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Plan of the 4 talks

® Course 1 : Spectral properties of fractals -
Application in statistical physics

® [alk : guantum phase transition - scale
anomaly and fractals

® Course 2 :topology and fractals -
measuring topological numbers with
waves.

® Flaboration : Renormalisation group and
Efimov physics




Program for today

® |ntroduction : spectral properties of self
similar fractals.

® Heat kernel - Asymptotic behaviour - Weyl
expansion - Spectral volume.

® Thermodynamics of the fractal blackbodly.

® Summary - Phase transitions.



Introduction : spectral properties
of self similar fractals.

e attractive objects - Bear exotic names

Julia sets
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Diamond fractals

1/3

. - - Triadic Cantor set

Convey the 1dea of highly symmetric objects yet with an
unusual type of symmetry and a notion of extreme subdivision



Fractal : Iterative graph structure



Fractal : Iterative graph structure

Diamond fractals



As opposed to Euclidean spaces
characterised by translation
symmetry, fractals possess a

dilatation symmetry.

Fractals are self-similar objects



Fractal < Self-similar
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e But not all fractals are obvious, good faith geometrical
objects.

<= Sometimes, the fractal structure 1s not geometrical
but it 1s hidden at a more abstract level.



e But generally, not all fractals are obvious, good faith
geometrical objects.

<= Sometimes, the fractal structure 1s not geometrical
but it 1s hidden at a more abstract level.

Exemple : Quasi-periodic chain of layers of 2 types A, B

j=23

Fibonacci sequence : F,=B; F,=A; F,= [Fj_2 FJ._I]
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Defines a cavity whose frequency spectrum 1s fractal.




Density of modes p(w) :

p(o)
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Operators and fields on fractal manifolds

Operators are often expressed by local differential
equations relating the space-time behaviour of a field

0’ u B

Pt

Ex. Wave equation

Such local equations cannot be defined on a fractal
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But operators are essential
quantities for physics!

e Quantum transport in fractal structures :
e.g., networks, waveguides, ...

electrons, photons
* Density of states

* Scattering matrix (transmission/reflection)

17



But operators are essential
quantities for physics!

e Quantum fields on fractals, e.g., fermions (spin 1/2),
photons (spin 1) - canonical guantisation (Fourier

modes) - path integral quantisation : path integrals,
Brownian motion.

 “curved space QFT” or quantum gravity
» Scaling symmetry (renormalisation group) - critical

behaviour.
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Recent new 1deas

>2000

Maths.

Bob Strichartz
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Intermezzo : heat and waves



From classical diffusion to wave propagation

Important relation between classical diffusion and wave
propagation on a manifold.

Expresses the idea that it is possible to measure and
characterise a manifold using waves (eigenvalue
spectrum of the Laplace operator)

Ditferential operator

t (44 . 99
geometry propagating probe Speciita
curvature

| B >» Heat kernel
volume T )
dimension pirysically. Z.eta function

Laplacian



Use propagating waves/particles to probe :

o spectral information: density of states, transport,

heat kernel,...

e geometric information: dimension,volume,

boundaries, shape, ...

22



Use propagating waves/particles to probe :

o spectral information: density of states, transport,

heat kernel,...

e geometric information: dimension,volume,

boundaries, shape, ...

Mathematical physics

1910 Lorentz: why is the Jeans radiation law only dependent

on the volume ?

1911 Weyl : relation between asymptotic eigenvalues and

dimension/volume.

1966 Kac : can one hear the shape of a drum ?

23
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Important examples

+ Heat equation 9% _ ,
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geodesics
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+ Heat equation 9% _ ,
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P,(x,y)= J Dxe ° Brownian motion

Heat kernel expansion

P(x,y)~ D, (#)e DSumealron Gutzwiller - instantons

geodesics



Spectral functions
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Spectral functions
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Heat kernel
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Spectral functions

P (x,y)=(y|e|x)= D w0y, (x)e ™
A

£, (s)=—

( s—1
! dtt Z(t) Mellin transform

[(s)

Small t behaviour of Z(t) <= poles of {,(s)
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Spectral functions

P (x,y)=(y|e|x)= D w0y, (x)e ™
A

£, (s)=—

( s—1
! dtt Z(t) Mellin transform

[(s)

Small t behaviour of Z(t) <= poles of §,(s)
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The heat kernel iIs related to the density of
states of the Laplacian

There are “Laplace transform” of each other:

Z(1) = Ojda) p(w)e™"”

From the Weyl expansion, it is possible to obtain the density
of states.



How does it work ?
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whose spectral solution is P (x,y)=

Probability of diffusing from x to y in a time t.




How does it work ?
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Diffusion (heat) equation in d=1

1 (x=y)’
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whose spectral solution is P (x,y)=

Probability of diffusing from X to y in a time t.

1 (x=y)’
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In d space dimensions:

P(x,y)=




How does it work ?

9 _ 00
ot ox”

Diffusion (heat) equation in d=1

()’
whose spectral solution is P (x,y)= : 7€ o
(47Dr)>
Probability of diffusing from X to y in a time t.
In d space dimensions: 1 —(’;‘gf

E(x,y)= d
)= ey ¢

We can characterise the “spatial geometry” by watching how the heat flows.
The heat kernel Z,(¢)is

Volume

Z (t)=| dxP (x,x)= _ volume of the
) v’[z. () (471'Dt)% manifold
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Boundary terms- Hearing the shape of a drum Mark Kac (1966)

Dirichlet : /1,,:(%), n=12,...

0 L z
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Boundary terms- Hearing the shape of a drum Mark Kac (1966)

Dirichlet : A, =(%j , n=12,...
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bulk



Boundary terms- Hearing the shape of a drum Mark Kac (1966)
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Boundary terms- Hearing the shape of a drum Mark Kac (1966)

<D

Dirichlet : A =(ﬂj o on=1.2....

n

0 L
Neumann: A =(%) ., n=0.1,2,
- A7) L _1
Z,(t)=) e’ =1+Z,(1) v Z ()= T—+
; {%} Jart 2

Poisson formula

Weyl expansion (2d) :

/ (t)~VLl'—L : +1+
a=2 Amt A J4mt 6.

N

integral of bound.
sensitive to boundary curvature

bulk



C-function ¢,(s)=1- -3 1
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How does it work on a fractal ?



How does it work on a fractal ?

Differently...

No simple access to the eigenvalue spectrum but we
know how to calculate the heat kernel.

Z(t)=Tre™ = J'dx (x|e ™| x) = 2 e
A
and thus, the density of states,

Z(t)= ]odco p(w)e "



More precisely,

L = a” is the total length upon iteration of the elementary step
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Infinite number of complex poles : complex fractal dimensions.

They control the behaviour of the heat kernel which exhibits oscillations.
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A new fractal dimension : spectral dimension d S



Notion of spectral volume
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From the previous expression we obtain Z (t)

Consider for simplicity 7 = 1, namely s, = do 2w _ds s
2 d,Ina 2
i A
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From the previous expression we obtain Z (t)

d 27 d

Consider for simplicity 7 = 1, namely s, ==+ =240
2 d,/Ina 2
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Spectral volume ?

Geometric volume described by
the Hausdorff dimension is large
(infinite)




Spectral volume ?

Geometric volume described by
the Hausdorff dimension is large
(infinite)

Spectral volume V
Is the finite volume occupied by the
modes

Numerical solution of Maxwell egs. on the Sierpinski gasket



Physical application :
Thermodynamics of photons on fractals

Electromagnetic field in a waveguide fractal structure.

How to measure the spectral volume ?



The radiating fractal blackbody

Equation of state at thermodynamic
equilibrium relating pressure, volume

and internal energy:
.
PV= /d

In an enclosure with a perfectly reflecting surface there can form standing electromagnetic waves
analogous to tones of an organ pipe; we shall confine our attention to very high overtones. Jeans
asks for the energy in the frequency interval dv ... It is here that there arises the mathematical
problem to prove that the number of sufficiently high overtones that lies in the interval v to v+dv
is independent of the shape of the enclosure and is simply proportional to its volume.

H. Lorentz, 1910



The radiating fractal blackbody

Equation of state at thermodynamic
equilibrium relating pressure, volume

and internal energy:
.
PV= /d

In an enclosure with a perfectly reflecting surface there can form standing electromagnetic waves
analogous to tones of an organ pipe; we shall confine our attention to very high overtones. Jeans
asks for the energy in the frequency interval dv ... It is here that there arises the mathematical
problem to prove that the number of sufficiently high overtones that lies in the interval v to v+dv
is independent of the shape of the enclosure and is simply proportional to its volume.

Spectral
volume ?



Usual approach : count modes in momentum space

11

T~
7N
%7/ 88887 %

function Z (T ,V) for a blackbody of /\/// 7

Calculate the partition (generating)

NN

large volume V in dimension ¢/ (zﬂ)yN )
Vv

Mode decomposition of the field @= c‘l_é ‘z CV_%’ 27 ‘71 ‘

1nz(T,V)=Q(Lﬁ/V%Z) with L, = Bhc

(photon thermal
P = %{BT wavelength)



Thermodynamics :

_9 __[42 7
U= Bﬁan(T V)= (dx )th

oz
. 1( 0 lnzj :_(deth
B\aovV ). dx ) Vd




Thermodynamics : 5 y
U=—-ZInz(T,V)=— ( Q)th Vi

Jf dx
oz
le( 0 ij :_(deth
B\aovV ). dx ) Vd

sothat PV = % (The exact expression of Q is unimportant)



Thermodynamics : 5 y
U=—-ZInz(T,V)=— ( QJMﬂfﬁ

Jf dx
1(:8 j (dehcv}ﬁ
P= Inz | =—
B\ oV . dx ) Vd

sothat PV = % (The exact expression of Q is unimportant)

Stefan-Boltzmann [ ] oc |/ Td+1 is a consequence of (B_Uj :T(B_P) —P

ov ). \ar ),

Adiabatic expansion VT d —Cte



On a fractal there 1s no notion of Fourier mode decomposition.
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Dimensions of momentum and position spaces are usually
different : problem with the conventional formulation in terms of
phase space cells.
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On a fractal there 1s no notion of Fourier mode decomposition.
Dimensions of momentum and position spaces are usually
different : problem with the conventional formulation in terms of
phase space cells.

Volume of a fractal 1s usually infinite.

Nevertheless,

U
Pv.=U,

Vv 1s the “spectral volume™.



Re-phrase the thermodynamic problem In
terms of heat kernel and zeta function.



Partition function of equilibrium quantum radiation
lnz(T,V)=—%lnDethv(aa—;+czAj

Looks (almost) like a bona fide wave equation proper time.

This expression does not rely on mode decomposition.

Rescale by L, = Shc



Partition function of equilibrium quantum radiation

Inz(T,V) ——lnDethV —+L A]

v

M: circle of radius L, = Bhc | ,
Spatial manifold (fractal)

Thermal equilibrium of photons on a spatial manifold V at
temperature T is described by the (scaled) wave equation

on M XV
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can be rewritten

Heat kernel



can be rewritten

Heat kernel

Large volume limit (a high temperature limit) |/ >> L‘é Sk, T > W y
V74

Weyl expansion: 1%

Z(L%T)~
(47:L%T

)%



f(T)TrV e_TLZﬁA

v
+ Weyl expansion —» Inz(7.V) NL_‘;



f(z)Tr e ™

+ Weyl expansion —> Inz(7.V)~

Thermodynamics :

Uz—ilnz(T V)=— c;thcV /a

P

sothat PV = % (The exact expression of Q is unimportant)




1oodT —TI% A
Inz(7T,V )= T)Tr, e
(TV)=5 @),
. V
+ Weyl expansion — Inz(7.V) 7

PV*%

Thermodynamics measures the spectral volume




On a fractal...




On a fractal...




On a fractal...




On a fractal...

hermodynamic equation of state for a fractal manifold

Thermodynamics measures the spectral volume
and the spectral dimension.
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Summary

® Significant progress in understanding and computing
the asymptotic behaviour (Weyl) of heat kernels on
fractals.

® Thermodynamics is directly related to the heat
kernel (partition function) - fractal blackbody -
importance of the spectral volume.

® Phase transitions on fractals : scaling/hyperscaling
relations are modified on fractals (dependence on
distinct fractal dimensions).



® Non gaussian fixed points (limit cycles) - Harris
criterion : fractal geometry is a specific type of
disorder similar to quasicrystals.
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® Off-diagonal long range order - superfluidity
(Mermin,Wagner, Coleman theorem) - Non
diagonal Green’s function.



® Non gaussian fixed points (limit cycles) - Harris
criterion : fractal geometry is a specific type of
disorder similar to quasicrystals.

® Off-diagonal long range order - superfluidity
(Mermin,Wagner, Coleman theorem) - Non
diagonal Green’s function.

® Applications to other problems : quantum phase
transitions - quantum Einstein gravity, ...



Thank you tor your attention.



