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 Fractals : Spectral properties 
Statistical physics 

!

Course 1 

6th Cornell Conference on Analysis, Probability, and 
Mathematical Physics on Fractals, June 13-17, 2017
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Plan of the 4 talks
• Course 1 : Spectral properties of fractals - 

Application in statistical physics 

• Talk : quantum phase transition - scale 
anomaly and fractals 

• Course 2 : topology and fractals - 
measuring topological numbers with 
waves. 

• Elaboration : Renormalisation group and 
Efimov physics



Program for today

• Introduction : spectral properties of self 
similar fractals. 

• Heat kernel - Asymptotic behaviour - Weyl 
expansion - Spectral volume. 

• Thermodynamics of the fractal blackbody. 

• Summary - Phase transitions.



Introduction : spectral properties 
of self similar fractals. 

• attractive objects - Bear exotic names

Julia sets



Hofstadter butterfly

Anatomy of the Hofstadter butterfly

Energy levels and wave functions of Bloch electrons 
in rational and irrational magnetic fields, 
Douglas Hofstadter, Phys. Rev. B 14 (1976) 2239
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Outline
General features ----- square lattice

Half-flux quantum per unit cell ------- Dirac spectrum

Honeycomb lattice,  graphene, manipulation of Dirac points

Finite systems, edge states

Hofstadter in other contexts
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Anatomy of the Hofstadter butterfly

M. Azbel (1964)

G.H. Wannier

Y. Avron, B. Simon

J. Bellissard, R. Rammal

D. Thouless, Q. Niu

TKNN : Thouless, Kohmoto, Nightingale, den Nijs

Y. Hatsugai

Sierpinski carpet Sierpinski gasket



Figure: Diamond fractals, non-p.c.f., but finitely ramified

Diamond fractals

Convey the idea of highly symmetric objects yet with an 
unusual type of symmetry and a notion of extreme subdivision

Triadic Cantor set
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Sierpinski  gasket

Diamond fractals

 Fractal : Iterative graph structure

Figure: Diamond fractals, non-p.c.f., but finitely ramified

n→∞
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As opposed to Euclidean spaces 
characterised by translation 
symmetry, fractals possess a 

dilatation symmetry.

Fractals are self-similar objects



Fractal    ↔    Self-similar

Discrete scaling symmetry



• But not all fractals are obvious, good faith geometrical 
objects.	
!

Sometimes, the fractal structure is not geometrical 
but it is hidden at a more abstract level. 

Exemple : quasi-periodic stack of dielectric layers of 2 types 

Fibonacci sequence : F1 = B; F2 = A; Fj≥3 = Fj−2Fj−1⎡⎣ ⎤⎦

A, B

Defines a cavity whose mode spectrum is fractal.



• But generally, not all fractals are obvious, good faith 
geometrical objects.	
!

Sometimes, the fractal structure is not geometrical 
but it is hidden at a more abstract level. 

Exemple : Quasi-periodic chain of layers of 2 types 

Fibonacci sequence : F1 = B; F2 = A; Fj≥3 = Fj−2Fj−1⎡⎣ ⎤⎦

A, B

Defines a cavity whose frequency spectrum is fractal.



Density of modes ρ(ω) : 

Discrete scaling symmetry

Minicourse 2 - Tomorrow



Operators and fields on fractal manifolds

16

Operators are often expressed by local differential 
equations relating the space-time behaviour of a field

∂2u
∂t 2

= Δu Ex. Wave equation

Such local equations cannot be defined on a fractal

Figure: Diamond fractals, non-p.c.f., but finitely ramified



But operators are essential  
quantities for physics!

• Quantum transport in fractal structures : 

       e.g., networks, waveguides, ... 

                    electrons, photons 
• Density of states 

• Scattering matrix (transmission/reflection)

17



• Quantum fields on fractals, e.g., fermions (spin 1/2), 
photons (spin 1) - canonical quantisation (Fourier 
modes) - path integral quantisation : path integrals, 
Brownian motion. 

!

• “curved space QFT” or quantum gravity  

!

• Scaling symmetry (renormalisation group) - critical 
behaviour.  

18

But operators are essential  
quantities for physics!
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Michel Lapidus Bob Strichartz

Jun Kigami

>2000

Recent new ideas

Maths.



Intermezzo : heat and waves



From classical diffusion to wave propagation

Important relation between classical diffusion and wave 
propagation on a manifold.

Expresses the idea that it is possible to measure  and 
characterise a manifold using waves  (eigenvalue 

spectrum of the Laplace operator)

• Generalities on fractals

Many self-similar (fractal) structures in nature and many ways to model them:
A random walk in free space or on a periodic lattice etc.

Fractals provide a useful testing ground to investigate properties of  disordered 
classical or quantum systems, renormalization group and phase transitions, 
gravitational systems and quantum field theory. 

Motivation:

geometry
curvature
volume 

dimension

Spectral data
Heat kernel

Zeta function

Differential operator
“propagating probe”

physically:
Laplacian 

How does it look on a fractal ? Even the simplest question, e.g. dimension, are 
surprisingly different !
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Use propagating waves/particles to probe : 

• spectral information:  density of states, transport,  

           heat kernel, ... 

• geometric information: dimension, volume,  

        boundaries, shape, ... 



Mathematical physics
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Use propagating waves/particles to probe : 

• spectral information:  density of states, transport,  

           heat kernel, ... 

• geometric information: dimension, volume,  

        boundaries, shape, ... 

1910 Lorentz: why is the Jeans radiation law only dependent  

  on the volume ? 

1911 Weyl : relation between asymptotic eigenvalues and  

  dimension/volume. 

1966 Kac : can one hear the shape of a drum ? 



Important examples

• Heat equation                              

!

•  Wave equation 

!
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i ∂u
∂t

= Δu

∂u
∂t

= Δu

∂2u
∂t 2

= Δu

Schr. equation.

Pt x, y( ) = xe
−(i ) !x2 dτ

0

t

∫

x 0( )=x,x t( )=y
∫ D Brownian motion

Pt x, y( ) ∼ 1
t
d
2

an (x, y)t
n

n
∑

Pt x, y( ) ∼ #( )
geodesics
∑ e−(i )Sclassical (x,y,t )

Heat kernel expansion

Gutzwiller - instantons

u x,t( ) = dµ y( )Pt x, y( )u y,0( )∫
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Important examples
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!

•  Wave equation 
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Spectral functions
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Small t behaviour of  Z(t)          poles of	ζ Z s( )⇔

Pt x, y( ) = y e−Δt x = ψ λ
∗ (y)

λ
∑ ψ λ (x)e

−λt

ζ Z s( ) ≡ 1
Γ s( ) dtt s−1Z t( )

0

∞

∫ Mellin transform

Heat kernelZ(t) =Tre−Δt = dx x e−Δt x∫ = e−λt
λ
∑

ζ Z s( ) = Tr 1
Δ s =

1
λ s

λ
∑

Weyl 
expansion
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Small t behaviour of  Z(t)          poles of	ζ Z s( )⇔

Pt x, y( ) = y e−Δt x = ψ λ
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Return 
probability 

Spectral functions
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Small t behaviour of  Z(t)          poles of	ζ Z s( )⇔
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The heat kernel is related to the density of 
states of the Laplacian

There are “Laplace transform” of each other:

From the Weyl expansion, it is possible to obtain the density 
of states. 
!

                          



Diffusion (heat) equation in d=1

whose spectral solution is 

Probability of diffusing from x to y in a time t.	
!
In d space dimensions:

access the volume 
of the manifold

Pt x, y( ) = 1
4πDt( )12

e
−
x−y( )2
4Dt

Pt x, y( ) = 1
4πDt( )d 2

e
−
x−y( )2
4Dt

Zd t( ) = ddx
Vol .
∫ Pt x, x( )= Volume

4πDt( )d 2

We can characterise the “spatial geometry” by watching how the heat flows. 
The heat kernel         isZd t( )

How does it work ?
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0 L

Mark Kac (1966)Boundary terms- Hearing the shape of a drum

Poisson formula

Weyl expansion	
 (1d)
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Weyl expansion (2d) :

Mark Kac (1966)

Zd=2 (t) ∼
Vol.
4πt

− L
4

1
4πt

+1
6
+…

Boundary terms- Hearing the shape of a drum

Poisson formula
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Weyl expansion (2d) :

Mark Kac (1966)

bulk

Zd=2 (t) ∼
Vol.
4πt

− L
4
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4πt

+1
6
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Boundary terms- Hearing the shape of a drum

Poisson formula
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Weyl expansion (2d) :

Mark Kac (1966)

sensitive to boundarybulk

Zd=2 (t) ∼
Vol.
4πt

− L
4

1
4πt

+1
6
+…

Boundary terms- Hearing the shape of a drum

Poisson formula
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Weyl expansion (2d) :

Mark Kac (1966)

sensitive to boundarybulk

integral of bound. 
curvature

Zd=2 (t) ∼
Vol.
4πt

− L
4

1
4πt

+1
6
+…

Boundary terms- Hearing the shape of a drum

Poisson formula



-functionZeta function

           has a simple pole at so that,

ζ ζ Z s( ) = Tr 1
Δ s =

1
λ s

λ
∑



How does it work on a fractal ?

Differently…

No access to the eigenvalue spectrum but we know how	
to calculate the Heat Kernel.

Z(t) =Tre−Δt = dx x e−Δt x∫ = e−λt
λ
∑

and thus, the density of states,



Differently…

No simple access to the eigenvalue spectrum but we 
know how to calculate the heat kernel.

Z(t) =Tre−Δt = dx x e−Δt x∫ = e−λt
λ
∑

and thus, the density of states,

How does it work on a fractal ?



More precisely,

                          is the total length upon iteration of the elementary step              

which has poles at 



Infinite number of complex poles : complex fractal dimensions. 	
They control the behaviour of the heat kernel which exhibits oscillations.

0.00 0.05 0.10 0.15 0.20 0.25
t

0.2

0.4
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0.8

1.0
K!t"#Kleading!t"

2.10
!4
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2.10
!3
t

0.980

0.985

0.990

0.995

1.000

1.005

dsA new fractal dimension : spectral dimension 	

⇔ sn =
ds
2
+ 2iπn
dw lna

Zdiamond t( )
Figure: Diamond fractals, non-p.c.f., but finitely ramified



Notion of spectral volume
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so that

to compare with

s1 =
ds
2
+ 2iπ
dw lna

≡ ds
2
+ iδConsider for simplicity           , namely  n = 1

From the previous expression we obtain Z t( )

Spectral 
volume 

Zd t( ) = ddx
Vol .
∫ Pt x, x( )= Volume

4πDt( )d 2



Geometric volume described by 
the Hausdorff dimension is large 

(infinite)

Spectral volume ?

     Spectral volume       	
is the finite volume occupied by the 	

modes

Numerical solution of Maxwell eqs. in the Sierpinski gasket 
(courtesy of S.F. Liew and H. Cao, Yale)



     Spectral volume        
is the finite volume occupied by the  

modes

Numerical solution of Maxwell eqs. on the Sierpinski gasket

Spectral volume ?

Geometric volume described by 
the Hausdorff dimension is large 

(infinite)



Physical application :  
Thermodynamics of photons on fractals

Electromagnetic field in a waveguide fractal structure.

How to measure the spectral volume ?



physical application: thermodynamics on a fractal

dE

d⇥
= V

T

2�2c3
⇥2

In an enclosure with a perfectly reflecting surface there can form standing electromagnetic waves 
analogous to tones of an organ pipe; we shall confine our attention to very high overtones. Jeans 
asks for the energy in the frequency interval dν ... It is here that there arises the mathematical 

problem to prove that the number of sufficiently high overtones that lies in the interval ν to ν+dν 
is independent of the shape of the enclosure and is simply proportional to its volume. 

H. Lorentz, 1910

Akkermans, GD, Teplyaev, 2010

The radiating fractal blackbody
usual approach: count modes in momentum space

thermal equilibrium: 
equation of state

P V =
1
d

U

pressure volume internal energy

lnZ(T, V )partition function (generating function)

P =
1
�

⇥ lnZ
⇥V

U = �⇥ lnZ
⇥�

� =
1
T

Equation of state at thermodynamic 
equilibrium relating pressure, volume 
and internal energy:    
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Spectral 
volume ?

The radiating fractal blackbody



Usual approach : count modes in momentum space

is a dimensionless function

Black-body radiation in a large volume 

Mode decomposition of the field:

d-dimensional integer-valued vector-elementary momentum space cells 

so that

is the photon thermal wavelength.

Mode  decomposition of the field

Calculate the partition (generating)	
 	
function                for a blackbody of 	
!
large volume      in dimension 

z T ,V( )
V d

usual approach: count modes in momentum space

thermal equilibrium: 
equation of state

P V =
1
d

U

pressure volume internal energy

lnZ(T, V )partition function (generating function)

P =
1
�

⇥ lnZ
⇥V

U = �⇥ lnZ
⇥�

� =
1
T

2π( )d
V

is a dimensionless function

Black-body radiation in a large volume 

Mode decomposition of the field:

d-dimensional integer-valued vector-elementary momentum space cells 

so that

is the photon thermal wavelength.

Lβ ≡ β!cwith

(photon thermal 
wavelength)β = 1

kBT
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is the “spectral volume”.

On a fractal there is no notion of Fourier mode decomposition.	
!

Dimensions of momentum and position spaces are usually 
different : problem with the conventional formulation in terms of 

phase space cells.	
!

Volume of a fractal is usually infinite. 	
!

Nevertheless,	
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Re-phrase the thermodynamic problem in 
terms of heat kernel and zeta function. 



Rescale by Lβ ≡ β!c

ln z T ,V( ) = − 1
2
lnDetM×V

∂2

∂τ 2
+ c2Δ⎛

⎝⎜
⎞
⎠⎟

Looks (almost) like a bona fide wave equation                proper time.           but 

This expression does not rely on mode decomposition.	
!

Partition function of equilibrium quantum radiation



Spatial manifold (fractal)

ln z T ,V( ) = − 1
2
lnDetM×V

∂2

∂u2
+Lβ

2 Δ
⎛
⎝⎜

⎞
⎠⎟

M Lβ ≡ β!c: circle of radius

Thermal equilibrium of photons on a spatial manifold V at 
temperature T is described by the (scaled) wave equation 
on M ×V

Partition function of equilibrium quantum radiation
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Heat kernel 

Large volume limit (a high temperature limit)

Weyl expansion:

ln z T ,V( ) = 1
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τ
f τ( )TrV e−τLβ

2 Δ
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∞

∫

Z Lβ
2 τ( )∼ V

4π Lβ
2 τ( )d 2
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ln z T ,V( ) = 1
2

dτ
τ
f τ( )TrV e−τLβ

2 Δ

0

∞

∫

+ Weyl expansion ln z T ,V( ) ∼ V
Lβ
d⇒



Thermodynamics measures the spectral volume 

ln z T ,V( ) = 1
2

dτ
τ
f τ( )TrV e−τLβ

2 Δ

0

∞

∫

+ Weyl expansion ln z T ,V( ) ∼ V
Lβ
d⇒

so that 

Stefan-Boltzmann                          is a consequence of 

Adiabatic expansion 

(The exact expression of Q is unimportant)

Thermodynamics :



Thermodynamics measures the spectral volume 

ln z T ,V( ) = 1
2

dτ
τ
f τ( )TrV e−τLβ

2 Δ

0

∞

∫

+ Weyl expansion ln z T ,V( ) ∼ V
Lβ
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On a fractal…

Z Lβ
2 τ( )∼ Vs

4π Lβ
2 τ( )

ds
2
f lnτ( )

Thermodynamic equation of state for a fractal manifold

Thermodynamics measures the spectral volume and 
the spectral dimension. 



Z Lβ
2 τ( )∼ Vs

4π Lβ
2 τ( )

ds
2
f lnτ( )

Spectral volume

Thermodynamic equation of state for a fractal manifold

Thermodynamics measures the spectral volume and 
the spectral dimension. 

On a fractal…



Z Lβ
2 τ( )∼ Vs

4π Lβ
2 τ( )

ds
2
f lnτ( )

Spectral dimension

Spectral volume

Thermodynamic equation of state for a fractal manifold

Thermodynamics measures the spectral volume and 
the spectral dimension. 

On a fractal…



Z Lβ
2 τ( )∼ Vs

4π Lβ
2 τ( )

ds
2
f lnτ( )

Spectral dimension

Spectral volume

Thermodynamic equation of state for a fractal manifold

Thermodynamics measures the spectral volume 
and the spectral dimension. 

On a fractal…



Summary

• Significant progress in understanding and computing 
the asymptotic behaviour (Weyl)  of heat kernels on 
fractals.	

• Thermodynamics is directly related to the heat 
kernel (partition function) - fractal blackbody - 
importance of the spectral volume.	

• Phase transitions on fractals : scaling/hyperscaling  
relations are modified on fractals (dependence on 
distinct fractal dimensions). 
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• Non gaussian fixed points (limit cycles) - Harris 
criterion : fractal geometry is a specific type of 
disorder similar to quasicrystals.	

• Off-diagonal long range order - superfluidity 
(Mermin, Wagner, Coleman theorem) - Non 
diagonal Green’s function. 	

• Applications to other problems : quantum phase 
transitions - quantum Einstein gravity, …
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Thank you for your attention.


