
FOURIER SERIES, HAAR WAVELETS AND FAST
FOURIER TRANSFORM

VESA KAARNIOJA, JESSE RAILO AND SAMULI SILTANEN

Abstract. This handout is for the course Applications of matrix
computations at the University of Helsinki in Spring 2018. We
recall basic algebra of complex numbers, define the Fourier series,
the Haar wavelets and discrete Fourier transform, and describe
the famous Fast Fourier Transform (FFT) algorithm. The discrete
convolution is also considered.
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1. Revision on complex numbers

A complex number is a pair x + iy := (x, y) ∈ C of x, y ∈ R. Let
z = x + iy, w = a + ib ∈ C be two complex numbers. We define the
sum as

z + w := (x+ a) + i(y + b)

• Version 1. Suggestions and corrections could be send to
jesse.railo@helsinki.fi.

• Things labaled with * symbol are supposed to be extra material and might
be more advanced.

• There are some exercises in the text that are supposed to be relatively
easy, even trivial, and support understanding of the main concepts. These
are not part of the official course work.
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and the product as

zw := (xa− yb) + i(ya+ xb).

These satisfy all the same algebraic rules as the real numbers. Recall
and verify that i2 = −1. However, C is not an ordered field, i.e. there
is not a natural way to say ”z < w” for two complex numbers z, w ∈ C
such that the algebraic rules behave nicely with respect to an order <
in C.

We define the complex exponential function

exp(x+ iφ) := ex(cos(φ) + i sin(φ))

for all complex numbers with x, φ ∈ R. Notice that here ex, cos(x) and
sin(x) are real functions. The Euler formula

eiφ = cos(φ) + i sin(φ)

holds for all φ ∈ R. One easily notice that E : R → C, E(φ) := eiφ,
has 2π-period since sine and cosine functions have. Using the Euler
formula one can notice that every complex number z = x+ iy ∈ C can
be represented in the polar coordinates as z = rE(φ) where r = |z| :=√
zz∗ =

√
x2 + y2, z∗ := x − iy is the complex conjugate (transpose),

and φ ∈ R. This representation is unique up to the period 2π in the
variable φ. One usually then requires that the polar coordinates are
chosen such a way that φ ∈ [0, 2π) or (0, 2π].

One also notices that the function

e : R→ C, e(t) := E(2πt) = e2πit,

has period 1. We will use this function e later for the discrete Fourier
transform. One also sees that |e(t)| = 1 for every t ∈ R.

Exercise 1.1. a) Given a complex number (r, φ) in the polar coordi-
nates, find the Cartesian coordinates (x, y).

b) Given a complex number in the Cartesian coordinates find (x, y),
find the polar coordinates (r, φ).

Exercise 1.2. Verify the formulas

cos(x) = E(x) + E(−x)
2

and

sin(x) = E(x)− E(−x)
2i

for every x ∈ R using the Euler formula.
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Exercise 1.3 (*). Using the real Taylor series1 for ex, cos(x) and sin(x),
verify the Euler formula by plugging in the correct complex variables
and assuming that this is well justified.

Exercise 1.4 (*). Write eix = r(x)(cos(φ(x)) + i sin(φ(x))) (∗) for some
real functions r(x) and φ(x) using the fact that every complex number
can be written in the polar coordinates. Further, assume that φ and r
are differentiable at the point x and that the rule d

dx
eix = ieix is valid.

Show now that the Euler formula is correct by differentiating (∗) with
respect to x and considering the real and imaginary parts separately.
(You need to argue that r(x) = 1 and φ(x) = x. Why?)

2. Fourier series

Assume that the function f : R→ R is 2π-periodic (in other words,
satisfies f(x) = f(x + ν2π) for any ν ∈ Z) and can be written in the
form

(2.1) f(x) = a0 +
∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where a0, a1, a2, . . . and b1, b2, . . . are real-valued coefficients.
Computationally it is very useful to consider approximations of func-

tions and signals by a truncated Fourier series

(2.2) f(x) ≈ a0 +
N∑
n=1

(an cos(nx) + bn sin(nx)) .

Then the practical question is: given f , how to determine the coeffi-
cients a0, a1, a2, . . . , aN and b1, b2, . . . , bN? Let us derive formulas for
them.

The constant coefficient a0 is found as follows. Integrate both sides
of (2.1) from 0 to 2π:∫ 2π

0
f(x)dx = a0

∫ 2π

0
dx+

+
∞∑
n=1

an

∫ 2π

0
cos(nx)dx+

+
∞∑
n=1

bn

∫ 2π

0
sin(nx)dx,(2.3)

where we assumed that the orders of infinite summing and integration
can be interchanged. Now it is easy to check that

∫ 2π
0 cos(nx)dx = 0

1See https://en.wikipedia.org/wiki/Taylor_series#List_of_Maclaurin_
series_of_some_common_functions.

https://en.wikipedia.org/wiki/Taylor_series#List_of_Maclaurin_series_of_some_common_functions
https://en.wikipedia.org/wiki/Taylor_series#List_of_Maclaurin_series_of_some_common_functions
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and
∫ 2π
0 sin(nx)dx = 0 for every n ∈ Z+, and trivially

∫ 2π
0 dx = 2π.

Therefore,

(2.4) a0 = 1
2π

∫ 2π

0
f(x)dx,

which can be interpreted as the average value of the function f over
the interval [0, 2π].

Exercise 2.1. Show that
∫ 2π

0 cos(nx)dx = 0 and
∫ 2π

0 sin(nx)dx = 0 holds
for every n ∈ Z, n 6= 0. Evaluate the integrals also when n = 0.

Further, fix any integer m ≥ 1 and multiply both sides of (2.1) by
cos(mx). Integration from 0 to 2π gives∫ 2π

0
f(x) cos(mx)dx = a0

∫ 2π

0
cos(mx)dx+

+
∞∑
n=1

an

∫ 2π

0
cos(nx) cos(mx)dx+

+
∞∑
n=1

bn

∫ 2π

0
sin(nx) cos(mx)dx.(2.5)

We already know that
∫ 2π

0 cos(mx)dx = 0, so the term containing a0
in the right hand side of (2.5) vanishes. Clever use of trigonometric
identities allows one to see that

(2.6)
∫ 2π

0
sin(nx) cos(mx)dx = 0 for all n ≥ 1,

and that

(2.7)
∫ 2π

0
cos(nx) cos(mx)dx = 0 for all n ≥ 1 with n 6= m.

Exercise 2.2. Show that the identities (2.6) and (2.7) are valid.

So actually the only nonzero term in the right hand side of (2.5) is
the one containing the coefficient am.

Exercise 2.3. Verify this identity:

(2.8)
∫ 2π

0
cos(nx) cos(nx)dx = π.

Therefore, substituting (2.8) into (2.5) gives

(2.9) an = 1
π

∫ 2π

0
f(x) cos(nx)dx.

A similar derivation shows that

(2.10) bn = 1
π

∫ 2π

0
f(x) sin(nx)dx.
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One might be tempted to ask: what kind of functions allow a repre-
sentation of the form (2.1)? Or: in what sense does the right-hand sum
converge in (2.2) as N → ∞? Also: under what assumptions can the
order of infinite summing and integration can be interchanged in the
derivations of (2.3) and (2.5)? These are deep and interesting math-
ematical questions which will not be further discussed in this short
note.

2.1. Fourier series: complex formulation. The unit circle (the
boundary of the unit disk) can be parametrized as

{(cos θ, sin θ) | 0 ≤ θ < 2π}.

We will use the Fourier basis functions

(2.11) ϕn(θ) = (2π)−1/2einθ, n ∈ Z.

We can approximate 2π-periodic functions f : R → R following the
lead of the great applied mathematician Joseph Fourier (1768–1830).
Define cosine series coefficients using the L2 inner product

f̂n := 〈f, ϕn〉 :=
∫ 2π

0
f(θ)ϕn(θ) dθ, n ∈ Z.

Then, for nice enough functions f , we have

f(θ) ≈
N∑

n=−N
f̂n ϕn(θ)

with the approximation getting better when N grows.

Exercise 2.4. Note that the functions {ϕn}n∈Z are L2 orthonormal:

〈ϕn, ϕm〉 = δnm ∀n,m ∈ Z

where

δnm =

1 if n = m

0 if n 6= m.

3. *Haar wavelets

For a wonderful introduction to wavelets, please see the classic book
Ten lectures on wavelets by Ingrid Daubechies.

https://en.wikipedia.org/wiki/Ingrid_Daubechies


6 VESA KAARNIOJA, JESSE RAILO AND SAMULI SILTANEN

3.1. *Theoretical approach as an orthonormal basis of L2([0, 1]).
Consider real-valued functions defined on the interval [0, 1]. There are
two especially important functions, namely the scaling function ϕ(x)
and the mother wavelet ψ(x) related to the Haar wavelet basis, defined
as follows:

ϕ(x) ≡ 1, ψ(x) =
{

1, for 0 ≤ x < 1/2,
−1 for 1/2 ≤ x ≤ 1.

Also, let us define wavelets as scaled and translated versions of the
mother wavelet:

ψjk(x) := 2j/2ψ(2jx− k) for j, k ∈ N and k ≤ 2j − 1,
where x ∈ [0, 1]. Let

H(0,1) := { (j, k) : j, k ∈ N, k ≤ 2j − 1 }.
Let f, g : [0, 1] → R. Define the L2(0, 1) inner product between f and
g by

(3.1) 〈f, g〉 :=
∫ 1

0
f(x)g(x) dx.

(Note that the complex conjugate over g in (3.1) is not relevant here as
g is real-valued. We just have it there for mathematical completeness.)

Exercise 3.1. Please convince yourself about the fact that wavelets are
orthogonormal:

〈ψjk, ψj′k′〉 =
{

1 if j = j′ and k = k′,
0 otherwise.

(Start by understanding why 〈ψ, ϕ〉 = 0 and 〈ψ, ψ〉 = 1, then look
at smaller scales corresponding to j > 0. Basically it is the same
phenomenon always.)

The Haar wavelet series of f ∈ L2(0, 1) is defined as

W(f)(x) :=
∑

(j,k)∈H(0,1)

〈f, ψj,k〉ψj,k(x)

for x ∈ [0, 1]. The collection of coefficients
(wjk)(j,k)∈H(0,1) := 〈f, ψi,j〉(j,k)∈H(0,1)

can be called the Wavelet transform of f .
Note that such a series decomposition can be always done for any

orthonormal family Φ := {φk : k ∈ Z} ⊂ L2(0, 1). This is always
a projection of f ∈ L2(0, 1) into the (metric) completion of the linear
span of Φ, or equivalently the closure of the linear span of Φ in L2(0, 1).
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Wheather f = WΦ(f) holds or not depends on the question: Is Φ a
Hilbert basis2 of L2(0, 1)?
Theorem 3.2. The Haar wavelet system is an orthonormal basis of
L2(0, 1). Therefore

f(x) =W(f)(x) ∀x ∈ [0, 1]
for any f ∈ L2(0, 1).
Proof. We do not consider proof of this fact in this course since it re-
quires better knowledge of functional analysis which is an advanced
topic. (One should show that every function in L2(0, 1) can be approx-
imated by the functions in the linear span of {φij : i, j ∈ Z }. One
already knows that the family is orthonormal by Exercise 3.1.) �

The success of Fourier series is based on this very same phenomenon:
the functions { e2πinx : n ∈ Z } form an orthonormal basis of L2(0, 1)
in the complex case, and { 1, cos(2πnx), sin(2πnx) : n ∈ Z+ } in the
real case.
Exercise 3.3. Can you say what is the orthonormal Fourier basis of
L2(0, 2π)? (Hint: Look at Section 2.)

4. Discrete Fourier transform

In practice one always uses discrete data sets. We next describe
how to perform Fourier analysis on such sets: Let N ∈ Z+ be positive
integer and define the set AN := {0, . . . , N − 1}. Consider a complex
function f : AN → C, f := (z0, . . . , zN−1), where zj ∈ C for every
j = 0, . . . , N − 1. Notice that such a function is naturally presented
as a vector in CN . For example, f(2) = z2, and f(x) = zx if x =
0, . . . , N − 1.

The discrete Fourier transform (DFT) F(f) : AN → C is defined
via the formula

F(f)(ξ) := 1
N

∑
x∈AN

f(x)e
(
−xξ
N

)

for every ξ ∈ AN . The (discrete) Fourier transform is often denoted by
f̂ := F(f).

If we write f = (z0, . . . , zN−1) and F(f) = (Z0, . . . , ZN−1), then we
can write more naturally (from the computational point of view) that

Zk =
N−1∑
j=0

zje

(
−jk
N

)
=

N−1∑
j=0

zje
−2πijk/N

2See https://en.wikipedia.org/wiki/Hilbert_space#Orthonormal_bases.

https://en.wikipedia.org/wiki/Hilbert_space#Orthonormal_bases
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for all k = 0, . . . , N − 1. Let us call this as the computational repre-
sentation.

Exercise 4.1. Verify that F : CN → CN is a linear mapping.

We next seek for a formula of the inverse Fourier transform and the
matrix of F . These are essentially helpful in many applications.

Theorem 4.2 (Discrete Fourier inverse formula). Let f : AN → C.
Then

f(x) =
∑
ξ∈AN

f̂(ξ)e
(
xξ

N

)
for every x ∈ An. Therefore,

zj =
N−1∑
k=0

Zke
2πijk/N

for every j = 0, . . . , N − 1 in the computational representation.

Proof. The proof of this formula is a short calculation. We have that
∑
ξ∈AN

f̂(ξ)e
(
xξ

N

)
=

∑
ξ∈AN

 1
N

∑
y∈AN

f(y)e
(
−yξ
N

) e(xξ
N

)

=
∑
y∈AN

f(y) 1
N

∑
ξ∈AN

e

(
(x− y)ξ

N

)
.

We have that ∑
ξ∈AN

e

(
(x− y)ξ

N

)
=

0 if x 6= y

N if x = y

using the exercise below. Now we plug these two formulas together
to obtain the result. The computational representation is nothing else
than rewriting the formula using the vector notation. �

We denote the discrete inverse Fourier transform by F−1, i.e.

F−1(f) :=
∑
ξ∈AN

f(ξ)e
(
xξ

N

)
.

It is again a linear map by results of elementary linear algebra. (You
may want to recall how it is proved that if A : V → W is an invertible
linear map, then A−1 : W → V is an invertible linear map as well.)

Exercise 4.3. Verify that
∑
ξ∈AN

e

(
xξ

N

)
=

0 if x 6= 0
N if x = 0.
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Basic formulas for the geometric series might be useful.

Exercise 4.4. Write down F−1f(ξ) using the computational represen-
tation (vector notation).

Let us then describe F as an invertible matrix in CN×N as it is a
linear automorphism (invertible linear map from the space onto itself)
of CN . It is moreover an isometry (up to an normalizing factor), i.e.
‖Ff −Fg‖ = C ‖f − g‖, when CN is equipped with the standard 2-
norm, i.e. f = (f0, . . . , fN−1) ∈ CN has the norm

‖f‖ =
√
|f0|2 + · · ·+ |fN−1|2.

We do not consider this fact further here (this is a finite version of the
Plancherel theorem).

One has that

Fkl = 1
N

(e(−kl/N)) = 1
N

((e(−k/N))l), k, l = 0, . . . , N − 1.

This is called the DFT matrix. This is a Vandermonde matrix3 which
provides another proof for invertibility using the determinant formula
for Vandermonde matrices and the elementary fact that a linear map
is invertible if and only if det 6= 0.

Exercise 4.5. Write down F using the matrix notation:

F =


F00 F01 · · · F0(N−1)

F10
. . . . . . ...

... . . . . . . ...
F(N−1)0 · · · · · · F(N−1)(N−1)


when N = 4. Write also the numbers e(−kl/N) using the form e2πi?.

Exercise 4.6 (*). Write down the matrix of F−1 directly from the for-
mula that defines the discrete inverse Fourier transform. (We should
be thankful for this since it avoids a need to invert the matrix of F us-
ing the general formula for calculating an inverse matrix.) Then verify
that

F−1 = NF∗

where ∗ denotes the conjugate transpose. (If one defines U =
√
NF ,

then U−1 = U∗ and U would be an unitary operator4. Sometimes
this might be useful in practical computations, especially if dimensions
are high to avoid unnecessary multiplications. It is perhaps an eternal

3See https://en.wikipedia.org/wiki/Vandermonde_matrix.
4See https://en.wikipedia.org/wiki/Unitary_matrix.

https://en.wikipedia.org/wiki/Vandermonde_matrix
https://en.wikipedia.org/wiki/Unitary_matrix
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argue how to define the constant in all different versions of Fourier
transforms.)

4.1. *Discrete convolutions. One can also define the convolution of
two functions f, g : AN → C, i.e. f, g ∈ CN , as a function AN → C via
the formula

(f ∗g)(x) := 1
N

 ∑
y∈AN ,y≤x

f(y)g(x− y) +
∑

y∈AN ,y>x

f(y)g(x− y +N)
 .

One can also represent the convolution simply as

(f ∗ g)(x) = 1
N

∑
y∈ZN

f(y)g(x− y)

where AN = ZN = Z/NZ is thought as a finite group of N elements.
However, the first definition is the one that is often used to calculate
convolutions numerically in practice whereas the second reveals its rela-
tion to group and number theories. If you are not familiar with groups
yet, then you do not have to worry the second formulation.

Exercise 4.7. Write down the convolution operation using the compu-
tational representation (vector notation). Define the operator Kf :
CN → CN , Kf (g) := f ∗ g. Show that Kf is a linear operator and find
its matrix.

Exercise 4.8. Verify that F(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ). This means also that
the (Fast) Fourier transform can be used to calculate a convolution
using the formula

f ∗ g = F−1(f̂ ĝ).
Show that f ∗ g = g ∗ f . (You can see this directly from the definition,
but it is now highly recommended to use its relation to the Fourier
transform to argue this.) Does this also imply that Kf = Kg?

5. Fast Fourier transform (FFT)

Next we describe the Fast Fourier transform (FFT) which is widely
used algorithm in practice due importance of Fourier transforms in
science and engineering. It is called fast since it is computationally
faster than the direct use of the formulas given in the earlier sections.

Let now N = 2α for some α ∈ Z+. We call products and sums of
complex numbers elementary operations. We will show that the DFT
of f : AN → C can be calculated using only O(N logN) elementary
operations. This big-O notation O(N logN) means that the number
of required calculations is at most a constant C > 0 times N logN .
It is frequently used notation in analysis of algorithms and applied
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mathematics. We presume that the all values of e(x/N) are already
calculated, e.g. in a database where it can be read.

Define f0(x) = f(2x) and f1(x) = f(2x+1) for all x = 0, . . . , N/2−1.
Notice that this is well defined since N/2 = 2α/2 = 2α−1 is an integer
and α ∈ Z+. One has also that f0 : AN/2 → C and f1 : AN/2 → C. We
will prove the following recursion formula in the end of this section.

Theorem 5.1 (Radix-2 FFT). Let N = 2α for some α ∈ Z+ and
f : AN → C. Then

f̂(ξ) = 1
2

(
f̂0(ξ) + f̂1(ξ)e

(
−ξ
N

))
.

Notice that f̂0 and f̂1 are discrete Fourier transforms of lower dimen-
sion than f̂ . If we already know f̂0(ξ) and f̂1(ξ), then we know that
f̂(ξ) can be calculated from those using two products and one sum. In
this case only 3 new elementary operations are required. If we know
f̂0 and f̂1 for all values of ξ, then f̂ can be calculated using 3N opera-
tions. Theorem 5.1 leads to a recursive algorithm, denoted by FFTα,
that calculates the DFT.

Theorem 5.2. The FFT algorithm f̂ = FFTα(f) has the computa-
tional complexity O(N logN) for any input f ∈ CN .

Proof. If α = 1, then f̂(0) = f(0)+f(1)
2 and f̂(1) = f(0)−f(1)

2 . Hence
FFT1 uses 4 elementary operations.

Let |FFTα| denote the maximum number of elementary operations
needed for any input of FFTα (this is the computational complexity of
the algorithm) and #(FFTα(f)) the number of elementary operations
needed for the input f . Let α > 1. Now

#(FFTα(f)) ≤ 2 |FFTα−1|+ 3N

using the recursion formula for the FFT. We can iterate k times
2 |FFTα−1|+ 3N ≤ 2(|FFTα−2|+ 3N/2) + 3N

= 22 |FFTα−2|+ 2 · (3N)
≤ 2k |FFT1|+ 3kN

until α− k = 1. We have that k = α− 1. Since this estimate holds for
any input f , we have that

|FFTα| ≤ 2α−1 |FFT1|+ 3(α− 1)N = 2α−1 · 4 + (α− 1)3N

where we used the fact that |FFT1| = 4.
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Finally, we use that α = log(N)/ log(2) and perform an elementary
estimation that

2α−1 · 4 + (α− 1)3N ≤ 2α+1 + 3αN = 2N + 3αN ≤ CN log(N)
for a sufficiently large C > 0. This completes the proof. �

Exercise 5.3. Find a suitable constant C > 0 in the previous proof.

Exercise 5.4. Given N (not necessarily N = 2α), what is O(DFT )
using directly the algorithm based on the definition of the DFT?

Exercise 5.5 (*). Try to figure out an analog of the FFT for N = 3α
(the recursion formula). What is the computational complexity of such
algorithm? (This would be a radix-3 FFT.)

Proof of Theorem 5.1. This a simple calcutation using definitions.

f̂(ξ) = 1
N

∑
x∈AN

f(x)e
(
−xξ
N

)

= 1
2

 1
N/2

∑
x∈AN/2

f(2x)e
(
−xξ
N/2

)
+ 1
N/2

∑
x∈AN/2

f(2x+ 1)e
(
−(2x+ 1)ξ

N

)
= 1

2

 1
N/2

∑
x∈AN/2

f0(x)e
(
−xξ
N/2

)
+ 1
N/2

∑
x∈AN/2

f1(x)e
(
−xξ
N/2

)
e

(
−ξ
N

)
= 1

2

(
f̂0(ξ) + f̂1(ξ)e

(
−ξ
N

))
.

�

One can apply the FFT for example to a fast multiplication of poly-
nomials. This recursive algorithm is also very important in many
practical algorithms. Some practical examples are considered at the
live coding lectures and official course exercises. There are various
ways to really program an FFT algorithm, for example: Cooley-Tukey
FFT algorithm5, Prime-factor FFT algorithm, Bruun’s FFT algorithm,
Rader’s FFT algorithm, Bluestein’s FFT algorithm, and Hexagonal
Fast Fourier Transform.6

5The radix-2 FFT desribed in this note is the mathematical basis for this
algorithm.

6See https://en.wikipedia.org/wiki/Fast_Fourier_transform. The
Prime-factor FFT algorithm can be used for any N ∈ Z+. In this case one divides
the problem into smaller problems using the prime factorization of N similarly to
the radix-2 FFT (where 2 is the only prime factor of N = 2α with multiplicity α).

https://en.wikipedia.org/wiki/Fast_Fourier_transform
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Exercise 5.6. There are several applications of the FFT. Learn one cool
application of the FFT from the internet!
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