FPGA Virtualization

For CSE291J Virtualization
Yizhou Shan
Feb 27,2020

What is FPGA?

A field-programmable gate array (FPGA) is an
' integrated circuit designed to be configured by a

 customer or a designer|after manufacturing|— hence
the term|“field-programmable'}. The FPGA
configuration is generally specified using a hardware
:description language (HDL), similar to that used for I
 an application-specific integrated circuit (ASIC).

FPGAs containfan array|of programmable logic

: bIocks, and a hierarchy of reconfigurable
 interconnects that allow the blocks to be["wired

together"} like many logic gates that can be

 interwired in different configurations. Logic blocks w‘g

__

a) Lookup Table (LUT)

Configuration Bit0
Configuration Bit1
Configuration Bit2
Configuration Bit3

out

b)

c) Slice

LUT Memory
Programmable Bits

—

Routing Track

X
300

<
020,03
-
X
o0
X
-

] H
y 5%
| o
‘ () o

)
[1 1
e,

L

I

20

g
(X} [
ol

X
0
%

e oo

KR I
SO

O

Switchbox

I
-ﬁ
)

(X
11
=

X

ol
3 u.
_r.
I»

“4_ High
T Speed
183 Interfaces

353
|0

HE
|

(X

T
D
X)

—-

(Images from: Parallel Programming for FPGAs, http://kastner.ucsd.edu/hlsbook/)

Programmable
Bits

Microprocessor

http://kastner.ucsd.edu/hlsbook/

Development Process

Optional,
You can start
from HDL Bitstream is like a binary file!
)) O))
(FETr-\on Dl
y -Verilog Netlist Bitstream
Scala
-SV
- -/ - -/
High-Level Synthesis Place and Route (P&R)
Synthesis (mins-hrs) (hrs-days)

(mins-hrs)

Use FPGA as an accelerator

- Image/Video Processing

- Machine Learning

- DNN/CNN and more
- A good alternative to GPUs

- Bio Analysis

- Network Acceleration (e.g., SmartNIC)
- Storage Acceleration (e.g., SmartSSD)
- Graph/KVS and more

You don’t really need to understand FPGA in order to use it
Recent language advancement has boosted its recent adoption

Massive Deployment, Gloud FPGA

Microsoft Project Catapult

Released at 2014 (internal, not public)
Since then, it has been used to accelerate
- Bing Search
- Azure Network
- Machine Learning

L J Network switch (top of rack, cluster)
q A* —— FPGA - switch link
ety L
T /\ =7 FPGA acceleration board
ST A - —— NIC-FPGA link
/ \
/ \\ o8] UoH <~ 2-socket CPU server
/
[
[\ .
. Datacenter hw acceleration plane
TOR TOR P Yy 7
PV /// Deep neural - = ; =7 f
L pewolhs e comrpression
X
Web search 7 5
/\/‘\ :ansk?n;c Bioinformatics y
I
K SE l-;
j rankirig
T T T

Traditional sw (CPU) server plane

(@ Image from Catapult, ISCA'14

Name FPGAs vCPUs
f1.2xlarge 1 8
. f1.4xlarge 2 16
AWS, Alibaba, etc
. f1.16xl 8 64
- Public cloud FPGA e

- High-end Xilinx chips
- Large scale, low-cost, and fast dev
- Current model

- Single user, no sharing

AWS MARKETPLACE
AMAZON
FPGA IMAGE (AFI)

onn

P

gug

v
nnn

guyu
:

F1 INSTANCE

Instance
Memory (GiB)

122
244

976

Discussion: Is FPGA the future?

- Microsoft is betting big on FPGA

- Google and Amazon are leaning towards ASIC
- Can FPGA take over GPU or Google TPU or ASICin the future?

Compared to FPGA:

Cost Energy @ Dev Velocity | Performance Programmability
GPU Higher Higher Slower Depends Lower
ASIC Lower Lower Slower Depends Lower
Google TPU
ASIC Lower Lower Slower Depends Lower

Amazon Nitro

Towards sharing cloud FPGAs

VM 0 VM 1 VM 2

VFPGAO VFPGA2

VFPGA1 VFPGA3

shell
FPGA

DRAM

Disk

Reasons for sharing
- Customer: pay-as-you-go
- Vendor: consolidation

Strawman solution:
- VFPGA on top of a physical FPGA

Key technique: Partial Reconfiguration (PR)
- Change a part of a running FPGA design, e.g., update
vFPGAOQ, without disturbing others
- Limitation: fixed slots » Fragmentation
- Resizing needs to reprogram the whole chip

But sharing needs more:
- Protection
- Elasticity
- Compatibility

Amorph0OS: enable cloud FPGA sharing

- High-level goals
Protection among untrusted FPGA applications
Dynamic Scaling, or Elasticity
Compatibility across vendors

Amorph0S

- A framework to efficiently share cloud FPGAs among untrusted users

A set of APIs

A way to partition the chip = Zone

A way to scale/package FPGA apps =» Morphlet

A way to mix FPGA apps = High-throughput/Low-latency mode

A way to protect resource from untrusted FPGA applications » Hull

Finally a way to deploy mixed apps onto protected and partitioned chip » Registry

Global

PR)
one

Morphlet

<A,B> Ox0al...
<A,B,C> 0x0fb01...
<B,C> Ox1lad...

Registry

10

A set of APIs

Zone and Morphlet

A way to scale FPGA apps =» Morphlet

_ Pal’tltlon the Ch|p Into a mUIti'IeveI zones A way to mix FPGA apps = High-throughput/Low-latency mode

A way to protect resource from untrusted FPGA applications » Hull
- Global zone for the whole chip Finally a way to deploy mixed apps onto protected and partitioned chip + Registry

- Then smaller sub-zones

- Morphlet
- Aninstance of a user FPGA bitstream (like a container, and scalable)
- It can morph, i.e., dynamically change resource requirements
- How? E.g., change the array size N for int buf [N].

Host DRAM

App A

Morphlet A

App A Morphlet A

Morphlet A
FPGA Fabric

/i

Image from AmorphOS, OSDI18

Morphlet A’

11

A set of APIs
A way to partition the chip = Zone
Away o scale FPGA apps » Morphlet

s h d l = M hl t A way to mix FPGA apps = High-throughput/Low-latency mode
c e u lng orp e s A way to protect resource from untrusted FPGA applications = Hul

Finally a way to deploy mixed apps onto protected and partitioned chip = Registry

- Low Latency Mode
- Fixed zones + PR
- Default Morphlet bitstream

- High Throughput Mode
- Combine multiple Morphlets
- Co-schedule on a global zone

Low latency: switching is fast
High throughput: more areas are used

12

Image from AmorphOS, OSDI18
Low-Latency Mode High-Throughput Mode Low-Latency Mode High-Throughput Mode

Host
App A
Morphlet A

Host DRAM

s DRAM

App A App A

Morphlet A Morphlet A

App A Morphlet A

Morphlet A

App B
Morphlet B Morphlet A"
App C Morphlet B'
Morphlet C Morphlet C
Morphlet D
App D
Morphlet D

'. AR
LA
TR R L !

Morphlet A

App B FPGA Fabric
Morphlet B

FPGA Fabric Morphlet A’

Morphlet B

1.
1

—

-~

w PR/ W

13

u u | | | |
Discussion: Scheduling Tasks in FPGA
Space sharing is easy.
- What are two common approaches? Time sharing is not, esp for preemptive time sharing

- Can we do the same on FPGA? - It’s hard to readback the states, not what FPGA is
designed for

VFPGAO VFPGA1

VFPGAO VFPGA1

VFPGAO VFPGA2

FPGA

Runqueue \rpga2

VFPGA1 VFPGA2

Time O Time 1 Time 2

14

Protection
- Vendor Shells

- Basic raw PCle, memory controller IPs

- Clocks, virtual LEDs, Pads etc

Why not just let users deploy those raw IPs?

1. Those are heavy lifting tasks
A novice user can easily spent
days/months on just setting up

a.

2.

- No sharing, protection, multiplexing mechanism.

”,,/)"

AWS F1 Shell
N
VFPGAO VFPGA2
VFPGAT VFPGA3

~a

1 PCle (Gen3 x16) w/DVA
PP PR
MGT PF DDR4 - C
[M] 5]] [M]) [] 5]
A Msc P
DMA_PCIS PCIM BAR1 QCL (int, status, vLED/ SDA DDR
AXI-4 AXI-4 AXI-L AXI-L VDIP, see AXI-L AXI-4
{(S12-bit) (512-bit) (32-bit) (32-bit) M sx;ellaneous (32-bit) (512 bit)
Y ¥ v y Signds) v
[S] [M] (S] [S] [S] M]
M e
L : AXI-Strea o
AXI-4 512 b Stream
(512 bit) (512bit) (512 bit)
2 | Inter-FPGA Serial x4 |
| {(Supported on {
DDR4 - ABD | Fl.iédageonly) |
a ek meee=asasasass !

Safety. Misconfiguration might harm chip.

AWS EC2
F1 Shell

Customer
Logic

15

Protection

What need to be protected?

Host/On-board DRAM
Other host PCle devices

AmorphQOS Hull

Hardens and extends vendor shells
Isolation/Protection/Fairness
Interfaces

- Control (CntrIReq)

- Virtual Memory (AMI)

- Data Transfer (PCle)

Basic idea

Mediate all IO requests

A set of APIs
A way to partition the chip = Zone
A way to scale FPGA apps =» Morphlet

) - Hiah.)
A way to protect resource from untrusted FPGA applications » Hull I

Finally a way to deploy mixed apps onto protected and partitioned chip = Registry

SoftReg 8 GB DDR3 W

Catapult Shell

CntrlReg PCle

Cntrl Cntrl Cntrl Cntrl
Reg AMI PCle Reg AMI PCle Reg AMI PCle Reg AMI PCle

Morphleto Morphlet1 Morphlet2 Morphlet3

16

Registry

Rationale

- Compiling takes time (hours to days)

- To switch, next bitstream must be ready

- AmorphOS will do precompile and put
them into a bitstream registry

Registry

A set of APIs

A way to partition the chip = Zone

A way to scale FPGA apps =» Morphlet

A way to mix FPGA apps = High-throughput/Low-latency mode

A.wayto protect resource from ntrusted FPGA applications o Bl
Finally a way to deploy mixed apps onto protected and partitioned chip = Registry

For this particular case,
we need 4 bitstreams!

Low-Latency Mode High-Throughput Mode Low-Latency Mode High-Throughput Mode

Registry

DRAM

Morphiet A

FPGA Fabric Morphlet C

Morphlet D

Morphlets |RVs bitstream
<A,B> <RV1,RV2> Ox0al2e...
<A,B> <RV3,RV4> 0x0fb01...
<C,B,D> <RVX,RVY,RVZ>|0x1lad7...

Limitations of Amorph0S

- App Support
- The key to AmorphOS'’s success is its ability to right-sizing apps
- To take advantage, apps must be written in a way that can scale
- Thus, its solution is more on managing app rather than managing chip

- Virtualization Support

- How to use host resource in a virtualization-enabled node? E.g., with IOMMU in place.

- Runtime

- The hull protection is static and lacks of a runtime dynamic mgmt part
- A SW-programmer friendly interface: e.g., malloc/free, read_file, etc.

18

Advancement in this field

Application #1

VITAL, ASPLOS’20

Flexible
A framework that is able to partition any FPGA Runtime
applications, and partition the FPGA into Application #2 Resource

identical blocks. : : Allocation
[]
Thus it overcomes the app support part, and [] :>
also has a finer-grained scheduling unit. ' '
(No app modification needed) Application #3
[]
[|
l] (C)
[] Virtual To
[| e
| | Phys1?al
[] Mapping

#1
#3
#2
| |
Interconnection
OR
#2
#3
#1
[|
Interconnection

Image from ViTAL, ASPLOS’20

19

Advancement in this field

Optimus, ASPLOS’20
Deal with DMA+IOMMU.

Essentially implemented
an |IOTLB and 10 Page Table Walker in FPGA

Apps

A1 MMU Page Tables

) b DRAM
wvis [(e [™ a0 i<, B8
i \7‘ 1
HV | OPTIMUS | ===
1A
. R == IOMMU Page Table [
Shell B
Ao 9
HW Monitor 00 / LA
FPGA[¥ ¥ 2z s I
K\ B, =
A, B, y
J_ Accelerator A Accelerator B

Figure 2. OPTIMUS design overview, shown with two physi-
cal accelerators for brevity. OPTIMUS spatially multiplexes
a shared-memory FPGA as physical accelerators (A and B),
and temporally multiplexes physical accelerators as virtual
accelerators (Ag, A;, and By).

Image from Optimus, ASPLOS’20
20

Summary

- FPGA is massively deployed in Cloud
- Shared Cloud FPGA is still in its infancy
- Alot exciting research is going on, trying to improve the model

21

Thank you.
Questions?

