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COURSE SYLLABUS 

 

- Structural system and load paths 

- Types of slabs 

- Design of one-way slab 

- Minimum slab thickness of two-way slabs 

- Design of two-way slab  

- General design concept of ACI Code 

- Direct design method 

- Total static moment in flat slab 

- Equivalent frame method 

- Shear in slab system with beams 

- Shear strength in flat plate and flat slab (one way and punching shear) 

- Transfer of moment at columns 

- Yield line theory 

- Prestressed concrete 

- Design of stair case 
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Structural system and load paths 

The structural system shall include (a) through (g), as applicable: 

(a) Floor construction and roof construction, including one-way and two-way slabs 

(b) Beams and joists 

(c) Columns 

(d) Walls 

(e) Diaphragms 

(f) Foundations 

(g) Joints, connections, and anchors as required to transmit forces from one component to another. 

 

Load factors and combinations 

According to ACI 318M-14, the required strength (U) shall be at least equal to the effects of 

factored loads in Table 5.3.1, with exceptions and additions in 5.3.3 through 5.3.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

All members and structural systems shall be analyzed for the maximum effects of loads 

including the arrangements of live load in accordance with 6.4. 

 

Strength 

Design strength of a member and its joints and connections, in terms of moment, axial force, shear, 

torsion, and bearing, shall be taken as the nominal strength (Sn) multiplied by the applicable 

strength reduction factor (ø). 

Structures and structural members shall have design strength at all sections (ø Sn) greater 

than or equal to the required strength (U) calculated for the factored loads and forces in such 

combinations as required by ACI-Code. 

 

design strength   ≥   required strength 

ø Sn ≥ U 
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Types of slabs  

1. One-way slab: Slabs may be supported on two opposite sides only, in such case, the 

structural action of the slab is essentially "one-way", and the loads are carried by the slab in 

the direction perpendicular to the supporting beams, Figure (1-a). 

2. Tow-way slab: Slabs have beam or support on all four sides. The loads are carried by the 

slab in two perpendicular directions to the supporting beams, Figure (1-b). 

3. If the ratio of length to width of one slab panel is larger than 2, most of the load is carried by 

the short direction to the supporting beams, and one-way action is obtained in effect, even 

though supports are provided on all sides, Figure (1-c). 

4. Concrete slab carried directly by columns, without the use of beams or girders, such slab is 

described by flat plates, and are commonly used where spans are not large and loads are not 

heavy, Figure (1-d). 

5. Flat slabs are also beamless slab with column capitals, drop panels, or both, Figure (1-e). 

6. Two–way joist systems (grid slab), to reduce the dead load of solid-slab, voids are formed in 

a rectilinear pattern through use of metal or fiberglass form inserts. A two–way ribbed 

construction results (waffle slab). Usually inserts are omitted near the columns, Figure (1-f). 

 

 

One-way slabs: slabs reinforced to resist flexural stresses in only one direction. 

 

Two-way slabs: reinforced for flexure in two directions. 

 

Column capital: enlargement of the top of a concrete column located directly below the slab or 

drop panel that is cast monolithically with the column. 

 

Drop panel: projection below the slab used to reduce the amount of negative reinforcement over a 

column or the minimum required slab thickness, and to increase the slab shear strength. 

 

Panel: slab portion bounded by column, beam, or wall centerlines on all sides. 

 

Column strip: a design strip with a width on each side of a column centerline equal to the lesser of 

0.25 ℓ2 and 0.25 ℓ1. A column strip shall include beams within the strip, if present. 

 

Middle strip: a design strip bounded by two column strips. 
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(a) 

 

(b) 

 

(d) 

 

(c) 

 

(e) 

 

(f) 

 

Figure (1) Types of slabs (a) one-way slab, (b) two-way slab, (c) one-way slab, (d) flat 

plate, (e) flat slab, (f) two–way joist 
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Size and projection of drop panel 

 

 

 

 

 

 

 

 

 

In computing required slab reinforcement, the thickness of drop panel below the slab shall 

not be assumed greater than one – quarter the distance from edge of drop panel to edge of column 

or column capital. 

 

The column capital is normally 20 to 25% of the average span length. 
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Design of one–way slab systems 

At point of intersection (P) the deflection must be the same 

   
      

      
     

       
 

       
   

       
 

       
 

   
  

  
   

  
 

  
  

     
  

  
           

  

  
                   

 

 

 

 

 For purposes of analysis and design a unit strip of such a slab cut out at right angles to the 

supporting beam may be considered as a rectangular beam of unit width (1.0 m) with a depth (h) 

equal to the thickness of the slab and a span (La) equal to the distance between supported edges. 

 

Simplified method of analysis for one-way slabs 

It shall be permitted to calculate Mu and Vu due to gravity loads in accordance with Section 6.5 for 

one-way slabs satisfying (a) through (e): 

(a) Members are prismatic 

(b) Loads are uniformly distributed 

(c) L ≤ 3D 

(d) There are at least two spans 

(e) The longer of two adjacent spans does not exceed the shorter by more than 20 percent 

 

Mu due to gravity loads shall be calculated in accordance with Table 6.5.2. Moments 

calculated shall not be redistributed. 

 

For slabs built integrally with supports, Mu at the support shall be permitted to be calculated 

at the face of support. 

 

Floor or roof level moments shall be resisted by distributing the moment between columns 

immediately above and below the given floor in proportion to the relative column stiffnesses 

considering conditions of restraint. 

 

 

 

 

 

 

La 

 Lb 

 P 
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A minimum area of flexural reinforcement (As,min) shall be provided in accordance with 

Table 7.6.1.1. 

 

 

 

Table 7.6.1.1—As,min for nonprestressed one-way slabs 

Reinforcement type 
fy 

(MPa) 

As,min 

(mm) 

Deformed bars < 420 0.0020 Ag 

Deformed bars or welded 

wire reinforcement 
 420 Greater of: 

           

  
    

0.0014 Ag 
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 Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement 

should be provided in a structural slab. ACI Code specifies the minimum ratios of reinforcement 

area to gross concrete area, as shown in Table 24.4.3.2. 

 

Table 24.4.3.2—Minimum ratios of deformed shrinkage and temperature 

reinforcement area to gross concrete area 

Reinforcement type 
fy 

(MPa) 
Minimum reinforcement ratio 

Deformed bars < 420 0.0020 

Deformed bars or welded 

wire reinforcement 
 420 Greater of: 

           

  
 

0.0014 

 

The spacing of deformed shrinkage and temperature reinforcement shall not exceed the 

lesser of  5h  and 450 mm. 

 

 

Vu due to gravity loads shall be calculated in accordance with Table 6.5.4. 

 

 

 

 

 

 

 

 

 

For slabs built integrally with supports, Vu at the support shall be permitted to be calculated 

at the face of support. 

 

 

Minimum slab thickness 

For solid nonprestressed slabs not supporting or attached to partitions or other construction likely to 

be damaged by large deflections, over all slab thickness (h) shall not be less than the limits in Table 

7.3.1.1, unless the calculated deflection limits of 7.3.2 are satisfied. 
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For fy other than 420 MPa, the expressions in Table 7.3.1.1 shall be modified. 

 

For nonprestressed slabs not satisfying 7.3.1 and for prestressed slabs, immediate and time-

dependent deflections shall be calculated in accordance with 24.2 and shall not exceed the limits in 

24.2.2. 
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Design of two-way slab systems 

Reinforced concrete slabs (R. C. Slabs) are usually designed for loads assumed to be uniformly 

distributed over on entire slab panel, bounded by supporting beam or column center-lines. 

 

General design concept of ACI Code 

1- Imagining vertical cuts are made through the entire building along lines midway between 

columns. 

2- The cutting creates a series of frames whose width center lines lie along the column lines. 

3- The resulting series of rigid frames, taken separately in the longitudinal and transverse 

directions of the building. 

4- A typical rigid frame would consist of: 

a- The columns above and below the floor. 

b- The floor system, with or without beams, bounded laterally between the center lines of 

the two panels. 

5- Two methods of design are presented by the ACI Code: 

a- Direct design method (DDM): An  approximants method using moment and shear 

coefficients, Section 8.10 in ACI Code.  

b- Equivalent Frame method (EFM): More accurate using structural analysis after 

assuming the relative stiffness of the members, Section 8.11 in ACI Code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (2) Floor plan. 
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  Figure (3) Location of longitudinal and transverse frames. 

. 
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Direct design method (DDM) 

Moments in two-way slabs can be found using a semi-empirical direct design method subject to the 

following Limitations: 

1- There shall be at least three continuous spans in each direction. 

2- Successive span lengths measured center-to-center of supports in each direction shall not differ 

by more than one-third the longer span. 

3- Panels shall be rectangular, with the ratio of longer to shorter panel dimensions, measured 

center-to-center of supports, not to exceed 2. 

4- Column offset shall not exceed 10 percent of the span in direction of offset from either axis 

between centerlines of successive columns. 

5- All loads shall be due to gravity only and uniformly distributed over an entire panel. 

6- Unfactored live load shall not exceed two times the unfactored dead load. 

7- For a panel with beams between supports on all sides, Eq. (8.10.2.7a) shall be satisfied for 

beams in the two perpendicular directions. 

 

      
     

 

     
                                               

 

 1: is defined as the span in the direction of the moment analysis, and 

 2: as the span in lateral direction. 

Spans  1&  2 are measured to column centerlines. 

αf1 and αf2 are calculated by: 

 

    
     
     

 

 

The direct design method consists of a set of rules for distributing moments to slab and 

beam sections to satisfy safety requirements and most serviceability requirements simultaneously. 

Three fundamental steps are involved as follows: 

(1) Determination of the total factored static moment (Section 8.10.3). 

(2) Distribution of the total factored static moment to negative and positive sections (Section 

8.10.4). 

(3) Distribution of the negative and positive factored moments to the column and middle strips and 

to the beams, if any (Sections 8.10.5 and 8.10.6). The distribution of moments to column and 

middle strips is also used in the equivalent frame method (Section 8.11). 
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(1) Total static moment of factored loads (Mo) 

Mo: Total static moment in a panel (absolute sum of positive and average negative factored 

moments in each direction). 

 

   
      

 

 
 

Where  n: Clear span in the direction of moment used. 

 n is defined to extend from face to face of the columns, capitals, brackets, or walls but is not to be 

less than 0.65  1. 

Mo for a strip bounded laterally by the centerlines of the panel on each side of the centerline of 

support. 

  2: Width of the frame. 

 

Circular or regular polygon-shaped supports shall be treated as square supports with the 

same area. 

 

 

 

 

 

 

 

 

 

 

 

(2) Longitudinal distribution of Mo 

(a) Interior spans: Mo is apportioned between  the critical positive and negative bending sections 

according to the following ratios:-  

Neg. Mu = 0.65 Mo 

Pos. Mu = 0.35 Mo 

The critical section for a negative bending is taken at the face of rectangular supports, or at the 

face of an equivalent square support having the same sectional area.       

 

(b) End span: In end spans, the apportionment of the total static moment (Mo) among the three 

critical moment sections (interior  negative, positive, and exterior negative) depends upon the 

flexural restraint provided for the slab by the exterior column or the exterior wall and upon the 

presence or  absence of beams on the column lines. End span, Mo shall be distributed in 

accordance with Table 8.10.4.2. 
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Note: At interior supports, negative moment may differ for spans framing into the common support. 

In such a case the slab should be designed to resist the larger of the two moments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) Lateral distribution of moments 

After the moment Mo distributed on long direction to the positive and negative moments, then these 

moments must distribute in lateral direction across the width, which consider the moments constant 

within the bounds of a middle strip or column strip. The distribution of moments between middle 

strips and column strip and beams depends upon: 

1. The ratio  2/  1. 

2. The relative stiffness of the beam and the slab. 

3. The degree of torsional restraint provided by the edge beam. 

 

 

Figure (4) Longitudinal distribution of Mo 

. 

end span                   interior span          interior span                end span 

. 

 n 

. 
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The column strip shall resist the portion of interior negative Mu in accordance with Table 

8.10.5.1. 

 

 

 

 

 

 

 

 

 

 

 

The column strip shall resist the portion of exterior negative Mu in accordance with Table 

8.10.5.2. 
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The column strip shall resist the portion of positive Mu in accordance with Table 8.10.5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A convenient parameter defining the relative stiffness of the beam and slab spanning in 

either direction is: 
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 Where Ecb, Ecs are the moduli of elasticity of beam and slab concrete (usually the same), 

respectively. Ib and Is are the moment of inertia of the effective beam and slab, respectively. The 

flexural stiffnesses of the beam and slab are based on the gross concrete section. Variation due to 

column capitals and drop panels are neglected (in applying DDM). 

 

For monolithic or fully composite construction supporting two-way slabs, a beam includes 

that portion of slab, on each side of the beam extending a distance equal to the projection of the 

beam above or below the slab, whichever is greater, but not greater than four times the slab 

thickness. 
 

 

 

 

 

 

 

 

 

 

The moment of inertia of flanged section  

 

      
    

  
 

            (
  

  
)                               

  

  
                         

  

 
     

 

 

 The relative restraint provided by the torsional resistance of the effective transverse edge 

beam is reflected by the parameter ßt, defined by: 

 

    
    

       
  

 

    
 

 

C: The torsional rigidity of the effective transverse beam, which is defined as the largest of the 

following three items:- 

a- A portion of the slab having a width equal to that of the column, bracket, or capital in the 

direction in which moment are taken, c1 (case of no actual beam). 

b- The portion of the slab specified in (a) plus that part of any transverse beam above and below 

the slab. 

c- The transverse beam defined as before (in calculating αf). 
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 The constant C is calculated by dividing the section into its component rectangles, each 

having smaller dimension x and larger dimension y and summing the contributions of all the parts 

by means of the equation: 

 

   ∑(        
 

 
)
    

 
 

 

 

 

 

 

 

 The subdivision can be done in such a way as to maximize C. 
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For slabs with beams between supports, the slab portion of column strips shall resist column 

strip moments not resisted by beams. Beams between supports shall resist the portion of column 

strip Mu in accordance with Table 8.10.5.7.1. 

 

 

 

 

 

 

 

 The portion of the moment not resisted by the column strip is proportionately assigned to the 

adjacent half-middle strips. Each middle strip is designed to resist the sum of the moment assigned 

to its two half-middle strips. A middle strip adjacent and parallel to wall is designed for twice the 

moment assigned to the half-middle strip corresponding to the first row of interior support. 

 

If the width of the column or wall is at least (¾)ℓ2, negative Mu shall be uniformly 

distributed across ℓ2. 

 

Minimum flexural reinforcement in nonprestressed slabs, As,min, shall be provided near the 

tension face in the direction of the span under consideration in accordance with Table 8.6.1.1. 

 

Table 8.6.1.1—As,min for nonprestressed two-way slabs 

Reinforcement type 
fy 

(MPa) 

As,min 

(mm) 

Deformed bars < 420 0.0020 Ag 

Deformed bars or welded 

wire reinforcement  420 Greater of: 

           

  
    

0.0014 Ag 

 

 

Minimum spacing of reinforcement 

For parallel nonprestressed reinforcement in a horizontal layer, clear spacing shall be at least the 

greatest of 25 mm, db, and (4/3)dagg. 

 

For nonprestressed solid slabs, maximum spacing (s) of deformed longitudinal 

reinforcement shall be the lesser of 2h and 450 mm at critical sections, and the lesser of 3h and 450 

mm at other sections. 
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Example 1 

For the the longitudinal interior frame (Frame A) of the falt plate floor shown in Figure,by using 

the Direct Design Method, find: 

a. Longitudinal distribution of the total static moment at factored loads. 

b. Lateral distribution of the moment at exterior support. 

 

Slab thickness = 200 mm,   d = 165 mm 

qu = 15.0 kN/m
2
 

All edge beams = 250×500 mm 

All columns = 500×500 mm 

fc
'
 = 25 MPa,     fy = 400 MPa 

 

Solution 

a.) 

for Frame A 

ℓ1 = 5000 mm 

ℓ2 = 6400 mm 

ℓn = ℓ1 –500 = 5000 – 500 = 4500 mm 

 

   
      

 

 
 

   
             

 
 

       = 243 kN.m 

 

Longitudinal distribution of total static moment at factored loads 

Interior span: 

Neg. Mu = 0.65 Mo 

Pos. Mu = 0.35 Mo 

 

End span: 
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b.) 

Negative moment at exterior support 

Total moment = 72.9 kN.m 

 

      

 

for edge beam 

choose the section of edge beam 
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   
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0.5 Mo 

121.5 kN.m 

0.3 Mo 

72. 9 kN.m 0.7 Mo 

170.1 

0.35 Mo 

85.05 kN.m 

0.65 Mo 

157.95 kN.m 
0.65 Mo 

157.95 kN.m 

Longitudinal distribution of total static moment at factored loads 
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scs

cb
t

IE2

CE




           ;           cscb EE   

263.0
.66742666666662

.6672247854166

I2

C

s

t 





  

 
  

  
  

   

   
      

 
  

  
⁄  1.0 1.28 2.0 

0.0t   1.00 1.00 1.00 

263.0t    0.9737  

5.2t   0.75 0.75 0.75 

 

Negative moment at column strip = 72.9×0.9737 = 70.983  kN.m 

Negative moment at middle strip = 72.9-70.983 = 1.917  kN.m 

 

 

Example 2 

For the the longitudinal interior frame of the falt plate floor shown in Figure, by using the Direct 

Design Method, find: 

a. Longitudinal distribution of total static moment at factored loads. 

b. Lateral distribution of moment at exterior panel. 

 

Slab thickness = 180 mm,   d = 150 mm 

qu = 14.0 kN/m
2
 

All edge beams = 250×500 mm 

All columns = 400×400 mm 

fc
'
 = 24 MPa,     fy = 400 MPa 

 

 

Solution 

a.) 

for Frame A 

ℓ1 = 5000 mm 

ℓ2 = 6500 mm 

ℓn = ℓ1 –400 = 5000 – 400 = 4600 mm 
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       = 240.695 kN.m 

 

Longitudinal distribution of total static moment at factored loads 

Interior span: 

Neg. Mu = 0.65 Mo 

Pos. Mu = 0.35 Mo 

 

End span: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b.) 

exterior panel 

1- Negative moment at exterior support 

Total moment = 72.209 kN.m 

 

      

for edge beam 

choose the section of edge beam 
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0.35 Mo 
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0.65 Mo 

156.452 kN.m 

0.65 Mo 

156.452 kN.m 

Longitudinal distribution of total static moment at factored loads 
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⁄  1.0 1.3 2.0 

0.0t   1.00 1.00 1.00 

346.0t      

5.2t   0.75 0.75 0.75 

 

Negative moment at column strip = 72.209 ×             =                     kN.m 

Negative moment at middle strip = 72.209 -                   =                     kN.m 

 

2- Positive moment 

Total moment = 120.348 kN.m 
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3- Negative moment at interior support 

Total moment = 168.487  kN.m 

      

 

 

 

 

 

 

 

 

 

 

 

Example 3 

For the the longitudinal interior frame (Frame A) of the falt plate floor shown in Figure, by using 

the Direct Design Method, find: 

a- Longitudinal distribution of the total static moment at factored loads. 

b- Lateral distribution of moment at interior panel (column and middle strip moments at 

negative and positive moments). 

 

 

Solution 

a. 
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b. 

interior panel 

 

1) Negative moment 

           Total moment = 89.7 kN.m 

 

01   

 

Negative moment at column strip = 89.7×0.75 = 67.275  kN.m 

Negative moment at midlle strip = 89.7-67.275 = 22.425  kN.m 

 

2) Positive moment 

           Total moment = 48.3 kN.m 

 

01   

 

Negative moment at column strip = 48.3×0.60 = 28.98  kN.m 

Negative moment at midlle strip = 48.3-28.98 = 19.32  kN.m 

 

 

 

 

 

 

 

 

 

0.52 Mo 

71.76 

0.26 Mo 

35.88 0.7 Mo 

96.6 

0.35 Mo 

48.3 

0.65 Mo 

89.7 

0.65 Mo 

89.7 

Longitudinal distribution of total static moment at factored loads 
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Example 4 

For the the transverse interior frame (Frame C) of the flat plate floor with edge beams shown in 

Figure, by using the Direct Design Method, find: 

1) Longitudinal distribution of total static moment at factored loads. 

2) Lateral distribution of moment at interior panel (column and middle strip moments at 

negative and positive moments). 

3) Lateral distribution of moment at exterior panel (column and middle strip moments at 

negative and positive moments). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mm500500columnsAll

mm500250beamsedgeAll

m/kN0.16q

mm150d,mm180thicknessSlab

2

u








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Example 5 

For the exterior longitudinal frame (Frame B) of the flat plate floor shown in figure, and by using 

the Direct Design Method, find: 

a. Longitudinal distribution of the total static moment at factored loads. 

b. Lateral distribution of moment at exterior panel (column and middle strip moments at 

exterior support) 

 

mm140d,mm175thicknessSlab   
2

u m/kN0.14q   

mm400600columnsAll   
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Example 6 

For the exterior transverse frame of the flat slab floor shown in figure, and by using the Direct 

Design Method, find: 

a. Longitudinal distribution of the total static moment at factored loads. 

b. Lateral distribution of moment at exterior panel (column and middle strip moments at 

exterior support) 

D = 6.5 kN/m
2
 

L = 5.0 kN/m
2
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Example 7 

For the transverse frame of the flat slab floor shown in figure, and by using the Direct Design 

Method, find: 

a. Longitudinal distribution of the total static moment at factored loads. 

b. Lateral distribution of moment at exterior panel (column and middle strip moments at 

exterior support) 

D = 7.0 kN/m
2
 

L = 4.0 kN/m
2
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Example 8 

For the longitudinal frame of the flat slab floor shown in figure, and by using the Direct Design 

Method, find: 

a. Longitudinal distribution of the total static moment at factored loads. 

b. Lateral distribution of moment at exterior panel (column and middle strip moments at 

exterior support) 

qu = 18.0 kN/m
2
 

edge beams: 300×600 mm 
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Example 9 

For the the transverse extiror frame (Frame D) of the falt plate floor, without edge beams, shown in 

Figure, and by using the Direct Design Method, find: 

a. Longitudinal distribution of the total static moment at factored loads. 

b. Lateral distribution of moment at interior panel (column and middle strip 

moments at negative and positive moments). 

Slab thickness = 180 mm,   d = 150 mm 

qu = 15.0 kN/m
2
 

All columns = 400×400 mm 
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Minimum slab thickness for two-way slabs  

To ensure that slab deflection service will not be troublesome, the best approach is to compute 

deflections for the total load or load component of interest and to compare the computed deflections 

with limiting values. 

 Alternatively, deflection control can be achieved indirectly by adhering to more or less 

arbitrary limitations on minimum slab thickness, limitations developed from review of test data and 

study of the observed deflections of actual structures.  

 Simplified criteria are used to slabs without interior beams (provided by table), flat plates 

and flat slabs with or without edge beams. While equations are to be applied to slabs with beams 

spanning between the supports on all sides. In both cases, minimum thicknesses less than the 

specified value may be used if calculated deflections are within code specified limits. 

 

Slab without interior beams (Flat plates and flat slabs with or without edge beams) 

For nonprestressed slabs without interior beams spanning between supports on all sides, having a 

maximum ratio of long-to-short span of 2, overall slab thickness (h) shall not be less than the limits 

in Table 8.3.1.1, and shall be at least the value in (a) or (b), unless the calculated deflection limits of 

8.3.2 (ACI 318) are satisfied: 

(a) Slabs without drop panels as given in 8.2.4........... 125 mm. 

(b) Slabs with drop panels as given in 8.2.4................ 100 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MPa
[2]

 

280 

420 

520 

(mm). 

(mm)
[1]
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Slabs with beams on all sides: 

For nonprestressed slabs with beams spanning between supports on all sides, overall slab thickness 

(h) shall satisfy the limits in Table 8.3.1.2, unless the calculated deflection limits of 8.3.2 are 

satisfied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At discontinuous edges of slabs conforming to 8.3.1.2, an edge beam with αf ≥ 0.80 shall be 

provided, or the minimum thickness required by (b) or (d) of Table 8.3.1.2 shall be increased by at 

least 10 percent in the panel with a discontinuous edge. 
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Example 1 

Thickness of a flat slab with edge beams 

Column capital diameter = 1000 mm 

(fy = 420 MPa) 

 

Solution 

exterior panel  

t = ℓn/33  

ℓn = 8000 – 0.89 × 1000 = 7110  mm 

t = 7110/33 = 215.4 mm  >  125 mm 

interior panel 

t = ℓn/33 = 215.4 mm  >  125 mm 

   use t = 220  mm 

 

 

 

 

 

 

Example 2 

Thickness of a flat slab without edge beams 

Column capital diameter = 1000 mm 

(fy = 420 MPa) 

 

Solution 

exterior panel  

t = ℓn/30  

ℓn = 8000 – 0.89 × 1000 = 7110  mm 

t = 7110/30 = 237.0 mm  >  125 mm  

interior panel 

t = ℓn/33 = 215.4 mm  >  125 mm 

   use t = 240  mm 
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Example 3 

Find the minimum thickness of a slab for an interior panels due to deflection control for the 

following: Use fy = 350 MPa. 

a- Slab with beams (8.1 × 8.2) m clear span with αm = 2.3 

b- Flat plate (4.4 × 4.6) m clear span. 

c- Flat slab with drop panels (6.2 × 6.2) m clear span. 

 

Solution 

a- Slab with beams (8.1 × 8.2) m clear span with αm = 2.3 

0.23.2m   














936

1400

f
8.0l

t

y

n

min
     ;      012.1

1.8

2.8

S

L

n

n   

.K.Omm90mm875.190
012.1936

1400

350
8.08200

tmin 












  

Use t = 200 mm 

 

b- Flat plate (4.4 × 4.6) m clear span. 

From table 

For fy = 280    mm778.127
36

4600

36

L
t n   

For fy = 420    mm394.139
33

4600

33

L
t n   

For fy = 350  (by linear interpolation) 

.K.Omm125mm586.133
2

394.139778.127
t 


  

Use t = 140 mm 

 

c- Flat slab with drop panels (6.2 × 6.2) m clear span. 

From table 

For fy = 280    mm155
40

6200

40

L
t n   

For fy = 420    mm222.172
36

6200

36

L
t n   

For fy = 350  (by linear interpolation)  .K.Omm100mm163.611
2

222.172155
t 


  

Use t = 170 mm 
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Example 4 

Find the minimum thickness of a slab for an interior panels due to deflection control for the 

following: Use fy = 420 MPa. (60000 psi).  

a- Slab with beams (8.2 × 7.7) m clear span with αm= 2.3 

b- Slab without drop panels (5.4 × 4.8) m clear span with αm= 0.18 

c- Flat plate (4.2 × 4.6) m clear span. 

d- Flat slab with drop panels (6.0 × 6.2) m clear span. 

e- Slab with beams (5.8 × 5.8) m clear span with αm= 1.5 

 

Solution 

a- Slab with beams (8.2 × 7.7) m clear span with αm= 2.3 

0.23.2m   














936

1400

f
8.0l

t

y

n

min      ;      065.1
7.7

2.8

S

L

n

n   

.K.Omm90mm872.197
065.1936

1400

420
8.08200

tmin 












  

  Use t = 200 mm 

  

b- Slab without drop panels (5.4 × 4.8) m clear span with αm= 0.18 

2.018.0m   

From table .K.Omm125mm636.163
33

5400

33

L
t n   

  Use t = 170 mm 

  

c- Flat plate (4.2 × 4.6) m clear span. 

From table .K.Omm125mm394.139
33

4600

33

L
t n   

  Use t = 140 mm 

  

d- Flat slab with drop panels (6.0 × 6.2) m clear span. 

From table .K.Omm100mm222.172
36

6200

36

L
t n   

  Use t = 175 mm 

  

e- Slab with beams (5.8 × 5.8) m clear span with αm= 1.5 

0.25.12.0 m   



Reinforced Concrete Design II 

 

39 
 

 2.0536

1400

f
8.0l

t
m

y

n

min












  

0.1
8.5

8.5

S

L

n

n   

 
.K.Omm125mm118.150

2.05.10.1536

1400

420
8.05800

tmin 












  

  Use t = 160 mm 

 

 

Example 5 

Find the minimum thickness of a slab for an interior panels due to deflection control for the 

following: Use fy = 420 MPa.      

a- Flat slab with drop panels (7.0 × 5.6) m clear span. 

b- Slab with beams (5.0 × 6.3) m clear span with αm= 2.3 

c- Slab with beams (5.0 × 5.5) m clear span with αm= 1.7 

d- Flat plate (4.2 × 4.5) m clear span. 

e- Flat slab without drop panels (5.9 × 4.2) m clear span. 

 

Solution 

a) Flat slab with drop panels (7.0 × 5.6) m clear span. 

From table  

.K.Omm100mm444.194
36

7000

36
t n 


 

  Use t = 200 mm 

 

b) Slab with beams (5.0 × 6.3) m clear span with αm= 2.3 

0.23.2m   














936

1400

f
8.0

t

y

n

min



 

26.1
0.5

3.6

sn

n 


 

.K.Omm90mm388.146
26.1936

1400

420
8.06300

tmin 












  

  Use t = 150 mm 
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c) Slab with beams (5.0 × 5.5) m clear span with αm= 1.7 

0.27.12.0 m   

 2.0536

1400

f
8.0

t
m

y

n

min
















 

10.1
0.5

5.5

sn

n 


 

 
.K.Omm125mm723.136

2.07.11.1536

1400

420
8.05500

tmin 












  

  Use t = 140 mm 

 

d) Flat plate (4.2 × 4.5) m clear span. 

       From table  

       .K.Omm125mm364.136
33

4500

33
t n 


 

        Use t = 140 mm  

 

e) Flat slab without drop panels (5.9 × 4.2) m clear span. 

      From table  

.K.Omm125mm788.178
33

5900

33
t n 


 

  Use t = 180 mm  

 

 

 

Example 6 

Find the minimum thickness of a slab for an interior panels due to deflection control for the 

following: Use fy = 420 MPa. (60000 psi).  

a) Flat slab with drop panels (6.4 × 6.0) m clear span. 

b) Flat plate (4.4 × 4.0) m clear span. 

c) Slab with beams (5.8 × 5.6) m clear span with αm = 1.7 

d) Slab with beams (8.0 × 6.5) m clear span with αm = 3.4 

e) Slab without drop panels (5.5 × 4.8) m clear span with αm = 0.19 

 

 



(A) (C) 

(B) (D) 

B1 B2 

B3 B4 
B
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B
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B
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B
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8
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General Example 1 

Slab with beams 

- All interior beams are 300 × 600 mm 

- B1 & B2 are 300 × 600 mm 

- B5 & B6 are 300 × 700 mm 

- All columns are 600 × 600 mm 

- Slab thickness = 180 mm 

- Live load = 4.25 kN/m
2
 

 - γconcrete = 25 kN/m
3
 

  

 

 

 

 

 

Solution 

(1) Computing αf 

Compute the ratio of the flexural stiffness of the longitudinal beams to that of the slab (αf) in the 

equivalent rigid frame, for all beams around panels A, B, C, and D. 

 

Beam sections 

B1 and B2 

    
  
  
 
   

   
           

      
  
 
 
   

   
            }

 

 
        

        
  
  
        (   )        

     
   

 

  
      (

    (   ) 

  
)               

    
 

  
      

 

  
      (   )               

  
    

 
              

           
     
     

  
  
  
 
         

         
        

Where Ecb = Ecs 

 

 

 

(A) (C) 

(B) (D) 

B1 B2 

B3 B4 

B
5
 

B
6
 

B
7
 

B
8
 

6 m 6 m 6 m 

8
 m

 
8
 m

 

6
0
0
 

bE = 720 

300 420 

1
8
0
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B5 and B6 

    
  
  
 
   

   
         

      
 

 
 
   

   
           }

 

 
        

        
  
  
        (    )         

     
   

 

  
       (

    (   ) 

  
)               

    
 

  
      

 

  
      (   )               

  
    

 
              

           
     
     

  
  
  
 
         

         
        

 

B3 and B4 

    
  
  
 
    

   
        

      
 

 
 
   

   
          }

 

 
       

 

        
  
  
        (   )       

 

     
   

 

  
      (

    (   ) 

  
)               

    
 

  
      

 

  
      (   )               

           

           
     
     

  
  
  
 
         

         
       

 
 

 

B7 and B8 

Ib = 9.504 × 10
9
   same as B3 and B4 

    
 

  
      

 

  
       (   )               

b = 6000 mm 

           
     
     

  
  
  
 
         

         
        

 

Note: for slab without beams,  f = zero. 

 

To use the DDM, first checking the seven limitations 

Limitations 1 to 5 are satisfied by inspections. 

Limitation 6:- L.L. shall not exceed 2 times D.L. 

7
0
0
 

bE = 820 

300 520 

1
8
0
 

6
0
0
 

bE = 1140 

300 420 

1
8
0
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D.L. of the slab = 0.18 × 25 = 4.50 kN/m
2
 

D.L. of tiles = 0.10 × 20       = 2.00 kN/m
2
 

D.L. of partition                   = 1.00 kN/m
2
 

D.L. of fall ceiling               = 0.08 kN/m
2
 

                                                7.58 kN/m
2 

    

    
  
    

    
                         

 

Limitation 7:- For each panel 

 

      
     

 

     
        

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A 

     
 

     
   

 

 
(         )  (    )

 

 

 
(         )  (    ) 

  

 

 
(           )  (    ) 

 

 
(           )  (    ) 

      

                          

 

Panel B 

     
 

     
   

 

 
(         )  (    )

 

 

 
(         )  (    ) 

  

 

 
(           )  (    ) 

 

 
(           )  (    ) 

       

                           

 

αf = 3.823 αf = 3.823 

αf = 2.444 αf = 2.444 

αf = 2.444 αf = 2.444 

α
f 
=

 8
.2

6
7

 
α

f 
=

 8
.2

6
7

 

α
f 
=

 3
.2

5
9

 
α

f 
=

 3
.2

5
9

 

α
f 
=

 3
.2

5
9

 
α

f 
=

 3
.2

5
9
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Panel C 

     
 

     
   

 

 
(         )  (    )

 

 

 
(         )  (    ) 

  

 

 
(           )  (    ) 

 

 
(           )  (    ) 

      

                          

 

Panel D 

     
 

     
   

 

 
(         )  (    )

 

 

 
(         )  (    ) 

  

 

 
(           )  (    ) 

 

 
(           )  (    ) 

       

                          

 

Computing  fm 

Panel A 

      
 

 
(                   )   

 

 
(                       )        

 fmB = 4.104 

 fmC = 3.196 

 fmD = 2.852 

 

Computing or checking slab thickness 

 

Panel A 

ℓn = 8000 – 600 = 7400 mm    ;   Sn = 6000 – 600 = 5400 mm 

   
  
  
  
    

    
      

 

 mA = 4.448     ;      here  m > 2.0     ;     use Eq. (2) 

  
   (     

  

    
)

     
  
      (     

   

    
)

         
                                           

 

Edge beam (B1 and B5) have   > 0.8         ∴  t = 160 mm 

 

Summary of required slab thickness 

 

  A        B         C          D   

160     160      160      160  

 

t = 160 mm  > 90 mm      ∴ O.K.   tmin = 160 mm  

tactual = 180 mm > 160 mm     ∴ O.K. 
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Computing C 

For B5 and B6 

   ∑(        
 

 
)
    

 
 

    (          
   

   
)
(   )     

 
 (          

   

   
)
(   )     

 

                

 

    (          
   

   
)
(   )     

 
 (          

   

   
)
(   )     

 

                

∴ For beam B5 and B6     C = 5.191× 10
9
 mm

4
 

 

 

 

 

 

 

 

 

 

 

 

B1 and B2 

    (          
   

   
)
(   )     

 
 (          

   

   
)
(   )     

 

                

 

    (          
   

   
)
(   )     

 
 (          

   

   
)
(   )     

 

                

∴ For beam B1 and B2       C = 4.295 × 10
9
 mm

4
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Computing βt 

    
    

       
  

 

    
                               

 

For B5 and B6 

    
 

  
   

   
 

  
       (   )                  

    
 

    
  

           

             
        

 

For beam B1 and B2 

    
 

  
       (   )                  

     
           

             
        

 

Exterior longitudinal frame 

D.L. = 4.5 (slab) + 2.0 (tiles) + 1.0 (partition) + 0.08 (fall ceiling) = 7.58 kN/m
2
 

L.L. = 4.25 kN/m
2
 

qu = 1.2×7.58 + 1.6× 4.25 = 15.9 kN/m
2
 

 

    
    

 
 
   

 
           

                       

 

    
 

 
      

   
 

 
             (   )                

 

Longitudinal distribution of moments: 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.57 Mo 

142.05 kN.m 

0.16 Mo 

39.87 kN.m 0.70 Mo 

174.45 

0.35 Mo 

87.22 kN.m 

0.65 Mo 

161.99 kN.m 

0.65 Mo 

161.99 kN.m 
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Transverse distribution of longitudinal moments 

End span 

Negative moment at exterior support (total = -0.16 Mo= -39.87 kN.m) 

         
     
  

                       
  
  

 

 

Here  f1 =  fB1 = 3.823,        ℓ2 = 8000 mm,       ℓ1 = 6000 mm 

 
  
  
 
    

    
                    

    
  

  
            

    
               

 

βt = βtB5 = 0.693 ≈ 0.69 

 

ℓ2/ ℓ1 1.0 1.333 2.00 

     
  

      

βt = 0 100 100 100 

βt = 0.69  90.34  

βt ≥ 2.5 75 65 45 

  

     
  
   

 
         

  

∴ Neg. moment in column strip = 39.87 × 0.903 = 36.02 kN.m 

Neg. moment in beam = 36.02 × 0.85 = 30.62 kN.m 

Neg. moment in column strip slab = 36.02 – 30.62 = 5.4 kN.m 

Neg. moment in middle strip = 39.87 - 36.02 = 3.85 kN.m 

 

 

Positive moments (total = 0.57 Mo = 142.05 kN.m) 

 

 2/ 1 1.0 1.333 2.0 

     
  

      75 65 45 

 

Moment in column strip = 142.05 × 0.65 = 92.33 kN.m 

Moment in beam = 92.33 × 0.85 = 78.48 kN.m 

Moment in column strip slab = 92.33 – 78.48 = 13.85 kN.m 

Moment in middle strip = 142.05 – 92.33 = 49.72 kN.m 
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Interior negative moment (total = 0.70 Mo = -174.45 kN.m) 

 

 2/ 1 1.0 1.333 2.0 

     
  

      75 65 45 

 

Moment in column strip = 174.45 × 0.65 = -113.39 kN.m 

Moment in beam = 113.39 × 0.85 = -96.38 kN.m 

Moment in column strip slab = 113.39 – 96.38 = -17.01 kN.m 

Moment in middle strip = 174.45 – 113.39 = -61.06 kN.m 

 

 

Interior span 

Negative moment (total = -0.65 Mo = -161.99 kN.m) 

Negative moment in column Strip = 161.99 × 0.65 = 105.29 kN.m 

Negative moment in beam = 105.29 × 0.85 = 89.50 kN.m 

Negative moment in column strip slab = 105.29 – 89.5 = 15.79 kN.m 

Negative moment in middle strip = 161.99 – 105.29 = 56.7 kN.m 

 

Positive moment (total = 0.35 Mo = 87.22 kN.m) 

Moment in column strip = 87.22 × 0.65 = 56.69 kN.m 

Moment in beam = 56.69 × 0.85 = 48.19 kN.m 

Moment in column strip slab = 56.69 – 48.19 = 8.5 kN.m 

Moment in middle strip = 87.22 – 56.69 = 30.53 kN.m 

 

Moments in Exterior longitudinal frame 

Total width = 4.3 m,         column strip width = 1.8 m,   &      half middle strip width = 2.5 m. 

 

 

 

Exterior span Interior span 

Exterior 

negative 
Positive 

Interior 

negative 
Negative Positive 

Total moment (kN.m) -39.87 +142.05 -174.45 -161.99 +87.22 

Moment in beam (kN.m) -30.62 +78.48 -96.38 -89.50 +48.19 

Moment in column strip slab (kN.m) -5.4 +13.85 -17.01 -15.79 +8.50 

Moment in middle strip slab (kN.m) -3.85 +49.72 -61.06 -56.70 +30.53 
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General Example 2 

Flat plate with edge beams 

- Edge beams are 250 × 500 mm 

- All columns are 500 × 500 mm 

- Slab thickness = 200 mm 

- Live load = 4.0 kN/m
2
 

 - γconcrete = 24 kN/m
3
 

  

 

 

 

 

 

 

Solution 

(1) Computing αf 

Compute the ratio of the flexural stiffness of the longitudinal beams to that of the slab (αf) in the 

equivalent rigid frame, for all edge beams. 

 

Beam sections 

B1 and B3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) (C) 

(B) (D) 

B1 B3 

B
2
 

B
4

 
4 m 4 m 4 m 

6
 m

 
6
 m
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c/π 

. 

2c/3π 

. 

c.g. 

. 
c.g. 

. 

Total static moment in flat slab 

c = diameter of column capital 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sum of reactions on arcs AB and CD = load on area ABCDEF 

     {    
  
 
    (

 

 
   (

 

 
)
 

)} 

    { 
     
 

  
    

 
} 

No shear along lines AF, BC, DE, EF 

∑ M1-1 = 0 

                 {  
     
 

  
    

 
 } 
 

 
  
        
 

 ( 
  
 
 )        ( 

 

 
 
    

 
  
   

   
 )    

                          
        

 

 
                         ( ) 

Letting Mo = Mneg. + Mpos. 

     
        

 

 
 (    

   

    
  

  

       
  ) 

     
        

 

 
 (    

   

    
 )
 

                          ( )

 
Eq. (1) is useful for flat plate floor or two – way slab with beams, while Eq. (2) is more suitable for 

flat slab, where in round column capitals are used. 

ℓ1/2 

. 

ℓ1/2 

. 

ℓ2 

. 

A 

. 

B 

. 

F 

. 

E 

. 

C 

. 

D 

. 

1 

. 

1 

. 

 c/2 

. 

ℓ1/2 

. 

c/2 

. 

ℓ1/2 - c/2 

. 

c/π 

. 

½ panel load 

. 

Mpos. 

. 

Mneg. 

. 

reaction 

. 
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Example: 

Compute the total factored static moment in the long and short directions for an interior panel in flat 

slab 6 × 7  m, given qu = 15  kN/m
2
, column capital = 1.40  m. 

 

Solution:- 

a- In long direction 

    
        

 

 
 (    

   

    
 )
 

  
        ( ) 

 
 (    

      

    
 )
 

          

 
b- In short direction 

    
        ( ) 

 
 (    

      

    
 )
 

          

 
 

To compare with previous method:- 

 

a- In long direction 

ℓn = 7.0 – 0.89 × 1.4 = 5.754  m 

     
        

 

 
  
        (     ) 

 
            

 
 

 

b- In short direction 

ℓn = 6.0 – 0.89 × 1.4 = 4.754  m 

     
        (     ) 

 
             

 

 

 

 
Eq. 1 

(kN.m) 

Eq. 2 

(kN.m) 

Error 

(%) 

long direction

 

414 372.4 10 

short direction

 

337 296.4 12 
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Equivalent frame method (EFM) 

The equivalent frame method involves the representation of the three-dimensional slab system by a 

series of two-dimensional frames that are then analyzed for loads acting in the plane of the frames. 

The negative and positive moments so determined at the critical design sections of the frame are 

distributed to the slab sections (column strip, middle strip and beam). 

 

Limitations: 

1) Panels shall be rectangular, with a ratio of longer to shorter panel dimensions, measured 

center-to-center of supports, not to exceed 2. 

2) Live load shall be arranged in accordance with arrangement of live loads. 

3) Complete analysis must include representative interior and exterior equivalent frames in 

both the longitudinal and transverse directions of the floor. 

 

Procedure:- 

1- Divide the structure into longitudinal and transverse frames centered on column and 

bounded by panels. 

2- Each frame shall consist of a row of columns and slab-beam strips, bounded laterally by of 

panels. 

3- Columns shall be assumed to be attached to slab-beam strips by torsional members 

transverse to the direction of the span for which moment are being determined. 

4- Frames adjacent and parallel to an edge shall be bounded by that edge and the centerline of 

adjacent panel. 

5- The slab–beam may be assumed to be fixed at any support two panels distance from the 

support of the span where critical moments are being obtained, provided the slab is 

continuous beyond that point. 
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Selected frame in 3-D building 

 

 

 

 

 

 

The detached frame alone 

 

 

 

 

The width of the frame is same as mentioned in DDM. The length of the frame extends up to full 

length of 3-D system and the frame extends the full height of the building. 

 

 

2-D frame 
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Analysis of each equivalent frame in its entirety shall be permitted. Alternatively, for gravity 

loading, a separate analysis of each floor or roof with the far ends of columns considered fixed is 

permitted. 

 

 

 

 

 

 

 

 

If slab-beams are analyzed separately, it shall be permitted to calculate the moment at a given 

support by assuming that the slab-beam is fixed at supports two or more panels away, provided the 

slab continues beyond the assumed fixed supports. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

c 

a b c d 

d 
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Arrangement of live loads: 

1- If the arrangement of L is known, the slab system shall be analyzed for that arrangement. 

2- If all panels will be loaded with L, the slab system shall be analyzed when full factored L on 

all spans. 

3- If the arrangement of L is unknown: 

a- L ≤ 0.75 D      Maximum factored moment when full factored L on all spans. 

b- L > 0.75 D    Pattern live loading using 0.75(factored L) to determine maximum 

factored moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partial frame analysis for vertical loading 
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Stiffness calculation: 

- Stiffness of Slab-Beam Member 

- Stiffness of Equivalent Column 

                  Stiffness of Column 

                  Stiffness of Torsional Member 

 

 

 

Ksb represents the combined stiffness of slab and longitudinal beam (if any). 

Kec represents the modified column stiffness. The modification depends on lateral members (slab, 

beams etc.) and presence of column in the story above. 

 

Once a 2-D frame is obtained, the analysis can be done by any method of 2-D frame analysis. 

 

Stiffness of slab beam member (Ksb): 

The stiffness of slab beam (Ksb= kEIsb/ℓ) consists of combined stiffness of slab and any longitudinal 

beam present within. 

For a span, the k factor is a direct function of ratios c1/ℓ1 and c2/ℓ2. 

Tables are available in literature for determination of k for various conditions of slab systems. 

 

 

 

 

 

 

 

In the moment-distribution method, it is necessary to compute flexural stiffnesses, K; carryover 

factors, COF; distribution factors, DF; and fixed-end moments, FEM, for each of the members in 

the structure. For a prismatic member fixed at the far end and with negligible axial loads, the 

flexural stiffness is: 

    
   

 
 

where k = 4 and the carryover factor is 0.5, the sign depending on the sign convention used for 

moments. For a prismatic, uniformly loaded beam, the fixed-end moments are wℓ
2
/12. 

In the equivalent-frame method, the increased stiffness of members within the column–slab joint 

region is accounted for, as is the variation in cross section at drop panels. As a result, all members 

have a stiffer section at each end, as shown in Figure. If the EI used is that at the midspan of the 

slab strip, k will be greater than 4; similarly, the carryover factor will be greater than 0.5, and the 

fixed-end moments for a uniform load (w) will be greater than wℓ
2
/12. 
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Several methods are available for computing values of k, COF, and FEM. Originally; these were 

computed by using the column analogy. 

 

Properties of Slab–Beams 

The horizontal members in the equivalent frame are referred to as slab-beams. These consist of 

either only a slab, or a slab and a drop panel, or a slab with a beam running parallel to the 

equivalent frame. 

It shall be permitted to use the gross cross-sectional area of concrete to determine the moment of 

inertia of slab-beams at any cross section outside of joints or column capitals. 

The moment of inertia of the slab-beams from the center of the column to the face of the column, 

bracket, or capital shall be taken as the moment of inertia of the slab-beam at the face of the 

column, bracket, or capital divided by the quantity (1 – c2/ ℓ2)
2
, where ℓ2 is the transverse width of 

the equivalent frame and c2 is the width of the support parallel to ℓ2. 

 

Moment of inertia of the slab-beam strip can be calculated from the following figure or equation: 
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Properties of Columns 

The moment of inertia of columns at any cross section outside of the joints or column capitals may 

be based on the gross area of the concrete. 

The moment of inertia of columns shall be assumed to be infinite within the depth of the slab-beam 

at a joint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sections for the calculations of column stiffness (Kc) 

 

ℓc is the overall height and ℓu is the unsupported or clear height. 

 

    ∑
       

  (   
  

  
)
  

 

where ℓ2 refers to the transverse spans on each side of the column. For a corner column, there is 

only one term in the summation. 

If a beam parallel to the ℓ1 direction, multiply Kt by the ratio Isb/Is, where Isb is the moment of 

inertia of the slab and beam together and Is is the moment of inertia of the slab neglecting the beam 

stem. 
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∑  
  
 

  
 

 

 

Factored moments 

At interior supports, the critical section for negative Mu in both column and middle strips shall be 

taken at the face of rectilinear supports, but not farther away than 0.175ℓ1 from the center of a 

column. 

 

At exterior supports without brackets or capitals, the critical section for negative Mu in the span 

perpendicular to an edge shall be taken at the face of the supporting element. 

 

At exterior supports with brackets or capitals, the critical section for negative Mu in the span 

perpendicular to an edge shall be taken at a distance from the face of the supporting element not 

exceeding one-half the projection of the bracket or capital beyond the face of the supporting 

element. 
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Shear in slabs 

 

One-way shear or beam-action shear: involves an inclined crack extending across the entire width 

of the panel. 

Two-way shear or punching shear: involves a truncated cone or pyramid-shaped surface around the 

column 

 

For each applicable factored load combination, design strength shall satisfy: 

-     ϕVn  Vu   at all sections in each direction for one-way shear.

 -     ϕvn  ≥ vu at the critical sections for two-way shear. 

Interaction between load effects shall be considered. 

 

Vn = Vc + Vs 

vn = vc (nominal shear strength for two-way members without shear reinforcement). 

vn = vc + vs (nominal shear strength for two-way members with shear reinforcement other than 

shearheads). 

 

ϕ = 0.75 

Vu is the factored shear force at the slab section considered. 

Vn is the nominal shear strength. 

Vc is the nominal shear strength provided by concrete. 

Vs is the nominal shear strength provided by shear reinforcement. 

vn is the equivalent concrete stress corresponding to nominal two-way shear strength of slab. 

vu is the maximum factored two-way shear stress calculated around the perimeter of a given critical 

section. 

vug is the factored shear stress on the slab critical section for two-way action due to gravity loads 

without moment transfer. 

 

 

shear cap: a projection below the slab used to increase the slab shear strength. It shall project below 

the slab soffit and extend horizontally from the face of the column a distance at least equal to the 

thickness of the projection below the slab soffit.
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Shear in slab with beams  

 

Shear shall be checked at a distance  d  from the face of the support (beam). 
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Shear in flat plate and flat slab 

Types:- 

1- Beam action (one – way shear action) 

 

2- Punching shear (two – way shear action) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Critical sections and tributary areas for shear in flat plate. 
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Critical sections in a slab with drop panels. 

Critical shear perimeters and tributary areas for corner column. 
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Factored one-way shear 

For slabs built integrally with supports, Vu at the support shall be permitted to be calculated at the 

face of support. 

Sections between the face of support and a critical section located a distance  d  from the 

face of support for nonprestressed slabs shall be permitted to be designed for Vu at that critical 

section if (a) through (c) are satisfied: 

(a) Support reaction, in direction of applied shear, introduces compression into the end regions of 

the slab. 

(b) Loads are applied at or near the top surface of the slab. 

(c) No concentrated load occurs between the face of support and critical section. 
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One-way shear strength

 Nominal one-way shear strength at a section (Vn) shall be calculated by: 

Vn = Vc + Vs 

 

Cross-sectional dimensions shall be selected to satisfy: 

      (        √  
     ) 

For nonprestressed members without axial force, Vc shall be calculated by:

           √        

 unless a more detailed calculation is made in accordance with Table 22.5.5.1.

  

Table 22.5.5.1 - Detailed method for calculating Vc

 Vc

 

 

Least of (a), (b), 

and (c):

 

(     √         

   

  
)     

 

(a)

 

(     √         )    

 

(b)

 

     √       

 

(c)

 
Mu occurs simultaneously with Vu at the section considered.

  
Effect of any openings in members shall be considered in calculating Vn.

  

At each section where Vu > ϕVc, transverse reinforcement shall be provided such that the equation 

      
  

 
   

 
is satisfied. 

 

The critical section extending across the entire width at a distance  d  from:- 

1- The face of the rectangular column in flat plate. 

2- The face of the equivalent square column capital or from the face of drop panel, if any in flat 

slab. 

 

The short direction is controlling because it has a wider area and short critical section:- 

          [
 

 
  (

 

 
    )]                        
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Factored two-way shear (punching) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Critical section: 

Slabs shall be evaluated for two-way shear in the vicinity of columns, concentrated loads, and 

reaction areas at critical sections. 

Two-way shear shall be resisted by a section with a depth (d) and an assumed critical 

perimeter (bo). 

 

For calculation of vc and vs for two-way shear, d shall be the average of the effective depths 

in the two orthogonal directions. 

For two-way shear, critical sections shall be located so that the perimeter (bo) is a minimum 

but need not be closer than  d/2  to (a) and (b): 

(a) Edges or corners of columns, concentrated loads, or reaction areas. 

(b) Changes in slab or footing thickness, such as edges of capitals, drop panels, or shear caps. 

 

For a circular or regular polygon-shaped column, critical sections for two-way shear shall be 

permitted to be defined assuming a square column of equivalent area. 
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Nominal shear strength for two-way members without shear reinforcement shall be calculated by: 

vn = vc 

vc for two-way shear shall be calculated in accordance with Table 22.6.5.2. 

 

 

Table 22.6.5.2 - Calculation of vc for two-way shear

 vc

 

 

Least of (a), (b), and (c):

 

     √   

 

(a)

 

    (    
 

 
 )√   

 

(b)

 

     (   
    

  
 )√  

 

 

(c)

 
Note: β is the ratio of long side to short side of the column, concentrated load, or reaction area. 

αs = 40 for interior columns 

    = 30 for edge columns 

    = 20 for corner columns 

 

Nominal shear strength for two-way members with shear reinforcement other than shearheads shall 

be calculated by: 

vn = vc + vs 

 

For two-way members with shear reinforcement, vc shall not exceed the limits: 

          √    

For two-way members with shear reinforcement, effective depth shall be selected such that vu 

calculated at critical sections does not exceed the value:  

         √    
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For two-way members reinforced with headed shear reinforcement or single- or multi-leg stirrups, a 

critical section with perimeter bo located d/2 beyond the outermost peripheral line of shear 

reinforcement shall also be considered. The shape of this critical section shall be a polygon selected 

to minimize bo. 

 

Effective depth 

For calculation of vc and vs for two-way shear, d shall be the average of the effective depths in the 

two orthogonal directions. 

 

Two-way shear strength provided by single- or multiple-leg stirrups: 

Single- or multiple-leg stirrups fabricated from bars or wires shall be permitted to be used as shear 

reinforcement in slabs and footings satisfying (a) and (b): 

(a) d is at least 150 mm. 

(b) d is at least 16db, where db is the diameter of the stirrups. 

 

For two-way members with stirrups, vs shall be calculated by: 

    
     

    
 

Where 

Av: is the sum of the area of all legs of reinforcement on one peripheral line that is geometrically 

similar to the perimeter of the column section. 

s: is the spacing of the peripheral lines of shear reinforcement in the direction perpendicular to the 

column face. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shear reinforcement. 
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Arrangement of stirrup shear reinforcement, interior column.  

Critical sections for two-way shear in slab with shear reinforcement at interior column. 



Reinforced Concrete Design II 

 

77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arrangement of stirrup shear reinforcement, edge column. 

Critical sections for two-way shear in slab with shear reinforcement at edge column. 
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Arrangement of stirrup shear reinforcement, corner column. 

Critical sections for two-way shear in slab with shear reinforcement at corner column. 
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Structural shearheads. 

Location of critical section without and with shearheads. 
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Typical arrangements of headed shear stud reinforcement and critical sections. 
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Effect of any openings and free edges in slab shall be considered in calculating vn

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of openings and free edges (effective perimeter shown with dashed lines). 
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Example: 

The flat plate slab of 200 mm total thickness and 160 mm effective depth is carried by 300 mm 

square column 4.50 m on centers in each direction. A factored load of 580 kN must be transmitted 

from the slab to a typical interior column. Determine if shear reinforcement is required for the slab, 

and if so, design integral beams with vertical stirrups to carry the excess shear. Use fy = 414 MPa, 

fc
’
 = 30 MPa. 

 

Solution:- 

Shear perimeter  (bo) = ( 300 + 160 ) × 4 = 1840  mm 

 

Vu = 580 kN 

     
  

    
  

        

         
            

 

i) without shear reinforcement 

The design shear strength of the concrete alone at the critical section d/2 from the face of column is 

 

        

{
 
 

 
      √          √               

     (    
 

 
)√         (  

 

 
)   √                

     (   
    

  
  ) √         (   

       

    
 )  √            

 

1
300

300
c   

                 

vn = vc 

ϕvn = 0.75 × 1.807 = 1.355  MPa  <  vu = 1.97  MPa        not O.K. 

 Shear reinforcement is required 

 

ii) with shear reinforcement 

vn = vc + vs 

For two-way members with shear reinforcement, effective depth shall be selected such that vu 

calculated at critical sections does not exceed the value:  

         √    

                               √                √                        

 

          √           √             

 

Let   ϕvn = vu = 1.97 MPa 

ϕ (vc + vs) = vu 
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The required area of vertical shear reinforcement = 603 mm
2
 

 

For trial, ø10 mm vertical closed hoop stirrups will be selected and arranged along four integral 

beams. 

effective depth = 160 mm  = 16 × 10 (d is at least 16db).        O.K. 

Av provided is 4 × 2 × 78.5 = 628  mm
2
 at the first critical section, at distance d/2 = 80 mm from the 

column face. 

 

The required perimeter of the second critical section, at which the concrete alone can carry the 

shear, is found from the controlling equation as follows: 

                     √                  √             

 

               
        

      
                         

 

5193.4 = 4 × (3d + y ) 

    y = 818.35  mm 

x = 818.35 × sin 45 = 578.7  mm 

8 stirrups at constant 80 mm spacing will be sufficient, the first placed at 80 mm from the column 

face, this provides a shear perimeter (bo) at second critical section of: 

9 × 80 + 150 = 870 mm   >  x + 240 = 818.7 mm     O.K. 

 

It is essential that this shear reinforcement engage longitudinal reinforcement at both the top and 

bottom of the slab, so 4 longitudinal ø16 bars will be provided inside the corners of each closed 

hoop stirrup. Alternatively, the main slab reinforcement could be used. 
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80 

x 

y 

3d = 480 mm 

9 × 80 = 720 mm 
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Example: 

Check the two way shear action (punching shear) only around an edge column (400400) mm in a 

flat plate floor of a span (6.0  6.0) m. Find the area of vertical shear reinforcement if required. 

Assume d = 158 mm. Total qu = 16.0 kPa (including slab weight), fc’ = 25 MPa, fy = 400 MPa. 

 

Solution:- 

Shear perimeter (bo) = (400 + 79) × 2 + (400 + 158) = 1516 mm 

Vu = 16 × (6 × 3.2 – 0.558 × 0.479) = 302.923 kN 

     
  

    
  

            

         
            

 

i) without shear reinforcement 

The design shear strength of the concrete alone at the critical section d/2 from the face of column is 

 

        

{
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vn = vc 

ϕvn = 0.75 × 1.65 = 1.238  MPa  <  vu = 1.265  MPa        not O.K. 

 Shear reinforcement is required 

 

ii) with shear reinforcement 

vn = vc + vs 

For two-way members with shear reinforcement, effective depth shall be selected such that vu 

calculated at critical sections does not exceed the value:  

         √    

                                √                √                        

 

          √           √            

 

Let   ϕvn = vu = 1.265 MPa 

ϕ (vc + vs) = vu 
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The required area of vertical shear reinforcement = 250.6 mm
2
 

 

 

 

 

 

 

To design the integral beams with the vertical stirrups to carry the excess shear: 

 

For trial, ø8 mm vertical closed hoop stirrups will be selected and arranged along three integral 

beams. 

effective depth = 158 mm  > 16 × 8 = 128  mm (d is at least 16db).        O.K. 

 

Av provided is 3 × 2 × 50.2 = 301  mm
2
 at the first critical section, at distance d/2 ≈ 75 mm from the 

column face. 

 

The required perimeter of the second critical section, at which the concrete alone can carry the 

shear, is found from the controlling equation as follows: 
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Example: 

Check the two way shear action (punching shear) only around a corner column (400400) mm in a 

flat plate floor of a span (6.06.0) m. Find the area of vertical shear reinforcement if required. 

Assume d =158 mm. Total qu = 19.0 kPa (including slab weight), fc’= 25 MPa, fy = 400 MPa. 

 

Solution:- 

Shear perimeter (bo) = (400 + 79) × 2 = 958 mm 

Vu = 19 × (3.2 × 3.2 – 0.479 × 0.479) = 190.201 kN 

 

     
  

    
  

           

        
            

 

i) without shear reinforcement 

The design shear strength of the concrete alone at the critical section d/2 from the face of column is 
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vn = vc 

ϕvn = 0.75 × 1.65 = 1.238  MPa  <  vu = 1.257  MPa        not O.K. 

 Shear reinforcement is required 

 

ii) with shear reinforcement 

vn = vc + vs 

For two-way members with shear reinforcement, effective depth shall be selected such that vu 

calculated at critical sections does not exceed the value:  

         √    

                                √                √                        

 

          √           √            

 

Let   ϕvn = vu = 1.257 MPa 

ϕ (vc + vs) = vu 
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The required area of vertical shear reinforcement = 148.4 mm
2
 

 

 

 

Example: 

Check the two way shear action (punching shear) only around an interior column (450450) mm in 

a flat plate floor of a span (5.85.6) m. Find the area of vertical shear reinforcement if required. 

Assume d =150 mm. Total qu = 17.5 kPa (including slab weight),  fc’= 32 MPa, fy = 420 MPa. 
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Example: 

Check the two way shear action (punching shear) only around an interior column (400500) mm in 

a flat plate floor of a span (5.65.6) m. Find the area of vertical shear reinforcement if required. 

Assume d =170 mm. Total qu = 18.0 kPa (including slab weight),  fc’= 30 MPa, fy = 420 MPa. 

 

Solution:- 

Shear perimeter (bo) = (400 + 170) × 2 + (500 + 170) × 2 = 2480 mm 

Vu = 18 × (5.6 × 5.6 – 0.57 × 0.67) = 557.606 kN 

 

     
  

    
  

           

         
            

 

i) without shear reinforcement 

The design shear strength of the concrete alone at the critical section d/2 from the face of column is 
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vn = vc 

ϕvn = 0.75 × 1.807 = 1.355  MPa  >  vu = 1.323  MPa        not O.K. 

 Shear reinforcement is not required 

 

 

Example: 

Check the two way shear action (punching shear) only around an edge column (300300) mm in a 

flat plate floor of a span (4.04.0) m. Find the area of vertical shear reinforcement if required. 

Assume d =165 mm. Total qu = 17.6 kPa (including slab weight),  fc’= 35 MPa, fy = 420 MPa. 
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Transfer of moments to columns 

The above analysis for punching shear in slabs assumed that the shear force (Vu) was uniformly 

distributed around the perimeter of the critical section (bo), at distance d/2 from the face of 

supporting column and resisted by concrete shear strength (vc), which was given by the minimum of 

three equations. If significant moment is to be transferred from the slab to the column, the shear 

stress on the critical section is no longer uniformly distributed. The situation is shown in figures 

below. 

Vu represents the total vertical reaction to be transferred to the column. 

Mu (γvMsc) represents the unbalanced moment to be transferred by shear. 

Vu causes shear stress distributed uniformly around the perimeter of the critical section, which 

acting downward. Mu causes additional loading, which add to shear stresses in one side and subtract 

to the other side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Shear stresses due to shear and moment transfer at an interior column. 
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Shear stresses due to shear and moment transfer at an edge column. 
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If there is a transfer of moment between the slab and column, a fraction of Msc, the factored slab 

moment resisted by the column at a joint, shall be transferred by flexure (γfMsc), where γf shall be 

calculated by: 
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Assumed distribution of shear stress. 
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For nonprestressed slabs, where the limitations on vug and εt in Table 8.4.2.3.4 are satisfied, γf shall 

be permitted to be increased to the maximum modified values provided in Table 8.4.2.3.4, where vc 

is calculated in accordance with Table 22.6.5.2, and vug is the factored shear stress on the slab 

critical section for two-way action due to gravity loads without moment transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effective slab width (bslab) for resisting γfMsc shall be the width of column or capital plus 1.5 h 

of slab or drop panel on either side of column or capital. 

 

 

 

 

 

 

 

 

 

 

 

8.4.2.3.5 Concentration of reinforcement over the column by closer spacing or additional 

reinforcement shall be used to resist moment on the effective slab width defined before. 
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The fraction of Msc not calculated to be resisted by flexure shall be assumed to be resisted by 

eccentricity of shear. 

 

For two-way shear with factored slab moment resisted by the column, factored shear stress (vu) 

shall be calculated at critical sections. vu corresponds to a combination of vug and the shear stress 

produced by γvMsc. 

 

The fraction of Msc transferred by eccentricity of shear (γvMsc) shall be applied at the centroid of the 

critical section, where: 

γv = 1 – γf 

 

The stress distribution is assumed as illustrated in Figure above for an interior or exterior column. 

The perimeter of the critical section, ABCD, is determined. The factored shear stress (vug) and 

factored slab moment resisted by the column (Msc) are determined at the centroidal axis c-c of the 

critical section. The maximum factored shear stress may be calculated from: 

 

           
          

  
                              

          

  
 

 

Jc = property of assumed critical section analogous to polar moment of inertia 

 

Interior column: 
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Edge column: 

In case of moment about an axis parallel to the edge: 
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In case of moment about an axis perpendicular to the edge: 
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Corner column: 
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At an interior support, columns or walls above and below the slab shall resist the factored moment 

calculated by the equation below in direct proportion to their stiffnesses unless a general analysis is 

made. 

 

         [(           )      
      

    
  (  

 ) ] 

 

where qDu
′
, ℓ2

′
, and ℓn

′
 refer to the shorter span. 

 

The gravity load moment to be transferred between slab and edge column shall not be less than 

0.3Mo. 

 

 

Calculation of factored shear strength vu (ACI 421.1R-4) 

The maximum factored shear stress vu at a critical section produced by the combination of factored 

shear force Vu and unbalanced moments Mux and Muy, is: 

    
   

  
 

         

  
  

         

  
 

Ac: area of concrete of assumed critical section. 

x, y: coordinate of the point at which vu is maximum with respect to the centroidal principal axes x 

and y of the assumed critical section. 

Mux, Muy: factored unbalanced moments transferred between the slab and the column about the 

centroidal axes x and y of the assumed critical section, respectively 

γux, γuy: fraction of moment between slab and column that is considered transferred by eccentricity 

of shear about the axes x and y of the assumed critical section. The coefficients γux and γuy are given 

by: 
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where ℓ x1 and ℓ y1 are lengths of the sides in the x and y directions of the critical section at d/2 from 

column face. 

Jx , Jy: property of assumed critical section, analogous to polar amount of inertia about the axes x 

and y, respectively. In the vicinity of an interior column, Jy for a critical section at d/2 from column 

face is: 
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Properties of critical sections of general shape  

This section is general; it applies regardless of the type of shear reinforcement used. Figure below 

shows the top view of critical sections for shear in slab in the vicinity of interior column. The 

centroidal x and y axes of the critical sections, Vu, Mux, and Muy are shown in their positive 

Equations for γvx and γvy applicable for critical sections at d/2 from column face and 

outside shear-reinforced zone. Note: ℓx and ℓy are projections of critical sections on 

directions of principal x and y axes. 
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directions. The shear force Vu is acting at the column centroid; Vu, Mux, and Muy represent the 

effects of the column on the slab. 

vu for a section of general shape, the parameters Jx and Jy may be approximated by the second 

moments of area Ix and Iy given below. The coefficients γvx and γvy are given in Figure, which is 

based on finite element studies. 

The critical section perimeter is generally composed of straight segments. The values of Ac, Ix, and 

Iy can be determined by summation of the contribution of the segments: 
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where xi , yi , xj , and yj are coordinates of Points i and j at the extremities of the segment whose 

length is ℓ. 

When the maximum vu occurs at a single point on the critical section, rather than on a side, the peak 

value of vu does not govern the strength due to stress redistribution. In this case, vu may be 

investigated at a point located at a distance 0.4d from the peak point. This will give a reduced vu 

value compared with the peak value; the reduction should not be allowed to exceed 15%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Critical sections for shear in slab in vicinity of interior column. 
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Example:- 

Check combined shear and moment transfer at an edge column 400  mm square column supporting 

a flat plate slab system. Use fc
’ 
= 28  MPa   ,    fy = 420  MPa 

Overall slab thickness (t) = 190  mm, (d = 154 mm). 

Consider two loading conditions: 

1- Total factored shear force Vu = 125  kN, the factored slab moment resisted by the column 

(Msc) = 35  kN.m, and εt = 0.004 

2- Vu = 250  kN  ,   Msc = 70  kN.m, and εt > 0.004 

 

Solution: 

        
 

 
      

   

 
         

b2 = c2 + d = 400 + 154 = 554  mm 

bo = 2 b1 + b2 = 2 × 477 + 554 = 1508  mm 

 

Edge column: 

In case of moment about an axis parallel to the edge: 
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Ac = ( 2 b1 + b2 ) d = ( 2 × 477 + 554 ) × 154 = 232232  mm
2
 

Ac: area of critical section. 

 

The design shear strength of the concrete alone (without shear reinforcement) at the critical section 

d/2 from the face of the column is: 
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ϕvc = 0.75 × 1.746 = 1.31  MPa 
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Loading condition (1)           Vu = 125  kN, Msc = 35  kN.m, and εt = 0.004 

 

     
  

  
  

       

      
            

 

Span direction is perpendicular to the edge 

0.75ϕvc = 0.75 × 1.31 = 0.983  MPa  >  vug = 0.538  MPa    &    εt = 0.004       γf = 1.0 

 

Therefore, all of the factored slab moment resisted by the column (Msc) may be considered to be 

transferred by flexure (i.e γf = 1.0 and γv = 0). 

 

Check shear strength of the slab without shear reinforcement. Shear stress along inside face of the 

critical section. 

vn = vc 

ϕvn = 1.31  MPa  >  vu = vug = 0.538  MPa        O.K. 

 Shear reinforcement is not required 

 

Loading condition (2)           Vu = 250  kN,   Msc = 70  kN.m, and εt > 0.004 

 

     
  

  
  

       

      
            

 

Span direction is perpendicular to the edge 

0.75ϕvc = 0.983  MPa  <  vug = 1.077  MPa           γf  <  1.0 
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γv = 1 – γf = 1 – 0.618 = 0.382 

 

Check shear strength of the slab without shear reinforcement. Shear stress along inside face of the 

critical section. 

vn = vc 

           
          

  
        

                      

             
            

ϕvn = 1.31  MPa  <  vu = 1.734  MPa        not O.K. 

 Shear reinforcement is required to carry excess shear stress. 

 

Check maximum shear stress permitted with shear reinforcement. 
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          √           √           
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Let   ϕvn = vu = 1.734 MPa 

ϕ (vc + vs) = vu 

         
  

 
      

     

    
                

    
     

    
 

         
        

  
  

                

   
            

         
 

 
  

   

 
               

 

The required area of vertical shear reinforcement = 380.2 mm
2
 

 

For trial, 3ø8 mm vertical single-leg stirrups will be selected and arranged along three integral 

beams. 

effective depth = 154 mm  > 16 × 8 = 128  mm (d is at least 16db).        O.K. 

 

Av provided is 3 × 3 × 50.2 = 451.8  mm
2
 at the first critical section, at distance d/2 ≈ 75 mm from 

the column face. 
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Example: 

A flat plate floor has a thickness equals to 220 mm, and supported by 500 mm square columns 

spaced 6.0 m on center each way. Check the adequacy of the slab in resisting punching shear at a 

typical interior column, and provide shear reinforcement, if needed. The floor will carry a total 

factored load of 17.0 kN/m
2
 and the factored slab moment resisted by the column is 40 kN.m. 

Use effective depth = 170 mm, fy = 420 MPa, and fc
’ 
= 28.0 MPa. 

 

Solution:- 

The first critical section for punching shear is at distance  d/2 = 85  mm from the column face. 

b1 = c1 + d = 500 + 170 = 670  mm 

b2 = c2 + d = 500 + 170 = 670  mm 

Shear perimeter (bo) = 2 b1 + 2 b2 = 2 × 670 + 2 × 670 = 2680  mm 

 

The design shear strength of the concrete alone (without shear reinforcement) at the critical section 

d/2 from the face of the column is: 
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ϕvc = 0.75 × 1.746 = 1.31  MPa 

 

Vu = 17.0 × [ (6.0)
2
 - (0.67)

2
 ] =   604.369  kN 
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γv = 1 – γf = 1 – 0.6 = 0.4 
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Example: 

The flat plate slab of 200 mm total thickness and 160 mm effective depth is carried by 300 mm 

square column 4.50 m on centers in each direction. A factored load of 370 kN and a factored slab 

moment resisted by the column is 44 kN.m must be transmitted from the slab to a typical interior 

column. Determine if shear reinforcement is required for the slab, and if so, design integral beams 

with vertical stirrups to carry the excess shear. Use fy = 420 MPa, fc
’
 = 30 MPa. 

 

Solution:- 

The first critical section for punching shear is at distance  d/2 = 80  mm from the column face. 

 

b1 = c1 + d =  

b2 = c2 + d =  

Shear perimeter (bo) = 2 b1 + 2 b2 =  

 

The design shear strength of the concrete alone (without shear reinforcement) at the critical section 

d/2 from the face of the column is: 
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Vu = 370  kN 
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Yield Line Analysis for Slabs 

 

In a slab failing in flexure, the reinforcement will yield first in a region of high moment. When that 

occurs, this portion of the slab acts as a plastic hinge, only able to resist its hinging moment. When 

the load is increased further, the hinging region rotates plastically, and the moments due to 

additional loads are redistributed to adjacent sections, causing them to yield. The bands in which 

yielding has occurred are referred to as yield lines and divide the slab into a series of elastic plates. 

Eventually, enough yield lines exist to form a plastic mechanism in which the slab can deform 

plastically without an increase in the applied load. 

In the yield-line method for slabs, the loads required to develop a plastic mechanism are 

compared directly to the plastic resistance (nominal strength) of the member. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simply supported uniformly loaded 

one-way slab. 

Fixed-end uniformly loaded one-way slab. 
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Axes of rotations: 

Yield lines form in regions of maximum moment and divide the slab into a series of elastic plate 

segments. When the yield lines have formed, all further deformations are concentrated at the yield 

lines, and the slab deflects as a series of stiff plates joined together by long hinges. The pattern of 

deformation is controlled by axes that pass along support lines, over columns, and by the yield 

lines. Because the individual plates rotate about the axes and/or yield lines, these axes and lines 

must be straight. 

 

Location of Axes of rotations and yield-lines: 

a- Axes of rotation generally lie along lines of support (the support line may be a real hinge as 

in simple supported, or it may establish the location of a yield line, which acts as a plastic 

hinge and in continuous or fixed support). 

b- Axes of rotation pass over any columns. 

c- The slab segments can be considered to rotate as right bodies in space about these axes of 

rotation. 

d- Yield lines are generally straight. 

e- A yield line passes through the intersection of the axes of rotation of adjacent slab. 

f- A yield line passes under the point load (concentrated force). 

 

 

Notations: 

 

 Axis of rotation 

 Positive yield line 

 Negative yield line 

 Simply supported 

 Fixed or continuous support 

 Free edge 

 Beam 

 Column 

 Point load (concentrated force) 

 Line load 
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Isotropic slab: The slab is reinforced identically in all directions. The resisting moment, is the same 

along any line regardless of its location and orientation.  

Orthotropic slab: The resisting moments are different in two perpendicular directions. 

  

Methods of solution: 

Once the general pattern of yielding and rotation has been established by applying the guid lines the 

location and the orientation of axes of rotation and the failure load for the slab can be established by 

either of two methods. 

- Equilibrium method. 

- Virtual-work method. 

 

Equilibrium method: 

By this method, the correct axes of rotation and the collapse load for the correspond mechanism can 

be found considering equilibrium of the slab segments. Each segment, studied as a free body, must 

be in equilibrium under the action of the applied load, the moments along the yield lines, and the 

reactions or shear force along the support line. Zero shear force and twisting moment along the 

positive yield line, and only moment per linear length (m) is considered in writing equilibrium 

equation. 

 

Example 

A square slab is simply supported along all sides and is to be isotropically reinforced. Determine the 

ultimate resisting moment (m) per linear meter required just to sustain a uniformly distributed load 

(q) in kN/m
2
. 

 

Solution 

Conditions of symmetry indicate the yield line pattern as shown. 

 

 

 

 

 

 

 

Consider the moment equilibrium of any one of the identical slab segments about its support: 
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Virtual-work method:  

Since the moment and load are in equilibrium when the yield line pattern has formed, an increase in 

load will cause the structure to deflect further. The external work done by the loads to cause a small 

arbitrary virtual deflection must equal the internal work done as the slab rotates at the yield line to 

accommodate this deflection. 

 

External work done by loads: 

External work (EW or We) equals to the product of external load and the distance through which the 

point of application of the load moves. If the load is distributed over a length or an area rather than 

concentrated, the work can be calculated as the product of the total load and the displacement of the 

point of application of its resultant. 

 More complicated shapes may always be subdivided into components of triangles and 

rectangles. The total external work calculated by summing the work done by loads on the individual 

point of the failure mechanism. 

 

Internal work done by resisting moment: 

The internal work (IW or Wi) done during the assigned virtual displacement is found by summing 

the products of bending moment per unit length of yield line (m), the length of the yield line, and 

the angle change at that yield line corresponding to the virtual displacement (θ). 

    ∑[     ] 

 

 For orthotropic slab (mx ≠ my) it is necessary to choose the axes of moment parallel to the 

edges if possible 
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Example 

Find the ultimate moment for the slab shown using the yield line theory. The slab is one way and 

simply supported of length (L) and normally loaded by a uniformly distributed load (w). 

 

 

 

 

 

Solution 
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to find the value of α, drive w with respect to α and equate the result to zero 
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   α = 0.5 
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Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-

way slab shown in figure under a uniformly distributed load (w). 

 

 

 

Solution 

3

w4
2

3

1

2

1
0.20.2wEW 








  

 

m22
2

1
2mIW 








  

 

w667.0m

3

w2
m

m2
3

w4

IWEW









 

 

 

 

 

 

Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-

way slab shown in figure under a consentrated force (P) on the free corner. 

 

Solution 
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Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete         

two-way slab shown in figure under the load (P) (all dimensions are in mm).   

 

 

Solution 
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Example 

The circular slab of radius r supported by four columns, as shown in figure, is to be isotropically 

reinforced. Find the ultimate resisting moment (m) per linear meter required just to sustain a 

concentrated factored load of P kN applied at the center of the slab. 

 

Solution 
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Example 

The circular slab of radius 2 m supported by three columns, as shown in figure, is to be 

isotropically reinforced. Find the ultimate resisting moment per linear meter (m) required just to 

sustain a uniformly distributed load (q) equals 16 kN/m
2
. 

 

Solution 
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Example 

By using the yield line theory, determine the ultimate resisting moment (m) for an isotropic 

reinforced concrete two-way slab shown in figure under a uniform load (q). 

 

Solution 

     

 

 

 

 

     

 

 

 

 

 

       

 

 

Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way slab to sustain a concentrated factored load of P kN applied 

as shown in figure. 

 

Solution 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

orthotropic reinforced concrete two-way slab to sustain a uniformly distributed load and line load 

applied as shown in figure. 

 

Solution 
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Example 

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an 

isotropic reinforced concrete two-way slab to sustain a concentrated factored load of P kN applied 

as shown in figure. 

 

 

Solution 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported triangle slab shown in figure under a 

uniform load (q). 

 

Solution 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported square slab shown in figure under a 

uniform load (q). 

 

Solution 

      (        
 

 
   
 

 
)                     

 

 
 

    
       

 
 

 

   (       
 

 
)      

     

 
 

 

       

 
       

 
  
     

 
 

    
    

 
  
    

  
 

 



Reinforced Concrete Design II 

 

771 
 

Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a 

uniform load (q). 

 

Solution 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported circular slab shown in figure under a 

uniform load (q). 

 

Solution 

    

 

 

 

     

 

 

 

       

 

 

 

    
    

 
  



Reinforced Concrete Design II 

 

710 
 

Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a 

concentrated factored load of P. 

 

 

 

 

Solution 
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Example 

By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-

way slab shown in Figure under a concentrated factored load of  P. 

 

 

 

 

 

 

 

 
Solution 
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Example 

By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an 

orthotropic rectangulare reinforced concrete two-way slab, shown in Figure, to sustain a uniformly 

distributed load equals 12 kN/m
2
. Use the proposed positions for the positive and negative yield 

lines as shown in Figure. 

 

 

 

 

 

 

 

 

 

 

 

Solution 
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Example 

By using the yield line theory, determine the ultimate resisting  moment per linear meter (m) for an 

isotropic reinforced concrete two-way polygon slab shown in figure under a uniform load (q). 
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Prestressed Concrete 

 

Prestressed concrete member can be defined as one in which there have been introduced internal 

stresses of such magnitude and distribution that the stresses resulting from the given external 

loading are counteracted to a designed degree.  

 

Advantage of prestressed concrete  

1- High strength steel and concrete.  

2- Eliminated cracks in concrete.  

3- Prestressed concrete more suitable for structure of long span and those carrying heavy loads. 

4- Under dead load, the deflection is reduced, owing to the cambering effected of prestress 

(useful for bridges and long cantilevers).   

 

Disadvantage of prestressed concrete 

1- Higher cost of materials.  

2- More complicated formwork may be necessitated.  

3- End anchorages and bearing plates are usually required.  

4- Labor costs are greater.  

 

Tendon: A stretched element used in a concrete member of structure to impart prestress to the 

concrete. Generally, high tensile steel wires, bars, cables or strands are used as tendons.  

Strand: A group of wires (7 wires).  

Wires: individually drawn wires of 7 mm diameter; 

Bar: a specially formed bar of high strength steel of greater than 20 mm diameter 

Anchorage: A device generally used to enable the tendon to impart and maintain prestress the 

concrete.  
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Classifications and types  

a- Externally and internally prestressed   

- Externally by jacking against abutments, this cannot be accomplished in practice, because 

even if abutment is stiff, shrinkage and creep in concrete y completely offset the strain.  

- Internally accomplished by pretensioiny of steel.  

 

b- Linear and circular prestressing  

- Linear for beam and slabs, can be curved.  

- Circular used for round tanks, silos, and pipes.  

 

c- Pretensioning and postensioning  

- Pretensioning: tendons tensioned before the concrete is placed, used in prestressing plants 

where permanent beds are provided for such tensioning.  

- Posttensioning: tendons are tensioned after the concrete has hardened. 
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d- End-anchored and non-end-anchored tendons   

- End-anchored: used in post tensioned, the tendons are anchored at their ends by means of 

mechanical devices to transmit the prestress to the concrete.  

- Non-end-anchored: used in pretensioned where the tendons have their perstress transmitted 

to the concrete by their bond action near the ends. This type is limited to wires and strand of 

small size.   

 

e- Bounded and unbounded tendons  

Bounded: denote those bounded throughout their length to the surrounding concrete. 

 

Non-end-anchored: tendons may be either bounded or unbounded to the concrete by grouting.  

 

f- Precast, cast-in-place, composite construction 

- Precasting: involves the placing of concrete away from its final position. This permits better 

control on mass production, and it is economical. 

- Cast-in-place: concrete requires more form and false work.  

- Composite: to precast pant of a member, erect it, casting the remaining portion in place.  

 

g- Partial and full prestressing  

- Full prestressing: the member is designed, so that, under working loads (service) there are 

no tensile stresses in it.  

- Partial: tension is produced under working load. Addition, mild steel bars are provided to 

reinforce the tension zone.  

Prestressing methods: (a) post-tensioning by jacking against abutments; (b) post-tensioning with 

jacks reacting against beam; (c) pretensioning with tendon stressed between fixed external 

anchorages. 
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Stages of Loading:  

1- Initial stage: the member is under prestress, but is not subjected to any superimposed 

external loads.  

2- Intermediate stage: during transportation and erection.  

3- Final (service) stage: when the actual working load come on the structure.  

 

Concrete:  

High strength concrete is used (fc
’
 > 40 MPa) for the following reasons:  

1- High bearing stresses needed at end anchorage in post-tensioned.  

2- High bond offered by high strength concrete in pretension.  

3- A smaller cross sectional area can be used to carry a given load.  

4- Higher modulus of elasticity, this means a reduction in initial elastic strain under application 

of prestress force and a reduction in creep strain. This results in a reduction in loss of 

prestress.  

 

Steel: 

The tensile strengths of prestressing steels range from about 2.5 to 6 times the yield strengths of 

commonly used reinforcing bars. The grade designations correspond to the minimum specified 

tensile strength in ksi (MPa). For the widely used seven-wire strand, two grades are recognized in 

ASTM A416: Grade 250 ksi (1725 MPa) and Grade 270 ksi (1860 MPa). For alloy steel bars, two 

grades are used: Grade 150 ksi (regular) and Grade 160 ksi. Round wires may be obtained in Grades 

235, 240, and 250 ksi. 

High strength steel must be used due to the low prestressing force obtained by using ordinary steel 

is quickly lost due to shrinkage and creep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Typical stress-strain curves for prestressing steels. 
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Losses in prestressing force  

 The magnitude of prestress force will gradually decrease. The most significant causes are:-  

1- Elastic shortening of concrete.  

2- Concrete creep under sustained load.  

3- Concrete shrinkage.  

4- Relaxation of stress in steel.  

5- Friction loss between the tendons and the concrete during stressing operation.  

6- Loss due to slip of steel strands.  

 

Summary of losses:  

Pretensioned beam Post-tensioned beam 

a- Before transfer     

- Shrinkage  3% ـــــــــــــــــــــ  

b- At transfer     

- Elastic shortening  3% - Elastic shortening  1% 

  - Anchor slip 2% 

  - Friction  2% 

c- After transfer     

- Shrinkage  4% - Shrinkage  4% 

- Creep  7% - Creep  4% 

- Steel relation 3% - Steel relation 3% 

total 20%  16% 

  

 

Analysis: to determine the stresses in the steel and concrete when the shape and size of a section are 

already given or assumed.  

 

Design: to determine a suitable section for a given loading and stresses. 

 

The analysis is a simpler operation than design.  

 

The fpu is the ultimate strength of the steel and fpy is the yield strength.  
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Stages of investigation of prestressed beam:  

 

Initial stage 

Initial force (Pi) plus beam weight (wg): 
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Service stage  

The beam under effective prestressing force (Pe) plus weight of the beam plus service load (live 

load plus weight of cast-in-situ concrete): 
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Permissible stresses in prestressed concrete flexural members 

For calculation of stresses at transfer of prestress, at service loads, and at cracking loads, elastic 

theory shall be used with assumptions (a) and (b): 

(a) Strains vary linearly with distance from neutral axis. 

(b) At cracked sections, concrete resists no tension. 

 

Classification of prestressed flexural members 

Prestressed flexural members shall be classified as Class U, T, or C in accordance with Table 

24.5.2.1, based on the extreme fiber stress in tension ft in the precompressed tension zone calculated 

at service loads assuming an uncracked section. 

 

Table 24.5.2.1 - Classification of prestressed flexural members based on ft 

Assumed behavior Class Limits of ft 

uncracked U          √    

Transition between uncracked 

and cracked 
T      √             √    

cracked C         √    

 

Prestressed two-way slabs shall be designed as Class U 
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Three classes of behavior of prestressed flexural members are defined. Class U members are 

assumed to behave as uncracked members. Class C members are assumed to behave as cracked 

members. The behavior of Class T members is assumed to be in transition between uncracked and 

cracked. The serviceability requirements for each class are summarized in Table R24.5.2.1. For 

comparison, Table R24.5.2.1 also shows corresponding requirements for nonprestressed members. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Class U and T members, stresses at service loads shall be permitted to be calculated using the 

uncracked section. 

 

For Class C members, stresses at service loads shall be calculated using the cracked transformed 

section. 

 

Permissible concrete stresses at transfer of prestress 

 

Calculated extreme concrete fiber stress in compression immediately after transfer of prestress, but 

before time-dependent prestress losses, shall not exceed the limits in Table 24.5.3.1. 

 

 

 

 

 

 

 

 

       √  
        √  

           √  
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Calculated extreme concrete fiber stress in tension immediately after transfer of prestress, but 

before time-dependent prestress losses, shall not exceed the limits in Table 24.5.3.2, unless 

permitted by 24.5.3.2.1. 

 

 

 

 

 

 

 

 

 

 

 

Permissible concrete compressive stresses at service loads 

 

For Class U and T members, the calculated extreme concrete fiber stress in compression at service 

loads, after allowance for all prestress losses, shall not exceed the limits in Table 24.5.4.1. 
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Example 

A prestress rectangular box beam post-tensioned by straight high tensile steel wires of total area As 

mm
2
, equally divided between the top and bottom flanges and placed on center of flanges. The 

forces are initially stressed to 850 N/mm
2
 and the total losses of prestress is 15%. The beam is 

required to carry a uniformly distributed superimposed load of 4.5 kN/m in addition to its own 

weight, over a span of 15 m. If the concrete stresses are not to exceed 17.5 N/mm
2
 in compression 

and 1 N/mm
2
 in tension (during the prestressing operation and working load). Calculate the max. 

and min. As of steel, which may be used. Use γc = 25 kN/m
3
 

 

Solution 

A = 400 × 750 – 240 × 510 = 177600 mm
2
 

 

  
      ( 5 )        (5  )  

  
                     

wg = 177600 × 10
-6

 × 25 = 4.44  kN/m 

 

Note: 

a- check compressive stress at initial stage. 

b- check compressive stress at top and tensile stress at bottom at service stage.  

 

a- Immediately after prestressing 

prestressing force before losses = 850 As 

initial compressive stress =  

  i     i    
 i

 
 

 

    5   
   5     

      
                5  5       

 

b- Service stage (final stage)  

1- Top fiber 

  

 

Prestressing stress after losses  =  

 

Final stress @ top  = 

 

 

2- Bottom fiber:  
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Example 

A simply supported prestressed beam, of span 8 m and its cross section is shown in Figure, is 

carrying a live load equals to 12 kN/m. Compute the required prestressing forces for: 

a) Tob fiber stress equals to zero under beam weight plus prestressing force only. 

b)  Bottom fiber stress equals to zero under full load. 

           Use γc = 25 kN/m
3
, I = 120  10

8
 mm

4
, Ag = 150000 mm

2
. 

 

 

 

 

 

 

Solution 
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a)  Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber 
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b)  Bottom fiber stress equals to zero under full load 
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Example 

A simply supported prestressed beam, of span 8 m and its cross section is shown in Figure, is 

carrying a live load equals to 10 kN/m. Compute the required prestressing forces for: 

a) Top fiber stress equals to zero under beam weight plus prestressing force only. 

b)  Bottom fiber stress equals to zero under full load. 

     Use γc = 25 kN/m
3
, I = 10  10

9
 mm

4
, Ag = 100000 mm

2
. 

 

Solution 
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a)  Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber 
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b)  Bottom fiber stress equals to zero under full load 
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Example 

A double-T simply supported concrete beam its cross section is shown in Figure, is prestressed 

with 2 tendons each 400 mm
2
. Determine the allowable service load. 

Use span = 12 m, fse = 1300 MPa, fc’ = 40 MPa, c = 25 kN/m
3
.        
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Example 

A prestressed simply supported 15 m span beam with rectangular box section is post-tensioned by 

straight high tensile steel wires as shown in Figure. The prestressing wires are placed at the center 

line of the flanges and initially stressed to 850 N/mm
2
.  The beam is required to carry a uniformly 

distributed superimposed load of 4.5 kN/m in addition to its weight. If the concrete stresses are not 

to exceed 17 MPa in compression and 1 MPa in tension at service stage, calculate the range of the 

total prestressing wires area required. Ignore prestressing force losses in your answer. (γc = 24 

kN/m
3
). 
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Example 

A simply supported prestressed beam, of span 10 m and its cross section is shown in Figure, is 

carrying a live load equals to 10 kN/m. Compute the required prestressing forces for: 

a) Top fiber stress equals to zero under beam weight plus prestressing force only. 

b) Bottom fiber stress equals to zero under full load. 

Use γc = 25 kN/m
3
, I = 150  10

8
 mm

4
, Ag = 100000 mm

2
. 
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Example 

A simply supported prestressed concrete beam, of span 10 m and its cross section is shown in 

Figure, is carrying a service load equals to 12 kN/m. Compute the required prestressing forces 

for: 

a) Top fiber stress equals to zero under beam weight plus prestressing force only. 

b) Bottom fiber stress equals to zero under full loads. 

Use γc= 24 kN/m
3
, I = 1210

9
 mm

4
, Ag = 120000 mm

2
. 
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a)  Top fiber stress equals to zero under beam weight plus prestressing force only at top fiber 
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b)  Bottom fiber stress equals to zero under full loads 
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Example 

A cantilever prestressed concrete beam, of span 6 m and its cross section is shown in Figure, is  

carrying a service load equals to 12 kN/m. Compute the required prestressing forces for: 

a) Bottom fiber stress equals to zero under beam weight plus prestressing force only. 

b) Top fiber stress equals to zero under full loads. 

Use γc= 25 kN/m
3
, I = 1810

9
 mm

4
, Ag = 120000 mm

2
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a)  Bottom fiber stress equals to zero under beam weight plus prestressing force only at bottom 

fiber 
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b)  Top fiber stress equals to zero under full loads 
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Example 

A simply supported rectangular prestressed concrete beam, of span 13 m and its cross section as 

shown in figure, is carrying a live load equals to 30 kN/m in addition to its weight, compute the 

following stresses and compare it with ACI allowable stress: 

a) Bottom fiber stress at support in initial stage. 

b) Top fiber stress at mid span in final stage. 

 Use          ⁄ ,           , initial stress of the prestressed steel = 1200 MPa, total losses 

is 20%,    i        , and    
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