CHAPTER

MECHANICS OF MATERIALS

Ferdinand P. Beer
E. Russell Johnston, Jr. John T. DeWolf

Lecture Notes:
J. Walt Oler

Texas Tech University

Deflection of Beams

- Relationship between bending moment and curvature for pure bending remains valid for general transverse loadings.

$$
\frac{1}{\rho}=\frac{M(x)}{E I}
$$

- Cantilever beam subjected to concentrated load at the free end,

$$
\frac{1}{\rho}=-\frac{P x}{E I}
$$

- Curvature varies linearly with x
- At the free end $A, \frac{1}{\rho_{A}}=0, \quad \rho_{A}=\infty$
- At the support $B, \frac{1}{\rho_{B}} \neq 0,\left|\rho_{B}\right|=\frac{E I}{P L}$

- Overhanging beam
- Reactions at A and C
- Bending moment diagram
- Curvature is zero at points where the bending moment is zero, i.e., at each end and at E.

$$
\frac{1}{\rho}=\frac{M(x)}{E I}
$$

- Beam is concave upwards where the bending moment is positive and concave downwards where it is negative.
- Maximum curvature occurs where the moment magnitude is a maximum.
- An equation for the beam shape or elastic curve is required to determine maximum deflection and slope.

- From elementary calculus, simplified for beam parameters,

$$
\frac{1}{\rho}=\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}} \approx \frac{d^{2} y}{d x^{2}}
$$

- Substituting and integrating,

$$
\begin{aligned}
& E I \frac{1}{\rho}=E I \frac{d^{2} y}{d x^{2}}=M(x) \\
& E I \theta \approx E I \frac{d y}{d x}=\int_{0}^{x} M(x) d x+C_{1} \\
& E I y=\int_{0}^{x} d x \int_{0}^{x} M(x) d x+C_{1} x+C_{2}
\end{aligned}
$$

E2

- Constants are determined from boundary conditions

$$
\text { EI } y=\int_{0}^{x} d x \int_{0}^{x} M(x) d x+C_{1} x+C_{2}
$$

- Three cases for statically determinant beams,
- Simply supported beam

$$
y_{A}=0, \quad y_{B}=0
$$

- Overhanging beam

$$
y_{A}=0, \quad y_{B}=0
$$

- Cantilever beam

$$
y_{A}=0, \quad \theta_{A}=0
$$

- More complicated loadings require multiple integrals and application of requirement for continuity of displacement and slope.

Direct Determination of the Elastic Curve From the Load Distribution

(a) Cantilever beam

- For a beam subjected to a distributed load,

$$
\frac{d M}{d x}=V(x) \quad \frac{d^{2} M}{d x^{2}}=\frac{d V}{d x}=-w(x)
$$

- Equation for beam displacement becomes

$$
\frac{d^{2} M}{d x^{2}}=E I \frac{d^{4} y}{d x^{4}}=-w(x)
$$

- Integrating four times yields

$$
\begin{aligned}
E I y(x)= & -\int d x \int d x \int d x \int w(x) d x \\
& +\frac{1}{6} C_{1} x^{3}+\frac{1}{2} C_{2} x^{2}+C_{3} x+C_{4}
\end{aligned}
$$

- Constants are determined from boundary conditions.
(b) Simply supported beam

- Consider beam with fixed support at A and roller support at B.
- From free-body diagram, note that there are four unknown reaction components.
- Conditions for static equilibrium yield

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{A}=0
$$

The beam is statically indeterminate.

- Also have the beam deflection equation,

$$
E I y=\int_{0}^{x} d x \int_{0}^{x} M(x) d x+C_{1} x+C_{2}
$$

which introduces two unknowns but provides three additional equations from the boundary conditions:

$$
\text { At } x=0, \theta=0 y=0 \quad \text { At } x=L, y=0
$$

$$
\begin{array}{lll}
W 14 \times 68 & I=723 \mathrm{in}^{4} & E=29 \times 10^{6} \mathrm{psi} \\
P=50 \mathrm{kips} & L=15 \mathrm{ft} & a=4 \mathrm{ft}
\end{array}
$$

For portion $A B$ of the overhanging beam, (a) derive the equation for the elastic curve,
(b) determine the maximum deflection,
(c) evaluate $y_{\max }$.

SOLUTION:

- Develop an expression for $\mathrm{M}(\mathrm{x})$ and derive differential equation for elastic curve.
- Integrate differential equation twice and apply boundary conditions to obtain elastic curve.
- Locate point of zero slope or point of maximum deflection.
- Evaluate corresponding maximum deflection.

MECHANICSOF MATERIALS

SOLUTION:

- Develop an expression for $M(x)$ and derive differential equation for elastic curve.
- Reactions:

$$
R_{A}=\frac{P a}{L} \downarrow \quad R_{B}=P\left(1+\frac{a}{L}\right) \uparrow
$$

- From the free-body diagram for section $A D$,

$$
M=-P \frac{a}{L} x \quad(0<x<L)
$$

- The differential equation for the elastic curve,

$$
E I \frac{d^{2} y}{d x^{2}}=-P \frac{a}{L} x
$$

MECHANICSOF MATERIALS

$$
E I \frac{d^{2} y}{d x^{2}}=-P \frac{a}{L} x
$$

- Integrate differential equation twice and apply boundary conditions to obtain elastic curve.

$$
\begin{aligned}
& E I \frac{d y}{d x}=-\frac{1}{2} P \frac{a}{L} x^{2}+C_{1} \\
& E I y=-\frac{1}{6} P \frac{a}{L} x^{3}+C_{1} x+C_{2} \\
& \text { at } x=0, y=0: \quad C_{2}=0 \\
& \text { at } x=L, y=0: \quad 0=-\frac{1}{6} P \frac{a}{L} L^{3}+C_{1} L \quad C_{1}=\frac{1}{6} P a L
\end{aligned}
$$

Substituting,

$$
\begin{array}{ll}
E I \frac{d y}{d x}=-\frac{1}{2} P \frac{a}{L} x^{2}+\frac{1}{6} P a L & \frac{d y}{d x}=\frac{P a L}{6 E I}\left[1-3\left(\frac{x}{L}\right)^{2}\right] \\
E I y=-\frac{1}{6} P \frac{a}{L} x^{3}+\frac{1}{6} P a L x & y=\frac{P a L^{2}}{6 E I}\left[\frac{x}{L}-\left(\frac{x}{L}\right)^{3}\right]
\end{array}
$$

MECHANICS OE MATERIALS

$$
y=\frac{P a L^{2}}{6 E I}\left[\frac{x}{L}-\left(\frac{x}{L}\right)^{3}\right]
$$

- Locate point of zero slope or point of maximum deflection.

$$
\frac{d y}{d x}=0=\frac{P a L}{6 E I}\left[1-3\left(\frac{x_{m}}{L}\right)^{2}\right] x_{m}=\frac{L}{\sqrt{3}}=0.577 L
$$

- Evaluate corresponding maximum deflection.

$$
\begin{aligned}
& y_{\max }=\frac{P a L^{2}}{6 E I}\left[0.577-(0.577)^{3}\right] \\
& y_{\max }=0.0642 \frac{P a L^{2}}{6 E I} \\
& y_{\text {max }}=0.0642 \frac{(50 \mathrm{kips})(48 \mathrm{in})(180 \mathrm{in})^{2}}{6\left(29 \times 10^{6} \mathrm{psi}\right)\left(723 \mathrm{in}^{4}\right)}
\end{aligned}
$$

$$
y_{\max }=0.238 \mathrm{in}
$$

SOLUTION:

- Develop the differential equation for the elastic curve (will be functionally dependent on the reaction at A).
- Integrate twice and apply boundary conditions to solve for reaction at A and to obtain the elastic curve.
- Evaluate the slope at A.

- Consider moment acting at section D,

$$
\begin{aligned}
& \sum M_{D}=0 \\
& R_{A} x-\frac{1}{2}\left(\frac{w_{0} x^{2}}{L}\right) \frac{x}{3}-M=0 \\
& M=R_{A} x-\frac{w_{0} x^{3}}{6 L}
\end{aligned}
$$

- The differential equation for the elastic curve,

$$
E I \frac{d^{2} y}{d x^{2}}=M=R_{A} x-\frac{w_{0} x^{3}}{6 L}
$$

MECHANICSOF MATERIALS

- Integrate twice

$$
\begin{aligned}
& E I \frac{d y}{d x}=E I \theta=\frac{1}{2} R_{A} x^{2}-\frac{w_{0} x^{4}}{24 L}+C_{1} \\
& E I y=\frac{1}{6} R_{A} x^{3}-\frac{w_{0} x^{5}}{120 L}+C_{1} x+C_{2}
\end{aligned}
$$

- Apply boundary conditions:

$$
E I \frac{d^{2} y}{d x^{2}}=M=R_{A} x-\frac{w_{0} x^{3}}{6 L}
$$

$$
\begin{aligned}
& \text { at } x=0, y=0: \quad C_{2}=0 \\
& \text { at } x=L, \theta=0: \quad \frac{1}{2} R_{A} L^{2}-\frac{w_{0} L^{3}}{24}+C_{1}=0 \\
& \text { at } x=L, y=0: \quad \frac{1}{6} R_{A} L^{3}-\frac{w_{0} L^{4}}{120}+C_{1} L+C_{2}=0
\end{aligned}
$$

- Solve for reaction at A

$$
\frac{1}{3} R_{A} L^{3}-\frac{1}{30} w_{0} L^{4}=0 \quad R_{A}=\frac{1}{10} w_{0} L \uparrow
$$

MECHANICSOF MATERIALS

- Substitute for $\mathrm{C}_{1}, \mathrm{C}_{2}$, and R_{A} in the elastic curve equation,

$$
\begin{array}{r}
E I y=\frac{1}{6}\left(\frac{1}{10} w_{0} L\right) x^{3}-\frac{w_{0} x^{5}}{120 L}-\left(\frac{1}{120} w_{0} L^{3}\right) x \\
y=\frac{w_{0}}{120 E I L}\left(-x^{5}+2 L^{2} x^{3}-L^{4} x\right)
\end{array}
$$

- Differentiate once to find the slope,

$$
\begin{aligned}
& \theta=\frac{d y}{d x}=\frac{w_{0}}{120 E I L}\left(-5 x^{4}+6 L^{2} x^{2}-L^{4}\right) \\
& \text { at } x=0, \quad \theta_{A}=\frac{w_{0} L^{3}}{120 E I}
\end{aligned}
$$

Principle of Superposition:

- Deformations of beams subjected to combinations of loadings may be obtained as the linear combination of the deformations from the individual loadings
- Procedure is facilitated by tables of solutions for common types of loadings and supports.

MECHIANICS OF MATERIALS

For the beam and loading shown, determine the slope and deflection at point B.

SOLUTION:

Superpose the deformations due to Loading I and Loading II as shown.

Loading I

Loading II

Loading I

$$
\left(\theta_{B}\right)_{I}=-\frac{w L^{3}}{6 E I} \quad\left(y_{B}\right)_{I}=-\frac{w L^{4}}{8 E I}
$$

Loading II

$$
\left(\theta_{C}\right)_{I I}=\frac{w L^{3}}{48 E I} \quad\left(y_{C}\right)_{I I}=\frac{w L^{4}}{128 E I}
$$

In beam segment $C B$, the bending moment is zero and the elastic curve is a straight line.

$$
\begin{aligned}
& \left(\theta_{B}\right)_{I I}=\left(\theta_{C}\right)_{I I}=\frac{w L^{3}}{48 E I} \\
& \left(y_{B}\right)_{I I}=\frac{w L^{4}}{128 E I}+\frac{w L^{3}}{48 E I}\left(\frac{L}{2}\right)=\frac{7 w L^{4}}{384 E I}
\end{aligned}
$$

Loading I

Combine the two solutions,

$$
\begin{array}{ll}
\theta_{B}=\left(\theta_{B}\right)_{I}+\left(\theta_{B}\right)_{I I}=-\frac{w L^{3}}{6 E I}+\frac{w L^{3}}{48 E I} & \theta_{B}=-\frac{7 w L^{3}}{48 E I} \\
y_{B}=\left(y_{B}\right)_{I}+\left(y_{B}\right)_{I I}=-\frac{w L^{4}}{8 E I}+\frac{7 w L^{4}}{384 E I} & y_{B}=-\frac{41 w L^{4}}{384 E I}
\end{array}
$$

Application of Superposition to Statically Indeterminate Beams

－Method of superposition may be applied to determine the reactions at the supports of statically indeterminate beams．
－Designate one of the reactions as redundant and eliminate or modify the support．
－Determine the beam deformation without the redundant support．
－Treat the redundant reaction as an unknown load which，together with the other loads，must produce deformations compatible with the original supports．

