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Reinforced Concrete Design Il

COURSE SYLLABUS

- Structural system and load paths

- Types of slabs

- Design of one-way slab

- Minimum slab thickness of two-way slabs
- Design of two-way slab

- General design concept of ACI Code

- Direct design method

- Total static moment in flat slab

- Equivalent frame method

- Shear in slab system with beams

- Shear strength in flat plate and flat slab (one way and punching shear)
- Transfer of moment at columns

- Yield line theory

- Prestressed concrete

- Design of stair case
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Structural system and load paths

The structural system shall include (a) through (g), as applicable:

(a) Floor construction and roof construction, including one-way and two-way slabs

(b) Beams and joists

(c) Columns

(d) walls

(e) Diaphragms

(F) Foundations

(9) Joints, connections, and anchors as required to transmit forces from one component to another.

Load factors and combinations
According to ACI 318M-14, the required strength (U) shall be at least equal to the effects of
factored loads in Table 5.3.1, with exceptions and additions in 5.3.3 through 5.3.12.

Table 5.3.1—Load combinations

Primary

Load combination Equation load
U=14D (5.3.1a) D
U=12D+1.6L+0.5(L,or SorR) (5.3.1b) L
U=12D+16(L,orSorR)+ (1.0Lor05W) | (5.3.1¢c) | L,orSorR
U=12D+1.0W+1.0L +0.5(L, or S or R) (5.3.1d) w
U=12D+1.0E+1.0L+0.2S§ (5.3.1e) E
U=0.9D+1.0W (5.3.1%) w
U=09D+1.0F (5.3.1g) E

All members and structural systems shall be analyzed for the maximum effects of loads
including the arrangements of live load in accordance with 6.4.

Strength
Design strength of a member and its joints and connections, in terms of moment, axial force, shear,
torsion, and bearing, shall be taken as the nominal strength (S,) multiplied by the applicable
strength reduction factor (2).

Structures and structural members shall have design strength at all sections (g S,) greater
than or equal to the required strength (U) calculated for the factored loads and forces in such
combinations as required by ACI-Code.

design strength > required strength
25,>U




Reinforced Concrete Design Il

Types of slabs
1. One-way slab: Slabs may be supported on two opposite sides only, in such case, the

structural action of the slab is essentially "one-way", and the loads are carried by the slab in
the direction perpendicular to the supporting beams, Figure (1-a).

2. Tow-way slab: Slabs have beam or support on all four sides. The loads are carried by the
slab in two perpendicular directions to the supporting beams, Figure (1-b).

3. If the ratio of length to width of one slab panel is larger than 2, most of the load is carried by
the short direction to the supporting beams, and one-way action is obtained in effect, even
though supports are provided on all sides, Figure (1-c).

4. Concrete slab carried directly by columns, without the use of beams or girders, such slab is
described by flat plates, and are commonly used where spans are not large and loads are not
heavy, Figure (1-d).

Flat slabs are also beamless slab with column capitals, drop panels, or both, Figure (1-e).

6. Two—way joist systems (grid slab), to reduce the dead load of solid-slab, voids are formed in
a rectilinear pattern through use of metal or fiberglass form inserts. A two-way ribbed
construction results (waffle slab). Usually inserts are omitted near the columns, Figure (1-f).

One-way slabs: slabs reinforced to resist flexural stresses in only one direction.

Two-way slabs: reinforced for flexure in two directions.

Column capital: enlargement of the top of a concrete column located directly below the slab or
drop panel that is cast monolithically with the column.

Drop panel: projection below the slab used to reduce the amount of negative reinforcement over a
column or the minimum required slab thickness, and to increase the slab shear strength.

Panel: slab portion bounded by column, beam, or wall centerlines on all sides.

Column strip: a design strip with a width on each side of a column centerline equal to the lesser of
0.25 ¢; and 0.25 ¢;. A column strip shall include beams within the strip, if present.

Middle strip: a design strip bounded by two column strips.
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W

(d)

Drop panel

Spandrel beam -

One-way slab

plate, (e) flat slab, (f) two—way joist

(€)

Figure (1) Types of slabs (a) one-way slab, (b) two-way slab, (c) one-way slab, (d) flat
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Size and projection of drop panel

P_\_/
hy 1 Y
hg [ — Not less than h/4
) Preferably based on
LNot less than &/6 | than (/6 J o anly bhsed. -
~ ™
/ fa tp |
/ |

Minimum size of drop panels

In computing required slab reinforcement, the thickness of drop panel below the slab shall
not be assumed greater than one — quarter the distance from edge of drop panel to edge of column
or column capital.

The column capital is normally 20 to 25% of the average span length.

Effective diameter
P Slab
L . )
x J
\ 5 N Drop panel
45°
(’ Z Capital
AN
> Column

(a) Effective diameter of column capital.
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Design of one—way slab systems
At point of intersection (P) the deflection must be the same
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For purposes of analysis and design a unit strip of such a slab cut out at right angles to the
supporting beam may be considered as a rectangular beam of unit width (1.0 m) with a depth (h)
equal to the thickness of the slab and a span (L,) equal to the distance between supported edges.

Simplified method of analysis for one-way slabs

It shall be permitted to calculate M, and V, due to gravity loads in accordance with Section 6.5 for
one-way slabs satisfying (a) through (e):

(a) Members are prismatic

(b) Loads are uniformly distributed

(c)L<3D

(d) There are at least two spans

(e) The longer of two adjacent spans does not exceed the shorter by more than 20 percent

M, due to gravity loads shall be calculated in accordance with Table 6.5.2. Moments
calculated shall not be redistributed.

For slabs built integrally with supports, M, at the support shall be permitted to be calculated
at the face of support.

Floor or roof level moments shall be resisted by distributing the moment between columns
immediately above and below the given floor in proportion to the relative column stiffnesses
considering conditions of restraint.
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Table 6.5.2—Approximate moments for nonpre-
stressed continuous beams and one-way slabs

Moment Location Condition M,
Discontir d integral with ,
iscontinuous end integral wi w214
End span support
Positive Discontinuous end unrestrained | w,{, /11
Interior
Henor All Wul,2/16
spans
. Member built integrally with sup- 5
Interior face . " P st 224
. porting spandrel beam
o exterior e raber built integrally with
support ember built integrally with sup Wi, /16
porting column
Exterior Two spans Wyl 9
face of first
interior More than two spans w10
support
Negativel'l | Face of
other All Wyl 11
supports
(a) slabs with spans not
Face of all | exceeding 10 ft
supports (b) beams where ratio of sum 5
e . Wyl 412
satisfying of column stiffnesses to beam
(a) or (b) stiffness exceeds 8 at each end
of span

MTo calculate negative moments, £, shall be the average of the adjacent clear span
lengths.

A minimum area of flexural reinforcement (Asmin) shall be provided in accordance with
Table 7.6.1.1.

Table 7.6.1.1—A; min for nonprestressed one-way slabs

i fy As,min
Reinforcement type
(MPa) (mm)
Deformed bars <420 0.0020 Aq
0.0018 x 420
Deformed bars or welded f g
wire reinforcement =420 Greater of: ”
0.0014 A4
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Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement
should be provided in a structural slab. ACI Code specifies the minimum ratios of reinforcement
area to gross concrete area, as shown in Table 24.4.3.2.

Table 24.4.3.2—Minimum ratios of deformed shrinkage and temperature
reinforcement area to gross concrete area

f
Reinforcement type Y Minimum reinforcement ratio
(MPa)
Deformed bars <420 0.0020

0.0018 x 420

Deformed bars or welded £

wire reinforcement =420 Greater of *

0.0014

The spacing of deformed shrinkage and temperature reinforcement shall not exceed the
lesser of 5h and 450 mm.

V., due to gravity loads shall be calculated in accordance with Table 6.5.4.

Table 6.5.4—Approximate shears for nonpre-
stressed continuous beams and one-way slabs

Location V,
Exterior face of first interior support 1.15w,(,/2
Face of all other supports w2

For slabs built integrally with supports, V, at the support shall be permitted to be calculated
at the face of support.

Minimum slab thickness

For solid nonprestressed slabs not supporting or attached to partitions or other construction likely to
be damaged by large deflections, over all slab thickness (h) shall not be less than the limits in Table
7.3.1.1, unless the calculated deflection limits of 7.3.2 are satisfied.
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Table 7.3.1.1—Minimum thickness of solid nonpre-

stressed one-way slabs

Support condition

Minimum A1

Simply supported

£/20

One end continuous

{124

Both ends continuous

£/28

Cantilever

£/10

For fy other than 420 MPa, the expressions in Table 7.3.1.1 shall be modified.

For nonprestressed slabs not satisfying 7.3.1 and for prestressed slabs, immediate and time-
dependent deflections shall be calculated in accordance with 24.2 and shall not exceed the limits in

24.2.2.

Table 24.2.2—Maximum permissible calculated deflections

Deflection

Member Condition Deflection to be considered limitation
Flat 100fs | Not supporting or attached to nonstructural elements likely to Immediate deflection due to maximum of L, S, and R ¢/180M

Floors be damaged by large deflections Immediate deflection due to L £/360
Likely to be damaged by | That part of the total deflection occurring after attachment of £/4300]
Roof or Supporting or attached to non- large deflections nonstructural elements, which is the sum of the time-depen-
floors structural elements Not likely to be damaged | dent deflection due to all sustained loads and the immediate 2401
by large deflections deflection due to any additional live load®!

LI imit not intended to safeguard against ponding. Ponding shall be checked by caleulations of deflection, including added deflections due to ponded water, and considering time-
dependent effects of sustained loads, camber, construction tolerances, and reliability of provisions for drainage.

PITime-dependent deflection shall be calculated in accordance with 24.2.4, but shall be permitted to be reduced by amount of deflection calculated to oceur before attachment of
nonstructural elements. This amount shall be calculated on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.

BILimit shall be permitted to be exceeded if measures are taken to prevent damage to supported or attached elements.

FILimit shall not exceed tolerance provided for nonstructural elements.

10
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Design of two-way slab systems

Reinforced concrete slabs (R. C. Slabs) are usually designed for loads assumed to be uniformly
distributed over on entire slab panel, bounded by supporting beam or column center-lines.

General design concept of ACI Code

Imagining vertical cuts are made through the entire building along lines midway between
columns.
The cutting creates a series of frames whose width center lines lie along the column lines.
The resulting series of rigid frames, taken separately in the longitudinal and transverse
directions of the building.
A typical rigid frame would consist of:
a- The columns above and below the floor.
b- The floor system, with or without beams, bounded laterally between the center lines of
the two panels.
Two methods of design are presented by the ACI Code:
a- Direct design method (DDM): An approximants method using moment and shear
coefficients, Section 8.10 in ACI Code.
b- Equivalent Frame method (EFM): More accurate using structural analysis after
assuming the relative stiffness of the members, Section 8.11 in ACI Code.

o o o o o
S 5 8 58 E 8k o

9 vl L o

C.L. panel

-8 o 86— o g-—C.L. coluran

C.L. panel

——f- # % ] #—C.L.column

C.L. panel

—8 ? ? 8 ?——C.L coluran

C.L. panel

— 8 ¢ 8 ] §—C. L. coluan

]! C.L. panel

__lg + iL T i[——c.L.column

Figure (2) Floor plan.
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— o B O @-—C. L. column
C. L. panel
— B ] o &-—C. L. column
C. L. panel
—f o 8 ) a—-—C L. column
C. L. panel
Longitudinal f arge_/ //}-—C.L column
/4 C.L. panel
—8 ;) o g f}-—C. L. column
C. L. panel

Exterior longitudinal frame

£ 353535 3§
aatan BEEE
T 11T 901107
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\\ \AN‘&
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NI
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Exterior transverse frame Transverse frame

Figure (3) Location of longitudinal and transverse frames.
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Direct design method (DDM)

Moments in two-way slabs can be found using a semi-empirical direct design method subject to the

following Limitations:

1- There shall be at least three continuous spans in each direction.

2- Successive span lengths measured center-to-center of supports in each direction shall not differ
by more than one-third the longer span.

3- Panels shall be rectangular, with the ratio of longer to shorter panel dimensions, measured
center-to-center of supports, not to exceed 2.

4- Column offset shall not exceed 10 percent of the span in direction of offset from either axis
between centerlines of successive columns.

5- All loads shall be due to gravity only and uniformly distributed over an entire panel.

6- Unfactored live load shall not exceed two times the unfactored dead load.

7- For a panel with beams between supports on all sides, Eqg. (8.10.2.7a) shall be satisfied for
beams in the two perpendicular directions.

< 5.0 (8.10.2.7a)

£1: is defined as the span in the direction of the moment analysis, and
£, as the span in lateral direction.

Spans ¢1& ¥, are measured to column centerlines.

as and og, are calculated by:

Ecplp

The direct design method consists of a set of rules for distributing moments to slab and
beam sections to satisfy safety requirements and most serviceability requirements simultaneously.
Three fundamental steps are involved as follows:

(1) Determination of the total factored static moment (Section 8.10.3).

(2) Distribution of the total factored static moment to negative and positive sections (Section
8.10.4).

(3) Distribution of the negative and positive factored moments to the column and middle strips and
to the beams, if any (Sections 8.10.5 and 8.10.6). The distribution of moments to column and
middle strips is also used in the equivalent frame method (Section 8.11).

13



Reinforced Concrete Design Il

(1) Total static moment of factored loads (M)
M,: Total static moment in a panel (absolute sum of positive and average negative factored

moments in each direction).

M. = qu£2€n2
© 8

Where #,: Clear span in the direction of moment used.

£n is defined to extend from face to face of the columns, capitals, brackets, or walls but is not to be

less than 0.65 4.
M, for a strip bounded laterally by the centerlines of the panel on each side of the centerline of

support.
£,: Width of the frame.

Circular or regular polygon-shaped supports shall be treated as square supports with the
same area.

(2) Longitudinal distribution of M,

(a) Interior spans: M, is apportioned between the critical positive and negative bending sections
according to the following ratios:-
Neg. M, = 0.65 M,
Pos. M, =0.35 M,
The critical section for a negative bending is taken at the face of rectangular supports, or at the
face of an equivalent square support having the same sectional area.

(b) End span: In end spans, the apportionment of the total static moment (M,) among the three
critical moment sections (interior negative, positive, and exterior negative) depends upon the
flexural restraint provided for the slab by the exterior column or the exterior wall and upon the
presence or absence of beams on the column lines. End span, M, shall be distributed in
accordance with Table 8.10.4.2.

14
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Table 8.10.4.2—Distribution coefficients for end

spans
Slab without
beams between
Slab with | interior supports
Exterior beams Without | With | Exterior
edge between all edge edge | edge fully
unrestrained | supports beam beam | restrained
Interior 0.75 0.70 070 | 0.70 0.65
negative
Positive 0.63 0.57 0.52 0.50 0.35
Exterior 0 0.16 026 | 030 0.65
negative

Note: At interior supports, negative moment may differ for spans framing into the common support.
In such a case the slab should be designed to resist the larger of the two moments.

N TN TN
/
end span interior span interior span end span

Figure (4) Longitudinal distribution of M,

(3) Lateral distribution of moments
After the moment M, distributed on long direction to the positive and negative moments, then these
moments must distribute in lateral direction across the width, which consider the moments constant
within the bounds of a middle strip or column strip. The distribution of moments between middle
strips and column strip and beams depends upon:

1. Theratio €,/ 4;.

2. The relative stiffness of the beam and the slab.

3. The degree of torsional restraint provided by the edge beam.

15



Reinforced Concrete Design 11

The column strip shall resist the portion of interior negative M, in accordance with Table
8.10.5.1.

Table 8.10.5.1—Portion of interior negative M, in
column strip

The column strip shall resist the portion of exterior negative M, in accordance with Table

8.10.5.2.

0Lt
(Iﬂt)z/fl 0.5 1.0 2.0
0 0.75 0.75 0.75
>1.0 0.90 0.75 0.45

Note: Linear interpolations shall be made between values shown.

Table 8.10.5.2—Portion of exterior negative M, in

column strip

/1t
anl2/ly B: 0.5 1.0 2.0
0 0 1.0 1.0 1.0
=2.5 0.75 0.75 0.75
0 1.0 1.0 1.0
=1.0
=2.5 0.90 0.75 0.45

Note: Linear interpolations shall be made between values shown. f; is calculated using
Eq. (8.10.5.2a), where C is calculated using Eq. (8.10.5.2b).

E,C
= 8.10.5.2
B=3e T (8105.22)
3
C=Z[1—0.63£J% (8.10.5.2b)
y

16
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The column strip shall resist the portion of positive M, in accordance with Table 8.10.5.5.

Table 8.10.5.5—Portion of positive M, in column strip

0>/,
(1]1[2/[1 0.5 1.0 2.0
0 0.60 0.60 0.60
>1.0 0.90 0.75 0.45

Note: Linear interpolations shall be made between values shown.

Column strip Exterior equivalent frame

One-half Edge
middle strip Centerline
: _ ; adjacent
1y ‘ panel
<
<
Slab-beam
strip ]

Centerline |_~| __—~| " Interior equivalent frame
of panel 4,

A convenient parameter defining the relative stiffness of the beam and slab spanning in
either direction is:

Ewplp _ Iy

ECSIS IS

Uf =

17
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Where E.,, Ecs are the moduli of elasticity of beam and slab concrete (usually the same),
respectively. I, and Is are the moment of inertia of the effective beam and slab, respectively. The
flexural stiffnesses of the beam and slab are based on the gross concrete section. Variation due to
column capitals and drop panels are neglected (in applying DDM).

For monolithic or fully composite construction supporting two-way slabs, a beam includes
that portion of slab, on each side of the beam extending a distance equal to the projection of the
beam above or below the slab, whichever is greater, but not greater than four times the slab
thickness.

hy < 4hy
hy b, +2hy,< b, + 8hs
ks |
g ki
hp y S
: ! % / |

The moment of inertia of flanged section

b, h3
L. =
b= k=5
bg bg h¢
kz1.0+0.2<—) for 2 <—<4 & 0.2 <—<05
by, by, h

The relative restraint provided by the torsional resistance of the effective transverse edge
beam is reflected by the parameter B;, defined by:

Be= 25 1.~ 21,

E,C C
s
C: The torsional rigidity of the effective transverse beam, which is defined as the largest of the
following three items:-
a- A portion of the slab having a width equal to that of the column, bracket, or capital in the
direction in which moment are taken, c; (case of no actual beam).
b- The portion of the slab specified in (a) plus that part of any transverse beam above and below
the slab.
c- The transverse beam defined as before (in calculating o).

18
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A A
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—
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The constant C is calculated by dividing the section into its component rectangles, each
having smaller dimension x and larger dimension y and summing the contributions of all the parts
by means of the equation:

3
X\ X
C= 2(1—0.63 _)_y
y 3 Xq

y2

N

T

2

JANN

The subdivision can be done in such a way as to maximize C.

19
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For slabs with beams between supports, the slab portion of column strips shall resist column
strip moments not resisted by beams. Beams between supports shall resist the portion of column
strip My, in accordance with Table 8.10.5.7.1.

Table 8.10.5.7.1—Portion of column strip M, in

beams
anlr/ly Distribution coefficient
0 0
>1.0 0.85

Note: Linear interpolation shall be made between values shown.

The portion of the moment not resisted by the column strip is proportionately assigned to the
adjacent half-middle strips. Each middle strip is designed to resist the sum of the moment assigned
to its two half-middle strips. A middle strip adjacent and parallel to wall is designed for twice the
moment assigned to the half-middle strip corresponding to the first row of interior support.

If the width of the column or wall is at least (3)(,, negative M, shall be uniformly

distributed across 5.

Minimum flexural reinforcement in nonprestressed slabs, Asmin, Shall be provided near the
tension face in the direction of the span under consideration in accordance with Table 8.6.1.1.

Table 8.6.1.1—A; min for nonprestressed two-way slabs

Reinforcement type fy As,min
(MPa) (mm)
Deformed bars <420 0.0020 Aq
0.0018 x 420
Deformed bars or welded Greater of- F e
wire reinforcement > 420 : y
0.0014 A,

Minimum spacing of reinforcement
For parallel nonprestressed reinforcement in a horizontal layer, clear spacing shall be at least the
greatest of 25 mm, dy, and (4/3)gagg.

For nonprestressed solid slabs, maximum spacing (s) of deformed longitudinal
reinforcement shall be the lesser of 2h and 450 mm at critical sections, and the lesser of 3h and 450
mm at other sections.

20
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Example 1
For the the longitudinal interior frame (Frame A) of the falt plate floor shown in Figure,by using
the Direct Design Method, find:

a. Longitudinal distribution of the total static moment at factored loads.

b. Lateral distribution of the moment at exterior support.

. ¥ 5000 —4— 5000 —4— 5000 —4
Slab thickness = 200 mm, d =165 mm .

qu = 15.0 kN/m? *
All edge beams = 250500 mm
All columns = 500x500 mm §
, [Em)
fc =25MPa, f, =400 MPa
'\T
Solution
]
a.) g
£}
for Frame A
£1 =5000 mm N
£ = 6400 mm
£, = £1 -500 = 5000 — 500 = 4500 mm §
)
M. = qut)Z{)n2 e \T
o 8 | |

_ 15%6.4%(4.5)2
- 8

=243 kN.m

Mo

Longitudinal distribution of total static moment at factored loads

Interior span:
Neg. M, = 0.65 M,
Pos. M, =0.35 M,

Table 8.10.4.2—Distribution coefficients for end

End span: spans
Slab without
beams between
Slab with | interior supports
Exterior beams Without | With | Exterior
edge between all edge edge | edge fully
unrestrained | supports beam beam | restrained
Interior 0.75 0.70 0.70 | 0.70 0.65
negative
Positive 0.63 0.57 0.52 0.50 0.35
Exterior 0 0.16 026 || 0.30 0.65
negative ~—

21
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0.5 M,
121.5 kN.m 0.35 M,
85.05 kN.m
.
72. 9kN.m 0.7 M, 0.65 M, 0.65 M,
170.1 157.95 kN.m 157.95 kN
Longitudinal distribution of total static moment at factored loads
550
b.)
Negative moment at exterior support T
Total moment = 72.9 kN.m -
O
Lo

|

for edge beam
choose the section of edge beam

3
C=Z[1—o.63x§j. X 3y

y

—=300 < 4{=—

y = 300

3 3
C, = (1_ 0.63x 200) y (200)3>< 300 , (1_ 0.63x 250} . (250)3>< 500 ‘

y = 500

C, =2247854166667 mm’

x =250

x =200

200) y (200)° x550

3 y =550
c, =[1-063x 250 X(250) x 300
550 3

+{1-0.63x
( 300 3

x =200

y =300

C, =1872854166667 mm*

x =250

. C=2247854166667 mm”*

== x £, xt3= — x 6400 x (200)3 = 4266666666.667 mm*
12 12

22
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ECbC

= X E,=E
Bt 2 % Ecs 'Is ch cs
B, - C__ 2247854166667 _ ..,
2xl,  2x4266666666667

t, 64 28

£, 50
’gz/

2, 1.0 1.28 2.0

B, =0.0 1.00 1.00 1.00
B, =0.263 0.9737
By =25 0.75 0.75 0.75

Negative moment at column strip = 72.9x0.9737 = 70.983 kN.m
Negative moment at middle strip = 72.9-70.983 = 1.917 kN.m

Example 2

For the the longitudinal interior frame of the falt plate floor shown in Figure, by using the Direct

Design Method, find:

a. Longitudinal distribution of total static moment at factored loads.

b. Lateral distribution of moment at exterior panel.

Slab thickness = 180 mm, d =150 mm
qu = 14.0 kKN/m?

All edge beams = 250500 mm

All columns = 400400 mm

f. =24 MPa, f, =400 MPa

Solution

a.)

for Frame A

£; =5000 mm

L2 =6500 mm

Cn = €1 —400 = 5000 — 400 = 4600 mm

— qufzt)n2
° 8

5000

6500 ——— 6500 —

pa

6500 —
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_14%6.5%(4.6)2
- 8

= 240.695 kKN.m

M,

Longitudinal distribution of total static moment at factored loads

. Table 8.10.4.2—Distribution coefficients for end
Interior span:

spans
Neg. M, =0.65 M, Slab without
Pos. M, = 0.35 M, . 'bem‘ns between
Slab with | interior supports
Exterior beams Without | With Exterior
. edge between all edge edge | edge fully
End span. unrestrained | supports beam beam | restrained
Interior 0.75 0.70 070 [ 0.70 0.65
negative
Positive 0.63 0.57 052 || 050 | 035
Exterior 0 0.16 026 || 030 0.65
negative
0.5 M,
120.348 kN.m 0.35 M,
84.243 KN.m
4 v,
72.209 KN.m 0.7 M, 0.65 M, 0.65 M,
168.487 156.452 kN.m 156.452 kN'm

Longitudinal distribution of total static moment at factored loads

b.)

exterior panel

1- Negative moment at exterior support
Total moment = 72.209 kN.m

i 570 i

o = 0
for edge beam
choose the section of edge beam

500
—— 320 —|~180 1

280 =

C:Z 1—0.63><§ Q —e 320 <4 e
y 3 320
y=32
3 3 ;
C,=(1-063x180), (80P x320 () oo 250) (250" x500 | L
320 3 500 3 !
C, = 21854845667 mm* y=500

x =250
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3 3 =570
c, - (1_ 0.63x éggj y (180)3><570 N (1_ 0.63x 250} y (250)3>< 320

C, =17339845667 mm*

.. C=21854845667 mm*

x =250

1 1
(= — X £, xt3 = 7 X 6500 X (180)3 = 3159000000 mm*

12
ECb C
=— ;, Eg=E
Bt 2« Ecs 'Is cb cs
B, = C _ 21854845667 _0.346
2xl,  2x3159000000
;65 13
2, 50
#2/
44 1.0 1.3 2.0
Py =0.0 1.00 1.00 1.00
B, =0.346
Br=25 0.75 0.75 0.75
Negative moment at column strip = 72.209 x = KN.m
Negative moment at middle strip = 72.209 - = KN.m

2- Positive moment
Total moment = 120.348 kN.m
f = 0

x =180
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3- Negative moment at interior support
Total moment = 168.487 kN.m

O(f=0

Example 3
For the the longitudinal interior frame (Frame A) of the falt plate floor shown in Figure, by using
the Direct Design Method, find:
a- Longitudinal distribution of the total static moment at factored loads.
b- Lateral distribution of moment at interior panel (column and middle strip moments at
negative and positive moments).

¥ 4400 —#— 4400 —A— 4400 —A

Solution
a. =
=
L, =L,-05
=44-04 '
=40m
—
—
=%
M — Wu ’ L2 : LG
° 8 N
M, = 15x4.6x (4.0 !
8 3
=138 kKN.m =
I e E—

Slab thickness=180 mm, d =150 mm
q, =15.0kN/m?’
All columns=400x400 mm

26



Reinforced Concrete Design Il

0.52 M,
71.76

0.35 M,
48.3

N

/.

0.26 M,
35.88 0.7 Mo 0.65 Mo 0.65 M
96.6 89.7 89.7
Longitudinal distribution of total static moment at factored loads
b.
interior panel
1) Negative moment ol o D 20
Total moment = 89.7 kKN.m (aprbalty) =0 75 75 75
(apilalty) 2 1.0 90 75 45
o, =0
Negative moment at column strip = 89.7x0.75 = 67.275 kN.m
Negative moment at midlle strip = 89.7-67.275 = 22.425 kN.m
2) Positive moment Ll 05 10 20
Total moment = 48.3 KN.m (affalty) =0 60 60 60
(apifp/fy)2 1.0 90 75 45

o, =0

Negative moment at column strip = 48.3x0.60 = 28.98 kN.m
Negative moment at midlle strip = 48.3-28.98 = 19.32 kN.m
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Example 4
For the the transverse interior frame (Frame C) of the flat plate floor with edge beams shown in
Figure, by using the Direct Design Method, find:
1) Longitudinal distribution of total static moment at factored loads.
2) Lateral distribution of moment at interior panel (column and middle strip moments at
negative and positive moments).
3) Lateral distribution of moment at exterior panel (column and middle strip moments at
negative and positive moments).

#— 5000 —A— 5000 —A— 5000 —4-

Slab thickness=180 mm, d =150 mm
q, =16.0kN/m?

All edge beams = 250500 mm

All columns=500x500 mm
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Example 5

For the exterior longitudinal frame (Frame B) of the flat plate floor shown in figure, and by using
the Direct Design Method, find:
a. Longitudinal distribution of the total static moment at factored loads.

b. Lateral distribution of moment at exterior panel (column and middle strip moments at
exterior support)

#5000 —4— 5000 —4— 50004
|

Slab thickness=175 mm, d =140 mm | | | d

g, =14.0kN/m’ T P i

All columns=600x 400 mm L \%& ' S
e oo o3

.

T

6400

.

e

6400
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Example 6
For the exterior transverse frame of the flat slab floor shown in figure, and by using the Direct

Design Method, find:
a. Longitudinal distribution of the total static moment at factored loads.
b. Lateral distribution of moment at exterior panel (column and middle strip moments at

exterior support) A |
D = 6.5 kN/m? | | |
L = 5.0 kN/m’ T E— T ] T

5000

5000

2006 5000

- 3000
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Example 7
For the transverse frame of the flat slab floor shown in figure, and by using the Direct Design
Method, find:
a. Longitudinal distribution of the total static moment at factored loads.
b. Lateral distribution of moment at exterior panel (column and middle strip moments at
exterior support)
D = 7.0 kKN/m? |
L = 4.0 kN/m? o——-|o-———|»

o,

5000

(A SR
000 5000
;‘ﬂ *,J [I \_\j F‘I/|_{
H00- 2 1000
- soo—T 7
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Example 8
For the longitudinal frame of the flat slab floor shown in figure, and by using the Direct Design

Method, find:
a. Longitudinal distribution of the total static moment at factored loads.
b. Lateral distribution of moment at exterior panel (column and middle strip moments at

exterior support)

qu = 18.0 KN/m? | 5000 mm 5000
\ \
edge beams: 300x600 mm I T \ \
- _ _CLPanel | _ _ _ I -
| |
100 2000 |
_I\_—\ | =777 =777 =
= = | s ~ o I £
SRS —— F—s—- - <
N g | e RN ] =
_”_J I__T_J L1 -
750
i 11201
\ ‘
‘\ _ _CLPanel _ _ _ _ _
\ —

600
= — =
SN
.
=
L)
—
=
ES]
=
3 W
3
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Example 9
For the the transverse extiror frame (Frame D) of the falt plate floor, without edge beams, shown in
Figure, and by using the Direct Design Method, find:
a. Longitudinal distribution of the total static moment at factored loads.
b. Lateral distribution of moment at interior panel (column and middle strip
moments at negative and positive moments).
Slab thickness = 180 mm, d =150 mm

Qu = 15.0 kN/m? 50 m——50———5.0—
All columns = 400%x400 mm —-L L L L_ ‘
<
L)
——t L | | -—
—=IFrarme [ t=— q
()
—-i\ ] = n—
E
=
L]
- " " |
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Minimum slab thickness for two-way slabs

To ensure that slab deflection service will not be troublesome, the best approach is to compute
deflections for the total load or load component of interest and to compare the computed deflections
with limiting values.

Alternatively, deflection control can be achieved indirectly by adhering to more or less
arbitrary limitations on minimum slab thickness, limitations developed from review of test data and
study of the observed deflections of actual structures.

Simplified criteria are used to slabs without interior beams (provided by table), flat plates
and flat slabs with or without edge beams. While equations are to be applied to slabs with beams
spanning between the supports on all sides. In both cases, minimum thicknesses less than the
specified value may be used if calculated deflections are within code specified limits.

Slab without interior beams (Flat plates and flat slabs with or without edge beams)

For nonprestressed slabs without interior beams spanning between supports on all sides, having a
maximum ratio of long-to-short span of 2, overall slab thickness (h) shall not be less than the limits
in Table 8.3.1.1, and shall be at least the value in (a) or (b), unless the calculated deflection limits of
8.3.2 (ACI 318) are satisfied:

(a) Slabs without drop panels as given in 8.2.4........... 125 mm.

(b) Slabs with drop panels as given in 8.2.4................ 100 mm.

Table 8.3.1.1—Minimum thickness of nonpre-
stressed two-way slabs without interior beams

(mm)[ll
Without drop panels®! With drop panelst!
Interior Interior
Exterior panels panels Exterior panels panels
Without | With Without | With
] edge edge edge edge
f;j;,Mpalzl beams | beams! beams | beams!
' 280 £,/33 £,/36 £,/36 £,/36 £,/40 £,/40
420 £,/30 £,/33 £,/33 ,/33 £,/36 £,/36
520 £,/28 £n/31 /31 £y/31 /34 £,/34

(¢, is the clear span in the long direction, measured face-to-face of supports (mm).

PIFor f, between the values given in the table, minimum thickness shall be calculated
by linear interpolation.

BIDrop panels as given in 8.2.4.

[“ISlabs with beams between columns along exterior edges. Exterior panels shall be
considered to be without edge beams if a,is less than 0.8. The value of a,for the edge
beam shall be calculated in accordance with 8.10.2.7.
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Slabs with beams on all sides:
For nonprestressed slabs with beams spanning between supports on all sides, overall slab thickness
(h) shall satisfy the limits in Table 8.3.1.2, unless the calculated deflection limits of 8.3.2 are

satisfied.

Table 8.3.1.2—Minimum thickness of nonpre-
stressed two-way slabs with beams spanning
between supports on all sides

O] Minimum 7, mm.
Oy = 0.2 8.3.1.1 applies (a)
¢, [0.8 + 714"2’0 ) -
02 <ay<2.0 G]‘e;ter (b)=
of: 36+ 5B (0t —0.2)
125 (¢)
¢ |08+ b
Greater 1400 (d)[2],[3]
aﬁn >2.0 .
of: 36+ 9B
90 (e)

[llafm is the average value of oy for all beams on edges of a panel and orshall be calcu-
lated in accordance with 8.10.2.7.

[?l¢, is the clear span in the long direction, measured face-to-face of beams (mm).

BIB is the ratio of clear spans in long to short directions of slab.

At discontinuous edges of slabs conforming to 8.3.1.2, an edge beam with as > 0.80 shall be
provided, or the minimum thickness required by (b) or (d) of Table 8.3.1.2 shall be increased by at
least 10 percent in the panel with a discontinuous edge.
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Example 1

Thickness of a flat slab with edge beams
Column capital diameter = 1000 mm

(fy = 420 MPa)

Solution

exterior panel

t=0,/33

£, =8000 —0.89 x 1000 = 7110 mm
t=7110/33 =215.4 mm > 125 mm
interior panel

t=10,/33=2154mm > 125 mm

~ uset=220 mm

Example 2

Thickness of a flat slab without edge beams

Column capital diameter = 1000 mm
(fy = 420 MPa)

Solution

exterior panel

t=£,/30

£, =8000 —0.89 x 1000 = 7110 mm
t=7110/30 =237.0 mm > 125 mm
interior panel

t=10,/33=2154mm > 125 mm

~ uset=240 mm

8m

8m

8m

8m

1 \\ ’ \ , \
Jo \ I ' -~
L (O (L )
‘I’ ’ v~ , N ~
L-7 \\_,/ ~--7
1
1
1
1
1
1
1
1
1
1
1
L - L=
[N . S , AR
! \ ’ ’ \
-~ N -~ ;o
1 I I U
~- <s ~s
[ , N ’
[ M- Moo
i
1
1
1
1
1
1
1
1
1
1
[ Lm=s Lm=s
'R ’ N ’ N
—e N /U [T
T Y (A J
P 6m . 6m ___b6m
=~ PR PR
S v \\ ’ AN
\ ’ LA \
~ \ -~ 1 ~
[ [ I i (,’ I'
- , s N
N
_// \\_,’ ~_-7
=~ PR PR
\\ v \\ /, AN
- S [ . -~ \
( (O L
~ 7 ~7 ~7 1
’ \ , ,
N
_// \\_,’ ~_-7
-~ P it P it
Y 7’ N 7’ N
L. /U [T
(0 [ Lo
< <
6m .. 6m 6m
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Example 3
Find the minimum thickness of a slab for an interior panels due to deflection control for the
following: Use fy, = 350 MPa.

a- Slab with beams (8.1 x 8.2) m clear span with o, = 2.3

b- Flat plate (4.4 x 4.6) m clear span.

c- Flat slab with drop panels (6.2 x 6.2) m clear span.

Solution
a- Slab with beams (8.1 x 8.2) m clear span with a, = 2.3
a, =23>20
f
1./0.8+ 1460
=t = ; B=5:£:1.012
36+9 s, 81
8200x (0.8+fi)%j
toin = =190875mm >90 mm O.K.
36+9x1.012
Use t =200 mm

b- Flat plate (4.4 x 4.6) m clear span.

From table

For f, =280 tzhz%):lﬂjm mm

6

3
For f, = 420 t:%:%):139.394 mm

For fy, = 350 (by linear interpolation)
(- 127778+139394 103586 mm  >125mm  OK.

Use t = 140 mm

c- Flat slab with drop panels (6.2 x 6.2) m clear span.

From table
For f, = 280 t:5:@:155 mm
40 40
For fy, = 420 t:E:@:NZZZZ mm
36 36
For f, = 350 (by linear interpolation) t:%fzzzzlwﬁll mm > 100mm O.K.
Use t =170 mm
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Example 4
Find the minimum thickness of a slab for an interior panels due to deflection control for the
following: Use fy, = 420 MPa. (60000 psi).
a- Slab with beams (8.2 x 7.7) m clear span with ay,= 2.3
b- Slab without drop panels (5.4 x 4.8) m clear span with a,= 0.18
c- Flat plate (4.2 x 4.6) m clear span.
d- Flat slab with drop panels (6.0 x 6.2) m clear span.
Slab with beams (5.8 x 5.8) m clear span with an,= 1.5

e

Solution

a- Slab with beams (8.2 x 7.7) m clear span with a,= 2.3
a,=23>20

f
1, 0.8+ 7
1400 L

= tmin:— , B:_n:
36+ 98 S,

8200x [0.8 + 420

_ 1400] ~197872mm >90 mm OK.

t.
min 36+9x1.065
= Uset=200 mm

oo

2
A

=1.065

\'

b- Slab without drop panels (5.4 x 4.8) m clear span with a,= 0.18
a,,=0.18<0.2

L, 5400

From table tzg_; =163.636 mm >125mm O.K.

= Uset=170 mm

c- Flat plate (4.2 x 4.6) m clear span.

From table t:%:%gozl?)g.\?% mm >125mm O.K.

= Uset=140 mm

d- Flat slab with drop panels (6.0 x 6.2) m clear span.

From table t=%=%):172.222 mm >100 mm O.K.

= Uset=175mm

e- Slab with beams (5.8 x 5.8) m clear span with a,= 1.5
02<a,=15<20
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f
[,| 0.8+ Y
1400
= tmin:
36+5p(ct,, —0.2)
B=h=%=1-0
S, 58
5800x[084-:fg;j
=150.118 mm >125mm OK.

tmin =
36+5x1.0x(1.5-0.2)

= Uset=160 mm

Example 5
Find the minimum thickness of a slab for an interior panels due to deflection control for the
following: Use f, = 420 MPa.
a- Flat slab with drop panels (7.0 x 5.6) m clear span.
b- Slab with beams (5.0 x 6.3) m clear span with a,= 2.3
c- Slab with beams (5.0 x 5.5) m clear span with a,= 1.7
d- Flat plate (4.2 x 4.5) m clear span.
e- Flat slab without drop panels (5.9 x 4.2) m clear span.

Solution
a) Flat slab with drop panels (7.0 x 5.6) m clear span.
From table
=€—“:m)=194.444 mm >100 mm OK.
36 36

= Use t =200 mm

b) Slab with beams (5.0 x 6.3) m clear span with am= 2.3
o,=23>20

f
7,108+ 7
B 1400

i 36+9p

o
w

p=—"=""=126

6300x (0.8 + 420

toin = 1400) =146.388 mm > 90 mm O.K.

36+9x1.26
= Uset =150 mm
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c) Slab with beams (5.0 x 5.5) m clear span with a,= 1.7
02 <a,=17<20

f
0,108+
1400
= tmin =
36+5p(a,, —0.2)
p=ln=>2_110
s, 5.0
5500x (0.8+122000j
=136.723mm >125mm O.K.

tmin =
36+5x1.1x(1.7-0.2)

= Uset=140 mm

d) Flat plate (4.2 x 4.5) m clear span.

From table
:g—”:iOO:136.364 mm >125mm O.K.
33 33

= Uset=140 mm

e) Flat slab without drop panels (5.9 x 4.2) m clear span.

From table

tzg—”zﬂ):l78.788 mm >125mm O.K.
33 33

= Uset=180 mm

Example 6
Find the minimum thickness of a slab for an interior panels due to deflection control for the
following: Use fy, = 420 MPa. (60000 psi).

a) Flat slab with drop panels (6.4 x 6.0) m clear span.

b) Flat plate (4.4 x 4.0) m clear span.

c) Slab with beams (5.8 x 5.6) m clear span with o, = 1.7

d) Slab with beams (8.0 x 6.5) m clear span with o, = 3.4

e) Slab without drop panels (5.5 x 4.8) m clear span with a;, = 0.19
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General Example 1
Slab with beams

- All interior beams are 300 x 600 mm DR I e Sttt St e
- B1 & B2 are 300 x 600 mm i ¥ ¥ ¥
- B5 & B6 are 300 x 700 mm c
- All columns are 600 x 600 mm < |lg ® | G/
- Slab thickness = 180 mm
- Live load = 4.25 kN/m® Vob-o B3 BA_ i
-yconcrete:25 kN/m3 “ -i-;__________Li_idl.___________Li_ii ___________ LE_EJ-__
El |iw e ¥ ¥
of llm (A o © i ¥
v P BL__ B2t L
« O0mMm o 6m >e0M )

Solution

(1) Computing of

Compute the ratio of the flexural stiffness of the longitudinal beams to that of the slab (as) in the
equivalent rigid frame, for all beams around panels A, B, C, and D.

Beam sections

Bl and B2 . bg=720
2<bE—720—240<4 ‘ _
b, 300 * 81
0.K. —
02 <M _180 s o 05
' h ™~ 600 5) 3
bg ©
k=1+0.2 = = 1402 (2.4) =148
w
by, h3 300 (600)3 v
I, =k —— = 1.48 <#) =7.992 x 10°mm*
12 12 300 420
— 4 —>
I. = 1 bt3 = 1 X 4300(180)3 = 2.090 x 10°mm?*
ST 12 12 '

8000
b =T+300 = 4300 mm

E.l I 7.992 x 10°
cbb_ Db _~77"7 " _ 3823
Eils I 2.090 x 10°

U1 = Ufp2 =

Where Ecb = ECS
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B5 and B6

bg 820 \
2 <—==-"=273< 4

b, 300 0.K
02 <t 0a6< 05|
. h - 780 - . .
k=1+02 b—E =1+0.2(2.73) = 1.546

w

b, h3 300 (700)3 o
I, =k 12 1.546 <T = 13.26 X 10°mm
L=~ btd == x 3300(180)% = 1.604 x 10°mm?*
ST 12 12 '

6000

b =T+300 = 3300 mm
ECbIb _ Ib _ 13.26 X 109

- = bbb _ b _ T _ 8267
OfBs = %B6 = T T T, T 1.604 x 10°
B3 and B4
) <0p _1140_ .o 1
b, 300
0.K.
0.2 <t—180—03< 0.5 S
) h_680_ ) J @
1<=1+0.2b—E =1+40.2(3.8) =176 !
w
b, h3 300 (600)3
= = . _— = . X 9 4
Ih =k = 176( = 9.504 x 10°mm
I = 2 btd = 1 x 8000(180)3 = 3.888 x 10°mm*
ST 12 12 '
b = 8000 mm

Ewlp  Ip  9.504 x 10°

= Oy = b 444
OfB3 = B4 = 1T 1.7 3.888 x 10°

B7 and B8
I, =9.504 x 10° same as B3 and B,

I = L bt3 = L x 6000 x (180)3 = 2.916 x 10°mm*
S12 12 '
b = 6000 mm

o Bl _9504x10°
OfB7 = B8 = T LT 2916 x10°

Note: for slab without beams, ar = zero.
To use the DDM, first checking the seven limitations

Limitations 1 to 5 are satisfied by inspections.
Limitation 6:- L.L. shall not exceed 2 times D.L.

be = 820

4
A

180
«—>

700

300 520
«—

be = 1140

v

A

180
<«

300 420
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D.L. of the slab = 0.18 x 25 = 4.50 kN/m?
D.L.oftiles=0.10x20  =2.00 kN/m?

D.L. of partition = 1.00 kN/m?

D.L. of fall ceiling = 0.08 kN/m?
7.58 kN/m?

L.L. 425

ﬁ = m =0.56 < 2.0 0.K

Limitation 7:- For each panel

ot
02 < % <50
oty
H—‘ of = 2.444 ,J—‘ of = 2.444 ’J—‘
] L | L |
w - -
Tle ® i 8 O i
S 5 5
[ o=2444 [ ar=2444
- B3 T B4 T
o0 - .
(D (A) ‘I'I’ 0 © °I'I’
S 5 5
D o = 3.823 F—I of = 3.823 4
BL B2 L
Panel A

oty (1 + ass) X (8000)2 = (3.823 + 2.444) X (8000)>

ap i’ ~ (agps + agp7) X (6000)2  ~(8.267 + 3.259) X (6000)?2

0.2 <097 <5.0 0.K.

Panel B

a1 02 %(0(fBS + aggs) X (8000)2 %(2.444 + 2.444) x (8000)2

ap by’ %(aﬂ36 + 0ggg) X (6000)2 %(8.267 +3.259) X (6000)2

0.2 <0.754 < 5.0 0.K.
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Panel C

oy 5 (pz + agps) X (8000)% 2 (3.823 + 2.444) X (8000)?

ati® (o +aggy) X (6000)2 2 (3259 + 3.259) X (6000)2

0.2 <1.71<5.0 0.K.

Panel D

1 1
arrt,? 5 (@ma + ame) X (8000)2 7 (2.444 + 2.444) x (8000)?

=171

ats” 1 (ags + orpg) X (6000)2 1 (3.259 + 3.259) x (6000)2

0.2<1.333<5.0 0.K.

Computing asm
Panel A

= 1.333

1 1
Qma = 7 (@rm1 + Qgps + Qs + Op7) = 7 (3,823 + 2444 + 8.267 + 3.259) = 4.448

ams = 4.104
afmc = 3.196
OfmD — 2852

Computing or checking slab thickness

Panel A

£, =8000-600=7400 mm ; S,=6000—-600 =5400 mm

b 7400_137
B= S, 5400

ama =4.448 ;  herean>2.0 ; useEq.(2)

£, (08+—Y) 7400 x (0.8 +-2
t =

1400 1400
= ==j158.2
36 + 9B 36 + 9 x 1.37 mm

Edge beam (B1 and B5) have a > 0.8 s~ t=160 mm

Summary of required slab thickness

A B C D

160 160 160 160

t=160 mm >90 mm -~ 0.K. tmin =160 mm
tactua| = 180 mm > 160 mm o O.K.

say 160 mm > 90 mm
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Computing C
For B5 and B6

3
C= 2(1—0.63 f)u
y/ 3

C, = (1 0.63 X 180) (180)° x 820 ( 063 300) (300)° x 520
b °2 7 820 3 2 % 520 3
= 4.353 x 10° mm*

300\ (300)3 x 700
C, = (1—0.63 x )

=00 3 + ( 1—0.63 X
=5.191 x 10° mm*
- ForbeamB5and B6 C =5.191x 10° mm*

180) (180)3 x 520
520 3

. 820 - i -
h »” y =820 - _
A OI 3 : : > OHO¢
‘q_‘) 1] | i
o - T T < 8 <
o ~
S LOI Il
O 1] 5
™~ >
x = 300 X = 300
v «—> ¢
300 520
— —>
Bl and B2
C ( 1— 063 180) (180)3 x 720 .\ ( 063 300) (300)3 x 420
= [a— . x _ .
! 720 3 20 3
=3.258 x 10° mm*
C ( 1-0.63 180) (180)° x 420 ( . 300) (300)3 x 600
= — . x _ X
2 420 3 600 3
= 4.295 x 10° mm*
~ ForbeamBland B2  C=4.295 x 10° mm*
) 720 -
* Q . Y=720 y =420
OFO'I =4 . > 8 )
- T ! o ! I
] EﬂI = 3 x
© N I
I o
>
v X = 300 X = 300
<+—>

300 420
—r—
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Computing Bt
_ EgpC  C
YT2E L 21

For B5 and B6
1

12

5.191 x 10°

= 0.693

For beam B1 and B2

|
12
4.295 x 10°

T 21, 2 x 3.888 x 10°

72 x 2916 x 10°

= 0.736

Exterior longitudinal frame

1
— % 6000 x (180)3 = 2.916 x 10° mm*

1
—£,t3 = — x 8000 X (180)° = 3.888 x 10° mm*

D.L. = 4.5 (slab) + 2.0 (tiles) + 1.0 (partition) + 0.08 (fall ceiling) = 7.58 kN/m?

L.L. = 4.25 kN/m?

Qu = 1.2x7.58 + 1.6x 4.25 = 15.9 kN/m?

_ 8000 600

27 2 2

+ — = 4300 mm

£, = 6000 — 600 = 5400 mm

1 ) 1
M, = g%fzfn = §

Longitudinal distribution of moments:

X 15.9 X 4.3 x (5.4)2 = 249.21 kN.m

0.57 M, 0.35 M,
142.05 KN.m 87.22 kN.m
/\ A
Zz N Zz N
L~ /
0.16 M,
0.65M 0.65M
39.87 kN.m 0.70 M, ° 0
161.99 KN.m 161.99 KN.
174.45
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Transverse distribution of longitudinal moments

End span
Negative moment at exterior support (total = -0.16 M,=-39.87 kN.m)
need itz B and ﬁ

e, Tt 2,

Here o = oy = 3.823, £, = 8000 mm, £1=6000 mm

£, 8000 _ 1333 & a €,  3.823 x 8000 _ 510 > 1.0
£, 6000 0, 6000 T '
Bt = Pgs = 0.693 =~ 0.69
0o 0 1.0 1.333 2.00
B =0 100 100 100
agpty
o> 10 B = 0.69 90.34
1
Bt>2.5 75 65 45
y 30 _
0ee7 - 1~ Y=20

= Neg. moment in column strip = 39.87 x 0.903 = 36.02 kN.m
Neg. moment in beam = 36.02 x 0.85 = 30.62 kN.m

Neg. moment in column strip slab = 36.02 — 30.62 = 5.4 KN.m
Neg. moment in middle strip = 39.87 - 36.02 = 3.85 KN.m

Positive moments (total = 0.57 M, = 142.05 kN.m)

2,101 1.0 | 1.333 | 20
¢

2 5 1.0 75 | 65 | 45
2

Moment in column strip = 142.05 x 0.65 = 92.33 KN.m
Moment in beam = 92.33 x 0.85 = 78.48 kN.m

Moment in column strip slab = 92.33 — 78.48 = 13.85 KN.m
Moment in middle strip = 142.05 — 92.33 = 49.72 kN.m
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Interior negative moment (total = 0.70 M, = -174.45 KN.m)

2,10, 10 | 1.333 | 20
7

12 2 10 75 | 65 | 45
t4

Moment in column strip = 174.45 x 0.65 = -113.39 KN.m
Moment in beam = 113.39 x 0.85 =-96.38 kN.m
Moment in column strip slab = 113.39 — 96.38 = -17.01 kN.m
Moment in middle strip = 174.45 —113.39 =-61.06 kN.m

Interior span

Negative moment (total = -0.65 M, = -161.99 KN.m)

Negative moment in column Strip = 161.99 x 0.65 = 105.29 kN.m
Negative moment in beam = 105.29 x 0.85 = 89.50 kN.m
Negative moment in column strip slab = 105.29 — 89.5 = 15.79 kN.m

Negative moment in middle strip = 161.99 — 105.29 = 56.7 KN.m

Positive moment (total = 0.35 M, = 87.22 KN.m)
Moment in column strip = 87.22 x 0.65 = 56.69 kN.m
Moment in beam = 56.69 x 0.85 = 48.19 kN.m
Moment in column strip slab = 56.69 — 48.19 = 8.5 kN.m
Moment in middle strip = 87.22 — 56.69 = 30.53 KN.m

Moments in Exterior longitudinal frame

Total width = 4.3 m, column stripwidth=18m, &

half middle strip width = 2.5 m.

Exterior span

Interior span

rlfé(g:z':il\?(ra Positive r:;];:[ii(\)/re Negative | Positive
Total moment (kN.m) -39.87 | +142.05 | -174.45 | -161.99 | +87.22
Moment in beam (kN.m) -30.62 +78.48 -96.38 -89.50 +48.19
Moment in column strip slab (KN.m) -5.4 +13.85 -17.01 -15.79 +8.50
Moment in middle strip slab (KN.m) -3.85 +49.72 -61.06 -56.70 +30.53
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General Example 2
Flat plate with edge beams |

- Edge beams are 250 x 500 mm A j [] [] []
- All columns are 500 x 500 mm
- Slab thickness = 200 mm c ®) D)
- Live load = 4.0 kN/m? ol |'@
= Yconcrete = 24 kN/m3 i
I [ ] ] N
gl |
o [ & ©
v ﬂBlmB3ﬁ ___________ L --
Solution 4m «—4m ¢ 4m

(1) Computing of
Compute the ratio of the flexural stiffness of the longitudinal beams to that of the slab (as) in the
equivalent rigid frame, for all edge beams.

Beam sections
B1 and B3
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Total static moment in flat slab
¢ = diameter of column capital

®

c2  LJ2-cl2

A : F “—r—>
] 1
|
B |
| 81/ 2
| «—>
i 2
|
!
! % panel load
C ! l
|
A 5 i Mo T )
. . 0S.
E i

@ I . c/n
. 27 04/2

< > > reaction
c.g.
X
2c/3w
c/n
NI <“—>

Sum of reactions on arcs AB and CD = load on area ABCDEF
-afe 3267 Q))
- Ttz 42"\

B £, ¢, Tmc?
= qu > 3

No shear along lines AF, BC, DE, EF

ZM]__]_:O
0,0, mc2)c qut,t (4 1mc®2 2c
Mneg-+Mpos-+qu{ 2 _T}E_ > (7)) wx2 (5% 55 ) =0
£, 0y
previously M, = qu% (D

Letting M, = Mneg. + Mpos.
2, 0.2 4c c3
o = qutz t1 <1_ + 2)
8 T[‘Bl 3’82‘81
Qu€2€12(1 2C>2

8 34

M, = ..(2)

Eq. (1) is useful for flat plate floor or two — way slab with beams, while Eq. (2) is more suitable for

flat slab, where in round column capitals are used.

50



Reinforced Concrete Design Il

Example:
Compute the total factored static moment in the long and short directions for an interior panel in flat

slab 6 x 7 m, given g, = 15 kN/m?, column capital = 1.40 m.

Solution:-

a- In long direction

qu€2{’12< 2C>2 15 ><6><(7)2( 2><1.4)2
Mig=——(1—— ) = 1- = 414 KkN.
o 8 37, 8 3 x7 m
b- In short direction
_ 15 x 7 x (6)? (1 2 ><1.4>2_337 N
o~ 8 3x6 ) -
To compare with previous method:-
a- In long direction
0h=7.0-089%x14=5754 m
2,4,> 15 x 6 x (5.754)2
o=qu§ L= 8( ) 3724 KN.m
b- In short direction
0h=6.0-0.89%x1.4=4754 m
15 X 7 X (4.754)?
o = 3 = 296.6 kN.m
Eq.1 Eq. 2 Error
(KN.m) (KN.m) (%)
long direction 414 3724 10
short direction 337 296.4 12
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Equivalent frame method (EFM)

The equivalent frame method involves the representation of the three-dimensional slab system by a
series of two-dimensional frames that are then analyzed for loads acting in the plane of the frames.
The negative and positive moments so determined at the critical design sections of the frame are
distributed to the slab sections (column strip, middle strip and beam).

Limitations:

1)

Panels shall be rectangular, with a ratio of longer to shorter panel dimensions, measured
center-to-center of supports, not to exceed 2.

2) Live load shall be arranged in accordance with arrangement of live loads.

3) Complete analysis must include representative interior and exterior equivalent frames in
both the longitudinal and transverse directions of the floor.

Procedure:-

1- Divide the structure into longitudinal and transverse frames centered on column and
bounded by panels.

2- Each frame shall consist of a row of columns and slab-beam strips, bounded laterally by of
panels.

3- Columns shall be assumed to be attached to slab-beam strips by torsional members
transverse to the direction of the span for which moment are being determined.

4- Frames adjacent and parallel to an edge shall be bounded by that edge and the centerline of
adjacent panel.

5- The slab—beam may be assumed to be fixed at any support two panels distance from the

support of the span where critical moments are being obtained, provided the slab is
continuous beyond that point.
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yd A A4
Selected frame in 3-D building fommfomm o e g

S e e s sy )

LLL L

The detached frame alone //////// ///////

4//4///////////

4//4///////////

The width of the frame is same as mentioned in DDM. The length of the frame extends up to full
length of 3-D system and the frame extends the full height of the building.

2-D frame

5-D building Interior Equivalent Exterior Equivalent
Frame Frame
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Analysis of each equivalent frame in its entirety shall be permitted. Alternatively, for gravity
loading, a separate analysis of each floor or roof with the far ends of columns considered fixed is

permitted.

N o |
A S A A

If slab-beams are analyzed separately, it shall be permitted to calculate the moment at a given
support by assuming that the slab-beam is fixed at supports two or more panels away, provided the
slab continues beyond the assumed fixed supports.

kcceqd

1
Il

Asaas
(o8
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Arrangement of live loads:

1- If the arrangement of L is known, the slab system shall be analyzed for that arrangement.
2- If all panels will be loaded with L, the slab system shall be analyzed when full factored L on

all spans.

3- If the arrangement of L is unknown:
a- L<0.75D = Maximum factored moment when full factored L on all spans.

b- L >0.75 D = Pattern live loading using 0.75(factored L) to determine maximum
factored moment.

Columns assumed
tixed ot remote ends

RSN NN, RN
Wya+Wj
L I
4 - L
A B c D
= AN -
(1) Loading pattern for design moments in all spans with L=3/4 D
PN * W, PN ELUL
W4T 3/4 wy wg
L L .
&
A B C D
-va == Bt ==
(2) Loading pattern for positive design moment in span AB*
BN i, S e
wq +3/4wWy
" | | d
L — ]
s
A B c D
NN I T ——te
(3) Loading pattern for positive design moment in span BC*
A ;ﬁn
Wyt 34w
d - 1 Wq e Siob - beam assumed
| L, fixed at support two
®- ; istan
A B cV spans distance
AN LA
(4) Loading pattern for hegative design moment at support A*
PR Wd+3/4 wg PN S S,
wg
I 1
|
{7
A B C O
. _~== —_ =

(5) Loading pattern for negative design moment at support B*

Partial frame analysis for vertical loading
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Stiffness calculation: K, K, K, K., K,
- Stiffness of Slab-Beam Member K. K K. K. K.

- Stiffness of Equivalent Column K K K B L
Stiffness of Column S N T e
Stiffness of Torsional Member ¢ K, K. K K., K.,

Ksb Ksb Ksb Ksb Ksb
KEC KEC KEC KEC KGC KEC

Ksp represents the combined stiffness of slab and longitudinal beam (if any).
Kec represents the modified column stiffness. The modification depends on lateral members (slab,
beams etc.) and presence of column in the story above.

Once a 2-D frame is obtained, the analysis can be done by any method of 2-D frame analysis.

Stiffness of slab beam member (Kg,):

The stiffness of slab beam (Ky,= kElg,/£) consists of combined stiffness of slab and any longitudinal
beam present within.

For a span, the k factor is a direct function of ratios c1/€¢1 and c,/€.

Tables are available in literature for determination of k for various conditions of slab systems.

Ly
[

L| Chey—L0 C- ux, ]

I

In the moment-distribution method, it is necessary to compute flexural stiffnesses, K; carryover
factors, COF; distribution factors, DF; and fixed-end moments, FEM, for each of the members in
the structure. For a prismatic member fixed at the far end and with negligible axial loads, the

flexural stiffness is:

EI
K:kT

where k = 4 and the carryover factor is 0.5, the sign depending on the sign convention used for
moments. For a prismatic, uniformly loaded beam, the fixed-end moments are w(?/12.

In the equivalent-frame method, the increased stiffness of members within the column-slab joint
region is accounted for, as is the variation in cross section at drop panels. As a result, all members
have a stiffer section at each end, as shown in Figure. If the EI used is that at the midspan of the
slab strip, k will be greater than 4; similarly, the carryover factor will be greater than 0.5, and the
fixed-end moments for a uniform load (w) will be greater than w(?/12.
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/
— ‘ L]
L-I \Droppansl
(a) Slab A-8.
_‘r -
Eis [} l El,
Elp l ¢
v Efq
f
(b) Distripution of £l along slab.
f
e
= > e |
3 1-. : t .Z-f‘;
- - T
T
4>< £ Oy == I

(&) Slab with beams in two directions.

=
— 2 Et?
1 — ealty) —L/L 2 o, =0
'I:l (1 — caltzf

-
— ]-—c,;g _.| |<_

(b} Variation in Ef along slab beam.

Ii‘ R CI—
T

(¢} Cross section used to compute H—Seetion C-C T

£y

[ ]

i) Cross section used lo compute l:—Section D-D
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N s EEaa NIl

g | ||

(@) Slab with drop panals.
Elz

_|—| El; E:‘?—f_ {1 = caltg)?
_l_,

—_— ]<—|:1|'2

(B) Mariation in El along slab-beam.

—

T,

c) Cross seclion vsed in compute /—Saction A-4.

o 142

»
] J'fh +"?2

Width ot drop panel

(d} Cross section used to compute lz—Section B-B.
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Several methods are available for computing values of k, COF, and FEM. Originally; these were
computed by using the column analogy.

Properties of Slab—Beams

The horizontal members in the equivalent frame are referred to as slab-beams. These consist of
either only a slab, or a slab and a drop panel, or a slab with a beam running parallel to the
equivalent frame.

It shall be permitted to use the gross cross-sectional area of concrete to determine the moment of
inertia of slab-beams at any cross section outside of joints or column capitals.

The moment of inertia of the slab-beams from the center of the column to the face of the column,
bracket, or capital shall be taken as the moment of inertia of the slab-beam at the face of the
column, bracket, or capital divided by the quantity (1 — ca/ €,)°, Where €, is the transverse width of
the equivalent frame and c; is the width of the support parallel to €.

Moment of inertia of the slab-beam strip can be calculated from the following figure or equation:

3.0

7
Ratio B = hyh o <
L ,//
.09/ wdl
d
> ///g}/f fc
25 //; //%;/
/ // o\
< Z
=P
(6]
5
S 2.0
=
3
/ 7 Iy = C; (byh¥12)
é// / in which
/ B 3(1-B)2 B (A-1)
,/ / C,_1+(A-1)B3+—1*B(A_1)
1.5 / ‘/ | b |
1 | |
[ ]
r/ / - —th
& ]
1.0
1 5 10 15 20

Ratio A= b/b,,
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Properties of Columns

The moment of inertia of columns at any cross section outside of the joints or column capitals may
be based on the gross area of the concrete.

The moment of inertia of columns shall be assumed to be infinite within the depth of the slab-beam
at a joint.

le El. te Eccle

'g_#______j’J:ufx | | —1 — I =

= e

(a) Slab system Column stiffness {b) Slab system with Cplumn stiffness
without beams. diagram column capitals. diagram

} [ 1 | I ]

| —— #:I:m:x :/%:(—"—‘—ﬁ——r_—mfx

Bottom cf slab- (

beam at joint c Eols
I — —c al=wx Top of slab-beam

e e [y JEpE | Sy

{c) Slab system with Column stiffness SENDUN SV B ‘
drop panels. diagram (d) Slab system Column stiffness
with beams. diagram

Sections for the calculations of column stiffness (K;)

(. is the overall height and €, is the unsupported or clear height.

9E C
K=2+
(-

where (, refers to the transverse spans on each side of the column. For a corner column, there is
only one term in the summation.

If a beam parallel to the £; direction, multiply K; by the ratio Is/ls, where lg, is the moment of
inertia of the slab and beam together and Is is the moment of inertia of the slab neglecting the beam
stem.
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Factored moments

At interior supports, the critical section for negative M, in both column and middle strips shall be
taken at the face of rectilinear supports, but not farther away than 0.175¢; from the center of a

column.

At exterior supports without brackets or capitals, the critical section for negative M, in the span
perpendicular to an edge shall be taken at the face of the supporting element.

At exterior supports with brackets or capitals, the critical section for negative My in the span
perpendicular to an edge shall be taken at a distance from the face of the supporting element not
exceeding one-half the projection of the bracket or capital beyond the face of the supporting

element.
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Table A.13a Coefficients for slabs with variable moment of inertiat

¢ _ fig
' Lood w pst . :
(AL AXAARARAAARAARAARAAAARAAE AARANE
¥
A, 2
1, _
A /5 wn perpendicular direction 8
¢ ¢
: , Uniform load _ :

Column : FEM = - Stifiness _ Carryover
dimension : coefl. {wl, [3) . factor? factor
Q4 Sia \ o ok ks, ©  COF COF
11 "1"" M4 7 ‘lBA B L.AB BA AB BA
0.00 0.00 0083 . 0083 4.00 4.00 0500 . - 0.500
; 0.05 0.083 0.084 401 404 0.504 0.500 .

0.10 0.082 0.086 4.03 4.15 0.513 0.499

0.15 0.081 0.089 4.07 4.32 0.528 0498

0.20 0.079 10.093 4.12 4.56 0.548 0.495

7025 0.077 0.097 4.18 4.88 0.573 0491
005. - 005 - 0084 0084 . 405 405 ° . 0503 ~0.503
. #0.10 0.083 - 0.086 407 415 - 0513 0.503
0.15 0.081 . .0.089 4.11 4.33 0.528 0.501

- 0.20 0.080 0.092 4.16 4.58 0.548 0499

0.25 0.078 0096 - 422 489 0.573 " 0494

0.10 0.10 0.085 0.085 a18- 418 0513 - 0513
0.15 - 0.083 0.088 4.22 £ 4.36 0.528 0.511

. 0.20 0.082 0.091 427 4.61 0.548 0.508

0.25 0.080 . 0.095. 4.34 493 0.573 0.504

0.15 0.15 0.086 0.086 440 . 440 - 0.526 0.526
0.20 0.084 0090 446 465 0.546 0.523

0.35 0083 . 0094 453 498 0571 - 0.519

0.20 0.20 0088 . . 0.088 4.72 472 0543 0543
. 0.25 0.086 :°  0.092 479 505 0.568 - 0539
0.25 0.25 0.090 0.090 5.14 5.14 0.563 0.563

t Applicable when ¢ /I, = c,/l;. For other relationships bet'ween these ratios, the constants will be
slightly in error. .
* Stiffness is K 5 = k5 Et; 13/121) and K5, = &k, EU, h3120)).
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Tabie A.13b Coefficients for slabs with variable moment of inertiat

il ~
i koad w psf ‘ A,
K1 AEAXAEREEREAAAAEAEEE AL fffJ /
: = i —— ’25 h|
- . T ‘
_1y/6 2473 | 46
= g b |
Iy R
p "1, in perpendicular direction B
¢ ¢
A Uniform load ; A _
Column . FEM = Stifiness Carryover
dimension coeff. (wl, I2) : factor ‘ factor
Cia Cin , :
T‘ T M4 My, L kg COF 4 COFu
1 1 : )
000 000 0.088 0.088 478 478 0.541 0.541
0.05 0.087 0.089 4.80 4.82 0.545 0.541
0.10 0.087 0.090 4.83 494 0.553 0.541 -
0.1§ 0.085 0.093 4.87 512 0.567 0.540
0.20 0.084 0.096 493 5.36 0.585 0.537
0.25 0.082 0.100 © 5.00 5.68 0.606 0.534
0.05 0.05 0.088 0.088 4.84 4.84 0.545 ' 0.545
0.10 0.087 0.090 4.87 495 0.553 0.544
0.15 0.085 0.093 491 5.13 0.567 0.543 -
0.20 0.084 0.096 4.97 5.38 0.584 0.541
0.25 0.082 0.100 5.0 5.70 * 0.606 0.537
0.10 0.10 0.089 0.089 498 4.98 A 10.553 0.553
0.15 0.088 0.092 5.03 5.16 0.566 0.551
0.20 0.086 0.094 5.09 5.42 0.584 0.549
0.25 0.084 0.099 317 5.74 0.606 0.546
015 015 0.090 0.090 5.22 5.22 0.565 0.565
0.20 0.089 0.094 5.28 5.47 0.583 0.563
0.25 0.87 0.097 5317 5.80 0.604 0.559
0.20 0.20 0.092 - 0.092 5.55 5.55 0.580 0.580
0.25 0.050 0.096 5.64 5.88 0.602 0.577-
0.25 025  ° 0.094 0.094 5.98 5.98 0.598 0.598

t Applicable when c,/I, = c,/l,. For other relationships between these ratios, the constants will be
slightly in error.

% Stiffness is K (5 = k 5E(I; h}/12!)) and K, = kg, E(I, h3/121,).
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Table A.13¢ Coefficients for columns with variable moment of inertia

G
Iz T ( ]
| T
/ = constont y
i 4
g
Uniform load
' Stiffness Carryover
Slab coeff. (wl, I?) factors factors
depth :
cra/ly M 45 Mg, ks kg - COF 44 COF,,
0.00 0.083 0.083 400 4.00 0.500 0.500
0.05 0.100 0.075 491 4.21 0.496 0.579
0.10 0.118 - 0.068 6.09 4.44 0.486 0.667
0.15 0.135 0.060 7.64 -4.71 0.471% 0.765
0.20 0.153 0.053 9.69 5.00 0452 0.875
0.25 0.172 0.047 1244 5.33 0.429 1.000
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Shear in slabs

One-way shear or beam-action shear: involves an inclined crack extending across the entire width
of the panel.

Two-way shear or punching shear: involves a truncated cone or pyramid-shaped surface around the
column

For each applicable factored load combination, design strength shall satisfy:
- ¢oVnh >V, atall sections in each direction for one-way shear.

- ¢vy >y at the critical sections for two-way shear.

Interaction between load effects shall be considered.

Vo=V + Vs

Vh = V¢ (nominal shear strength for two-way members without shear reinforcement).

Vh = V¢ + Vs (nominal shear strength for two-way members with shear reinforcement other than
shearheads).

¢ =0.75

V, is the factored shear force at the slab section considered.

V, is the nominal shear strength.

V. is the nominal shear strength provided by concrete.

V; is the nominal shear strength provided by shear reinforcement.

Vy, is the equivalent concrete stress corresponding to nominal two-way shear strength of slab.

v, is the maximum factored two-way shear stress calculated around the perimeter of a given critical
section.

Vyg IS the factored shear stress on the slab critical section for two-way action due to gravity loads
without moment transfer.

shear cap: a projection below the slab used to increase the slab shear strength. It shall project below
the slab soffit and extend horizontally from the face of the column a distance at least equal to the
thickness of the projection below the slab soffit.
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Shear in slab with beams

Shear shall be checked at a distance d from the face of the support (beam).

i | |
| \ I
P N L
1t I ol N S ol sl SO
1 —— ] + —— 1
1 S 1 jm e mm e — 1 [
T I N
| ]! !
| | i
I | |
i (| o
P! il Dl
H o Ay
1 N L N
0l e f! 0l
i i |
i i f ]!
il! 1! 1
| | I
i i |
]! 45 deg 45 deg ||
i | |
K Lit Ny
\ AN I [ ! P ] N
_-_lL AJ ______________ 4 “' ______________ ] AJ__

Tributary area for shear on an interior beam.
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Shear in flat plate and flat slab

Types:-

1- Beam action (one — way shear action)

2- Punching shear (two — way shear action)

1s

Tributary area
for two-way ~

Ay A

shear-column 1

Tributary area for
two-way shear-column 2

Ve

Critical section for
one-way shear-
column 4

b N S

Tributary area for
/ two-way shear-column 3

-y

\ \\
Tributary area for
one-way shear-column 5

! \\\\_\

Critical
section

Critical sections and tributary areas for shear in flat plate.




Reinforced Concrete Design 11

(a) Section through drop panel.

[_ s —-I /lEdge of drop panel

:'4— dol2

(b) Critical sections.

Critical sections in a slab with drop panels.

(a) Two-way shear. (b) One-way shear.

Critical shear perimeters and tributary areas for corner column.
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Factored one-way shear
For slabs built integrally with supports, V, at the support shall be permitted to be calculated at the

face of support.

Sections between the face of support and a critical section located a distance d from the
face of support for nonprestressed slabs shall be permitted to be designed for V, at that critical
section if (a) through (c) are satisfied:

(a) Support reaction, in direction of applied shear, introduces compression into the end regions of
the slab.

(b) Loads are applied at or near the top surface of the slab.

(c) No concentrated load occurs between the face of support and critical section.

1
||
!
T

!
[
||

~
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One-way shear strength
Nominal one-way shear strength at a section (Vy) shall be calculated by:
Vo=V, + Vs

Cross-sectional dimensions shall be selected to satisfy:

V, < ¢ (vc +0.66 \/Ebwd>

For nonprestressed members without axial force, V. shall be calculated by:
V. = 0.17/f. bd
unless a more detailed calculation is made in accordance with Table 22.5.5.1.

Table 22.5.5.1 - Detailed method for calculating V.

Ve
V,d
<0.16 Vi +17 py, M—) bd @)
Least of (a), (b),
0.16 \/f:+ 17 p,,) bd b
and (c): ( \/— P ) (b)
0.29/fibd ()

M, occurs simultaneously with V| at the section considered.

Effect of any openings in members shall be considered in calculating Vp.

At each section where V, > ¢V, transverse reinforcement shall be provided such that the equation
V,
v, > ;;‘ — V.

is satisfied.

The critical section extending across the entire width at a distance d from:-
1- The face of the rectangular column in flat plate.
2- The face of the equivalent square column capital or from the face of drop panel, if any in flat

slab.

The short direction is controlling because it has a wider area and short critical section:-
V= aus-[3- (5+ a)] =
L PRV o "M T hdT sd
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Factored two-way shear (punching)

Critical section:
Slabs shall be evaluated for two-way shear in the vicinity of columns, concentrated loads, and
reaction areas at critical sections.

Two-way shear shall be resisted by a section with a depth (d) and an assumed critical
perimeter (b).

For calculation of v, and v for two-way shear, d shall be the average of the effective depths
in the two orthogonal directions.

For two-way shear, critical sections shall be located so that the perimeter (b,) is a minimum
but need not be closer than d/2 to (a) and (b):
(a) Edges or corners of columns, concentrated loads, or reaction areas.
(b) Changes in slab or footing thickness, such as edges of capitals, drop panels, or shear caps.

For a circular or regular polygon-shaped column, critical sections for two-way shear shall be
permitted to be defined assuming a square column of equivalent area.

,HHHHHl11\1HlHIHHIHHHHHHL
e

Punching shear crack 0.3/
intercepted by top - n_ .
reinforcement I
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e 20 /ﬂ,_
N i

2T |
7 ) ™ , (\1_.::;‘@\\ ‘;;;;“/ 90 Fr ?
i R - / . ‘ L A A | =2

i D> \/ s
. P \\"\T// P (A
U |
(a) (D)

Failure surface defined by punching shear

Nominal shear strength for two-way members without shear reinforcement shall be calculated by:
Vi = Ve
v for two-way shear shall be calculated in accordance with Table 22.6.5.2.

Table 22.6.5.2 - Calculation of v, for two-way shear

Ve
0.33 /f! (a)
2
Least of (a), (b), and (c): 0.17 ( 1+ E> fe (b)
agd
0.083 (2 + ) f! ©)

Note: B is the ratio of long side to short side of the column, concentrated load, or reaction area.
as = 40 for interior columns

= 30 for edge columns

= 20 for corner columns

Nominal shear strength for two-way members with shear reinforcement other than shearheads shall
be calculated by:
Vi = Ve + Vg

For two-way members with shear reinforcement, v, shall not exceed the limits:

ve = 0.17 /!

For two-way members with shear reinforcement, effective depth shall be selected such that v,
calculated at critical sections does not exceed the value:

vy < $0.5/f!
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For two-way members reinforced with headed shear reinforcement or single- or multi-leg stirrups, a
critical section with perimeter b, located d/2 beyond the outermost peripheral line of shear
reinforcement shall also be considered. The shape of this critical section shall be a polygon selected
to minimize b,

Effective depth
For calculation of v, and vs for two-way shear, d shall be the average of the effective depths in the
two orthogonal directions.

Two-way shear strength provided by single- or multiple-leg stirrups:

Single- or multiple-leg stirrups fabricated from bars or wires shall be permitted to be used as shear
reinforcement in slabs and footings satisfying (a) and (b):

(@) dis at least 150 mm.

(b) d is at least 16dp, where dy is the diameter of the stirrups.

For two-way members with stirrups, vs shall be calculated by:
A, f,

Vs T by

Where

A, is the sum of the area of all legs of reinforcement on one peripheral line that is geometrically
similar to the perimeter of the column section.

s: is the spacing of the peripheral lines of shear reinforcement in the direction perpendicular to the
column face.

- 4\6% 7 f———
32 (@ ™) (® ®
A

“45° max.

\&— —’/ \ | |
| | |
I 1 < i ;
Z Code Sec7.1.3 Code Sec 7.1.3 Code Sec 7.1.3

(a) Single-leg stirrup. (b) Multiple-leg stirrup.

(c) Closed stirrups.

Shear reinforcement.
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Critical section

 nm Critical section
through slab shear outside slab shear
. TTETTTT™ .
reinforcement R \ reinforcement
(first line of e ™1 S
stirrup legs) — 7 ™7 o
, L—— \
s, b
d/2 ’ AN
P
7/ ~
.’ N dI2
.
s ~
4 3 —}
I I
T IIREY
I I
\ /
~ 4
~
~ 4
~ s’
7 I I
4
s

Slab

s

._.I »l

Elevation <2 <d s<d

Column

Arrangement of stirrup shear reinforcement, interior column.
Critical sections for two-way shear in slab with shear reinforcement at interior column.
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Critical section outside
RN / slab shear reinforcement
Ay

Slab
edge
» d/2

d/2
\\.J

d/2 Critical section through
P .
/ slab shear reinforcement
R (first line of stirrup legs)
Plan

| 3l

<.

<d/2 s<d/2

Elevation

Arrangement of stirrup shear reinforcement, edge column.
Critical sections for two-way shear in slab with shear reinforcement at edge column.
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Slab edge

ﬂ-w—— =

1~ /.

1 A

I R4 Critical section outside

g »” slab shear reinforcement
d/2 L ‘

|| +“\—Critical section through

4 slab shear reinforcement
(first line of stirrup legs)

T

-

<d/2 s<d/2

Elevation

Arrangement of stirrup shear reinforcement, corner column.
Critical sections for two-way shear in slab with shear reinforcement at corner column.

82



Reinforced Concrete Design 11

Xcilumn face
(T <
£,-c4/2

Structural shearheads.

o412 iﬁl(ﬁ, - €4/2) ?j.i (£, - €4/2)
¢, +d aalip=
na R S L ‘ j
L] g ==
(a) No shearhead £,-¢,/2 bl P
(b) Small interior £, -¢/2
sheaihead (c) Large interior
(n=4) shearhead
(n=4)
3/4(£, - c,/2) 3/4(¢, - c,/2)
£ d/i2— *—__j__j‘B'L

?

[; [ f,_,—czf2l )
o o N

el Le] | 34(0, - ¢,f2)~
A lc
._;— 1_ )
Ev_%m% f_'—fv c4/2 \]_

II-" PR

*l*—lsm (4, - €1/2) E 40} /2
" |
(d) Small edg:e shearhead (e) Large edge
(n=3) shearhead
(n=23)

Location of critical section without and with shearheads.
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/

2 o4 7 ¥ /Outermost
iy NN peripheral
2 / *;\ N, line of studs
/// T \ N
A TN
di2 I [oMeciomenelll
A : i fj =1 : 52d| } A
[ | (typ.) | [
f . | | ! (typ-)| ! f
: : l [o Meiio Mo melll
N : ] 7

A, = cross-sectional
area of studs on a
peripheral line

Shear
critical
sections

Interior column

A, = cross-sectional

/]/

Studs with
base rail

area of studs on any
peripheral line

]

T

/]/

Section A-A

Qutermost

N N
OO0 T]:/'
peripheral
s2d line of studs

(typ.)

critical
sections

Shear t

critical <

sections

a:ps /

E di2 ’ // ’

_L - ‘ v Outermost

BN /7 peripheral
line of studs

Corner column

Typical arrangements of headed shear stud reinforcement and critical sections.
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Effect of any openings and free edges in slab shall be considered in calculating vy

Ineffective Opening

I~

1 as free
| edge

Effect of openings and free edges (effective perimeter shown with dashed lines).
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Example:
The flat plate slab of 200 mm total thickness and 160 mm effective depth is carried by 300 mm

square column 4.50 m on centers in each direction. A factored load of 580 kN must be transmitted
from the slab to a typical interior column. Determine if shear reinforcement is required for the slab,
and if so, design integral beams with vertical stirrups to carry the excess shear. Use fy, = 414 MPa,
f. =30 MPa.

Solution:-
Shear perimeter (b,) = (300 + 160) x 4 =1840 mm

V, =580 kN
v, 580 x 103

Vas = 54~ T840 x160 00 MPa

i) without shear reinforcement
The design shear strength of the concrete alone at the critical section d/2 from the face of column is

(0.33/f. = 0.33V30 = 1.807 MPa
2 2
0.17 (1 + —)Jf? = 0.17 (1 +I> x V30 =2.793 MPa

V. = min. B

o d 40 x 160
{0.083 (2 + = )JE = 0.083 (2 + —) x V30 = 2.49 MPa
b, 1840
300
=—=1

P =300

» V.= 1807 MPa

Vi = Ve

¢vnh =0.75 % 1.807 = 1.355 MPa < v, =1.97 MPa not O.K.
.. Shear reinforcement is required

ii) with shear reinforcement

Vn = Ve + Vs

For two-way members with shear reinforcement, effective depth shall be selected such that v,
calculated at critical sections does not exceed the value:

Vu < $0.5 \/f_c’
Vy = Vyg = 197 MPa < ¢0.5,/fl =0.75 x 0.5 x V30 = 2.054 MPa  0.K.

ve = 0.17/fZ = 0.17 x V30 = 0.931 MPa

Let o¢v,=v,=1.97 MPa
¢ (Ve +Vs) = vy
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\% 1.97
= vg= é— Ve = 5=z~ 0.931 = 1.696 MPa
A f,
Vg =
b, s
" Vibys 1696 x 1840 x 80
= A, = = 114 = 603 mm? s= - =80 mm
y

The required area of vertical shear reinforcement = 603 mm?

For trial, 810 mm vertical closed hoop stirrups will be selected and arranged along four integral
beams.

effective depth = 160 mm =16 x 10 (d is at least 16dp). O.K.

A, provided is 4 x 2 x 78.5 = 628 mm? at the first critical section, at distance d/2 = 80 mm from the
column face.

The required perimeter of the second critical section, at which the concrete alone can carry the
shear, is found from the controlling equation as follows:
vy = ov, = dve = $0.17/fl =0.75 x 0.17 x V30 = 0.698 MPa

0.698 580 x 10° b 5193.4
= = V. = — = = .
Vu= Vug b, x 160 o mm

51934=4x(3d+vy)

= y=818.35 mm

x =818.35 x sin 45 =578.7 mm

8 stirrups at constant 80 mm spacing will be sufficient, the first placed at 80 mm from the column
face, this provides a shear perimeter (b,) at second critical section of:

9x80+150=870mm > x+240=818.7mm O.K.

It is essential that this shear reinforcement engage longitudinal reinforcement at both the top and
bottom of the slab, so 4 longitudinal 16 bars will be provided inside the corners of each closed
hoop stirrup. Alternatively, the main slab reinforcement could be used.
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e e e e e e e e — =

80

>

=720 mm

9 x 80

1
1
1
I
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
I
7

=480 mm

3d
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Example:
Check the two way shear action (punching shear) only around an edge column (400x400) mm in a

flat plate floor of a span (6.0 x 6.0) m. Find the area of vertical shear reinforcement if required.
Assume d = 158 mm. Total q, = 16.0 kPa (including slab weight), f.’ =25 MPa, f;, = 400 MPa.

Solution:-
Shear perimeter (bo) = (400 + 79) x 2 + (400 + 158) = 1516 mm

Vi =16 x (6 x 3.2 - 0.558 x 0.479) = 302.923 kN
_V,  302.923 x 10°

_ - — 1.265 MP
Vug = 54T 1516 x 158 65 MPa

i) without shear reinforcement
The design shear strength of the concrete alone at the critical section d/2 from the face of column is

(0.33/ff = 0.33V25 =1.65 MPa

2 2
40.17 (1+ E>\/f_c’= 0.17<1+I)>< V25 =2.55 MPa

V. = min.

ag d 30 x 158
{0.083 (2 + = )JE = 0.083 (2 + —) X V25 = 2.128 MPa
b, 1516
400
:—:1

Pe =200

. V. = 1.65 MPa

Vn = Ve

dvh=0.75x 1.65=1.238 MPa < v, =1.265 MPa not O.K.
.. Shear reinforcement is required

ii) with shear reinforcement

Vn = Ve + Vs

For two-way members with shear reinforcement, effective depth shall be selected such that v,
calculated at critical sections does not exceed the value:

Vu < 0.5 \/f_c’

Vy = Vyg = 1265 MPa < ¢0.5/ff =0.75 x 0.5 x V25 =1.875MPa  0.K.

ve = 0.17,/ff = 0.17 x V25 = 0.85 MPa

Let dva= vy = 1.265 MPa
¢ (Ve +Vs) = vy

v 1.265
= vg= ;f— Ve = ooz — 0.85=0.837 MPa
. A, f,
S bys
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vibys  0.837 x 1516 x 79
= A, = = = 250.6 mm? s =

£, 400

= 79 mm

The required area of vertical shear reinforcement = 250.6 mm?

To design the integral beams with the vertical stirrups to carry the excess shear:

For trial, 88 mm vertical closed hoop stirrups will be selected and arranged along three integral
beams.
effective depth = 158 mm > 16 x 8 =128 mm (d is at least 16dy). O.K.

A, provided is 3 x 2 x 50.2 = 301 mm? at the first critical section, at distance d/2 = 75 mm from the
column face.

The required perimeter of the second critical section, at which the concrete alone can carry the
shear, is found from the controlling equation as follows:
Ve =odvy = dve = ¢ 0.17/fl = 0.75 x 0.17 x V25 = 0.638 MPa

302.923 x 103
Vu = Vug = 0.638 = ———m = b, = 3005.1 mm
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Example:
Check the two way shear action (punching shear) only around a corner column (400x400) mm in a

flat plate floor of a span (6.0x6.0) m. Find the area of vertical shear reinforcement if required.
Assume d =158 mm. Total g, = 19.0 kPa (including slab weight), f.’= 25 MPa, f, = 400 MPa.

Solution:-
Shear perimeter (b,) = (400 + 79) x 2 =958 mm
V=19 x (3.2 %3.2-0.479 x 0.479) = 190.201 kN

Vy  190.201 x 103

_ - = 1.257 MP
Vug = 53T T 958 x 158 57 MPa

i) without shear reinforcement
The design shear strength of the concrete alone at the critical section d/2 from the face of column is

(0.33/ff = 0.33V25 =1.65 MPa

2 2
ve =min.40'17 (1+ —)\/f_c= 0-17<1+I)>< V25 =255 MPa

B

as d 20 x 158
{0.083 (2 + = )JE = 0.083 (2 + —) X V25 = 2.199 MPa
b, 958
400
:—:1

Pe =200

. V. = 1.65 MPa

Vp = Ve

dvh=0.75x 1.65=1.238 MPa < v, =1.257 MPa not O.K.
.. Shear reinforcement is required

ii) with shear reinforcement

Vn = Ve + Vs

For two-way members with shear reinforcement, effective depth shall be selected such that v,
calculated at critical sections does not exceed the value:

Vu < $0.5 \/f_c’

Vy = Vyg = 1257 MPa < ¢0.5/ff =0.75 x 0.5 x V25 =1.875MPa  O.K.

ve = 0.17,/ff = 0.17 x V25 = 0.85 MPa

Let ov,=v,=1.257 MPa

¢ (Ve + Vs) = vy

Vu 1.257 0.85 = 0.826 MP
= = ——-—vVv.=——-—085=0.
sT 9 VeT 075 4
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A,
Vs b, s
vibys  0.826 x 958 x 75 d
= A, = = = 148.4 mm? s=75mm<§=79mm

£, 400

The required area of vertical shear reinforcement = 148.4 mm?

Example:
Check the two way shear action (punching shear) only around an interior column (450x450) mm in

a flat plate floor of a span (5.8x5.6) m. Find the area of vertical shear reinforcement if required.
Assume d =150 mm. Total gy = 17.5 kPa (including slab weight), f;’=32 MPa, f, = 420 MPa.
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Example:
Check the two way shear action (punching shear) only around an interior column (400x500) mm in

a flat plate floor of a span (5.6x5.6) m. Find the area of vertical shear reinforcement if required.
Assume d =170 mm. Total g, = 18.0 kPa (including slab weight), f;’=30 MPa, f, = 420 MPa.

Solution:-
Shear perimeter (b,) = (400 + 170) x 2 + (500 + 170) x 2 = 2480 mm
V, =18 x (5.6 x 5.6 — 0.57 x 0.67) = 557.606 kN

V, _ 557.606 x 10°

Vas = 54T 2280 x 170 1023 MPa

i) without shear reinforcement
The design shear strength of the concrete alone at the critical section d/2 from the face of column is

(0.33,/f; = 0.33v30 = 1.807 MPa
2 2
0.17 (1 + —)w/fc’ = 0.17 (1 +—> X v30 = 2.421 MPa

V. = min. B 1.25

as d 40 x 170
{0.083 (2 + = )JE = 0.083 (2 + —) X /30 = 2.156 MPa

b, 2480

B, _00 925

400
. v, = 1.807 MPa
Vp = Ve

¢vn,=0.75x 1.807 = 1.355 MPa > v, =1.323 MPa not O.K.
.. Shear reinforcement is not required

Example:
Check the two way shear action (punching shear) only around an edge column (300x300) mm in a

flat plate floor of a span (4.0x4.0) m. Find the area of vertical shear reinforcement if required.
Assume d =165 mm. Total g, = 17.6 kPa (including slab weight), f.’=35 MPa, f, = 420 MPa.
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Transfer of moments to columns

The above analysis for punching shear in slabs assumed that the shear force (V,) was uniformly
distributed around the perimeter of the critical section (b,), at distance d/2 from the face of
supporting column and resisted by concrete shear strength (v¢), which was given by the minimum of
three equations. If significant moment is to be transferred from the slab to the column, the shear
stress on the critical section is no longer uniformly distributed. The situation is shown in figures
below.

V,, represents the total vertical reaction to be transferred to the column.

M. (yWMs) represents the unbalanced moment to be transferred by shear.

V, causes shear stress distributed uniformly around the perimeter of the critical section, which
acting downward. M, causes additional loading, which add to shear stresses in one side and subtract
to the other side.

Shear stresses due to
Yv (Mu1 - Muz)

(a) Transfer of unbalanced moments to column.

(b) Shear stresses due to V.

v My — Myy) ¢
Je

(d) Total shear stresses.

Shear stresses due to shear and moment transfer at an interior column.
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Shear strasses

due lo y M,
"fuh'
(a) Transfer of moment at edge column
/V = V,,.'bod
(b] Shear stresses due to V.
Cc
| My
D o, BES
B -
A

{c) Shear stresses due to M,

|d} Total shear slressas

Shear stresses due to shear and moment transfer at an edge column.
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1
5||7,|!
I

/
——— SeCtion ulll“"“ II Shear
’ ¢c:>'| cAB‘ i stress
c

(a) Interior column

¢ + di2 ¢Col. ¢
c -
—A:—Q 5= 'A V(;D_l _1_VAB
' f
c,+d |
- , ;\Critipal
v | __g_2 section Shear
C|.Ccn. E stress
— CaB c
c
(b) Edge column

Assumed distribution of shear stress.

If there is a transfer of moment between the slab and column, a fraction of My, the factored slab
moment resisted by the column at a joint, shall be transferred by flexure (yiMsc), where ¢ shall be
calculated by:

1

Y= —— ——
1+ () 5
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For nonprestressed slabs, where the limitations on v,q and & in Table 8.4.2.3.4 are satisfied, ys shall
be permitted to be increased to the maximum modified values provided in Table 8.4.2.3.4, where v,
is calculated in accordance with Table 22.6.5.2, and vyq is the factored shear stress on the slab

critical section for two-way action due to gravity loads without moment transfer.

Table 8.4.2.3.4—Maximum modified values of y; for

nonprestressed two-way slabs

&t
Column Span (within
location direction Vyg Diap) Maximum modified v,
Comer | Fither | 5ol | 50,004 1.0
column direction
Perpen-
dicular to | <0.75¢v. | >0.004 1.0
the edge
Edge }e g
column Parallel ¢ 1.25 1.0
aratetto  <0.4v, | >0.010 2) [
the edge I+ — |,
3)\b,

) _ 1.25 L0
Interior El’[hl’f‘,l <044v, | 20.010 N <l
column direction 1+ 35,

2

The effective slab width (bgap) for resisting y{Ms. shall be the width of column or capital plus 1.5 h
of slab or drop panel on either side of column or capital.

Co

Transfer width

(a) Interior column.

C2

Transfer width

(b) Exterior column with moment transferred
parallel to the edge.
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The fraction of Mg not calculated to be resisted by flexure shall be assumed to be resisted by
eccentricity of shear.

For two-way shear with factored slab moment resisted by the column, factored shear stress (v,)
shall be calculated at critical sections. v, corresponds to a combination of v,y and the shear stress
produced by yyMsc.

The fraction of Mg transferred by eccentricity of shear (y,Msc) shall be applied at the centroid of the
critical section, where:

w=1-v¢

The stress distribution is assumed as illustrated in Figure above for an interior or exterior column.
The perimeter of the critical section, ABCD, is determined. The factored shear stress (vyg) and
factored slab moment resisted by the column (M) are determined at the centroidal axis c-c of the
critical section. The maximum factored shear stress may be calculated from:

_ Yv Msc CAB . _ Yv Msc CpB
VuAB = Vug + ] ’ Vu,cD = Vug — ]
c c

Jc = property of assumed critical section analogous to polar moment of inertia

Interior column:
_d(c; +d)° N (¢, + d)d® N d(c, + d)(c; + d)?

¢ 6 6 2
or

b,d®> db,’ b\
Je = 2( 1z T g ) T2 (7)
Edge column:

In case of moment about an axis parallel to the edge:

moment of area of the sides about AB

CaB = area of the sides

2(b,d) (2)
€AB = 3(b,d) + b,d

b,d® db,? b, 2 )
Jo= 2 lﬁ + 05t (b, d) (7 - CAB) l + (byd)cap

In case of moment about an axis perpendicular to the edge:

_ (bt dbe’ 4+ 2(byd) <b2)2
Je = 12 12 7\ 2
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Corner column:
b

(byd) (2)

4B = b d+ b,d

_ [b:sd®  db,’
Je = 12 12

+ (byd) (% - CAB) l + (bpd)c3p

At an interior support, columns or walls above and below the slab shall resist the factored moment
calculated by the equation below in direct proportion to their stiffnesses unless a general analysis is
made.

Msc = 0.07 [(un + 0.5 qLu) £2 ‘gnz - unI ‘52’ (‘gn,)z]
where qpy, L2, and €, refer to the shorter span.

The gravity load moment to be transferred between slab and edge column shall not be less than
0.3M,.

Calculation of factored shear strength v, (ACI 421.1R-4)
The maximum factored shear stress v, at a critical section produced by the combination of factored

shear force V and unbalanced moments My, and My, is:
Vy = &_l_vaMuxy +Yvy Mqu

Ac Jx Iy
A.: area of concrete of assumed critical section.
X, y: coordinate of the point at which v, is maximum with respect to the centroidal principal axes x
and y of the assumed critical section.
Mux, Myy: factored unbalanced moments transferred between the slab and the column about the
centroidal axes x and y of the assumed critical section, respectively

Yux» Yuy: fraction of moment between slab and column that is considered transferred by eccentricity

of shear about the axes x and y of the assumed critical section. The coefficients yyy and y,y are given

by:

1
Yvx = 1=
. 1+ (2) V1/ta
1
YVy =1-

1+ () Vealt
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where ¢y and €y, are lengths of the sides in the x and y directions of the critical section at d/2 from

column face.
Jx , Jy: property of assumed critical section, analogous to polar amount of inertia about the axes X
and y, respectively. In the vicinity of an interior column, Jy for a critical section at d/2 from column

face is:

€X13 fylfxlz é)xld3
Jy = d[6 T2 T s

[ X
L X
- ]
—l_ ,--:L-\\ -l— ---\\
I” ! \\ \\
"l ! \\\ \‘\
e S TV I TS
v 1 | v Mux ' ux !
- . : : U DN S T S
byl I X Ly . T
“ :-__i___: < Leaas : "
;"uv Myy!.”
X e 4 |
y y
Yo = 1 - 1 Yvx = same as for
u 1+ %.J!,H, interior column
1 ! 7., = same as for
Yvy = - —— 'Yv, =1 - vy
Y 1 +.§ e, 1+ %‘f(z‘u,) -0.2 edge column

{but Ty ® 0 when (t:I!,) < 0.2)

Equations for yy and y.y applicable for critical sections at d/2 from column face and
outside shear-reinforced zone. Note: 4 and 4 are projections of critical sections on
directions of principal x and y axes.

Properties of critical sections of general shape

This section is general; it applies regardless of the type of shear reinforcement used. Figure below
shows the top view of critical sections for shear in slab in the vicinity of interior column. The
centroidal x and y axes of the critical sections, V, My, and My, are shown in their positive
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directions. The shear force V, is acting at the column centroid; V,, My, and M,y represent the
effects of the column on the slab.

v, for a section of general shape, the parameters J and J, may be approximated by the second
moments of area I, and Iy given below. The coefficients yyx and yyy are given in Figure, which is
based on finite element studies.

The critical section perimeter is generally composed of straight segments. The values of A, Iy, and
Iy can be determined by summation of the contribution of the segments:

A, = de

£
Iy = dz [g (vi2 +yiy; + J’jz)]

£
Iy = dz |:§ (Xiz + xixj + XJZ)]

where X; , yi , Xj , and y; are coordinates of Points i and j at the extremities of the segment whose
length is ¢.

When the maximum v, occurs at a single point on the critical section, rather than on a side, the peak
value of v, does not govern the strength due to stress redistribution. In this case, v, may be
investigated at a point located at a distance 0.4d from the peak point. This will give a reduced v,
value compared with the peak value; the reduction should not be allowed to exceed 15%.

Moy Egu%:%zsguos

Vv, (UP)
0) AT 0/2 FROM COLUMN FACE

y
) AT d/2 FR TERMOST PERIPHER
> LINEdO; SHE&RO&'SDS OST PERIPHERAL

Critical sections for shear in slab in vicinity of interior column.
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Example:-
Check combined shear and moment transfer at an edge column 400 mm square column supporting
a flat plate slab system. Use f, =28 MPa |, fy =420 MPa
Overall slab thickness (t) =190 mm, (d = 154 mm).
Consider two loading conditions:
1- Total factored shear force V, = 125 kN, the factored slab moment resisted by the column
(Mg) =35 kN.m, and & = 0.004
2- Vy;=250 kN , My =70 kN.m, and & > 0.004

Solution:

d 154
bl = C1+§:400+ 72477 mm

b, =c,+d =400+ 154 =554 mm
bo=2b;+by=2x%x477 +554 =1508 mm

Edge column:
In case of moment about an axis parallel to the edge:

2(b,d) (%) (by)? (477)?
CAB= 2(b.d)+ b,d  Zb,+ b, 2 x477 £554 1009 mm
b,d® db,> b, 2 ,
Je = 2 l7+ T+ (1) (2= can) ] + (byd)cZp
477 x (154)3 154 x (477)3 477 2
= 2[ o + o + (477 x 154) (7—150.9) ]+ (554 x 154)(150.9)2

= 6146105085.12 mm*

Ac=(2b;+by)d=(2x477+554) x 154 = 232232 mm?
A.: area of critical section.

The design shear strength of the concrete alone (without shear reinforcement) at the critical section
d/2 from the face of the column is:

0.33,/ff = 0.33V28 = 1.746 MPa

2 2
0.17 (1 + —)JfT; = 0.17 (1 +I) X V28 =2.699 MPa

V. = min. B
|0083(2+a5d)ﬁ—0083(2+30X154)x 28 = 2.224 MP
> b, V=Y 1508 =< a
400
=—=1
Pe= 200

. v, = 1.746 MPa
oV = 0.75 x 1.746 = 1.31 MPa
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Loading condition (1) V=125 kN, Mg =35 kN.m, and & = 0.004
_ Vo 125%10° o
Vug = AT 232232 4

Span direction is perpendicular to the edge
0.75¢v,=0.75%x1.31=0.983 MPa > v,4=0.538 MPa & &=0.004 = v=1.0

Therefore, all of the factored slab moment resisted by the column (Ms) may be considered to be
transferred by flexure (i.e ys= 1.0 and y, = 0).

Check shear strength of the slab without shear reinforcement. Shear stress along inside face of the
critical section.

Vp = Ve

¢évh=1.31 MPa > v, =v,3=0.538 MPa O.K.

.. Shear reinforcement is not required

Loading condition (2) V=250 kN, Mg =70 kN.m, and & > 0.004

_ V, 250 x10°

= 4= 1077 MP
Ve = AT 7232232 a

Span direction is perpendicular to the edge

0.75¢v. =0.983 MPa < v,=1.077 MPa = vy <10

1 1
Yt = = = 0.618

@B 1)z

w=1-y=1-0.618 = 0.382

Check shear strength of the slab without shear reinforcement. Shear stress along inside face of the
critical section.
Vih = Ve
Yv Mgc Cap 0.382 x 70 x 10 x 150.9
= —— =1.077 = 1.734 MP
VuaB = Vug * J. + 6146105085.12 a
évp,=1.31 MPa < v,=1.734 MPa not O.K.

.. Shear reinforcement is required to carry excess shear stress.

Check maximum shear stress permitted with shear reinforcement.

v, <0054t
v, = 1.734 MPa < 0.75 x 0.5v28 = 1.984 MPa  O.K.

ve = 0.17/fZ = 0.17 x V28 = 0.9 MPa
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Let o¢v,=v,=1.734 MPa
¢ (Ve +Vs) = vy

Vu 1.734
= Vg = $—VC= ﬁ—09=1412MPa
A, £
Vg = vy
by s
A vs by s 1.412 x 1508 x 75 380.2 )
—3 = = = .
VT, 420 i
h = d = 154 =77 75
ere s = 2 = 5 = =~ mm

The required area of vertical shear reinforcement = 380.2 mm?

For trial, 388 mm vertical single-leg stirrups will be selected and arranged along three integral
beams.

effective depth = 154 mm > 16 x 8 =128 mm (d is at least 16dy). O.K.

A, provided is 3 x 3 x 50.2 = 451.8 mm? at the first critical section, at distance d/2 =~ 75 mm from
the column face.
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Example:
A flat plate floor has a thickness equals to 220 mm, and supported by 500 mm square columns

spaced 6.0 m on center each way. Check the adequacy of the slab in resisting punching shear at a
typical interior column, and provide shear reinforcement, if needed. The floor will carry a total
factored load of 17.0 kN/m? and the factored slab moment resisted by the column is 40 kN.m.

Use effective depth = 170 mm, f, = 420 MPa, and f; = 28.0 MPa.

Solution:-

The first critical section for punching shear is at distance d/2 =85 mm from the column face.
by=c;+d=500+170=670 mm

b, =c,+d=500+170=670 mm

Shear perimeter (b)) =2 by +2 b, =2 x 670 + 2 x 670 = 2680 mm

The design shear strength of the concrete alone (without shear reinforcement) at the critical section
d/2 from the face of the column is:

(0.33,/f; = 0.33v28 = 1.746 MPa
2 2
0.17 (1 + —)w/fc’ = 0.17 (1 +I) X V28 = 2.699 MPa

V. = min. B
|0083(2+a5d)ﬁ—0083(2+40X170)x 28 = 1.993 MP
" b, JVeT T 2680 - 4
500
:_:1
Pe =500

. v. = 1.746 MPa
¢Ve = 0.75 x 1.746 = 1.31 MPa

V,=17.0 x [ (6.0)*- (0.67)>] = 604.369 kN
V, _ 604.369 x 10°

- - = 1.327 MP
Vug = {4 T 72680 x 170 a
_ Yv " Msc " Cag
VyAB = Vyug T .
1 1
Ye= = = 0.6
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Example:
The flat plate slab of 200 mm total thickness and 160 mm effective depth is carried by 300 mm

square column 4.50 m on centers in each direction. A factored load of 370 kN and a factored slab
moment resisted by the column is 44 KN.m must be transmitted from the slab to a typical interior
column. Determine if shear reinforcement is required for the slab, and if so, design integral beams
with vertical stirrups to carry the excess shear. Use fy = 420 MPa, f. =30 MPa.

Solution:-
The first critical section for punching shear is at distance d/2 =80 mm from the column face.

bi=c;+d=
b,=c,+d=
Shear perimeter (b)) =2 by +2 b, =

The design shear strength of the concrete alone (without shear reinforcement) at the critical section
d/2 from the face of the column is:

(033 Jfl =

2
0.17(1+—) fr =

V. = min. B
I as d
k0.083 (2 + ) fl =
b,
300
=——7=1
Pe 300
V, =370 kN
Vu 370 x 103
Vyg = = 1.257 MPa

b,-d 1840 x 160
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Yield Line Analysis for Slabs

In a slab failing in flexure, the reinforcement will yield first in a region of high moment. When that
occurs, this portion of the slab acts as a plastic hinge, only able to resist its hinging moment. When
the load is increased further, the hinging region rotates plastically, and the moments due to
additional loads are redistributed to adjacent sections, causing them to yield. The bands in which
yielding has occurred are referred to as yield lines and divide the slab into a series of elastic plates.
Eventually, enough vyield lines exist to form a plastic mechanism in which the slab can deform
plastically without an increase in the applied load.

In the yield-line method for slabs, the loads required to develop a plastic mechanism are
compared directly to the plastic resistance (nominal strength) of the member.

IR T
5 2 ) /
(&) (a)

M= 3 (M)
/N e
| |
(b} "

; : Negative yield line
| | 7
| | ¥

( | i

Yield line ] 1:

1 {
w Positive yield line
(o) \"/"“

Simply supported uniformly loaded
one-way slab. M.

Fixed-end uniformly loaded one-way slab.
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Axes of rotations:

Yield lines form in regions of maximum moment and divide the slab into a series of elastic plate
segments. When the yield lines have formed, all further deformations are concentrated at the yield
lines, and the slab deflects as a series of stiff plates joined together by long hinges. The pattern of
deformation is controlled by axes that pass along support lines, over columns, and by the yield

lines. Because the individual plates rotate about the axes and/or yield lines, these axes and lines
must be straight.

Location of Axes of rotations and yield-lines:

a- Axes of rotation generally lie along lines of support (the support line may be a real hinge as
in simple supported, or it may establish the location of a yield line, which acts as a plastic
hinge and in continuous or fixed support).

b- Axes of rotation pass over any columns.

c- The slab segments can be considered to rotate as right bodies in space about these axes of
rotation.

d- Yield lines are generally straight.

e- Avyield line passes through the intersection of the axes of rotation of adjacent slab.

f- Avyield line passes under the point load (concentrated force).

Notations:

————————————— Axis of rotation
NN ———— Positive yield line
TN Negative yield line
JT7 7777 ST 7T Simply supported

X ) Fixed or continuous support
Free edge
_---Z-ZZ-ZZ-Z-Z-ZZ-Z: Beam
o ] Column
® Point load (concentrated force)
T  H HHH H HHH Line Ioad
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Isotropic slab: The slab is reinforced identically in all directions. The resisting moment, is the same
along any line regardless of its location and orientation.
Orthotropic slab: The resisting moments are different in two perpendicular directions.

Methods of solution:
Once the general pattern of yielding and rotation has been established by applying the guid lines the
location and the orientation of axes of rotation and the failure load for the slab can be established by
either of two methods.

- Equilibrium method.
- Virtual-work method.

Equilibrium method:

By this method, the correct axes of rotation and the collapse load for the correspond mechanism can
be found considering equilibrium of the slab segments. Each segment, studied as a free body, must
be in equilibrium under the action of the applied load, the moments along the yield lines, and the
reactions or shear force along the support line. Zero shear force and twisting moment along the
positive yield line, and only moment per linear length (m) is considered in writing equilibrium
equation.

Example
A square slab is simply supported along all sides and is to be isotropically reinforced. Determine the
ultimate resisting moment (m) per linear meter required just to sustain a uniformly distributed load

. 2
(q)lnkN/m- L YA N
| . - z
Solution

Conditions of symmetry indicate the yield line pattern as shown.

/

VA

Consider the moment equilibrium of any one of the identical slab segments about its support:

D M=0

quxkxlxlxk:m_inxz
22 2 3 2 V2 V2
qL

m=—
24
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Virtual-work method:

Since the moment and load are in equilibrium when the yield line pattern has formed, an increase in
load will cause the structure to deflect further. The external work done by the loads to cause a small
arbitrary virtual deflection must equal the internal work done as the slab rotates at the yield line to
accommodate this deflection.

External work done by loads:
External work (EW or W) equals to the product of external load and the distance through which the
point of application of the load moves. If the load is distributed over a length or an area rather than
concentrated, the work can be calculated as the product of the total load and the displacement of the
point of application of its resultant.

More complicated shapes may always be subdivided into components of triangles and
rectangles. The total external work calculated by summing the work done by loads on the individual
point of the failure mechanism.

Internal work done by resisting moment:

The internal work (IW or W;) done during the assigned virtual displacement is found by summing
the products of bending moment per unit length of yield line (m), the length of the yield line, and
the angle change at that yield line corresponding to the virtual displacement (6).

W = Z[mee]

For orthotropic slab (my # my) it is necessary to choose the axes of moment parallel to the
edges if possible

W = [(my 2,8, + (m, 2, 0,)]
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Example

Find the ultimate moment for the slab shown using the yield line theory. The slab is one way and
simply supported of length (L) and normally loaded by a uniformly distributed load (w).

Solution
W, =w XB XalL x%+wa X(1—- a)lL x%

wBL
e =3 X [a+ (1 - a)]
wBL
e:T
W= [m B ]+ [(m B x =)
i = X X — X X —
i=m ol m (1— o)L
W, = B[1+ !
TP LT = oL
We:Wi
wBL_ B[1+ 1 ]
2 Ml - oL
2mr1 1

W=?a+m]

to find the value of a, drive w with respect to a and equate the result to zero

dw_Zm[—l_I_ 1 ]—O
da 2 laz (1- )2
= a=0.5
2m[1+ 1 ]
. =—|—4+ ——— - = ——
=Tz los T 1= 05) m= g

oL

(1-a)L ——

1-a)L
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Example

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-
way slab shown in figure under a uniformly distributed load (w).

Solution

EW =| wx2.0x2.0x 2x L |x2= W
273 3

IW:(mXZX%jXZ:Zm

Example

b

—A— 2000 ——

——— 2000 —A—

e

—A— 2000 ——

—Af— 2000 ——#4—

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-
way slab shown in figure under a consentrated force (P) on the free corner.

Solution
EW=Px1=P

|W=(mx2x%}x2:2m

EW =IW
P=2m

—f— 2000 ———
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Example
By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete
two-way slab shown in figure under the load (P) (all dimensions are in mm).

Solution
W, =P x1=P

000

"

_26m
6
W - 13m
! 3
W; = 4333 m —
W, = W,

3
P
3P L L
m=73 1 2000 — 2000
m = 0.231P
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Example
The circular slab of radius r supported by four columns, as shown in figure, is to be isotropically
reinforced. Find the ultimate resisting moment (m) per linear meter required just to sustain a
concentrated factored load of P kN applied at the center of the slab.

| /_,-Column

Solution 5
W, =P x1=P

r 1
W, = X — X2 X =) X4=+2
1 (m \/E 1‘) \/—m

Example
The circular slab of radius 2 m supported by three columns, as shown in figure, is to be
isotropically reinforced. Find the ultimate resisting moment per linear meter (m) required just to
sustain a uniformly distributed load (q) equals 16 kN/m?.

| _Column
Solution
W, =
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Example
By using the yield line theory, determine the ultimate resisting moment (m) for an isotropic
reinforced concrete two-way slab shown in figure under a uniform load (q).

column

Solution w
We — m =
~— M | |
4 [
Wl _ L. T .U n
W, = W,
Example

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
isotropic reinforced concrete two-way slab to sustain a concentrated factored load of P kN applied

as shown in figure.
m
Co]um{) —— 20— E.D‘»i'» m

Solution b
W,=P x1=P

p
Wi == @
W, = W,
P= 11.333m
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Example
By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
orthotropic reinforced concrete two-way slab to sustain a uniformly distributed load and line load
applied as shown in figure.

q = 9 kN/m? (UDL)

Solution
p = 5 kN/m (line load)

_____ & 'X\ e | s Smm— S—
12m "y
[ule]
o~
07m
om I 2 O
[an]
o~
12m
2.0 40 m 20

1 1 1 1
W, =9 x[(Z X 2 x§x§x8>+(4 X 2 XEXZ)]+5 X [(2 x§x2)+ (4 xl)]

W, = 150 kN.m

W, = [0.7m X 4 x%] X2+ [(m X 8 x%) +(1.2m X 8 x%)] X 2
W; = 20.4m

W, =W,

150 = 20.4 m

m = 7.353 kN.m/m
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Example
By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an

isotropic reinforced concrete two-way slab to sustain a concentrated factored load of P kN applied

as shown in figure. 40 m

Solution
W, =P x1=P

50 m

W, = [(m x6x%)+(m x6x%)]

F(mxz x 2o moxe x 2) o (m ot x Lo m oo x 1)
Xz X = X6 X — X4 X = X6 X —

Wi =7m 4.0 m ‘ 4.0
P
i
10 A
)
= N
S
A
_ A
We - Wl N
P=7m
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Example

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
isotropic reinforced concrete two-way simply supported triangle slab shown in figure under a
uniform load (q).

Solution

W, = x(Lx xlxl)x3 _ L

e—qL X*273 X=3
qLX

W, = >

W, = W,
qLx 3mlL
2 X
_qXZ_qLZ
=76 T 5 ,
Example

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
isotropic reinforced concrete two-way simply supported square slab shown in figure under a
uniform load (q).

m
Tm

Solution
W, (L X x X _ 1) x4 L
=q X 273 2
e qz ( y - - X 2
qLX
W, = 3
4mL L ""”“LZAP
W1=(mXLX_)X4= 1 | 1
X X
m
We = Wl
3 - X
B qu _ qu
m = 6 24
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Example

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a
uniform load (q).

Solution
1 1 V3L
We=qx(L><xxEx§)x6 X=—=
W, = qLx
1 6mL
Wi=(m><L><—)><6=
X X
We = W
6mL
qLx= ——
_qXZ_qLZ
=" "8
Example

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
isotropic reinforced concrete two-way simply supported circular slab shown in figure under a
uniform load (q).

Solution

W, =

Wi =

We = W,
_qr

m=-g
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Example
By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a
concentrated factored load of P. ‘ I

Solution
W,=P x1=P
L
y= 3 > . — UELSL )
x=y-cos30 = —y | \ oo’ JGD =/
~ N \ : K ’/
G /
Jr \ 30° *
x
s
‘||' |_ 1l
1 \ ;
Wi=|mx15L x — | x3=3V3m N/
V33 N/
A

W, =W,
P=3V3m

P

=——= 0.192P
3v3
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Example
By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-
way slab shown in Figure under a concentrated factored load of P.

AN N A A A R R A R A A A A por
s //jr///. v v A AV A 7

i Y . / 4 7\\7
m
m - —
; P :
Solution i 2 s 21 }
WE=Px1=P
WI: mexl XZ—I— 4mel =4m s Iy yy / [/ 7\\7
2 2 m
m -
P=4m -
P
= M=— J, ) y - )
4
m=0.25P
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Example

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
orthotropic rectangulare reinforced concrete two-way slab, shown in Figure, to sustain a uniformly
distributed load equals 12 kN/m? Use the proposed positions for the positive and negative yield
lines as shown in Figure.

2.0

—+—2.0

Solution

1 1 1
W, =12 x[<2 X 2 xzx§x8)+(4 X 2 x§x2>]

W, = 160 kN.m

1 1 1
W, = [0.8m x4x§] X2+ [(1.2m x8><—> +(1.4m x8x—)] X 2

2 2
W, =24m
W. =W,
160 = 24 m

m = 6.667 kN.m/m

122



Reinforced Concrete Design Il

Example
By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an
isotropic reinforced concrete two-way polygon slab shown in figure under a uniform load (q).

lumn
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Prestressed Concrete

Prestressed concrete member can be defined as one in which there have been introduced internal
stresses of such magnitude and distribution that the stresses resulting from the given external
loading are counteracted to a designed degree.

Advantage of prestressed concrete
1- High strength steel and concrete.
2- Eliminated cracks in concrete.
3- Prestressed concrete more suitable for structure of long span and those carrying heavy loads.
4- Under dead load, the deflection is reduced, owing to the cambering effected of prestress
(useful for bridges and long cantilevers).

Disadvantage of prestressed concrete
1- Higher cost of materials.
2- More complicated formwork may be necessitated.
3- End anchorages and bearing plates are usually required.
4- Labor costs are greater.

Tendon: A stretched element used in a concrete member of structure to impart prestress to the
concrete. Generally, high tensile steel wires, bars, cables or strands are used as tendons.

Strand: A group of wires (7 wires).

Wires: individually drawn wires of 7 mm diameter;

Bar: a specially formed bar of high strength steel of greater than 20 mm diameter

Anchorage: A device generally used to enable the tendon to impart and maintain prestress the
concrete.
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- Slze (Diameter)
ype mm in.
Plain round wire 20-90 0.06 - 0.360

Indented wire 50-70 0.200 - 0.276 @ - ]

Sumi - Twist 7.3~13.0 0.276 ~0.512

Two-wire strand 29x2 0114 x2

Seven-wire strand 6.2~15.2 0.250 - 0.600

Nineteen-wire strand 17.8-218 0.700 ~ 0.860

Round bar 9.2 ~ 320 0.362 ~ 1.260
Threaded bar 23.0- 320 0.906 ~ 1.260 @ {:E:N;:!:::E:!:I
(NwIAAT)

Classifications and types
a- Externally and internally prestressed
- Externally by jacking against abutments, this cannot be accomplished in practice, because
even if abutment is stiff, shrinkage and creep in concrete y completely offset the strain.
- Internally accomplished by pretensioiny of steel.

b- Linear and circular prestressing
- Linear for beam and slabs, can be curved.
- Circular used for round tanks, silos, and pipes.

c- Pretensioning and postensioning
- Pretensioning: tendons tensioned before the concrete is placed, used in prestressing plants
where permanent beds are provided for such tensioning.
- Posttensioning: tendons are tensioned after the concrete has hardened.
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Prestressing methods: (a) post-tensioning by jacking against abutments; (b) post-tensioning with
jacks reacting against beam; (c) pretensioning with tendon stressed between fixed external
anchorages.

d- End-anchored and non-end-anchored tendons
- End-anchored: used in post tensioned, the tendons are anchored at their ends by means of
mechanical devices to transmit the prestress to the concrete.
- Non-end-anchored: used in pretensioned where the tendons have their perstress transmitted
to the concrete by their bond action near the ends. This type is limited to wires and strand of
small size.

e- Bounded and unbounded tendons
Bounded: denote those bounded throughout their length to the surrounding concrete.

Non-end-anchored: tendons may be either bounded or unbounded to the concrete by grouting.

f- Precast, cast-in-place, composite construction
- Precasting: involves the placing of concrete away from its final position. This permits better
control on mass production, and it is economical.
- Cast-in-place: concrete requires more form and false work.
- Composite: to precast pant of a member, erect it, casting the remaining portion in place.

g- Partial and full prestressing
- Full prestressing: the member is designed, so that, under working loads (service) there are
no tensile stresses in it.
- Partial: tension is produced under working load. Addition, mild steel bars are provided to
reinforce the tension zone.
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Stages of Loading:
1- Initial stage: the member is under prestress, but is not subjected to any superimposed
external loads.
2- Intermediate stage: during transportation and erection.
3- Final (service) stage: when the actual working load come on the structure.

Concrete:
High strength concrete is used (fc > 40 MPa) for the following reasons:
1- High bearing stresses needed at end anchorage in post-tensioned.
2- High bond offered by high strength concrete in pretension.
3- A smaller cross sectional area can be used to carry a given load.
4- Higher modulus of elasticity, this means a reduction in initial elastic strain under application
of prestress force and a reduction in creep strain. This results in a reduction in loss of
prestress.

Steel:

The tensile strengths of prestressing steels range from about 2.5 to 6 times the yield strengths of
commonly used reinforcing bars. The grade designations correspond to the minimum specified
tensile strength in ksi (MPa). For the widely used seven-wire strand, two grades are recognized in
ASTM A416: Grade 250 ksi (1725 MPa) and Grade 270 ksi (1860 MPa). For alloy steel bars, two
grades are used: Grade 150 ksi (regular) and Grade 160 ksi. Round wires may be obtained in Grades
235, 240, and 250 ksi.

High strength steel must be used due to the low prestressing force obtained by using ordinary steel
is quickly lost due to shrinkage and creep.

300
Grade 270 strand 72000
Grade 250 strand
Grade 250 wire
-1 1500
200
_ Grade 160 bar
]
8 &
] Grade 150 bar -1000 s
7]
100 _,_/ Grade 60 reinforcing bar
ffff -1500
1% extension
Il 0.7% extension
e+
0 || 1 1 i L Il i i L 1 L ! L L 0
0 50 100 150
Strain, 0.001

Typical stress-strain curves for prestressing steels.

127



Reinforced Concrete Design Il

Losses in prestressing force
The magnitude of prestress force will gradually decrease. The most significant causes are:-
1- Elastic shortening of concrete.
2- Concrete creep under sustained load.
3- Concrete shrinkage.
4- Relaxation of stress in steel.
5- Friction loss between the tendons and the concrete during stressing operation.
6- Loss due to slip of steel strands.

Summary of losses:

Pretensioned beam Post-tensioned beam

a- Before transfer

- Shrinkage 3%

b- At transfer

- Elastic shortening 3% | - Elastic shortening 1%
- Anchor slip 2%
- Friction 2%

c- After transfer

- Shrinkage 4% | - Shrinkage 4%

- Creep 7% - Creep 4%

- Steel relation 3% | - Steel relation 3%

total 20% 16%

Analysis: to determine the stresses in the steel and concrete when the shape and size of a section are
already given or assumed.

Design: to determine a suitable section for a given loading and stresses.
The analysis is a simpler operation than design.

The fyy is the ultimate strength of the steel and f, is the yield strength.
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Stages of investigation of prestressed beam:

Initial stage
Initial force (P;) plus beam weight (wg):

Stress at top _—R PRec MC
YA [ [

Stress at bottom f _~R_R-eq M, -c,
SN

Service stage
The beam under effective prestressing force (Pe) plus weight of the beam plus service load (live

load plus weight of cast-in-situ concrete):

Stress at top f P Pecc Mg M-c
ts
A | | |
Stress at bottom f _—Pe_Pe'e'Cb+Mg'Cb+Ms-Cb
STA | | |

Permissible stresses in prestressed concrete flexural members

For calculation of stresses at transfer of prestress, at service loads, and at cracking loads, elastic
theory shall be used with assumptions (a) and (b):

(a) Strains vary linearly with distance from neutral axis.

(b) At cracked sections, concrete resists no tension.

Classification of prestressed flexural members

Prestressed flexural members shall be classified as Class U, T, or C in accordance with Table
24.5.2.1, based on the extreme fiber stress in tension f; in the precompressed tension zone calculated
at service loads assuming an uncracked section.

Table 24.5.2.1 - Classification of prestressed flexural members based on f;

Assumed behavior Class Limits of f;
uncracked U fo < 0.62 /!
Transition between uncracked

T 0.62 /f! <f. < 1.0./f!
and cracked \/_C ¢ \/_C
cracked C fo > 1.0,/f

Prestressed two-way slabs shall be designed as Class U
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Three classes of behavior of prestressed flexural members are defined. Class U members are
assumed to behave as uncracked members. Class C members are assumed to behave as cracked
members. The behavior of Class T members is assumed to be in transition between uncracked and
cracked. The serviceability requirements for each class are summarized in Table R24.5.2.1. For
comparison, Table R24.5.2.1 also shows corresponding requirements for nonprestressed members.

Table R24.5.2.1—Serviceability design requirements

and cracked

Prestressed
Class U Class T Class C Nonprestressed
Assumed behavior Uncracked Transition between uncracked Cracked Cracked

Section properties for stress calcula-

Gross section

Gross section

Cracked section

No requirement

tion at service loads 24.52.2 24522 24523

Allowable stress at transfer 2453 2453 24.53 No requirement
Allowable compressive SU‘ESS. based 2454 24.5.4 No requirement No requirement
on uncracked section properties

Tensile stress at service loads < 0.62 /f; 0.62/f. <f. < 1.04/f¢ No requirement No requirement

24.5.2.1

24.2.3.8,242.42
Gross section

24.2.3.9,24.2.4.2
Cracked section, bilinear

24.2.3.9,24.2.42
Cracked section, bilinear

24.23,242.4.1

Deflection calculation basis . ..
Effective moment of inertia

Crack control No requirement No requirement 243 24.3

Computation of Af,; or f; for crack
control

Cracked section analysis MI(4; » lever arm), or 2/3f,

Side skin reinforcement No requirement No requirement 9.72.3 9.7.2.3

For Class U and T members, stresses at service loads shall be permitted to be calculated using the
uncracked section.

For Class C members, stresses at service loads shall be calculated using the cracked transformed
section.

Permissible concrete stresses at transfer of prestress

Calculated extreme concrete fiber stress in compression immediately after transfer of prestress, but
before time-dependent prestress losses, shall not exceed the limits in Table 24.5.3.1.

Table 24.5.3.1—Concrete compressive stress
limits immediately after transfer of prestress

Concrete compressive stress
Location limits
End of simply-supported members 0.70f
All other locations 0.607
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Calculated extreme concrete fiber stress in tension immediately after transfer of prestress, but
before time-dependent prestress losses, shall not exceed the limits in Table 24.5.3.2, unless
permitted by 24.5.3.2.1.

Table 24.5.3.2—Concrete tensile stress limits
immediately after transfer of prestress, without
additional bonded reinforcement in tension zone

Location Concrete tensile stress limits
Ends of simply-supported members 0.50 J fei
All other locations 0.25 \/fc'i

Permissible concrete compressive stresses at service loads

For Class U and T members, the calculated extreme concrete fiber stress in compression at service
loads, after allowance for all prestress losses, shall not exceed the limits in Table 24.5.4.1.

Table 24.5.4.1—Concrete compressive stress
limits at service loads

Concrete compressive stress
Load condition limits
Prestress plus sustained load 0.451
Prestress plus total load 0.607
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Example

A prestress rectangular box beam post-tensioned by straight high tensile steel wires of total area As
mm?, equally divided between the top and bottom flanges and placed on center of flanges. The
forces are initially stressed to 850 N/mm? and the total losses of prestress is 15%. The beam is
required to carry a uniformly distributed superimposed load of 4.5 kN/m in addition to its own
weight, over a span of 15 m. If the concrete stresses are not to exceed 17.5 N/mm? in compression
and 1 N/mm? in tension (during the prestressing operation and working load). Calculate the max.

and min. A of steel, which may be used. U = 25 kN/m?®
s y S¢ e | — 400 —

Solution § Lo e 'Oq-_
A =400 x 750 — 240 x 510 = 177600 mm? } o <

400 x (750)% — 240 x (510)° - “
= (750) P (510) = 1.140948 x 10'° mm* = 1 o
Wy = 177600 x 10° x 25 = 4.44 kN/m 4
Note: + ’
a- check compressive stress at initial stage. S _ ) o g0

b- check compressive stress at top and tensile stress at bottom at servic 4

a- Immediately after prestressing
prestressing force before losses = 850 A
initial compressive stress =

P,
fi =foi = &
175 < 2850 XA A. < 3656.5 mm?
—17. — > :
= 7177600 s = mm

b- Service stage (final stage)
1- Top fiber

Prestressing stress after losses =

Final stress @ top =

2- Bottom fiber:
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Example

A simply supported prestressed beam, of span 8 m and its cross section is shown in Figure, is

carrying a live load equals to 12 kN/m. Compute the required prestressing forces for:
a) Tob fiber stress equals to zero under beam weight plus prestressing force only.

b) Bottom fiber stress equals to zero under full load.

Use . = 25 kN/m®, I = 120 x 10° mm*, A4 = 150000 mmZ.

50 mm

Solution

¢, =300 mm ¢, =600 mm e =550 mm

W, =A-y =150000x10°x25=3.75kN/m

wy-L? 3.75x(8)
9~ 8 -

M =30.0 kN.m

—A— 600 mm Z
300 mm

a) Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber

_—P +Pe'e'ct _Mg'ct

A | |
_—Px10°  Px10°x550x300 30x10°x300
150000 120x10° 120x10°
—-P Px11 30
0=—+ -=
15 80 4

= P=75x17=105882 kN

b) Bottom fiber stress equals to zero under full load
w2 12x(8)

M, 3 =96 kN.m
f :_Pe _Pe'e'cb + Mg.cb + Ms'cb
A I | I
o_ ~Px10° Px10°x550x600 30x10°x600 96x10°x600
150000 120x10° 120x10° 120x10°
0=—P_ Pl 15,48
15 0
p=583x120 _194390kN
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Example

A simply supported prestressed beam, of span 8 m and its cross section is shown in Figure, is
carrying a live load equals to 10 kN/m. Compute the required prestressing forces for:
a) Top fiber stress equals to zero under beam weight plus prestressing force only.

b) Bottom fiber stress equals to zero under full load.
Use vc = 25 kKN/m®, I = 10 x 10° mm*, A, = 100000 mm?,

Solution

c, =250 mm c, =600 mm e =550 mm
w, =A-y=100000x10"x25=25kN/m

8

Ly
< @

230

=— 500 mm

=
=
3
w_ - L2 2
M, = —2 :2'52(8) =20.0 kKN.m \_‘
i

a) Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber

__Pe |:>e.e.(;t_|\/|g~Ct

ti +
A I |
0 —Px10° N P x10°% x 550x 250 20x10° x 250
100000 10x10° 10x10°

-P Px1375 5
= + —

0 =
100 100 10

= P=133333kN

b) Bottom fiber stress equals to zero under full load

w,-L* _10x(8)

M, = 58 =80 kKN.m
f :_Pe_Pe'e Cb_’_Mg.Cb_i_Ms'Cb
A I | I

—P><103_P><103><55O><600 20x10°x600 80x10°x600

= + +
100000 10x10° 10x10° 10x10°
-P Px33 12 48

=—= o+ —
100 100 10 10

= P=139535kN

134



Reinforced Concrete Design Il

Example
A double-T simply supported concrete beam its cross section is shown in Figure, is prestressed

with 2 tendons each 400 mm?. Determine the allowable service load.
Use span = 12 m, i = 1300 MPa, f.’ = 40 MPa, v, = 25 kN/m®.

1200 mm

HI0~

400

As =400 As =400

=100 7"-1001’-
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Example

A prestressed simply supported 15 m span beam with rectangular box section is post-tensioned by
straight high tensile steel wires as shown in Figure. The prestressing wires are placed at the center
line of the flanges and initially stressed to 850 N/mm?. The beam is required to carry a uniformly
distributed superimposed load of 4.5 kN/m in addition to its weight. If the concrete stresses are not
to exceed 17 MPa in compression and 1 MPa in tension at service stage, calculate the range of the
total prestressing wires area required. Ignore prestressing force losses in your answer. (y. = 24
kN/m®).

- 400

%
& ®
+ As
[
2
i 2As
& L)
? |
B0 B0
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Example

A simply supported prestressed beam, of span 10 m and its cross section is shown in Figure, is

carrying a live load equals to 10 kN/m. Compute the required prestressing forces for:
a) Top fiber stress equals to zero under beam weight plus prestressing force only.
b) Bottom fiber stress equals to zero under full load.

Use yc = 25 kN/m®, I = 150 x 10° mm*, A, = 100000 mmZ.

50 mm

—f— 600 mm Z
300 mm
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Example
A simply supported prestressed concrete beam, of span 10 m and its cross section is shown in
Figure, is carrying a service load equals to 12 kN/m. Compute the required prestressing forces
for:
a) Top fiber stress equals to zero under beam weight plus prestressing force only.
b) Bottom fiber stress equals to zero under full loads.
Use yc= 24 kN/m?, | = 12x10° mm*, A4 = 120000 mm?.

0 mm

Solution
¢, =220 mm c, =680 mm e=610 mm =

w, = A-y =100000x10° x 24 = 2.4 kN /m

v W'l _24x(10

2
. F 300 km
8

a) Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber
_—P + P-e-c _ Mg G

fti -
A | |
0 ~Px10° Px10°x610x220 30x10°x220
120000 12x10° 12x10°
o —P Px1342 66

+ [ —
120 120 12
= P=192982 kN

b) Bottom fiber stress equals to zero under full loads
w,-L?  12x(10)

M, = - =150 kN.m
fb — _Pe _ Pe.e.cb + Mg .Cb + Ms.cb
A | | |
- Px10° B Px10° x610x 680+ 30x10° ><680+150><106 x 680
120000 12x10° 12x10° 12x10°
o_—P _Px4.148 204 102

+
120 120 12 12

= P=237762 kN
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Example
A cantilever prestressed concrete beam, of span 6 m and its cross section is shown in Figure, is
carrying a service load equals to 12 kN/m. Compute the required prestressing forces for:
a) Bottom fiber stress equals to zero under beam weight plus prestressing force only.
b) Top fiber stress equals to zero under full loads.

Use yc= 25 kKN/m®, | = 18x10° mm*, Ag = 120000 mm?. . ] ‘
T g 4 . @ g[-\ u :
i £
o
o) S 4 o
~ L 2
v O 4 T
(=]
. (=]
4 . i ) ’ . - =
Solution s @ R l

¢, =600 mm ¢, =400 mm e =480 mm

w, =A-y =120000x10°x25=3.0 kKN/m

v oW L 3.0x(6)

. =54.0 kN.m
2

a) Bottom fiber stress equals to zero under beam weight plus prestressing force only at bottom

fiber
fbi :__P+ P.e'cb _ Mg Gy
A | |
o ~Px10° Px10°x480x400 54x10°x400
120000 18x10° 18x10°

= P =514.286 kN

b) Top fiber stress equals to zero under full loads

2 2
M =Wk =12x2(6) 216 kN.m

¢ _=P_Pec Mo M,
A I | |

_—Px10° Px10°x480x600 54x10°x600  216x10°x600
120000 18x10° 18x10° 18x10°

= P=369.863kN
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Example
A simply supported rectangular prestressed concrete beam, of span 13 m and its cross section as

shown in figure, is carrying a live load equals to 30 kN/m in addition to its weight, compute the

following stresses and compare it with ACI allowable stress:
a) Bottom fiber stress at support in initial stage.

b) Top fiber stress at mid span in final stage.
Use y, = 24kN/m3, As = 600 mm?, initial stress of the prestressed steel = 1200 MPa, total losses

is 20%, f,; = 22 MPa, and f." = 28 MPa

————— Q-
As
€
e
o
<
(90
e
E _._._._._._._. . A
o A
o
[ee]
IS
IS
o
<
o™
3 As
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