Four-Bit Adder-Subtractor

The addition and subtraction operations can be combined into one circuit with one common binary adder by including an exclusive-OR gate with each full adder. A four-bit adder-subtractor circuit is shown below:

-The mode input M controls the operation. When $M=0$, the circuit is an adder, and when $M=1$, the circuit becomes a subtractor. Each exclusive-OR gate receives input M and one of the inputs of B.

- When $M=0$, we have $B \oplus 0=B$. The full adders receive the value of B, the input carry is 0 , and the circuit performs A plus B .

When $M=1$, we have $B \oplus 1=B^{\prime}$ and $C_{0}=1$. The B inputs are all complemented and a 1 is added through the input carry. The circuit performs the operation A plus the 2's complement of B. (The exclusive-OR with output V is for detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added and subtracted by the same basic addition and subtraction rules as are unsigned numbers. Therefore, computers need only one common hardware circuit to handle both types of arithmetic.

Overflow

-When two numbers with n digits each are added and the sum is a number occupying $n+1$ digits, we say that an overflow occurred.
-Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains $n+1$ bits cannot be accommodated by an n-bit word. For this reason, many computers detect the occurrence of an overflow, and when it occurs, a corresponding flip-flop (cell) is set that can then be checked by the user.
-The detection of an overflow after the addition of two binary numbers depends on whether the numbers are considered to be signed or unsigned. When two unsigned numbers are added, an overflow is detected from the end carry out of the most significant position.
-In the case of signed numbers, two details are important: the leftmost bit always represents the sign, and negative numbers are in 2's-complement form. When two signed numbers are added, the sign bit is treated as part of the number and the end carry does not indicate an overflow.
-An overflow cannot occur after an addition if one number is positive and the other is negative, since adding a positive number to a negative number produces a result whose magnitude is smaller than the larger of the two original numbers.
-An overflow may occur if the two numbers added are both positive or both negative. To see how this can happen, consider the following example: Two signed binary numbers, +70 and +80 , are stored in two eight-bit registers.

The range of numbers that each register can accommodate is from binary +127 to binary -128 . Since the sum of the two numbers is +150 , it exceeds the capacity of an eight-bit register. This is also true for -70 and -80 . The two additions in binary are shown next, together with the last two carries:

carries:
+70
+80
+150

01
01000110
01010000
10010110

carries:
-70
-80
-150

10
10111010
10110000
01101010

Note that the eight-bit result that should have been positive has a negative sign bit (i.e., the eighth bit) and the eight-bit result that should have been negative has a positive sign bit. If, however, the carry out of the sign bit position is taken as the sign bit of the result, then the nine-bit answer so obtained will be correct. But since the answer cannot be accommodated within eight bits, we say that an overflow has occurred.
-An overflow condition can be detected by observing the carry into the sign bit position and the carry out of the sign bit position. If these two carries are not equal, an overflow has occurred. This is indicated in the examples in which the two carries are explicitly shown. If the two carries are applied to an exclusive-OR gate, an overflow is detected when the output of the gate is equal to 1.
-For this method to work correctly, the 2's complement of a negative number must be computed by taking the 1's complement and adding 1. This takes care of the condition when the maximum negative number is complemented.

The binary adder-subtractor circuit with outputs C and V is shown belw. If the two binary numbers are considered to be unsigned, then the C bit detects a carry after addition or a borrow after subtraction. If the numbers are considered to be signed, then the V bit detects an overflow.

If $\mathrm{V}=0$ after an addition or subtraction, then no overflow occurred and the n -bit result is correct. If $\mathrm{V}=1$, then the result of the operation contains $\mathrm{n}+1$ bits, but only the rightmost n bits of the number fit in the space available, so an overflow has occurred. The $1 \mathrm{n}+12$ th bit is the actual sign and has been shifted out of position.

