
Appendix B

Fourier Transforms &
Generalized Functions

B.1 Introduction to Fourier Transforms

The original application of the techniques of Fourier analysis was in Fourier’ s
studies of heat flow, Thorie Analytique de la Chaleur (The Analytical The-
ory of Heat), published in 1822. Fourier unwittingly revolutionized both
mathematics and physics. Although similar trigonometric series were previ-
ously used by Euler, d’Alembert, Daniel Bernoulli and Gauss, Fourier was
the first to recognize that such trigonometric series could represent arbitrary
functions, even those with discontinuities. It required many years to clarify
this insight, and it has led to important theories of convergence, function
space, and harmonic analysis.

The classic text for Fourier transforms for physicists is Titchmarsh,
[Titchmarsh 1948]. Here we review the aspects of the theory that is rel-
evant to Electromagnetism. Although Fourier’s original interest was in the
analysis of heat flow, the simplicity of these techniques is generally applica-
ble to any field theory. In particular, the expansion of functions in a series of
special functions such as the sin and cos functions is at its center a result of
the underlying symmetry of the space. For these functions form a complete
set of irreducible representations of the symmetry group of translations and
inversions, the sin 2πnx

λ , n = 1, 2, · · ·, series for the transformation x′ = x+λ
with λ discrete and odd under x′ = −x and the cos 2πnx

λ , n = 0, 1, 2, · · ·
series for the transformation x′ = x + λ and even under x′ = −x. For the
case of continuous translation symmetry in which the translation parame-
ter can take any value, x′ = x + a, the set sin kx forms a complete set of
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158APPENDIX B. FOURIER TRANSFORMS & GENERALIZED FUNCTIONS

irreducible representations of the odd functions and cos kx for the even func-
tions. The label of the representation, k, is called the wavenumber and the
wavelength is defined as λ ≡ 2π

k . For the general case without the even and
odd requirement, the representation is simply eikx for all k, −∞ < k <∞.
The intimate relationship between the Fourier transform and generalized
functions has improved the understanding of both, a route that we follow.

The analysis of electromagnetic phenomena in wavenumber space, the
space of the Fourier transform, is especially fruitful. Since local field the-
ories describe interactions through field values and derivatives at the field
point, the wave-number description eliminates the derivatives for algebraic
relations: a significant gain in analytic simplicity. It is also the case that
the kinematics of the vector fields are easier to implement in wave-number
space. These advantages, of course, are offset by the difficulty of developing
an intuitive interpretation of the behavior of vector fields in wave-number
space; the Fourier transform is a mapping that is intrinsically non-local and
maps points in configuration space to regions in wave-number space.

After reviewing Fourier transforms in one dimension in Section B.2, we
will study the relationship of these transforms to the notion of generalized
function, Section B.3. We conclude with the application of these techniques
in higher dimensional spaces, Section B.4

B.2 One Dimensional Fourier Transforms

The idea of Fourier transforms is a natural extension of the idea of Fourier
series1. A function, F (x), with periodicity, λ, in the sense F (x+ λ) = F (x)
is represented by the series

F (x) =
1√
2λ
a0 +

∞∑
n=1

(
an

√
2
λ

cos
2πnx
λ

+ bn

√
2
λ

sin
2πnx
λ

)
(B.1)

where

am =

√
2
λ

∫ λ
2

−λ
2

F (t) cos
2πmt
λ

dt (B.2)

1There are many conventions on the normalizations of the Fourier transforms. Here,
I am using a convention that is the one most commonly followed by physicists. It is a
slight variation of the one of Titchmarsh, [Titchmarsh 1948], which is advantageous for the
development of formal manipulations and proofs. Mathematicians commonly use another
convention such as the one in Lighthill, [Lighthill 1958]. The primary difference is in the
location of the 2π conversion from cycles to radians.



B.2. ONE DIMENSIONAL FOURIER TRANSFORMS 159

and

bm =

√
2
λ

∫ λ
2

−λ
2

F (t) sin
2πmt
λ

dt. (B.3)

Note that, if F (x) is an even function, the bm’s are all zero and, thus, for
even functions, the Fourier series and the Fourier cosine series are the same.
Similarly, for odd functions, the Fourier sine series and the Fourier series
coincide.

Inserting Equations B.2 and B.3 into Equation B.1,

F (x) =
1
λ

∫ λ
2

−λ
2

F (t)dt+
2
λ

∞∑
n=1

∫ λ
2

−λ
2

F (t) cos
2πn (x− t)

λ
dt. (B.4)

If F (t) has compact support, and putting k = 2πn
λ and identifying δk = 2π

λ
and letting λ→∞, Equation B.4 becomes

F (x) =
1
π

∫ ∞
0

dk

∫ ∞
−∞

F (t) cos (k (x− t)) dt. (B.5)

This is Fourier’s integral formula.
It is worthwhile to interrupt this development at this point to note that

in the more modern language of generalized functions, Section B.3, we would
identify 1

π

∫∞
0 dk cos (k (x− t)) as one of the many possible manifestations

of the delta function, δ(x − t). We will have several more examples of this
kind in our development of Fourier transforms, a rich source of generalized
functions, see Section B.3.

Using the Fourier integral formula, Equation B.5, an expansion similar
to the Fourier series expansion, Equation B.1, and the separation of even
and odd functions with the resultant Fourier sine and cos series and resulting
Fourier sine and cosine integrals is possible.

F (x) =
∫ ∞

0
{a(k) cos kx+ b(k) sin kx} dk (B.6)

where

a(k) =
1
π

∫ ∞
−∞

Fe(t) cos kt dt (B.7)

and

b(k) =
1
π

∫ ∞
−∞

Fo(t) sin kt dt (B.8)
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and Fe(t) and Fo(t) are the even and odd parts of F (t) in the sense

Fe(t) ≡
1
2
{F (t) + F (−t)}

Fo(t) ≡
1
2
{F (t)− F (−t)} (B.9)

and F (t) = Fe(t) + Fo(t). Thus, for even and odd functions, we have the
Fourier cosine formula and Fourier sine formula

Fe(x) =
2
π

∫ ∞
0

cos kx dk
∫ ∞

0
Fe(t) cos kt dt (B.10)

and
Fo(x) =

2
π

∫ ∞
0

sin kx dk
∫ ∞

0
Fo(t) sin kt dt. (B.11)

The form most useful to us is found by expanding the cos in Equation B.5
to yield

F (x) =
1

2π

∫ ∞
−∞

dk

∫ ∞
−∞

dtF (t)eik(t−x) (B.12)

Cauchy was the first to realize that these Fourier integral formulas lead
to a reciprocal relation between pairs of functions. From the exponential
form of the Fourier integral formula, Equation B.12, we obtain the Fourier
transformation relations

F(k) =
1√
2π

∫ ∞
−∞

F (t)e−iktdt (B.13)

and
F (t) =

1√
2π

∫ ∞
−∞
F(k)eiktdk. (B.14)

The Cauchy reciprocity is that, if F(k) is the Fourier transform of F (t),
then F (t) is the Fourier transform of F(−k) which is F∗(k) if F (t) is real.

The sine and cosine transformations follow similarly as

Fc(k) =

√
2
π

∫ ∞
0

cos kt F (t)dt

F (t) =

√
2
π

∫ ∞
0

cos ktFc(k)dk (B.15)

and

Fs(k) =

√
2
π

∫ ∞
0

sin kt F (t)dt

F (t) =

√
2
π

∫ ∞
0

sin ktFs(k)dk. (B.16)
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Clearly, Fc(k) is an even function of k for any F (t) for which it is defined,
i. e. L(0,∞), and from the latter of the Equations B.15, F (t), now defined
on the domain −∞ to ∞, is an even function of t. The Cauchy reciprocity,
in this case is that if Fc(k) is the Fourier cosine transformation of F (t), then
the even function Fe(t) which coincides with F (t) in the domain 0 to ∞, is
the Fourier transformation of Fc(k). If F (t) is real, Fc(k) is real.

In order to further develop the ideas and limitations of these transforms,
it is worthwhile to work through a few examples to show these important
properties.

Consider the function e−x. It should be clear that any attempt of use
the Fourier transform, Equations B.13 and B.14, is questionable in this case
since the integrals involved may not be defined. In fact the derivation of
Equation B.5, Fourier’s integral formula, our basic starting point, required
that F (x) have compact support. A more general requirement that should
allow all the integrals to be defined would be

∫∞
−∞ |F (t)|dt < ∞ or we can

say F (t) must be in L(−∞.∞) where L represents the Lebesgue measure.
Later in this section, we will discuss other conditions that are possible. For
now at least, it should be obvious that our example, e−x in the domain −∞
to ∞ is not eligible for Fourier transformation. In this case though, we can
implement a transformation based on the domain 0 to ∞ as required for
the cosine and sine transformations. Using Equations B.15, and directly

integrating, the Fourier cosine transformation of e−x is
√

2
π

1
1+k2 . There is

the even function, e−|x|, that coincides with e−x in the domain 0 to ∞ and
is L(−∞,∞). Thus the Fourier transformation of the even function e−|x| is

the same as the Fourier cosine transformation,
√

2
π

1
1+k2 . Note that the even

function coshx constructed from e−x by Equations B.9 is not L(−∞,∞) and

is not the appropriate Fourier partner to
√

2
π

1
1+k2 . Note also the the Fourier

cosine transformation is real by definition and thus the Fourier transforma-
tion of e−|x| is real and even in k. Similarly by direct integration, the Fourier

sine transformation to e−x is
√

2
π

k
1+k2 . It is real and odd in k. Thus the

Fourier transform of the odd function

F (x) =


e−x : 0 < x <∞
0 : x = 0
−ex :−∞ < x < 0

is 1√
2π

ik
1+k2 . It is imaginary and odd in k. Like the Fourier series, Fourier

transforms can handle discontinuities. In order to remain integrable, the
functions must have bounded variation though.
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Some of the results of the previous example can be readily generalized.
For real F (t), since both the Fourier sine and cosine transformations are
real and respectively odd in k and even in k, the Fourier transform of an
even function is even and real and the Fourier transform of an odd function
is odd and imaginary. In general for real F (t),

F(k) = F∗(−k). (B.17)

Admitting the case of complex F (t), we can derive an important set of
relations called the Parseval identities. First, define

F∗(k) ≡ 1√
2π

∫ ∞
−∞

F ∗(t)e−iktdt,

the Fourier transform of the complex conjugate of F (t). Then Equation B.17
generalizes to F∗(k) = F∗(−k). Given two complex functions F (t) and G(t)
with corresponding Fourier transforms F and G,∫ ∞

−∞
F (t)G∗(t)dt =

1√
2π

∫ ∞
−∞

dt

{∫ ∞
−∞
F(k)eiktdk

}
G∗(t)

=
1√
2π

∫ ∞
−∞

dkF(k)
{∫ ∞
−∞

G∗(t)eiktdt
}

=
∫ ∞
−∞

dkF(k)G∗(−k)

=
∫ ∞
−∞

dkF(k)G∗(k). (B.18)

For the special case of G(t) = F (t), we have the important result∫ ∞
−∞
|F (t)|2dt =

∫ ∞
−∞
|F(k)|2dk. (B.19)

These relations are known as the Parseval Identities.
Similarly, consider the inverse Fourier transform, Equation B.14, of the

product of two Fourier transforms, F(k) and G(k),

1√
2π

∫ ∞
−∞

dkF(k)G(k)eikt =
1

2π

∫ ∞
−∞

dkF(k)eikt
∫ ∞
−∞

dxG(x)e−ikx

=
1

2π

∫ ∞
−∞

dxG(x)
∫ ∞
−∞
F(k)e−ik(t−x)dk

=
1√
2π

∫ ∞
−∞

dxG(x)F (t− x). (B.20)
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Thus, the inverse Fourier transform of a product of two Fourier transforms
is the convolution of the original functions. Of course, these relations hold in
the sense of the Cauchy reciprocity mentioned after Equation B.14 suitably
generalized to complex functions when appropriate.

Suppose our problem is one which is not centered on the origin but
instead about some point a. For example for the case that we have been
analyzing, F (x) is e−|x−a| is the translate of e−|x|. From Equation B.13, it
follows that the Fourier transform, Ft(k), of the translated function, Ft(x) =
F (x+ a) is

Ft {F (x+ a)}(k) = eikaF {F (x)}(k). (B.21)

Thus the Fourier transform of e−|x−a| is
√

2
π

1
1+k2 e

−ika.
Another important issue for physical applications is that the prior dis-

cussions are based on mathematical examples. In mathematics, the variables
are all dimensionless, whereas in physical applications the variables generally
have dimensional content; x or t are often lengths or times. In this regard,
a formula such as e−x will appear in a physics context as e−

x
a , a > 0, the

magnitude of the effect falls by 1
e th when x advances by an amount a. The

dimensional parameter a plays two roles. It has the same dimensions as
x and thus provides dimensional consistency. It also provides a scale for
the phenomena. The problem is that the Fourier transforms do not appear
reciprocal when the variable has dimension. From Equation B.13, k must
have the inverse dimension of t and the Fourier transform must have differ-
ent dimensions from F (t). F(k) has the dimension of F (t) divided by the
dimension of t. Consider the Fourier transform of a scaled variable,

Fs(k) =
1√
2π

∫ ∞
−∞

F (
t

a
)e−iktdt

=
a√
2π

∫ ∞
−∞

F (t′)e−iakt
′
dt′

= aF(ak), (B.22)

where Fs(k) is the Fourier transform for the scaled function. For our exam-

ple, e−
|x|
a , the Fourier transform is

√
2
π

a
1+a2k2 .

An observation that follows from this scaling rule is an approximate in-
verse relationship between the regions of support in configuration space and
the regions of support in Fourier space. This is best exemplified by the
special case of the Gaussian function. The Fourier transform of a Gaus-

sian is a Gaussian. Starting from F1(t) = 1√
2π
e−

t2

2 , we have F1(k) =
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1√
2π

∫∞
−∞

1√
2π
e−

t2

2 e−iktdt = 1
2πe
− k

2

2

∫∞
−∞ e

− (t+ik)2

2 dt = 1√
2π
e−

k2

2 or

1√
2π
e−

t2

2 ←→ 1√
2π
e−

k2

2 (B.23)

form a Fourier transform pair. Extending this result by scaling the coordi-
nate, t→ t

σ , by the standard deviation and using the result of Equation B.22,
we have for the normed Gaussian

1√
2π σ

e−
t2

2σ2 ←→ σ√
2π
e−

σ2k2

2 (B.24)

This result can easily be extended to the set of Hermite functions2. The
generator of the Hermite functions is

e

“
−x

2

2
+2xt−t2

”
=
∞∑
n=0

e

“
−x

2

2

”
Hn(x)

tn

n!
. (B.25)

Using the results of Equation B.24, the Fourier transform of the generator
on the variable x,

F
{
e

“
−x

2

2
+2xt−t2

”}
(k) = e

“
− k

2

2
−2ikt+t2

”

=
∞∑
n=0

e

“
− k

2

2

”
Hn(k)

(−it)n

n!
.

Performing the Fourier transform of the terms of the generator expansion
in Equation B.25,

F

{ ∞∑
n=0

e

“
−x

2

2

”
Hn(x)

tn

n!

}
=
∞∑
n=0

F
{
e

“
−x

2

2

”
Hn(x)

}
tn

n!
, (B.26)

and comparing coeficients, we have

F
{
e

“
−x

2

2

”
Hn(x)

}
= (−i)ne

“
− k

2

2

”
Hn(k). (B.27)

The previous examples of scaling, Equation B.22, and translation, Equa-
tion B.21, can be combined to yield the general result that if F(k) is the

2The Hermite functions are the normalized products of the Hermite polynomials and

a Gaussian, ψn(x) = 1√
n!2n

√
π
e−

x2
2 Hn(x).
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Fourier transform of F (x), then the Fourier transform of the rescaled3 trans-
lated F (x),

Fst(x) ≡ F (ax+ b),

with a and b constant, is

Fst(k) =
ei
kb
a

a
F
(
k

a

)
. (B.28)

This kind of relationship between translation and scaling and the Fourier
transform can be interpreted through the concepts associated with symme-
tries and symmetry group representations. In a one dimensional world, the
action of the rescaling and translation x→ x′ = ax+ b is the most general
linear transformations that can be implemented. This is a two parameter Lie
group. The sub groups of translations, a = 1, and scaling, b = 0, are both
abelian and have simple representation structure. The Fourier transforms
form an irreducible

A common and useful trick for the evaluation of a Fourier transform is
to allow k to become a complex variable and consider the integration in
Equation B.14 to be an integral along the real axis, see Figure B.1.

k

i m  k

r e  k

Figure B.1: Complex k Plane Converting the real axis integral into a line
integral in the complex k plane. The dots represent singularities in F(k).
The isolated points are poles or higher power singularities and the dashed
lines ending on a point are branch cuts.

Because of the exponential in Equation B.14 and the controlled nature
of the F(k) at large k, The contour can be closed either above or below

3Note that the rescale variable here is the inverse of the one used above, Equation B.22
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and depending on the sign of t often evaluated or at least estimated. For
example for the case shown in Figure B.1 the contour can be shifted to the
one shown in Figure B.2. If t > 0, the integral over the large arc is zero and
the integral is reduced to one along branch cuts and poles. The poles can be
evaluated by the Cauchy Residue Theorem. If t < 0, a similar translation
of the contour reduces the integral to one involving the branch cuts and
isolated singularities in the lower half plane.

k

i m  k

r e  k

Figure B.2: Complex Integral Shifted Converting the real axis integral
into a line integral in the complex k plane. For the case of the singularity
structure in Figure B.1, the contour integral here is equal to the real integral
shown there.

Some examples will clarify the use of these techniques. Consider F (t) =
1√
2π

∫∞
−∞

1√
a2+k2

eikt. The singularities are a square root branch cut at k =
±ia and we can run the branch cut along the imaginary axis with the cuts
directed away from the origin. For the case of t > 0, the original contour
can be pushed upward as shown in Figure B.3. Because of the exponential,
the integral along the large arc can be neglected as the arc radius goes to
infinity. The problem reduces to the integral around the singularity and the
integrals along the sides of the branch cut. The integral around the

Shinola

B.3 Generalized Functions

B.3.1 Introduction

The first generalized function was the Dirac delta function, δ(x). Introduced
by him to allow for the analysis of some aspects of quantum mechanics. It
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k
i m   k

r e   k

Figure B.3: Cut Example The contour for the integral of F (t) =
1√
2π

∫∞
−∞

1√
a2+k2

eikt when t > 0.

is not a function in the ordinary sense because it is zero everywhere except
at the argument value zero where it is infinitely large is such a way that

∫ x2

x1

δ(x)F (x)dx =


F (0) : x1 < 0 < x2

−F (0) : x2 < 0 < x1

0 : otherwise
(B.29)

for any reasonable function F (x).
A more general definition of generalized functions would be a limit of

functions that is itself not a function but which still has well prescribed ana-
lytic properties. In this sense, Dirac was not the first to use these forms. As
discussed in Section B.2, our analysis of the Fourier transform which follows
that of Fourier used the step in the analysis that identified an integral iden-
tity that utilized what today would be called a Dirac delta function. Cauchy
in his development of the Fourier transform also used limit forms to carry
out important steps in the derivation. These were all specific applications
of limit forms. A rigorous theory of generalized functions derived from limit
forms has been developed by Laurent Schwartz and given the general name
of distribution theory. A very good, short, and rigorous introduction is given
by Lighthill [Lighthill 1958]. The development of the theory of distributions
provided a very nice extension of and has broad implications for Fourier
transforms.
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B.3.2 Dirac Delta Function

The Dirac delta function is the generalized function given by Equation B.29.
Some of the commonly used limit forms are

δ(x) = lim
ε→0


1

ε
√
π
e(−x

2

ε2
) : Gaussian

ε
π

x2+ε2
: Lorentzian

sin x
ε

πx : Dirichlet

(B.30)

Each of these forms have the obvious property of vanishing for all x other
than x = 0 where it is undefined and, in an integral with a reasonable
function, yields Equation B.29. The many limit forms that produce the
same generalized function are said to be equivalent.

Several simple properties follow from these forms for the delta function,
when it is used inside an integral. If f(x) has multiple zeros,

δ(f(x)) =
∑
n

δ(x− xn)
|f ′(xn)|

, (B.31)

where the xn are the zeros of f(x) and f ′(x) = df
dx |xn . A special case of this

result is when f(x) = ax.

B.3.3 Other Generalized Functions

Probably the simplest generalized function is the function 1 defined as∫ x2

x1

1F (x)dx ≡
∫ x2

x1

F (x)dx. (B.32)

A limit form that produces this function is

1 = lim
α→0

e−αx
2
. (B.33)

This especially simple example provides an insight into the connections
among the generalized functions. In this case, the derivative of this limit
form produces a new limit form, limα→0(−α2x)e−αx

2
which produces the

generalized function 0 or ∫ x2

x1

0F (x)dx ≡ 0. (B.34)

This introduces the idea of the derivative of a generalized function; the
derivative of the limit form is the limit form for a new generalized function.
In other words, d1

dx = 1′ = 0.
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It is straight forward using the Gaussian limit form, Equation B.30, and
the properties of the Hermite polynomials and the fact that F (x) is a good
function to show

lim
ε→0

∫ x2

x1

(
d

dx

)n 1
ε
√
π

exp
(
−x

2

ε2

)
F (x)dx

=
∫ x2

x1

{(
d

dx

)n
δ(x)

}
F (x)dx

= (−1)n
∫ x2

x1

δ(x)
{(

d

dx

)n
F (x)

}
dx = (−1)n

dn

dxn
F (0). (B.35)

A particularly interesting and useful form for the Dirac delta function
that was already alluded to in Section B.2 follows from the Dirchelet limit
form, Equation B.30. Changing the Dirchelet form trivially to limK→∞

sinKx
πx =

δ(x), we can identify

2πδ(x) = lim
K→∞

{
2π

sinKx
πx

=
∫ K

−K
dkeikx

}
(B.36)

or
1

2π

∫ ∞
−∞

dkeikx = δ(x). (B.37)

Of course, this is the essence of Fourier’s proof of the validity of Fourier’s
integral in the exponential form, Equation B.12. This representation of
the Dirac delta function is clearly important to the interplay of generalized
functions and Fourier transforms. In this form, the derivatives of the Dirac
delta function take on a specially important form:

dn

dxn
δ(x) =

(i)n

2π

∫ ∞
−∞

dkkneikx (B.38)

On the face of it, this integral expression is meaningless. It must be remem-
bered that generalized functions are used only in the context of integration
with reasonable functions.

Another important related expression for the Dirac delta function follows
from the properties of the Fourier series, Equations B.1-B.3. The functions
cos 2πnx

λ and sin 2πnx
λ are an example of a complete orthonormal set of func-

tions on the interval −λ
2 < x < λ

2 . Obviously, this given this function defined
on the interval, there is the periodic function F (t) that has period λ and
equals the given function in the interval. Thus it satisfies Equations B.1-
B.3 and, more significantly, even functions in the interval are expressed in
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the cosine series and odd functions in the sine series. This is a specific
example of a complete orthonormal set of functions {φn}. Given some in-
terval, x1 < x < x2, any reasonable function f(x) defined in the interval
can be expressed as f(x) =

∑
n cnφn(x) if the set satisfies the conditions of

orthonormality ∫ x2

x1

φ∗n(x)φn′(x)dx = δnn′ (B.39)

and completeness ∑
n

φ∗n(x′)φn(x) = δ(x′ − x). (B.40)

For example, for odd functions in the interval −λ
2 < x < λ

2 , the set of

functions
√

2
λ sin 2πnx

λ form a complete orthonormal basis and thus∫ ∞
−∞

√
2
λ

sin
2πnx
λ

√
2
λ

sin
2πmx
λ

dx = δn,m

∞∑
n=1

√
2
λ

sin
2πnx
λ

√
2
λ

sin
2πnx′

λ
= δ(x− x′). (B.41)

This last result is most easily seen from the Fourier series identity, Equa-
tion B.4, modified for odd functions,

Fo(x) =
2
λ

∞∑
n=1

∫ λ
2

−λ
2

Fo(t) cos
2πn (x− t)

λ
dt.

=
∫ λ

2

−λ
2

dtFo(t)

{ ∞∑
n=1

√
2
λ

sin
2πnx
λ

√
2
λ

sin
2πnt
λ

}
. (B.42)

The cosine series is slightly more complicated since the expansion f(x) =∑∞
n=1 an

√
2
λ cos 2πnx

λ does not cover functions with a non-zero average in the
interval. For this case, completeness is expressed as

δ(x− t) =
1
λ

+
∞∑
n=1

√
2
λ

cos
2πnx
λ

√
2
λ

cos
2πnx
λ

(B.43)

and the orthonormality is∫ ∞
−∞

√
2
λ

cos
2πnx
λ

√
2
λ

cos
2πmx
λ

dx = δn,m, (B.44)

for n,m = 1, 2, 3, . . ..
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A very important generalized function is the Heaviside or step function,
θ(x) which is defined as

∫ x2

x1

θ(x)F (x)dx =


0 : x1 < 0 x2 < 0∫ x2

0 F (x)dx : x1 < 0 x2 > 0
−
∫ x1

0 F (x)dx : x1 > 0 x2 < 0∫ x2

x1
F (x)dx : x1 > 0 x2 > 0

(B.45)

for any reasonable F (x). This generalized function is usually expressed as

θ(x) =


0 : x < 0
1
2 : x = 0
1 : x > 0

. (B.46)

A limit form for this generalized function is

θ(x) = lim
ε→0

1
π

(π
2

+ tan−1
(x
ε

))
. (B.47)

The derivative of this limit form produces the Lorentzean limit form for the
Dirac delta function. In other words, θ′(x) = δ(x). Another interesting
application of the Heaviside function is as a limit form for the Dirac delta
function, δ(x) = limε→0

1
ε θ
(
ε
2 − |x|

)
.

There are many general results for generalized functions that can be
derived simply from the properties of the limit forms. For a generalized
function, G(x) with Fourier transform G(k),∫ ∞

−∞
G′(x)F (x)dx = −

∫ ∞
−∞

G(x)F ′(x)dx∫ ∞
−∞

G(ax+ b)F (x)dx =
1
|a|

∫ ∞
−∞

G(x)F (
x− b
a

)dx∫ ∞
−∞
{φ(x)G(x)}F (x)dx =

∫ ∞
−∞

G(x) {φ(x)F (x)} dx∫ ∞
−∞
G(k)F(k)dk =

∫ ∞
−∞

G(x)F (−x)dx (B.48)

where φ(x) is a fairly good function and F (x) is a good function and its
Fourier transform is F(k).

Given two generalized functions G(x) and H(x)

d

dx
{G(x) +H(x)} = G′(x) +H ′(x)
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d

dx
{φ(x)G(x)} = φ′(x)G(x) + φ(x)G′(x)

d

dx
G(ax+ b) = aG′(ax+ b)

φ(ax+ b)G(ax+ b) = H(ax+ b) if φ(x)G(x) = H(x) (B.49)

where again φ(x) is a fairly good function. It is important to realize that
there is no definition for the product of two generalized functions.

B.4 Three Space

It is simply a fact that the space that we have is not one dimensional.
Applications to physics requires that we understand the nature of Fourier
transforms and generalized functions in at least three dimension. Of course,
since the three space is an (R1)3, it should simply require the multiplying of
each of the elements. Thus using the Fourier transform form for the Dirac
delta function, Equation B.37, we have the simple construction

1
(2π)3

∫ ∞
−∞

dkxe
ikxx

∫ ∞
−∞

dkye
ikyy

∫ ∞
−∞

dkze
ikzz = δ3(~x), (B.50)

or in a simpler notation 1
(2π)3

∫∞
−∞ d

3~kei
~k·~x = δ3(~x). Of course this equa-

tion is meaningful only in the context of integration with a good function;∫∞
−∞ δ

3(~x)F (~x)d3~x = F (~0). This approach to higher dimensions merely
treats each direction independently. This carries with it then the usual in-
tuition from the one dimensional cases. For example, we understand that
the amount of support in configuration space and the amount of support in
Fourier space are inversely related, see Equation B.24.

The complication of the use of these formulas to many applications is that
the logical coordinate basis may not be the simple direct product basis used
in Equation B.50. Important examples are spherical polar and cylindrical
coordinate systems.

The basis for the problem is the difference between iterative integration
in a multidimensional space and integration on the manifold. As an example
consider the three dimensional case in cartesian and spherical polar coordi-
nates. Equation B.50 is a Fourier transform in all three spatial coordinates.
If we realize the relationship between
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B.4.1 Diversion on the Transverse Propagator

The transverse propagator is δij − kikj
k2 Some important three dimensional

examples.

1
4πr

←→ 1
(
√

2π)3

1
k2

(B.51)

~r

4πr3
←→ 1

(
√

2π)3

−i~k
k2

(B.52)

δ(~r − ~ra) ←→
1

(
√

2π)3
e−i

~k· ~ra (B.53)

shinola




