Fractal Structure of Zeros in Hierarchical Models (after Derrida, De Seze, and Itzykson)

Mikel Viana

Georgia Institute of Technology

2016

Mikel Viana Fractal Structure of Zeros in Hierarchical Models

I. Preliminaries.

Diamond hierarchical lattice.

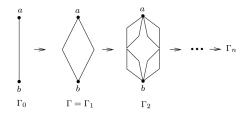


Figure : The first few graphs in the DHL

Let Γ be the diamond graph. The **diamond hierarchical lattice** is the sequence of graphs { Γ_n }_{$n \in \mathbb{N}$} such that

•
$$\Gamma_1 := \Gamma$$
.

• Γ_{n+1} has two marked vertices *a*, *b* and is obtained from Γ_n by replacing each edge of Γ_n by Γ_1 .

Let
$$\Gamma_n = (V_n, E_n)$$

Potts model on the DHL

A configuration of spins is a mapping

$$\sigma: V_n \longrightarrow \{1, 2, \ldots, q\}$$

The Ising model is the case q = 2. The *Energy* of σ is

$$\mathcal{H}_n(\sigma) := -J \sum_{(i,j)\in E_n} \delta_{\sigma_i, \sigma_j}$$

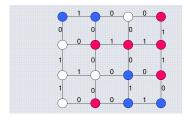


Figure : Here, q = 3 and $\mathcal{H} = -10J$.

$P_n(\sigma)$ and the partition function.

A configuration σ occurs with probability proportional to the Gibbs weight

$$W_n(\sigma) := e^{-H_n(\sigma)/T}$$

Note that

- When T is close to zero, then minimal energy configurations have much higher probabilities.
- When T is close to ∞ , all configurations have more or less the same probability.

Hence,

$$P_n(\sigma) = \frac{W_n(\sigma)}{Z_n}$$

where $Z_n := \sum_{\sigma} W(\sigma)$ is the partition function.

the partition function

we introduce the change of variables

$$y := e^{J/T}$$

so that Z_n becomes a polynomial in y of degree $|E_n|$:

$$Z_n(y) = \sum_{\sigma} y^{I(\sigma)}$$

where $I(\sigma) := \sum_{(i,j)\in E_n} \delta_{\sigma(i),\sigma(j)}$ is the *interaction of* σ . There are exactly q configurations such that the spins are alligned, so:

$$Z_n(y) = q \prod_{i=1}^{|E_n|} (y - y_i)$$

The zeros of Z_n , $\{y_i\}_{1 \le i \le |E_n|}$ are called the *Fisher zeros*.

II. Computing the Fisher zeros: Migdal - Kadanoff renormalization equations.

two conditional partition functions

Let

$$U_n := \sum_{\substack{\sigma \text{ s.t.} \\ \sigma(a) = \sigma(b) = 1}} W_n(\sigma)$$

$$V_n := \sum_{\substack{\sigma \text{ s.t.} \\ \sigma(a)=1, \sigma(b)=2}} W_n(\sigma)$$

 $(U_n \text{ and } V_n \text{ are functions of } y)$. Clearly,

$$Z_n = qU_n + q(q-1)V_n$$

Finding an expression for U_n and V_n in terms of U_{n-1} and V_{n-1} is not hard (see blackboard) and since

$$U_0=y, \quad V_0=1$$

we can compute Z_n via an iterative procedure.

We have obtained:

а

$$Z_n(y) = L \circ R^n(y, 1)$$

where $R: \mathbb{C}^2 \to \mathbb{C}^2$ is given by

$$R(U, V) := \left(\left(U^2 + (q-1)V^2 \right)^2, \ V^2 (2U + (q-2)V)^2 \right)$$

nd $L : \mathbb{C}^2 \to \mathbb{C}$ is

$$L(U, V) := qU + q(q-1)V$$

∃ → < ∃</p>

э

In the paper of **Derrida**, **De Seze and Itzykson (1983)** a different iterative procedure is used: Define $T : \mathbb{C} \to \mathbb{C}$ as

$$T(y) := \left(\frac{y^2 + q - 1}{2y + q - 2}\right)^2$$

Then $Z_n(y)$ are the 4^{n-1} preimages of 1 - q by the (n - 1)-th iterate of T.

Derrida, De Seze and Itzykson (1983) studies numerically what happens in the *thermodynamic limit* $n \rightarrow \infty$.

Recall that

- The *Julia set* of *T*, *J*(*T*), is the closure of the set of repelling periodic points of *T*.
- Mikhail Lyubich and Alexandre Freires, Artur Lopes, and Ricardo Mañé have shown (1983) that if a point y₀ is not exceptional for T (see below) then the probability measures μ_n(y₀) supported on { T⁻ⁿ(y₀) } converge, as n→∞ to the measure of maximal entropy, which is supported on J(T).
- $y_0 = 1 q$ is not exceptional, since it is not a critical value of T.

Hence, in the thermodynamic limit $n \to \infty$, the Fisher zeros converge, in the sense explained above, to $\mathcal{J}(T)$.

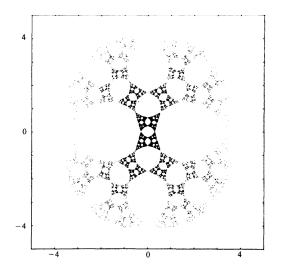


Figure : Here, q = 2. No bias in the Monte Carlo procedure.

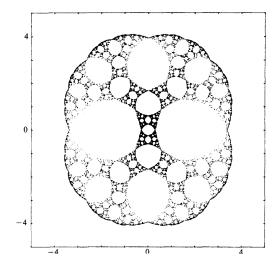


Figure : Here, q = 2, as before. Biased Monte Carlo procedure.

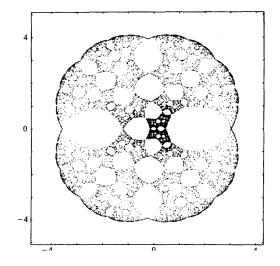


Figure : Here, q = 1.5. Biased Monte Carlo procedure.

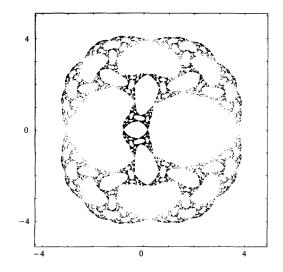


Figure : Here, q = 2.5. Biased Monte Carlo procedure.

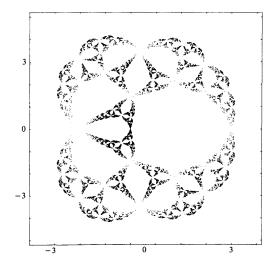


Figure : Here, q = 3. Biased Monte Carlo procedure.

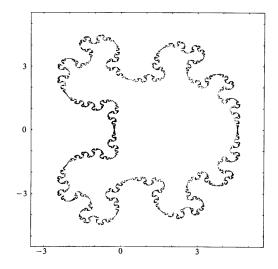


Figure : Here, q = 4. Biased Monte Carlo procedure.