) > b,

n=-y+1 Jom

Clearly ag N — o0




G-

P, - p,
lim J’N“é b1

4(!’
., © =
llm-ﬁ Eg;:cjij(O)PJ(V) = O‘

N
oS cj,j(v) > p,_ =0.
J'!

L 5 neN-y+1 9"

Consequently as N —» c, we have r linesr homogenecus equations,
writing Ej for lim p.(N):

N - d

. = {1-8c -8 .+ © Z C.,.V .
PJ ( 0 )pJ J : J :J( )PJ 1
which reduce to:

(1) (_1-%)55:_?%?‘]_(«,)5'],, for  jel,...,r.
The r homogeneous linear egquations (1) have a non-trivial solution
if and only if the rank of the matrix C-I (where C is defined as
in the statement of the theorem snd I is the identity matrix) is
less than r. That the rank of C-I 1is less than r 1is easily seen
by adding every row to the first, thereby obtaining a row of zeros.
Clearly the limit of EJ(N). exists and 1s independent of Py
if,_and only if, there is a unidne non-trivial solution gf the r+l
equations (1) and T Ej = 1. To complete the proof of the theorem
we thus need to show that in order for there to be & unique non-trivial

solution it is necessary and sufficient that the matrix C have unity
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as a simple root. Now it is well known ([7a], p. 111) from the

literature of Markov processes that the r+l equations

o
i

M

ol

(2)
:z;: 53 =1,
dJ

where (Eij) is the matrix ¢, have a unique solution if and only if
unity is a simple root of the matrix C. Moreover, the r equations

(1) are equivalent to the r equations (2) since

c., = cjj(v) + cof

dd

Thus the proof of ocur theorem is complete.
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6. Some Random Varisbles.

In this séction we define some useful random varisbles snd assert
some cobvious general theorems szbout them. Certain theorems of experi-
mental interest are proved in Section 8 for special conditions of
reinforcement,

Since this report is partially methodological we give a rather

explicit treatment of several elementary questions. To begin with, we

recall some familiasr facts about random variables. A random variable

_ ' *
is a (measurable) function defined on the sample spacea—/ The common
notation for the probsbility that a random variable U has & certain

value u is ordinarily devoted by:
(1) P{U = u),
and this probability is equal to the probability

P({x: xeX & U(x) = u})

‘For the expected value of a random varisble U , we use the standard

notation E(U).

A random variable is discrete if the set of its possible values
is countable, i.e., either finite or denumerable. If U is a discrete
random variable then its discrete density is the function g such that

for any possible value u of U

a(u) = P(U = 1) .

*/

—  Problems of measurability will not arise here.
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A1l the random variables congidered here are discrete. We shall not

introduce an explicit notation for their discrete density functions; but

it is well to remember that the quantities computed, e.g., expected

values and variances, are defined with regpect to these density functions.

Corresponding to events Ajyn ie,n

variables denoted by corresponding letters.

Definition 6.1. If xeX

i if x eh.
A (x) =
Js 0 otherwise
and
1 if x €E, _
= — yIL-
E—k,'ncx) =

0 otherwise .

We shsll also be interested in the sum of random variables A, .
—d>

Definition 6.2. If xeX
S, X) = An X))o
8y o) = T & (x)
Some obvious general results concerning these random varigbles
are formulated in the followiﬁg theorem. The main object of the

theorem is to relate expected values and variances to probabilities

of events in the sample space.

and E, we now introduce randon
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Theorem 6.3.
(1) e, =1) =24, )

)

(i1) E(A, ) = P(Ajy

JsL n

(1ii) Var (éj,n) = P(Aj’n)(l—P(Ajpn))

(iv) E(A, A,

=jn ~3,n+l°"£j,n+r) = P(Aj

,n(]Aj,n+lf)°"(\Aj,n+r

‘ n+N
(v) B(8;, ) = 2 P

m=ri+1l

J,m)
n+N

(vi) Ver (8,, )=Y _ B(A, JA-PG, D+2 L covia,

m=n+1

Proof: A few remarks will suffice. (i) and (ii) are obvious.

(i1i) follows from the equalities:

var(d . n)

2

(1~P(Ajyn))2 (A, )+ (o-P(AJ,,n))2 (1—P(Aj,n))

kY 2 2
(1-play DIR(a; ) - P(Ay )+ P74, )]

n

ii

[1-P(Aj)n)]P(Aj9n).

(iv) follows at once from the fact that the product of the variocus

n<i<k<n+N s

A ).

1—Js

possible values of the random variable is zero except when they all have

the value one. (v) may be inferred from {ii) and the familiar fact that

the expected value of a sum of random variables is egual to the sum of

their expected values. ¥inally, {vi) is a consequence of (iii) and the

familiar relationship between the variance of & random variable which

is a linear function of certain random variables and the variance and

covariances of these latter random variables (cf. [7]). Q.E.D.
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T. Some General Limif Theorems .

It is of intrinsic. interest to know how responses and reinforecing
‘events are relsted under very general conditions of reinforcement. The
following four theorems describe in & precise way the kind of asymptotic
matching relationships which obtain between them.

The first theorem asserts that for a given ocutcome x of an experi-
ment the liﬁ%ting ratio of the sum (wiﬁh regpect to n) of pxj,n to the
- sum of EJ feinforcements is 1; provided that there are no EO trials
and that Ej trials do not stop occurring after some n. (It does not
matter how rare the density of these Ej occurrences 1is, so long as
there is an infinite number of them.)

N

- Theorem 7.l. If x,#EO , for every n and if > E; n(x)
) — 2 - n=1 d s

diverges as N — @, then

N
e ij’n
lim ﬁ
N —-co .
E, (x)
n=1 —J,0

exists and is equal to 1.

Proof: Since x;{EO , by hypothesis, we have immediately from
’ k)

our axioms:

(1) Py ng1 = (1-8)p, ,\ + OB (x)

{we have dropped the subscript J throughouf‘the proof . ) Summing both
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sides of (1) from 1 to N, we get:

N - N i N
2 S L -Pp = -9 -+ e B (x).
( ) %Px,n Pl Px,1 %Px,n rgpx,n | Z/;l—n( )
‘We may derive immediately from (2):
N
E P
(3) s C 1. Pe,1 7 Py omsd
N B N ¢
| T B (x) 6 S B (x)
n=1 n=1

provided only that we choose N large enough to have En(x) =1 for

N
at least one n < N. Since 7 __ Enﬁx) diverges as N- oo the second
n=1

term on the right-hand side of (3) has zero ss a limit as N —o00 ~ and
the theorem is proved.

The secong theorem asserts a corresponding result for the fatio
of the sum of the mean probabilities P(Aj,n) of responses and the
sum of the mean probabilities 'P(Ej,n) of reinforcements. It should

be noted that if the quantity

. . N
(l) T :P(E n)
n=1 Js
is bounded away from zero as N — oo; then the theorem holds as well
for the Cesaro mean probabilities of responses and reinforcements; it

is not necessary that the 1limit -of (1) exist.




o N
Theorem 7.2. If P( E, ) =0 and S P(E, ) diverges
— n=1 °°° S

as N —- o; then

— ]
N
S Pa, n)
— Jr
1im ——ﬁ——-—'——'————' = 1.
n — Q0 Z P(E. )
n=1 i

Proof: By Theorem 5.3 and the hypothesis that the probability of

‘E,. trials is zero,

0]

(1) P = (l—G)Pj,n + GP(EJ’n)n

Jsyn+l
The same sequence of operations is applied to (1) as to the corresponding
equation of the previous proof. Q.E.D.

We now turn to the consideration of the same kind of theorems when
the conditions of reinforcement do not assign zero probabilities to
EO trials. For this purpose we introduce some notation whose intuitive
meaning is clear. If x is a possible experimental outcome, i.e., a
sequence which is & member of X, then x¥* is the subsequence of x
which results from deleting all EO trials and no ofhersq Clearly
x* 1is a well defined seguence only if the number of non—EO trials

in x d1s infinite; this condition is equivalent to the divergence of

N r
the sum > S E, n(x) as N — co. Formally we thus have:
n=1 k=1 7

N r
Definition 7.3. If x,yeX and the sum > _ 3 E

(x) diverges
n=1l k=1 '

,n
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as N —-oco then x¥ =y 1if, and only if, there exists an increasing

sequence ¢ of positive integers such that for every n

(i) .Yn = 'ch(n)

(11) Ey (3} =0

(iii) if E, n(x) =0 then n is in the range of .
20, then

Condition (iii) of the definiens simply insures that the subsequence

y generated by ¢ from x does not omit any non-E

0 .trialsn

Analogous to the first theorem we then have a corresponding limit

theorem for the subsequence x¥,

N
Theorem T.k. If S Ej n(x) diverges as N — 00, then
' ’ n=1 > . - :

N
h=1 px*j,n
_ lim N = 1.
. N -
. n=1 T

-Proof: 1In order to apply the argument used in the proof of

Theorem 7.1, we need to prove that

— - +*
(1) . I (1 e)px*’n + egn(x ).

But as in the case of 7.1, (1) follows &t once from our basic axioms

and the fact that for all n, x* ¢E Q.E.D.

O,n”

The analogue of Theorsm T»E.requires in a rather interesting way
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direct consideration of countable intersections and unions of cylinder
sets. The theorem concerns the mean probabilities P(A? n) and
3
P(E* ), where A% and E¥ are events yet to be defined in an
d,n Jdsil dsn

exact manner but whose intuitive significance should be clear. It
will be convenient to define at this point the set ¥ of sequences
with only a finite number of non—EO trials. F is the countable

union of a countable intersection of ecylinder sets. We first define

the cylinder sets Fn(k)e
Definition T.6.
Fn(k) ‘.‘;{XZ xeX & onn(x) = 0 and
for n < m < n+k, Ec%m(x) =13.

Evidently Fn(k) is the set of all sequences whose 2" trial is a non-

EO trial and whose next k trials are EO trials. Fn is defined

simply as the countsble intersection of sets Fn(k),'

Definition 7.7.
o0
F = () F (x).
R

Clearly Fn is the set of all sequences whose last non—EO trial was

"trial n. Finally, then, we define PF ag the countable union of sets

Fn’ and obviously F 1is the set of sequences which have a finite number

of'non~EO trials. For completeness and explicitness we need the set FO
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to define F. As expected FO ‘is the set of all seguences which have
nothing but E, trials; it is, like any F, for n > 1, a countable

intersection of cylinder sets.

‘Definition 7.8,
FO = {X: for every n, EO,n(X) = l} .

Definition 7.9.
oo
F = F, -
n=0

We may now use F to define A% and E¥ , as well as [x]*.
Jp0 k,ﬂ 1

Pefinition 7.10.

* — ° / =
Al n = {x: xeX & x¢F & éj}n(x*) =1}.

' Thus A; n is the set of all sequences which have the jth response
2

on the nth non-EO trial.

Definition 7.11.

E*

- ={x: xeX & x¢F &gk:n(x*) = 1}.,

Clearly E; n is the set of =ll sequences which have the kth reinforcing
4

event oh the nth non—EO trial.

Definition 9.12. If x ¢F then
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[x];" ={¥: yeX & y¢F & for every m<n

Thus [x]: is the equivalence class of sequences which have the same
first n non-Eg trials that x does. Finally, we define X¥*{n)

in the expepted manner.

- Definition 7.13.
¥*
X*(n) = {[x]nu xeX & x.é F).

It is obvious that for each n, X¥(n) is a partition of X~F, where
X 1is the sample space. Clearly sequences in F ‘which do have n
non—EO trials could have been included in [x]ﬁ for some x, and thus
in the partition x*{n), but it is technically simpler to exclude tilem°
The simplest restrictive hypothesis under which the final theorem

of the four may be proved is that the probability of the set F of

sequences with only a finite number of non-E triais is zero.

0]
g
Theorem 7.14. If P(F) =0 and > P(Eg n) diverges 8s N —» @
T - T n=l ? -
then
g
S p(a* )
n=1 Jslt
1im =1,

N - co L L%
S P{E* )
n=1 J',n

i —

.Proof: To apply directly the method of proof of 7.1 and the other
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two theorems (7.2 and 7.4), we need to show that

(1) P(A%

= (1-8)p(a¥ + er(E* ).
3’n+1) (1-8)p( J,n) ( J,n)

‘We may regard our theorem as complete when we have established (1).
In terms of the notation defined #bove, the whole samplé space

X may be represented by:

(2) x = \J [x]*UF.

X*(n)

On the basis of (2) we have:

PAY 1) = BOAY n(xifi) =% UF)

> - p(a*

X*(n) Jsn+l

1l

ﬂ[x]:) + P(A? nr).

s+l

- By virtue of the hypothesis that P(F) = 0, the second term on the

right is zero, and we get:

(3) P(A‘;? )= 2 p(a¥ ﬂ[x]:).

sn+l X*(n) Jsn+l

Now as in the cage of the proof of 7.4 it is obvious that

() RO (0D = (0)R(a] )+ e (k).

We use (4) to operate on (3):

S S SV OS
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P(AY 1) = P >m“.>___P(A* (1Ek L 00x1E )

SO+1 X*(n l) 3 krl;o Il+l
P( ﬂ i,nﬂ [X]:-l)
_ S [(1-eyp(a% (L=} p(lxiy ) +

X*(n-1)

op(e} 0 [xl¥ ) )P([x1} )]

(l-@)P(A?}n) + 6P(E§,n);

which establishes (1}. Q.E.D.
Tt will be useful to summarize the experimental implications of
‘the four theorems proved in this seetion. By virtue of 7.1 we can

predict that for any experiment in which E trisls do not occur,

0
the proportion of Aj occurrences will approach the proportion of
Ej cecurrences for each individual subject as the number of trisls
becomes large. Similarly, using 7.4 we can predict the same regult

|
for any experiment in which XE_ +trials do occur, provided that we

0
delete the EO trials from the subject's protocol before computing
the proportion of responses and reinforeing events. Corresponding
'predictions concerning mean proportions of Aj regponses and Ej

reinforcing events for populations of subjects follow from 7.2 and

7.14. Bxperimental applications of 7.l and 7.2 are illustrated in [5].
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8. The Non-Contingent Case.

Of the various special cases.that ma& be derived from the géneral
linear model, the constant event-probability, non-contingent case is
the simplest from a mathematical viewpocint and also has béen the ﬁost'
studied experimentally. We can conveniently illuétrate nﬁmeroﬁs
derivational techniques and at the same time assemble & variety of
experimentally useful results by giving a detailed analysis of this

case, which we now define in the obvious manner.

Definition 8.1. A linear model X = < X,P,8 > satisfies the

simple, non-contingent condition if, and only if, for every k there

is a
- = ﬁk

such that for every n and every 1 1in an experimenter's

partition H(n) ir P(n) > O then

P(Ekﬁnln) = ﬂk
and

P(E. ) = 0.

O,n

In order to simplify our nctation, we shall adopt the following

conventions throughout this section. We shall be concerned with pro-

babilities and various statistical‘guantities associated with some

arbitrarily selected response AJ (and its reinforcing event Ej)' When
only Aj is explicitly involved in a derivation, we shall drop the
éubscript J, yielding An for the event “Aj occurs on trial n,"
P(Ah) or p for "probaﬁility of Aj on trial =n," and so on. Aiso,

in the interest of brevity; we shall omlt from the numercus theorems
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to follow the standard hypothesis "if X = < X,P,0 > is a simple, non-

-contingent, linear model, ther-".

Moments of the Response Probabilities

A recursive expression for the raw moments av n of the response
»

probabilities is obtainable simply by specialization of Theorem 5.73.

Theorem 8.2. If v is a positive integer, then

= (1-6)" o+ 5%:(§)(1-ejvq‘éio% ..

jo
v,ntl o1 -i,n

Since the first and second raw moments will-frequently be required in
later derivations; we include explicit expressicns for them here. For

the first mowment, we have:
“Corollary 8.3.
= -9 10
@ pyp = (1-8)y |+ O,

or equivalently

P]:H—l = (l-e)pn - e.ﬁ -

Tt can readily be shown by induction that this difference equation has

the solution:

Corollary 8.k,

o =p = x-(n—pl)(l—e)n—l«

For the second moment we have:
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‘Corollary 8.5.

2 2
= - - [ A
| :O‘z,n+1 (1-9) O‘z,n + n[2(1-8)8 in T 871,

and it can be shown by iﬁduction that this difference equation has the

scoiution:

Coroliary 8.6,

ae;n - JT(E;:?@TH-G) . 211(“_:91)(1_9)11*1
- [E&%E%)g._ (ﬂ-Pl)E](l-e)e(n_l).

Asymptotic moments appear so ubiguitously in experimental applications

of the model that it is desirable to introduce special notation for them.

Definition 8.7. If lim , &xists, then
. n — oo 2

[0 = lim o4 2
v ’
n-— 00

]

It is an obvious consequence of Corollaries 8.4 and 8.6 that for © > O,

Corollary 8.8,

(1) o =

and

(11) o, =  20-0)m0]

Taking these results together with the recursive relation of
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Theorem 8.2, we see immedistely that asymptotic moments of all orders
exlst for this case of £he linear model.

Concerning such properties as dispersion, skewness, etc, central
moments are usually more instructive than raw moments. For the
distribution of response probabilities, central moments are defined

in the standard manner:

Definition 8.9. If v is a non-negative integer, then

Mo = XE) pX,n—pn)V P([X]n_l) .

To obtain a useable recursive expressicn for the vth central moment,

we proceed as follows:

g v
Hynel © 2_ (Px,n-*-l—Pm-l) P([X]n)
= x(n)
= > al(-e)p,  + 6—(1—G)pn—6:r:]v +
X(n-l)_ i

v
- - - (1-0 -8 .
(1-0)[(1-e)p, , - (1-8)p, - &l

where we have substituted for pX nel in terms of the axioms and for

: _ : 5
P.1 in terms of Corollary 8.3. Expanding the bracketed terms by the

binomial theorem and simplifying, we arrive at

Theorem 8.10. For v > 2 (gi: course,

HO,n =1 and ul,n =0

for all n),
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U

v,n+l

= (1-8)" T ﬂ(l~ﬂ)%ﬂ;)(l”9)v_2 o° Myeon T

Q-0’3 &, 10221+ (D0 Py 1+

R M (R MR COMRI R

Specialization of Theorem 8.10 yields relatively simple expressions for

" the first few central moments.

Corollary 8.11..

2 2
Mo el = (1-9) Mp oy n{l-x)6".

[Or, in conventional notation,

- 2 2 2
S (1-0) o + a(l-x)e%].
Asymptotically,
_ x(l-x)®
Ho = 7B
Corollary 8.12.
u' = (1-6)3 W + n(l-x)e3(1-2u)
3,a+l . 73,n ?

and asymptotically,

= ﬂ(l—ﬂ)93(l—2ﬂ)
S 1(z-e)
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Corollary 8.13.

My nel = (1-0)* gt ﬁ(l 0{6(1-0)% & u, + (13 + B1),

and asymptotically,

N
=-ﬁ(l—ﬂ)9 Lo )L 3(1- e)
T ae) i; SR 1-(1- G)E]E}

The properties of two limiting special cases are immediately apparent.
‘If © = 0, all of the central moments vanishj i.éo, for every .uy all
density of the distribution of résponse probabilities.is concentrated

at the point Px,n = Pl“ If © ='l, the central moments reduce to-thpse
of a binomial distribution; i.e., for all n 2 25

= 2(1-m)[(1-m)" T - (am) V7.

u"\:";n

'This-last'relation can be shown to be the solution of a recursive eipres-
sion given b& Kendall {[9], p. 118) for central moments of the binomial
distribution. For © ©between zeroc and unity, the distribution of |
asymptotic response probsbilities has a smaller dispersion and less

skewnesgs than a point binomisl distribution having the same mean.

Covariance in the Response Seguence

We now derive the doublet, triplet'and guadruplet probasbility,

. . o . | . '
_P(Ah+lr)Ah),lP(An+2 An+lf\An), and P(Ah+3(\An+2(WAh+lr)An), which
may be used to check the experimental adeguacy of the model with
respect to sequential effects. It is to be emphasized, for those who

like random variables formulations; that in vew of Theorem £.3 the
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following theorem could just as well be expressed in terms of expecta-

tionsg of random variables, namely,

B (én+l én)

E(éme én-f-l én)

).

E(ﬁn+3 én-z-2 én{-l én

Our method of derivation may be compared with that which is used when
the random variable approach is followed and expectations are first
taken with respect to a fixed sequence of regponses and reinforcements,
~ for our method appears somewhat more direct and simple from a

mathematical viewpoint.

Theorem 8.14.

(i) P(A 0 A ) = (1-9) % 8 MO

(i1) 4 ) = -6)3 @
(11) P(An-z-EnAm-ln n) © P(An+lmAn) + (1-8) 1;n *

2 2
- (¢4 - (84
2{1-8)"6 « ot (1-8)8" =« 1,n’

(i11) P(An+3ﬂ.A nA lﬂAn) = O P(An+ NA lﬂAn) +

n+2 n+ 2 nt

‘(1-e)§____cxll_;ﬁ_+ (1-9)1‘9(5.39)n a3,n + (1-6)3 ezn[3(1-e)+hﬁ]a2’n

(1-6)2 &3 x[(1-6) + 2nley _

ke
v
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- Proof:

)= 2u D

¥x(n-1) k

P(A NnE, Nlx]

A
N k,n

J,0+1 Jsn P(Aj,n+lr\Aj,n nul)

A

J,n+l

> [Pp(a

*(n-1)

j,nn E n ﬂIX]n.-l)ﬂ,j

+ > _ P(a

. A, 0
X % P Jon+l

J,n Ek,n a [X}n—

(2 \Ix1_R(x], )

Z [(1-8)P(a,

JP([x]
¥ n-l -1

I[x]n_l) + Gﬂj]P(Aj,nl[X] n-_l)

= (l-e)ag,!]’n + Oxn

A
J 1lyJdsn
As for the second part,

P(Aj)'n+2 N4

= 2

x(n 1)

Js n+l n Zk P(AJ ,n+2 J,r1+ln Ek Lo+l

k?

Z Z[(l e)P(A

Nnix]
x(n-—l k

) + e;.t 1P(A.

w

+3_i Js r]Ek,n Jsn+l

+ (1-0) >

¥{n-1)

Ot P(A

2
Js e’ n {[l-G)P(Aj’HIIXJn_l) + 6]

(1-@)2P2<A3’n1tx1n_l)c1-nj>} R(a e,

nAJ,nnEk, Olx 11—1)

l)(l4ﬂj)] :

NA, OB ﬂ&]

Jsn T km
T, +
J

)P(x1, )

)
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353
= ox (A, 08 )+ Xﬁ(n_l) [(1-8)° P (Aj’nl[x]n_l) +

+ 2(1-0)° eije(Ajanx]n_er (1-9)92;[&1:(1&.3)11[[x]n_l)]P([x]n_l).

And the desired result follows immediately from the right—hand gide.

¥inally, we consider the quadruplet term.

P(4 )

j,n+3n'Aj,n+2(1Aj,n+lr}Aj,n

il

22 2> p(a

OF DA, .OE NE, OK] )
¥({n-1} k k' k"

Js1+3 Aj,n+2 k'";n+2 T jad k‘,n+l J,n k,n

A
Ox P(AJ,mz NA; 1 08y )

" ee) x?r;l)%;gp (85 e 125, na1 VByr 085 108, R OB )
P(Ek',n+llAj,n+l(]Aj,n()Ek,n(}[X] ) P(Ag,n+ln'A ,nr]Ek,nﬂljjn-f

= e P(A, |2, OF, DB )+e]2ﬁ

loAJ_’ (1-6)Z Z [(2-9)P(A,

xrrl K JetL

,n+20 J,n+

2 2
+(1-0)" PR, 1A, 0B 0lx] (1 nJ)} P(A, 08, O0F, k] )
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= bn P(Aa,n+2ﬂAj,n+lp

Na, )+

.
A + {(1-8)8 PlAa,
j;n) ( ) ﬂ:J ( Jon+l Jan

(1-6) Z Z[(l e)2 P3(a,

x(n-1) Js n+l X,n

‘2(1-9)6 7 P 2(a. NE, 0[x1 01 -

Js n+ll Jsn T kyn
P(Ek,nlAj,nﬂ[X]n-l) P(Aj,nﬂ{X]ml)-

To facilitate analysis of this last expression, let

= P(Aj’n| [x] )

: Thus by applying the axioms we now have the term summed over the parti-

tion X(n-l) equal to:

(1-6) (Z) [{(1 e) 11-8)y + 013 + 2(1-9)9:rr [(1-9)y+ e}® }1{ +
X(n-1

{(1-0)%(1-6)%7 + 2(1-0)0r (1) ¥ | (1-x,) IyR(1x]

- (1—9)6 abua',n + -(1"9)2[3(1“9)39“3 + 2(1-,@)2 eﬁjla

3sdsn

+ (1- e) [3(1 e) e my o+ 2811 (2(1- e)e}cx

o+ (1-9) [(1e)eﬁa+eenee]lJ’

n—L)
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- (1-6)° % ot (1-9)46(5—39)%0: gt (1-0)3 egﬂj[3(1-e)+hﬂj]cz

3535 2,3,m

2 3 _ :
+ (;-e) 8 ﬂj[(l—g) + 2;-:J.]ocl,j)n,

which combines with preceding results to yield the desired expression.
Q.E.D.

The same methods used in the proof of the above theorem may be

applied to cobtain terms like

P{A N A )

Jyn+l J'sn

where J # J'. On the other hand, the cases studied in the theorem are

cases for which the results also hold for the simple contingent model

BB, nl8y0) = Ty

To extend the resulis to this model, merely replace n, by ﬁjj,
-Naturally the raw mdments Q% 1,n are different, but the same expres-
S

sions in terms of the moments hold. Unfortunately, for obvious reasons,

this ready generalization does not hold for doublets P(Aj NA )
x

n+l Jg'sn

(or for triplets or quadruplets).

The results of Theorems 8.2 and 8.1% may be combined to yield
asymptotic results in terms solely of © and ﬁj for the doublets,
triplets and quadruplets of 8.1k. We shall not formulate these results

‘a8 a thecrem becausge of thelr lengthy form. Even the doublet term is

. (1—e)nj[2(1-e)ﬁj + 8]

2
lim  P(A, NA, ) = + Bn..
N — o Jsn+l Jsn _ 2-0 _ J
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The covarience of the random varisbles ‘A end A~ is of
‘interest in its - -own right and also as & term entering into the deriva-
tion of an expression for the sum Srl N As a preliminary to caleulation

2

of ‘the covariance, we require the following theorem concerning probability

of the compound event A MNA :
n -t

.Theorem 8.15.
P(a, 0A) = B(A) - [xB(A ) - P(&_ (1A )1(1-6)"" .

-Proof: The proof proceds by induction om m. For m=1, we have an
~1dentity. -Suppose now the theorem holds for m. Utilizing the usual

technigque in order to apply the axioms (via 4.9 ) we have:

1

> X p(a NA,  NIx]
¥{nim-1) k JoR

j,n+m+lF‘Ek,n+m '

' N
ACTINELLE SN a1’

[[x] NAa, )

n+m-1 Jsn

Al

> [(l—@)P(Aj,n

¥(n+m-1) i

S+ Qﬂj]P( NA, )

pid 5
[ ]n+m-L Jsn

(1-9)p(A,

A, + Ox,)P(A. .
J:vn'i'm-ﬂ J:n) j.l:J) ( an)

Applying now our inductive hypothesis to the last expression we obtain
Jsn+l

P(Ay a0y o) = (1-0) {P(ay )= [xgpla, )-2(ay 04y J)1-e)™ 1

+ O P(A.
nP(Ay )
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‘= an(Aj’n) - [HJP(AJ’H) - P{A.

il
3y Mg, 102260

Q.E.D.

Using the results of Section 6, thisg theorem may be rewritten in

terms of expectations of random variables.

Corollary 8.16.

E(..A..mm él’l) = JTE(J}_H) - [J‘EE(én) - E(ém.l én)](l_e)m—ll.

-Applying the usual definition of a covariance and making the appropriate

substitutions from 8.16, 6.3 and 8.4, we have, after simplification

Theorem 8.17.

o(1-0)™

2(n-l)]
2-8 )

' Cov(én+m én) = n(l-x) [1-(1-0)

As one would expect the covarisnce tends to zero as © -0, 8 -1, or
-m - . An outcome one might well have faliled to anticipate is that for
all n, the covariance is independent of Pys the initial probabiiity of
an Aj response, but dépends in a very simple way on the variance of
the response probasbilities. {Referring back to 8.11, we see that
Cov(A_ A ) = (1-8)™ ¢© .) Using 8.17 together with 8.11, we can

—mm —n n
now write an asymptotic expression for the serial correlation coef-

ficient with lag m, conventionally defined

Cov(§n+m én)
' )172 ’

(“2,n+m p'2,n

m
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where the expectation is taken over n. Making the appropriate sub-

stitutions and taking the limit as n — 0o, we obtain

Theorem 8.18. In the limit as n — oo,

= (1-0)"

Proof: We let n — oo in 8.17 and 8.11. Then

. s _ n(l-n)e
Lim Ho nem = Lim Pon ™ 7 220

and we have

= E{“(l““%?él"e)m / rigke 7} - (o),

This statistic may prove useful for estimation of the parameter ©

frqm asymptotic &ata.

Aiso, we are now in a position to give a general formuls for the
varié,nce of Sn,N’ the variance of AJ. response frequency in the
block of N +rials following any arbitrary trial n.

Theorem 8.19.

. | )
Var(sn,N) = Na(l-x) - (l-2x)(ﬂ—pl)C1—e)n Ll:i%:ﬁl_l

2N
- (It-—p ) (1- e)211 [1922:23 1 E(lée)eﬂt(l ) [N 1 (l-@) =04 )
2ﬁ(l n) (1- 9)2n+l [lf(l_e)N -1 [1-(1- 9) !

_e(e-e)
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Proof': Since Sn N is the sum of N random varisbles
R— P

émm(m:l,E, o °9N)) we can use the well known expression for the .

varisnce of a sum of random variables:

).

N
.Var(Sn,N) = mzzl var(_ﬁim_m) D Y Cov(fx_m_j Ak

1< J<k<N

From 6.3 we have

Var(, ) = B(a_ ) - Po(a, )5

m n+m

substituting for P(An+m) from 8.4 and summing over m, we obtain

. N
:%;;;_Var(én*m) = Nar(l-x) - (lFEﬂ)(““Pl)(l'e)n LE:Lé:Ql_

’ on[1-(1-8)2Y]
- (ﬂ‘Pl) (1-9) 1_(1_9)2

Secondly, we substitute for Cov(émj én{-k) from 8.17 and sum over

and k, obtaining

2 _ Cov(én+3 él&k) = ﬂ(l~gzgl-9) N - % * (lée)N

(1_9)2n

" 8(2-8) [1~(l—9)N'11[1‘(1"e)N]gﬂ

Entering these two sums in the general formuls for Var(sn l\T) , We
! 3

srrive at Theorem 8.19. Q.E.D.
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A number of special cases of 8.19 are of experimental interest.

‘To obtain an expression for the variance of A, frequency in N trials

5
at the limit of learning, we teke the limit of Var(Sn 1q) as n — @ .
3
Corollary 8.20,
i _ _ 2{1-8)x(1-x) 1 (1 e)
_Var(_Soo,_N) = lim Var(Sn,N) = Nr{l-x) + 55 [N- 1

n -+ 00

1t( 1)

o6 {mo(4-30) - 2(.1-9)[1-(1-9)N]75 .

If 6=1 or © =0 in 8.20, Var(s

variance of & sum of N 1ndependent random variables.

reduces to Nﬂ(l-ﬂ), the

il

Lettlng n=0 in 8?19, we obtain an expression for variance of

Aj frequency over the first N +trials of a series:

Corollary 8.21. ;

Var(SO,N) s Na{l-w) + (l G) a{l-x)[N - (l 9) ]

N 2N
- (1-2x) (st-py ) Ll—ﬁlTeu "5“"1)2%%’:%_]
M (1-0)[1-(1-0)" 11 1-(1-0)"].
e(2a~ e

Finally, dividing the right side of either 8.20 or 8.21 by N2y we find

that for large N, the variance of the proportion of. Aj responses in
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N +trials is approximately equal to

ﬁ(éﬁﬂ) (Z:ge) The aspproximation

fails at '© = 0, but it should be relatively good over the range of @

values commonly oObserved experimentally,

Covariance of Responses and Reinforcing Events

In the simple non-contingent case, the probability of a response
given that it was reinforced on the preceding trial takes the following

very simple form:

‘Theorem 8.22. If =x > 0, then

P{A

n+l| En) . (l-e)P(An) + 8.

.Proof:

'P(An+l(\En) = ;%i;i) P(Ah+ln En()[X}n—l)

]

x&) P(a_ B ﬂ[x]nul)ﬁP([x]n_l)

XE) [(1-0)p(a_lIxI__;) + elxp([x] ;)

| [{(1-e)P(A ) + O]x.

And cbviously

i

1
P(An+l|En) T P(An+lr‘En)

il

(1-9)P(An) + 8. Q.E.D.
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More generslly, the probability of a response given that it was

-reinforced on the vth preceding trial can be expressed as follows:

‘Theorem 8.23. If v 1is a positive integer and x> O then,

_ v v-1 v-1
,P(An+v|En) = (1-0)" P(A_ ) + o(1-8) + [1-(1-8)" "1
Proof: The proof is inductive. -We know from 8.22 that the theorem
holds for ¢ = 1. Preparatory to introducing our inductive hypothesis,

we apply the learning axioms (via 4.9) as follows:

P(A NE_)
P(Ah+v+lrEn) = n+v;l

1 2

“n [ _ 2;__P(An+v+l k,n+v(1[x]n+v-l)]

[]n+v~l-—En k

. :

T [EZ ZkIP(‘B“n+v+l|Ek,,.m-\;n [X]m-v-l)P(Ek,m-vl[X]nw-l)

- P([x], )]

1

== [EZ (-e)p(a,  Ilx], 1) + 8nl P([x]JL1+V 1)

It

I

== [(l—e)P(An+v|Eu) + Qﬁ]°ﬁ

!

(l—6)P(An+V1En) + Om.
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‘Applying now the inductive hypothesis to the right-hand side of the

last line, we infer:

it

P(A E )

L (1-0){(1-0)" »(a ) + o(z-a)Vt 4 [1-(1—9)”‘1]ﬂ} + 6x

(1-0)¥** P(a ) + 8(1-0)Y + [1-(1-8)Y]x. Q.E.D.

‘Similarly, we have for the probability of a response given that

. th .
some alternative response was reinforced on the v preceding trial:

Theorem 8.2k, If v 1is a positive integer and = > O and

k

J#k

p{A )= (1-0)” p(a, )+ [1-(1_9)”“11ﬁjn

. E
J,n+v| k,n
The proof is analogous to that of 8.23.
We conclude this section with two theorems concerning the repeti-
tion of "correct” and "incorrect” reéponsesn The first of these specifies

probability of a response glven that it occurrsd and was reinforced on

the preceding trial:

Theorem 8.25. Provided both = > 0 and a > 0,
- s

P{A

el + 8 .

2,0
e — ’
A NE ) = (1-90)
. l.,n
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Proof:_

1i

> Pa 108 0B NIx] )

,P(An+lﬂ Ann _E:n) o)

%:1) P(A_ IA NE_N[x] )=®(a [[x] P(] ;)

XE—) [(l-e)P(An“X]n—l) + 8lx P(An[[xjn_l)P([x]I'l_l)

n[(l-e)a2’n + 8 gl,n}a

By virtue of the fact that

P(A_|ANE ) =PrA NANE)/PANE)

-1

and

P(A NE ) =P(E |A )P(A ) =m0 ,

we infer from the last line of the above identities:

ﬂ[ (l—e)c‘:'{a’n._i_' eal,n]'

li

-n+llA {\E ) [#]
Ln

(1-8) 3

+ 8. ‘ - Q.E.D.
l,n '

P PP
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The second of these theorems specifies probability of a response given

that it occurred but was not reinforced on the preceding trial:

Theorem 8.26. Provided that P(A, (E, ) >0 and J# Kk,
—— Jsn k,n —_—

o
2+J,n
P(A. A, OB ) = (1-8) S22,
(04
Jyn+l T j,n  Tkyn 1, 3,0
The proof is analogous to that of 8.25.
It may be noted that the difference between the two conditicnal
probabilities of 8.25 and 8.26 equals ©; consequently the difference

between the two corresponding conditional relative frequencies provides

an additional estimator for this parameter.




4
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9. Applications\&g Two%Person Game Situstions.

By an obvious generslization of the primitive notions and axioms
of Sections 2 and 3 we may apply the linéar model to two-person game
situations (for experimental results, see [1]}, [2], {5]). As might be
expected, we restrict ourselves to games in.normal form with a finite
number of strategies available to each player. Each play of the game
constitutes a trial in the learning senseo. The choice of a strategy
for each frial,corresponds to the cholce of a response. To avoid the
problem of méasuring utility we assume & unit reward which is assigned
.on an all-or-none basis. Rules of the game are taken to be such that
on each trial there is exactly one correct choice leading to the unit
reward for each player. (For simplicity we are omitting non-reinforcéd
trisls.) However, it should be noted that from a game standpoint, this
unit reward is not the pay;ff on a trial, but rather the payoff is the
éxpected value of the reward. This expected value depends on the
reinforcement §qhemé_§§l§cted by the experimenter; this scheme may be
_fepresentgd by a payoff matrix (aij bij) _whére izl,o,n,rl and

7

jzl,noo,rg with r the number of regponses available to the first

‘player, player A, and r, the number availsble to the second ﬁlayer,

2
" player B. Thus the entries in the payeff matrix are pairs of numbers
(aij’bij)° The number 3 is the probability that player A wins
when A makes response i and B regponse J. Correspondingly,
bij is the prdbability-that player B wins when A. makes response 1
and B response J.

Just as for the one-person linesr model, the axioms are independent

of the selection of any particular probabilistic scheme of reinforcement,
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and they apply to more complicated tWD-pEfson situations than the

game paradigm just descriﬁedu Moreover, although the axioms are

gtated for two subjects, it is apparent that all notions generalize

immediately to n-person situations. The regtriction to n=2 has

been imposed ﬁere because all the interesting deductive conseguences

of the axioms whilch we have yet considered are for twb—person situations.
‘We. turn now to a repid capitulation of formel developments cor-

responding to those in Sections 2 and 3. The result of any trial may

be represented by an ordered quadruple < jl’kl’je’ka >, Where jl is
the response of A, 32 the response of B, k., the reinforecing event

1

for A, and k2 the reinforcing event for B, with Jl’kl=l’”°°’rl

and - J 5k =1,...,T,. Our first primitive notion is then the sample

space X which 1s the set of all sequences of such ordered gquadruples.

We.call X the < rl,r > - response space., As before, our second

2
primitive notion is a countably additive probability measure P on the
Borel field Cg(X) of eylinder seté, Qur third and fourth primitive
notions are the two learning parameters SA and eB for players A
and B respectively.

A notation which is essentially needed only for the definitions
immediately to follow is that if xe¢X and x, =< jl’kl’ja’ke > 1is

h
the nt term of the sequence: x; then

H]

1)
A,n

1
b’

1
o



b
>
a3
5
i
T
PO

(2)
XE,n 2

i
W

(This dual use of the subscript A for respbnses in the next few
lines should not be confusing; subsequently A refers once again to
player A.) The event consisting of response J by subject 1 on

trial n dis defined as might be expected.
-Definition 9.1.
(1) (1) _ .
Aj,n_ix, xeX &XA,H = J} .

-Similarly, we define the event of reinforcing event k by subject 1

on trial n.

Definition 9.2.

E(l) = X:{XEX &xé:ill sk}

s

Qur next definition is for the probability of response by subj

-1 on trial n.

. Definition 9.3.

(1) p(all)y.

pjpn - Js

Since we shall be concerned with sequences which are identical,; or

identical for a given subject, through the nth trial, we want to
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define the appropriste eguivalence classes.
DeFinition 9.4,

[x] = {7: yeX & for m<n, Yy, = x 3

[X]r(li)z {y: yeX & for m < n, ylgi) = xéli) E .

We next define the probability of response J by subjeect i on
trial n given the first =n-1 responses and the first n-1 reinforec-

ing events for this subject.

Definition 9.5.

i i i
_pfcjfn = P(Agji][x]fl_{)

We are now in a position to state our axioms. It is understood

that ot . o, if 1=1, end o) o ir ien.

B
Definition 9.6. An ordered guadruple X = < X,P58,,0, > 18 &
two—p'er_son- linear model 1f, and only if, there are integers ri and

I'.2 such that X Ls_ the <« rl,,:r'2 > - regponse space; P is a proba-

bility measure on CQ(X); 6, g€ (0,1); and the following two axioms

are satigfied for every positive integer n, for 1i=1,2, for every x

in X with P([X]il)') > 0, and for every j and k:

£
P

{
* and j = k then
kKyn — . —_—

i RN

Axiom 1. If xe R
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Pi§3n+l 2'(1'9(#))Pi§3n + oft),

Axiom 2. If x-eElglr)l and J # k then
- g » — -

(1) qeli,(®)

pxj,n+l xJ,n’

In subseguent developments the superscript 1 will be mainly replaced
by other devices. In any'caSe it must not be thought of as an exponent.
We may now formally define the special reinforcement scheme yielding

the payoff matrix (aij,bij)°

Definition 9.7.

@°
i

= P(E&I)llAgl) Nate))

i ;0 Jsn
b, . = P(E(.E)IA(]') nald)y,
id Jsnt"i,n Jdsn

In addition to 9.7 we also need:

Definition 9.8. A two-person linear model X = < X,P,0 ’QB > has

a simple payoff matrix if, and only if, for every n and for every set

W which is an n-1 cylinder set if P(Ag}LI]AgEQ{WW) > 0 then
-—— — ) ¥ B

P(Egl
-l,

(1) 4a(2) (1)) (1) (2
ilAi,n()Ajjn()W) =_P(Ei,nlAi,n(wAg,i)
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and

P(E

|A(l)()A(2)(}W) - P(E(B)l (1)(1 (2))

drn ,n'i,n

In the remainder of this section we comgider only two-person linear
models which have simple payoff matrices and exactly two responseé for -é
each player, i.e., T =T, = 2. _ é
Finally, one last definition to eliminate continual use of the super- |
.écript i. We dencte player. A‘s probability by & and player B's 3
by B, whereas we denote the joint probability of an A( ) and A(E) o

response by y.

Definition 9.9.

_ (1)
% = pl; {
_(2) s
Bn - Pl,n {

EFI
|

=1 e

B‘Q

w
=
i
=l
™
B

Coming now to our first theorem of this section we derive recursive

expressions for Oh and Bnu It is an unfortunate fact, and enormously -




 shamps Y e ——
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compliesting to ﬁhe mathematics of two-person situations, that both
o - ens . :

'l apd sn+l depend cn the joint probability term 70 But this
awkward mathematical conseguence of the theory is psychologically
sound: 1if the two subjects are interacting at all it Would be surpris-

ing indeed if their probabilities of responses were statistically

independent.

Theorem 9.10.

o 1= @8 (2-a) 5-a 0 + 8y (apy-ay)f +6,(a) +ay -8 -8, )y
+ QA(l~a22)
Bp1= (1-8g(2-b -0, ))B + © (bea b ) + : B(Py1¥P 501 B0 )7,

+ gB(l"bze)'

Proof: It will suffice to derive the difference equation for

an+l gince the derivation for B ig identical. To begin with we

n+l

observe that

(1) P(Eifg) - P(E(l) g) A(l)r) U a®

5 J Tyn

S:zipmuhﬁﬂn%@ﬁmﬁﬂn%?g




= ay,P (Aﬁ:)iﬂ-ﬁ‘fr)l) 8P (Aifr{ﬂAé

-9l

2

2

D+ Conyrt) 042

+ (1-a22)13(.ﬂé}]31 (\Aéfn).

We next observe that

(2)

Similarly,
(3)
and

(%)

L) - el

= ( l—P(A](_i)l |ASI)1) )P(A](j'r)l)

- P(Aﬁi) —.P(Aj(j'gﬂAJ(hgr)l)n

>

WD - WD o)

p(Aéii ﬂAéi)l) = P(Aé::r)l lAéi)l)P(Aé,er)l)
- (1.~P(’A&2L|Aéi)l) )P(Aéi)l)
= 1—P(Afr)l) - P(Agr)lﬂﬂéi)l)

<1l - 2 ).
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From (1)-(4) we conclude:
(5) P(E(l% - a7y + () ¢ (e,

+ (l-aee)(léan—ﬁn+7n)

-(1-a 00781 )8

1278509 + (=

+ (apyray-a pmag)y, + (T-ag,).
Now by a proof similar to that of Theorem 5.3 we may show that.

(6) O = (-8 GAP(E§TA)°

Substituting (5) into (6) we have:

% = (1800 - 8y{1-a) -ay,)a + 6, (a8, )8
+ Oplaypregy e ey dr, + 8y (1-ay)
= (1-8,(2-a, 5-a,, ) + &, (a5-a5 )8,
+ @ (a11+ael 127807, + 8y (1-ag,)-

The investigation of the asymptotes of an and Bn, or even the

asymptotes of the mean probabilities {over trials) al\]’ and BN is
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difficult and complicatéd. The reason is not hard to find. The pair
of simultasneous recursive equations of the preceding theorem contain
three, rather than two, expressions depending on n, namely, Oh, Bn
and T And a recursive expression for 7y in terms of thgse three
quantities cannot be derived. Fortunately, without pursuing these
questioné we may prove directly that an agymptotic linear sum of &

N

and Eﬁ exists and is independent of BA and GB. Moreover this
linear relationship requires no restrictive hypotheses and mey be

compared in a gtraightforward manner with experimentsal data.

Theorem 9}11.

lim {(ag-ce)d_ + (bg-cf)B,_] = ch-dg,
: K N
N-ow :

where

a = 2-a12-322
b =878y
c =

= 819%851 78078

d = 1-8.22
e = by,-by,
f = 2-b_-b

e e e e




~Olf o

g = byy by by by

h = l«beee

Proof: From Theorem 9.10 and the definitions of the numbers

e

to h ahove, we have:

n+l -n
—_— 7 o
(1) : alt  + an + ey, + a

and

n+1 n
LAt B o - .
(2) ea fﬁn + gy, + h

@)
ft

Summing both (1) and (2) from 1 to N and dividing by N, we obtain:

o -
N+l 1 = = —
o S o oad
(3) NQA a0 + bBN + oy + ol
and
B - B
Ml © "1 = = —
(%) ——__—_--NGB = edp + me + gyt h.

Multiplying (3) by g and (4) by ¢, and then subtracting (&) from (3),

rearranging terms slightly, and letting N —co we obtain the desired

result, since the left-hand side of (3) and of (%) goes to zero. Q.E.D.
ﬁy imposing varicus regtyictions on the experimental parameters

aij and bij a variety of resulits can be obtained. We restrict
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ourselves here to the consideration of one such case: choice of the
parameters so that the coefficients of 1 in the two recursive egua-
tions of Theoreml9.10 vanigh. Moreover, we compute only the asymptotes
of o and f:"sn, z.a.l.though it is not difficult to find explicit expres-
‘sions for arbitrary n. The method of proof proceeds vis consideration
of the mean probabilities o and ‘EN' Direct solution of the differ—

N

ence equations is possible, but more tediocus.

Theorem $.12. Let mnumbers a to h be defined as in 9.11, and let

c =g =0
af - be £ 0O
then .
. bh-af
Mm@ = 2fbe
n —o@
and
; ah-de
1im 5n = af-be °
- oo

Proof: From Theorem 9.10, the definition of a +to h, and the

hypothesis that ¢ = g = 0, we have:

(l) ] V n-.'-l n .

R T
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and
(2) ?Eiﬁ;"_“jl__ e + B +h
) T T n n ’

- Summing both {1} and (2) from 1 to N and dividing by N we cbtain:

o4 -
N+1 1 .5 =
and
= - B _
N+1 1 - =
(4) —we, " o + B + h.

Multiplying (3) by £ and (&) by b, subtracting then (4) from (3),

and letting N — @, we get:

lim [af@_ + af - bed_ - bh]l = O,
W W
¥ -

whenece

(5) lim & . B4

N -

Since (1) and {2) are simultanecus linear difference egquations with
constant coefficients, we know that the asymptotes of an and Bn
exist. Hence by the well known theorem that if a sequence

< yl,ye,noo,yn,npa > of numbers converges to a finite limit y then



...9'?..

1 .
m 53> y, =V,
oo n=1

we conclude from (5) that

7
i

(6) 1lim CXn = .
n—a
The argument establishing the limit of &n is similar in character.
Q.E.D.
Some experimental caseg falling within the province of this theorem

have been studied by Atkinson and Suppes [2].
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