FRACSTIM/I: A Fully Coupled Fluid Flow/Heat Transport and Geomechanical Deformation/Fracture Generation Simulator

aka

FALCON: Fracturing and Liquid CONservation

Robert K. Podgorney

Hai Huang, Derek Gaston, Cody Permann, Luanjing Guo, and Zhijie Xu

May 20, 2010

ww.inl.gov

Idaho National

Laboratory

Chemistry, Reservoir and Integrated Models

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Overview

Timeline

- Project start date: 27 August 2009
- Project end date: 30 September 2011
- Percent complete: ~30%

Budget

- Total project funding: \$977K (currently in house)
- DOE share: 100%
- Funding received in FY09: \$586K, Funding received in FY10: \$391K
- Only had 1 month to work in FY09 (Spent ~\$28K)
- Planned funding for FY10: \$545K, Carryover in FY11: \$402K

Barriers

Model the reservoir conductivity at an EGS system demonstration by 2011

Partners

- None

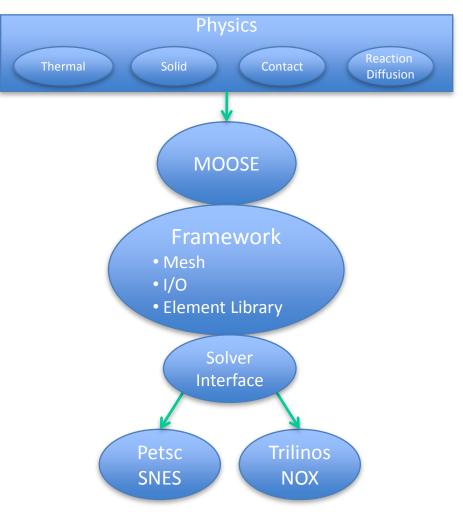
Relevance/Impact of Research

- Develop a fully coupled, fully implicit approach for EGS stimulation and reservoir simulation
- Solve all governing equations simultaneously in fully implicit way
 - Fluid Flow
 - Heat Transport
 - Geomechanics and Fracturing
- Enable massively parallel performance and scalability
- Apply state of the art nonlinear PDE solvers: Jacobian Free Newton Krylov (JFNK) method
- Enable the prediction and modeling of reservoir stimulation

Scientific/Technical Approach

- Conventional Approach: Operator-Splitting
 - Fully coupled???
 - Code coupling versus physics coupling
 - Operator splitting, essentially decoupling the processes and solving the equation separately
 - Couple different codes via input files, e.g., TOUGH2-FLAC3D, STOMP-ECKEChem
- FALCON Approach: Fully Implicit Coupling
 - Develop 'kernels' for small, manageable parts of the problem
 - Couple the kernels
 - Solve all simultaneously, fully coupling the physics
 - Multiphysics Object Oriented Simulation Environment (MOOSE)

Scientific/Technical Approach(2)


- Developmental Framework
 - Finite element methods, coded in C++
 - Start easy, e.g., single phase flow and transport, continuum mechanics
 - Add in more complex behavior, e.g., multiphase flow, rock failure, etc.
 - Couple the kernels and test the code as the new kernels are added
- Milestones
 - September 2010, Development of fully parallelized 3D DEM model
 - March 2011, Development of hybrid-coupled continuum and DEM model
 - September 2011, Report on model development, capabilities, and performance

Scientific/Technical Approach(3)

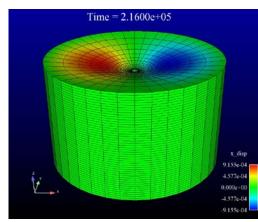
Code Platform

- Plug-and-play API
 - Simplified coupling
- MOOSE Physics Interface conceals framework complexity
- Framework provides core set of common services
 - libMesh: http://libmesh.sf.net
- Solver Interface abstracts specific solver implementations.
 - Common interface to linear and nonlinear solvers
 - More flexible
- Utilize state-of-the-art linear and nonlinear solvers
 - Leverage SciDAC and NNSA software projects

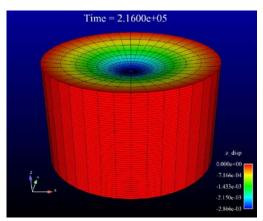
Accomplishments, Expected Outcomes and Progress

Kernels Written to Date

- Fluid Flow Darcy's Law
 - Single phase
 - Nonlinearity
 - Density and viscosity as a function of temperature
- Heat Transport
 - Set in terms of temperature (Boussinesq Approximation)
- Continuum geomechanics
 - Solve in terms of displacement
 - Use stress as indication of near failure conditions
 - Basic geomechanics equation couples to both temperature and pressure
- Time derivatives
 - 1st and 2nd order


Accomplishments, Expected Outcomes and Progress(2)

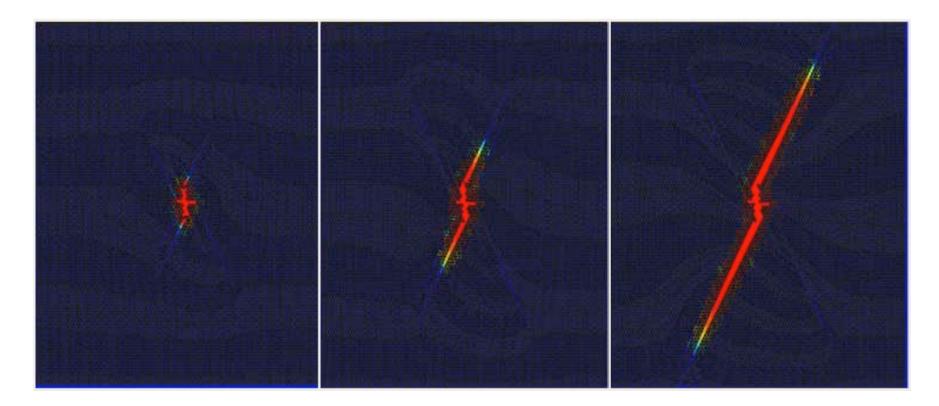
Kernels Under Development


- Discrete Element Model (DEM) for explicit rock failure and fracture propagation
 - Fracture density, aperture, connectivity etc. → porosity and permeability
 - Geomechanical failure simulation is critical for developing EGS simulators
- Multiphase fluid flow
 - Enthalpy for energy transport

Accomplishments, Expected Outcomes and Progress(3) Example 1: Coupling and Advanced Features

3D x-displacement field

3D z-displacement field

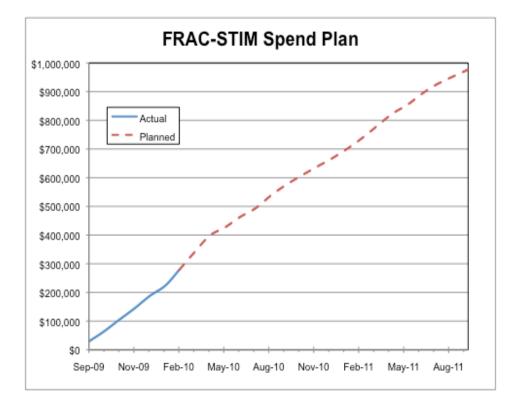


Unstable thermal convection problem solved w/ AMR and MPI

Accomplishments, Expected Outcomes and Progress(4)

Example 2: Hydraulic Fracturing

Critical strain: 2%, weakly ductile


Project Management/Coordination

- Upon notice of Year 3 funding would not be provided, the schedule was revised to drop activities related to acoustic emission modeling and field scale simulation demonstration.
- Revised schedule and status
 - Year 1 (FY10)
 - Develop and fully couple single-phase flow and continuum mechanics complete as of Feb 2010, functionality continually being enhanced
 - DEM code development—two dimensional development complete, parallelized three dimensional underway
 - Test and verify kernels and coupling against existing codes—on-going
 - Year 2 (FY11)
 - Develop multiphase flow and transport capabilities—coding to begin in June 2010, 3 months ahead of schedule
 - Develop and couple DEM and continuum mechanics—rigorous coding to begin in October 2010. Preliminary coding underway.

Project Management/Coordination(2)

Date	Spend Plan	Actual	Difference
Sep-09		\$28,800	
Oct-09		\$63,627	
Nov-09		\$104,778	
Dec-09		\$143,662	
Jan-10		\$187,754	
Feb-10		\$223,697	
Mar-10	\$278,744	\$249,944	\$28,800
Apr-10	\$341,223	\$306,668	\$34,555
May-10	\$397,973		
Jun-10	\$427,349		
Jul-10	\$463,345		
Aug-10	\$493,940		
Sep-10	\$538,733		
Oct-10	\$575,437		
Nov-10	\$607,883		
Dec-10	\$637,727		
Jan-11	\$667,706		
Feb-11	\$701,932		
Mar-11	\$737,049		
Apr-11	\$780,525		
May-11	\$822,592		
Jun-11	\$854,918		
Jul-11	\$894,397		
Aug-11	\$927,953		
Sep-11	\$977,080		

Future Directions

- FY10
 - Continue development of fluid flow and energy transport model
 - Multiphase flow and transport, steam tables, well hydraulics(?), constitutive relations, etc.
 - Continue DEM development
 - Extend code to 3 dimensions and parallelize
 - Begin preliminary coupling with flow and transport, hybrid methods, grid/mesh interface and data transfer
 - Publish results of single phase code development
- FY11
 - Continue development of fluid flow and energy transport model
 - Spatial heterogeneity, user interface, other enhancements as necessary
 - Full implicit coupling between DEM and FE
 - Logic for AMR, data structures, constitutive relations, etc.
 - Publish results

Summary

- FALCON (FRACSTIM) code capabilities envisioned to allow for fully implicit simulations of reservoir stimulation
- Code being built upon a tested and supported Multiphysics framework
- Development in parallel and planned in logical steps
- Preliminary development results encouraging
- Coupling DEM method with continuum mechanics enables simulation of failure and fracture propagation
- Final Product: Adaptive Hybrid DEM-Continuum Mechanics Coupled with Fluid Flow and Heat Transport at Reservoir Scale