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ABSTRACT 

The purpose of this dissertation is to develop a design technique for fractional 

PID controllers to achieve a closed loop sensitivity bandwidth approximately equal to a 

desired bandwidth using frequency loop shaping techniques. This dissertation analyzes 

the effect of the order of a fractional integrator which is used as a target on loop shaping, 

on stability and performance robustness. A comparison between classical PID controllers 

and fractional PID controllers is presented. Case studies where fractional PID controllers 

have an advantage over classical PID controllers are discussed. A frequency-domain loop 

shaping algorithm is developed, extending past results from classical PID’s that have 

been successful in tuning controllers for a variety of practical systems.  
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CHAPTER 1 

1 INTRODUCTION 

It is known that the use of PID controllers began in the thirties of the last century. 

The designs of these controllers were based on mathematical and physical backgrounds. 

Scientific development in science and engineering has helped to develop the designs of 

these controllers. PID controllers are commonly used in process control industries 

because of their performance and simplicity that made their wide scale deployment, 

tuning and maintenance practically feasible. The first mathematical version of the 

fractional PID controller was introduced by the professor Igor Podlubny, twenty-three 

years ago, specifically in 1994.   

The idea of developing classic PID controllers of three parameters into fractional 

PID controllers of five parameters began in the nineties of the last century. It is known 

that the parameters of a classic PID controller are proportional, integral, and derivative 

gains. The additional parameters in the fractional PID controller represent the fractional 

integral order and the fractional differential order.  

Many techniques have been proposed to tune PID controllers, ranging from ad-

hoc application of traditional tuning metrics, rules of thumb, and optimization of a variety 

of time and frequency domain criteria to find the best parameters in the design. Similarly, 

for fractional PID controllers, several studies addressed the development of their 

parameter tuning. Frequency Loop Shaping was a PID tuning technique that was 

developed in the 90’s to design optimal or nearly optimal PID’s in an efficient and 

reliable manner. It was motivated by the controller design problem from system 
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identification data. In this formulation, the identification step provides data on the 

nominal plant and its uncertainty description, translating into frequency domain bounds 

for the loop transfer function. In its simplest form, the frequency domain objective would 

be for the PID controller to achieve a closed loop bandwidth approximately equal to a 

desired, or target value. This basic idea was made particularly appealing by the 

applicability of convex optimization techniques that allowed for a quick and reliable 

numerical solution, including parameter constraints. Perhaps an equally important 

advantage of this approach was the availability of insight on how to choose meaningful 

loop shapes and interpreting the results of the frequency domain analysis and was 

naturally followed by many successful implementations in industrial systems.  

The idea of this technique is to find the parameters of the controller by assuming 

that the PID controller and the plant in a feedback system behave as a certain target in the 

frequency domain. In other words, obtaining the shape of the open loop in the frequency 

domain similar to that of the target is an objective. Therefore, the magnitude of the target 

in the frequency domain can be considered as the shape of the open loop which consists 

of the controller and plant together. Finding the controller parameters to shape the loop 

and meet performance specifications and achieve desirable robustness properties are the 

objectives of designing the controller. The possibility of using only frequency response 

data from the system, made this approach particularly well-suited for tuning the 

parameters of fractional PIDs. Such a tuning can be obtained using the Frequency Loop 

Shaping methodology by minimizing the fitting error function for different values of the 

fractional integral order and the fractional differential order.  
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There are some many physical phenomena that can be represented by fractional 

differential equations. For example, the relationship between the current and voltage of a 

semi-infinite lossy RC transmission line is given by a fractional differential equation. 

Another example, the relationship between the temperature and heat flux in a semi-

infinite composite body can be described by a fractional differential equation. The 

fractional calculus theory has been applied to control theories to improve control systems 

performance. The fractional calculus appeared in the year 1659, as a result of a question 

raised by Libnitz in a letter to L’Hospital, generalizing dervitives with non-integer orders 

cannot give the meaning of derivatives with integer order. A question raised and replied 

by L’Hospital: ‘’if the order was half what will be?’’.  Leibnitzs answered in a historic 

way, a paradox will happen which will leads to good results. In the dissertation, the 

frequency loop shaping technique is applied to three different fractional systems. The 

first system is the heating furnace system whose transfer function can be obtained as a 

fractional transfer function after using the Grunwald-Letnikov definition. The second 

system describes the motion of a rigid thin plate immersed in a Newtonian viscous fluid. 

The fractional transfer function of the system is given by the Bagely-Torvik equation. 

The last system is Buck converter which is a DC to DC power converter. The relationship 

between the input voltage and output voltage can be given by a fractional transfer 

function. Fractional PID controller will be applied to the three models in order to obtain 

good results and compare them classical controller.  
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Figure  1.1: Professor Igor Podlubny 

 

1.1 Outline of the Dissertation  

In chapter 2, a brief overview of some important function used in fractional 

calculus is explained. Chapter 3 includes some definitions in fractional calculus with their 

properties. Chapter 3 covers some equations used in the time and frequency domains of 

some fractional transfer functions with some examples. Also, it includes the stability 

conditions in a fractional LTI system and the Oustaolup recursive filter for 

approximation. Chapter 5 introduces the fractional PID controllers with their properties. 

An overview of robust control system is discussed in this chapter. Chapter 6 shows the 

obtained results of the fractional PID controller tuning by frequency loop shaping (FLS). 

Chapter 7 contains conclusions and future work.  
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CHAPTER 2 

2 PRELIMINARY 

This chapter includes some important functions used in the fractional calculus 

with their properties.  

 

2.1 The Error Function  

The error function of the variable  x  which is also called Gauss error function, 

written as  xerf , is defined by the following relationship 

  duexerf

x

u




0

22


                                                                                                     (2.1) 

The complementary error function of the variable  x , denoted  xerfc , is given by 

  duexerfc
x

u





22


                                                                                                   (2.2) 

The relationship between the error function and the complementary error function can be 

expressed as  

   xerfxerfc 1                                                                                                          (2.3) 

Figure 2.1 shows the plot of the error function and the complementary error function. 
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Figure  2.1: The error function and the complementary error function 

 

The integral in (2.1) cannot be evaluated in closed form. It can be solved 

numerically by expanding the term 
2ue
into an infinite series and integrating term by 

term. The following table shows some values of the error function for  20  x . 

Table  2.1: Values of error function 

x   xerf  x   xerf  

0.00 0.0000000 1.00 0.8427008 

0.05 0.0563720 1.05 0.8624361 

0.10 0.1124629 1.10 0.8802051 

0.15 0.1679960 1.15 0.8961238 

0.20 0.2227026 1.20 0.9103140 

0.25 0.2763264 1.25 0.9229001 

0.30 0.3286268 1.30 0.9340079 
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0.35 0.3793821 1.35 0.9437622 

0.40 0.4283924 1.40 0.9522851 

0.45 0.4754817 1.45 0.9596950 

0.50 0.5204999 1.50 0.9661051 

0.55 0.5633234 1.55 0.9716227 

0.60 0.6038561 1.60 0.9763484 

0.65 0.6420293 1.65 0.9803756 

0.70 0.6778012 1.70 0.9837904 

0.75 0.7111556 1.75 0.9866717 

0.80 0.7421010 1.80 0.9890905 

0.85 0.7706681 1.85 0.9911110 

0.90 0.7969082 1.90 0.9927904 

0.95 0.8208908 1.95 0.9941793 

1.00 0.8427008 2.00 0.9953223 

 

The complementary error function satisfies the following inequalities for upper and lower 

bounds 

  
x

e

x
xerfc

x



2

22

1
1











                                                                                     (2.4)                         

The plot of this inequality is shown in figure 2.2.             
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Figure  2.2:  xerfc  and 
x

e

x

x



2

22

1
1











  

 

  
x

e
xerfc

x



2

                                                                                                     (2.5) 

Figure 2.3 shows the plot of the inequality in (2.6). 
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Figure  2.3:  xerfc  and 
x

e x



2

 

The plots of (2.5) and (2.6) show that the complementary error function  xerfc  is close 

to  x  for values  2x .  

Some properties of the error function are: 

   00 erf                                                                                                            (2.6) 

   1erf                                                                                                            (2.7) 

   0erfc                                                                                                          (2.8) 

   2erfc                                                                                                       (2.9) 
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   10 erfc                                                                                                          (2.10) 

    xerfxerf                                                                                              (2.11) 

      xerfcxerfxerfc  21                                                                    (2.12) 

      xerfxerfxerfc  11                                                                      (2.13) 

  
22 xexerf

dx

d 


                                                                                         (2.14) 

     


c
e

xerfxdxxerf
x



2

                                                                        (2.15) 

      2

1
1

 
0

x

x

exerfxdyyerf 


                                                                (2.16) 

  


1

0




dxxerfc                                                                                              (2.17) 

  


22

0

2 




dxxerfc                                                                                       (2.18) 

  
 

 












0

1212

! 22

! 122 2

n

nn
x

n

nx
exerf


                                                              (2.19) 

  
 
 












0

!2

12 ! 

12

n

nn

nn

x
xerf


                                                                              (2.20) 

 

2.2 The Imaginary Error Function  

The imaginary error function, written as  xerfi , is defined by 
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  

x

u duexerfi
0

22


                                                                                                    (2.21) 

The following figure shows the plot of the imaginary error function. 

 

Figure  2.4: The imaginary error function 

 

Some of the most important properties of the imaginary error function are:  

   erfi                                                                                                  (2.22) 

   jjerfi                                                                                                  (2.23) 

   00 erfi                                                                                                          (2.24) 

    xjerfjxerfi                                                                                             (2.25) 
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   







 753

21

1
 

5

1
 

3

2
 2

1
xxxxxerfi


                                                    (2.26) 

where  1j    

 

2.3 The Gamma Function 

The Gamma function of the variable  x , written as  x , is defined by 

  



0

1 dtetx tx
       0x                                                                                     (2.27) 

Figure 2.5 shows the plot of the Gamma function.  

 

Figure  2.5: The Gamma function 
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Figure 2.5 shows that if  x  is negative integer,  x  is infinite and  0  is also 

infinite. Some vales of the Gamma function are: 

 









2

1
                                                                                                      (2.28) 

   11                                                                                                               (2.29) 

 
22

3 









                                                                                                      (2.30) 

 
4

3

2

5









                                                                                                    (2.31) 

 
8

15

2

7









                                                                                                  (2.32) 

 
16

105

2

9









                                                                                                (2.33) 

 2
2

1









                                                                                               (2.34) 

 
3

4

2

3









                                                                                                (2.35) 

Some properties of the Gamma function are: 

    ! 1 xx                                                                                                    (2.36) 

    xxx   1                                                                                                (2.37) 

 
 


m

m
m

2

12531

2

1 












  .1,2,3,....:m                                       (2.38) 

 
 

 


12531

2

2

1















m
m

m


   .1,2,3,....:m                                      (2.39) 
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    
 

 x
x

xx  cosec 
 sin

1 



                                                             (2.40) 

 
 

 


















2

1

2

2
12

xx
x

x
                                                                                    (2.41) 

 
 
 

     mvvvvv
v

mv





321

1
                                                        (2.42) 
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CHAPTER 3 

3 FRACTIONAL CALCULUS DEFINITIONS 

This chapter presents some definitions of fractional derivatives and integrals. It 

includes some important relationships between different definitions and their main 

properties.  

 

3.1 Left and Right Fractional Derivatives 

The left and right fractional derivatives of a function  tf  can be illustrated by as 

assuming that the function  tf  which is defined in the interval  ba, . The intervals  ta,  

and  bt,  represent the past and the future of function  tf , respectively as shown in 

Figure 3.1. The fractional derivative at the left end of  ba,  is the left fractional 

derivative. The fractional derivative at the right end of  ba,  is the right fractional 

derivative. The left derivative describes the behavior of the function  tf  in the past 

while the right derivative describes the behavior of the function  tf  in the future.  

 

 

Figure  3.1: The left and right derivatives of  tf  
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Definition 3.1.1 The left and right Riemann- Liouville fractional integrals of a given 

function )(tf  are given by  

 
 

 
 

     0     ,        ,
1

1



  

 




 

 atd
t

f
tfD

t

a

t

RL

a                                                 (3.1) 

and 

 
 

 
 

     0     ,        ,
1

1



  

 




 

 btd
t

f
tfD

b

t

t

RL

b                                                 (3.2) 

respectively, where  bat ,  ,   ba  and the order  R .  

When  Rn  , the previous integrals provide the (n-th) integrals as  

 
 

 
  






t

a

n

n

ta d
t

f

n
tfD 




1!1

1
                                                                                   (3.3) 

and 

 
 

 
  






b

t

nbt d
t

f

n
tfD 





1!1

1
                                                                                   (3.4) 

 

Definition 3.1.2 The left and right Grunwald –Letnikov fractional derivatives of a given 

function )(tf  are defined as  

     
















N

j

j

h
t

GL

a jhtf
j

htfD
0

0
1lim


                                                                       (3.5) 

and 
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     
















N

j

j

h
b

GL

t jhtf
j

htfD
0

0
1lim


                                                                       (3.6) 

respectively, where  

 
 

   11

1

!!

!

















jjjjj 






                                                                         (3.7)                    

denotes the binomial coefficients. 

 

Definition 3.1.3 The left and right Riemann–Liouville fractional derivatives of a given 

function )(tf  are given respectively by  

      

                              

tfD
dt

d
tfD m

tam

m

t

RL

a

 
   

 
 

 
           ,

1
 

1
atd

t

f

dt

d

m

t

a

mm

m




  






 
                                                                 (3.8)                 

and 

      

                                

tfD
dt

d
tfD m

tam

m

b

RL

t

 
                

 
 

 
 

btd
t

f

dt

d

m

b

t

mm

mm





  

        ,
1

1






 
                                                                  (3.9)               
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Respectively, where m  is a positive integer which satisfies the following relationship 

mm  1  and the function )(tf  has absolutely derivatives up to order 1m . In 

general, the Riemann–Liouville fractional derivative is given by  

 
 

 
 

 
                   

1-        ,
1

0

10 mmd
t

f

dt

d

m
tfD

t

mm

m

t

RL 


  






 



              

 
  

 

  
 

        
1

  0
1

0

1

1

0
 













t

m

mm

k

k
k

t

f

m
f

k

t









                                               (3.10) 

where    kf   is the (k-th) order derivative of the function  f .  

if  1,0  the definitions in (3.8) and (3.9)  can be expressed as 

 
 

 
 

                         ,
1

1
atd

t

f

dt

d
tfD

t

a

t

RL

a 


  




 


                                          (3.11)                                               

and 

 
 

 
 

                         ,
1

1
btd

t

f

dt

d
tfD

b

t

b

RL

t 


  




 


                                        (3.12) 

The Grunwald –Letnikov and Riemann–Liouville fractional derivatives are equivalent if 

the function  tf  is suitably smooth. Therefore 

   tfDtfD t

RL

at

GL

a

                                                                                                      (3.13) 

and 

   tfDtfD b

RL

tb

GL

t

                                                                                                      (3.14) 
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   tftfD nn

t

C

a                                                                                                             (3.15)                           

and 

     tftfD nnn

b

C

t 1                                                                                                   (3.16) 

 

Definition 3.1.4 The left and right Caputo fractional derivatives of a given function )(tf  

are given by  

      

 

  
 

                         ,
1

                 
1

atd
t

f

m

tfDtfD

t

a

m

m

mm

tat

C

a








 








 



                                       (3.17)                                                    

and 

       

 
 

   
 

                         ,
1

                 
1

btd
t

f

m

tfDtfD

b

t

m

mm

mm

tab

C

t









 








 



                                       (3.18)                                                        

respectively, where m  is a positive integer which satisfies the following relationship 

mm  1 . 

For  1,0  the left and right Caputo fractional derivatives have the following form 

 
 

   
 

                     
1

1 1






t

a

t

C

a d
t

f
tfD 





 


                                                             (3.19)                                                                                

and  
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 
 

   
 

                      ,
1

1 1







b

t

b

C

t d
t

f
tfD 





 

                                                            (3.20) 

The regularized Caputo derivative has the form 

 
 

   
 

                1-        ,
1

0

10 mmd
t

f

m
tfD

t

m

m

t

C 


  






 


                             (3.21)        

Also, equations (3.19) and (3.20) can be written as  

   
  

 

              

,
!

1

0









 





m

k

k
k

t
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C

a at
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af
tfDtfD 

                              

  
 

  mmat
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t

RL

a 
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
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

 1            ,
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1

0

                                                  (3.22)                                                       

and 

   
   
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 

  mmbt
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bf
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b

RL
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






 1            ,
1

1

0

                                                  (3.23)                                                                     

 which represent the relationship between Riemann–Liouville and Caputo fractional 

derivatives  (right and left), respectively. 

For  1,0 , we have  
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      

 
 
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and  

      
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The general relationship between Riemann–Liouville and Caputo operators has the 

following form 
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Table 3.1 shows the fractional derivatives of some functions used in many applications 

using Riemann-Liouville definition.  

Table  3.1: Riemann-Liouville Fractional Derivatives of Some Functions 

 tf     RttfDt

RL        ,0        0  

 t  
 







1

t
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
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

 

 

where 

 t  The Heaviside unit step. 

   The Digamma function. 

 

Example 3.1 

This example shows the fractional derivative of the function   3ttf   using Riemann-

Liouville and Caputo definitions. 

   
 






















t

m
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RL d

tdt

d

m
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0 4

3
1

3
32

1

0
4

3

0

4

3

1
                                                 (3.27) 

Choosing 1m , we get 
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d
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
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
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
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                                                                       (3.28)               

where  









4

1
  can be expressed as following infinite product  

  








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
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
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Using Caputo definition  

   
 
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3

1
                                                          (3.30) 

Choosing 1m , we get 
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1

1
t











                                                                                                               (3.31) 

It can be concluded that  

   
 

0
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
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





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                                                                                                (3.32) 

since 

   
  

 
mmt

k

f
tfDtfD

m
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t
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
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 


 1            ,
1

01

0

0  

There are reasons made Caputo arrived at his definition. Such as making the fractional 

divertive of a constant is zero and finding the fractional derivative of some special 

functions such as the Dirac delta function. The Caputo definition may take the following 

form  

 
 

  
 

 mmd
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m
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
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


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 1            ,
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1
                                   (3.33) 

Therefore 
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  0 CDt

C                                                                                                                  (3.34) 

where C  is a constant.  

 

Example 3.2 

This example shows the fractional derivative of the Dirac delta function  t . 

Solution 

It is known that the Dirac delta function has the following property  

   
 






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


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      b       or         a

ba     or    b         a          
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                                                (3.35)                                                     

Using Caputo definition is appropriate to find the fraction derivative of the given 

function. Therefore 
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 11
 

 






 1t
    10                                                                                                     (3.36)                                                                                                                             
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It is known that the first derivative of the function is when 1 . In this case, the first 

derivative of the Dirac delta function  t  is called doublet function or the unit doublet 

which can be evaluation as the following 

  









 




t
t

1
lim

0
                                                                                                        (3.37) 

The unit rectangular pulse function 











t
 is shown in Figure 3.2 and can be expressed 

as  


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









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

herwise         ot
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Π                                                                                          (3.38) 

or 





























22








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t
                                                                                      (3.39) 

 

Figure  3.2: The representation of 











t
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Therefore 
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which can be shown in Figure 3.3  

 

Figure  3.3: The doublet function  t


  

 

It can be noticed that the Dirac delta function  t  is an even function and its first 

derivative is odd. It is known that the unit doublet represents the inverse Laplace of  s . 

Therefore  

   


  tsL 1                                                                                                                  (3.41) 
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3.2 Properties of Fractional Derivatives 

Some of the most properties in fractional calculus are:  

3.2.1 Linearity 

The fractional derivative is a linear operator  

        tgDtfDtgtfD                                                                         (3.42) 

Proof 

Using Grunwald –Letnikov fractional derivative definition  
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Therefore 
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Similarly, using Riemann–Liouville fractional derivative definition  
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                                         (3.45) 

Therefore 
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Also, this property can be proven using Caputo fractional derivative definition  
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                                                          (3.47) 

Therefore 

        tgDtfDtgtfD t

C

at

C

at

C

a

                                                                 (3.48) 

 

3.2.2 Non-Commutation   

The law of exponents in the fractional calculus does not hold for the standard 

fractional derivative. In other words, it is non-commutative. Therefore 

      NR ,  nαtfDtfDDtfDD nnn                                                          (3.49) 

      NR ,  nαtfDtfDDtfDD nnn                                                          (3.50) 

where  nn  1  

The following relationship holds for 0, n  

    tfDtfDD n

ta

n

tata

                                                                                             (3.51) 

It can be said that the fractional integral is commutative. This property holds for 

fractional derivative under this condition     ,0af k   1,,1,0  nk  . Therefore 
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     0,          ,   ntfDtfDD n

ta

n

tata                                                                      (3.52) 

In other words, it is always true that 

     0,          ,   ntfDtfDD n

ta

n

tata                                                                      (3.53) 

But not always true that 

     0,          ,   ntfDtfDD n

ta

n

tata                                                                      (3.54) 

Where 
ta D  is the fractional derivative operator of all different definitions such as 

Riemann-Liouville, Grunwald-Letnikov, Caputo and others.   
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CHAPTER 4 

4 FRACTIONAL ORDER SYSTEMS 

This chapter includes time and frequency domain analysis of some transfer 

functions using some special functions. It covers the stability conditions of fractional 

order systems with some examples. 

 

4.1 Fractional Transfer Function  

The fractional LTI system in Figure 4.1 can be represented by the following 

fractional differential equation  

     

     tuDbtuDbtuDb

tyDatyDatyDa

mm

nn

mm

nn
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


















                                               (4.1) 

This also can be expressed as 

   



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k

n

k

k tuDbtyDa kk

00

                                                                                          (4.2) 

The fractional transfer function of the fractional LTI system can be given by taking the 

Laplace transform and assuming that initial conditions are zero. Therefore 

 
 
  01

01
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
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
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
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                                                                   (4.3) 

For commensurate transfer function 

 
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                                                                                                          (4.4) 
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where  k  and  k  are integer multiple of a least common divisor 0 . Therefore, a 

pseudo-rational transfer function  H  is given by 

 
 
 







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a

b

H
n

k

k

k

m

k

k

k











0

0                                                                                                 (4.5) 

where  s . 

 

Figure  4.1: The fractional LTI 

 

4.2 Time and Frequency Domains Analysis 

The characteristic of fractional LTI systems can be obtained using some 

mathematical tools. These tools analyze the system for stability and frequency response 

using Laplace transform. The transient response of the fractional LTI can be obtained 

using the inverse Laplace transform.  

 

4.2.1 Laplace Transform 

The fractional LTI systems can be analyzed easily using Laplace transforms. 

Some special functions are important for obtaining the Laplace transform. These 
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functions are introduced in chapter 2 which includes some of their properties. Table 4.1 

shows the Laplace transform pairs. The table contains some fractional and irrational 

operators.  

Table  4.1: Laplace transform pairs 
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Example 4.1 

This example shows the Laplace transform  sF  of the following function  

   taerfe
a

tf ta21
  

Solution 

Using equation (2.19), we have 
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Therefore 

   
 

 !1
!22

22

0

12
12

3




 







 n
n

ta
etaerf

n

n
n

ta


                                                                  (4.7) 
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Equation (4.8) can be expanded as  

 
 

 






















2

92

2

72

2

54

2

32

0

12
12

945

32

105

16

15

8

3

42

!1
!22

221

t
a

t
a

t
a

t
at

n
n

ta

a n

n
n




                                           (4.9) 

Taking the Laplace transform of equation (4.9), we have 
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Using the power series expansion, we get 
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Therefore 
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4.2.2 Inverse Laplace Transform 

The inverse Laplace transform of a non fractional transfer function is usually 

obtained by using partial fraction expansion which can be used only for proper rational 

functions. The inverse Laplace of a fractional transfer function can be found using some 

special functions such as the Mittag-Liffler, Wright, and Minardi functions to avoid using 

partial fraction method. 

 

4.2.2.1 The Mittag-Liffler Function 

The Mittag-Liffler function was introduced in 1903 by the Swedish 

mathematician Gosta Mittag Liffler. The Mittag-Liffler function in one parameter    is 

defined by the following expression 
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The generalization Mittag-Liffler function in two parameters   ,  is given by 
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The generalization Mittag-Liffler function in three parameters   ,,  is defined by 
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Some properties of the Mittag-Liffler function are: 
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Some values of the Mittag-Liffler function are:  
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4.2.2.2 The Wright and Mainardi Functions 

The two functions are defined by the series representation. The Wright function is 

given as 
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The Mainardi function takes the following form  
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It can be noticed that the Minardi function is a special case of the Wright function. The 

relationship between the two functions is given by 
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Some values of the Wright and Mainardi functions are:  
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where  zAi  and  z'Ai  are the Airy function and its derivative, respectively.  
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The Mittag-Liffler, Wright, and Minardi functions are important in solving fractional 

differential equations and finding the inverse Laplace transform without using partial 

fraction method as shown in the following relations. 
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Example 4.2 

This example shows the inverse Laplace  tf  of the given function   saesF  . 

Solution:  

The inverse Laplace of the given function can be solved using different methods as the 

following 

Method 1: 

The function   saesF   can expressed using the power series expansion as  
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Taking the inverse Laplace of both sides of the previous equation, yields 
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Using Table 4.1, we have 
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                                                                        (4.59) 

Knowing that 


















































t

a

e
t

a

t

a 4

2
22

2

4!2

1

4!1

1
1                                                                            (4.60) 

Therefore 

2

3
4

2

2

1
2

)(


























 te
a

tf
t

a

 

2

3
4

2

2
















 te
a t

a


                                                                                                           (4.61) 

Method 2: 

Assuming that  

  saesY                                                                                                                    (4.62) 

Therefore 

  sae
s

a
sY 




2
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 sY
s

a

2
                                                                                                                                        (4.63) 

and 

     sY
s

sY
s

a
sY '

2

2

1

4




    

   
2

'2

8

42

s

ssYssYa 
                                                                                                                         (4.64) 

So 

     ssYssYasYs '2''2 428                                                                                       (4.65) 

We get 

      0'24 2''  sYasYssY                                                                                       (4.66) 

Using the properties of inverse Laplace transforms, we have 

   

   

   

        ttytyttyt
dt

d
LssY

tytLsY

ttyLsY

tyLsY

2'221''

21''

1'

1

















 

Substituting the values above into equation (4.66), we get 

          0224 2'2  tyattyttytyt                                                                         (4.67) 

Therefore 
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        0284 2'2  tyattyttytyt                                                                             (4.68) 

      064 2'2  tyattytyt                                                                                         (4.69) 

So 

     ttytyatyt 64 2'2                                                                                                (4.70) 

     tyta
dt

tdy
t 64 22                                                                                                 (4.71) 

Alternatively, it can be written as 

 
 
 

dt
t

ta

ty

tdy







 


2

2

4

6
                                                                                                    (4.72) 

It can be solved by integrating both sides, so 

   ct
t

a
ty 

















2

32

ln
4

ln                                                                                         (4.73) 

Therefore 

  2

3

4

2



 tKety t

a

                                                                                                            (4.74) 

where c
t

a
K 

4

2

                                                                                                     (4.75) 

The constant K  can be evaluated using the initial and finial theorems as 

   ssYty
st 

 limlim
0

                                                                                                      (4.76) 
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   ssYty
st 0
limlim


                                                                                                       (4.77) 

   










sY

ds

d
tty

st 0
limlim                                                                                             (4.78) 

For large value of t , we have 

  2

1

lim



 Kttty

t
                                                                                                             (4.79) 

Therefore 

  
s

K
KtLttyL














2

1

                                                                                          (4.80) 

Similarly, for small value of s  

 
s

a

s

ae
sY

ds

d sa

ss 22
limlim

00





























                                                                         (4.81) 

Using equations (4.78), (4.80), and (4.81), we have 

s

a

s

K

2



                                                                                                               (4.82) 

Therefore 

2

a
K                                                                                                                       (4.83) 

So  

  2

3

4

2

2



 te
a

ty t

a


                                                                                                       (4.84) 
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Method 3 

Using (4.52), we have 

 
















 2

1

2

1

2

3

1 1

2
atM

t

a
eL sa                                                                                         (4.85) 

Using (4.42), it yields 

t

a

eatM 42

1

2

1

2

1 

















                                                                                                  (4.86) 

Therefore 

  2

3

4

2

2



 te
a

ty t

a


                                                                                                       (4.87) 

It can be seen that the three different methods lead to the same result.  

 

Example 4.3 

This example illustrates the inverse Laplace transform  tf  using Mittage liffler function 

of the function  
as

sF



1

 

Solution 

Using the property (4.46), we have 



























 2

1

2

1
,

2

1
2

1

1 1
atEt

as
L                                                                                     (4.88) 
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Using the property (4.17), yields 










































2

1

1
2

1

1,
2

1
2

1

2

1

2

1
,

2

1 atEatatE                                                                      (4.89) 

Therefore 













































2

1

2

1

2

1

1,
2

1
2

1

2

1
,

2

1
2

1
t

ataEatEt                                                                    (4.90) 

It is known that 

   zerfcezE z 
2

1,
2

1  

So 














































2

1

2

1

2

1
,

2

1

2

2

1

aterfceatE

at

 














 2

1
2

aterfce ta                                                                                                             (4.91) 

Therefore 



2

1

2

1

2

1

2

1
,

2

1
2

1
2



































t
aterfcaeatEt ta                                                                     (4.92) 

Thus 
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 taerfcae
tas

L ta2111 













                                                                           (4.93) 

Example 4.4 

This example illustrates the inverse Laplace transform  tf  using Mittage liffler function 

of the function  

 
 222

3

as

s
sF


  

Solution 

Using the property (4.51), we have 

 
 221

1,2222

3
1 taE

as

s
L 
















                                                                                    (4.94) 

Also, it is known that 

 
 
 











0

1

1,2
12!

!1

n

n

nn

zn
zE  

   z
z

z sinh
2

cosh                                                                                              (4.95) 

Therefore 

     z
z

zzE sinh
2

cosh1

1,2 
                                                                               (4.96) 

So 
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     22
22

22221

1,2 sinh
2

cosh ta
ta

tataE 


  

   at
at

at sin
2

cos                                                                                                      (4.97) 

Thus 

 
   at

at
at

as

s
L sin

2
cos

222

3
1 















                                                                          (4.98) 

This example shows that the inverse Laplace of the given function can be solved without 

using the partial fraction method.  

 

4.2.3 Steady-State Error Response  

Figure 4.2 shows a simple closed loop system using a unity negative feedback. 

The steady state error in time domain can be given as  

 tee
t

ss


 lim                                                                                                                  (4.99) 

It is also given in Laplace domain using final value theorem as  

 ssEe
s

ss
0

lim


                                                                                                             (4.100) 

where  

 
 
 sG

sR
sE




1
                                                                                                           (4.101) 

Therefore 
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 
 sL

sR
se

s
ss




 1
lim

0
                                                                                                      (4.102) 

It can be seen that the steady state error depends on the reference input  sR  and the open 

loop transfer function  sL . 

 

Figure  4.2: A unity negative feedback system 

 

The open loop of a fractional transfer function can be expressed as  

 






























n

k

k

m

k

k

k

k

saas

sbb

sL

2

1

2

1





                                                                                          (4.103) 

The error static constant of the system are Position, velocity, and acceleration 

coefficients.  Position error coefficient of the system denoted as 
pK  is given by 

 sLK
s

p
0

lim


                                                                                                              (4.104) 

 Velocity error coefficient denoted as vK  is given by 

 ssLK
s

v
0

lim


                                                                                                             (4.105) 
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Acceleration coefficient denoted as aK  is given by 

 sLsK
s

a

2

0
lim


                                                                                                           (4.106) 

For the reference input   vttr   whose Laplace transform is given by  
 

vs

v
sR






1

1
, the 

steady error can be calculated as 

 









































 m
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b

k
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k

k

n

k

k
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ss

kk

k

sbbsaas

saas

s

v
se

2

1

2

1

2

1

10

1
lim





 

 









































 m

k

b

k

m

k

k

n

k

k

v

s
kk

k

sbbsaas

saas

v

2

1

2

1

2

1

0
1lim





                                                               (4.107) 

There are three cases for finding the steady state error of the expression above. 

 Case :    0 v  

sse  

 Case :    0 v  ,   v  

 v
b

a
ess  1

1

1  

 Case :    0 v  

0sse  
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It can be seen that, the steady state error appears as a value when the fractional order 

system with type    is equal to the negative exponent  v  of the reference input.   

For the reference input   1 vttr  whose Laplace transform is given by  
 
vs

v
sR


 , the 

steady error can be calculated as 

 
































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
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k
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k

k
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sbbsaas

saas

s

v
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1

2

1

0
lim





 

 









































 m

k

b

k

m

k

k

n

k

k

v

s
kk

k

sbbsaas

saas

vs

2

1

2

1

2

1

0
lim





                                                                   (4.108) 

The expression above is zero when the order of the fractional system is equal to the 

exponent  v  of the reference input in the frequency domain. In other words, for a 

fractional reference input whose form is  
 
vs

v
sR


 , the open loop of the system must 

contain a fractional integrator of order  v  to obtain a zero steady state error. 

 

4.3 Stability  

The Matignon’s stability theorem states that a commeasure order system which is 

given by a rational transfer function is stable if only if    
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 
2

arg


 i                                                                                                              (4.109) 

where i  is ( i -th) root of the denominator  P .  

The location of roots of  P  can be represented in the Riemann surface. The Riemann 

surface is an extension of the non-fractional (s-plane) to show the stable and unstable 

regions of commeasure transfer functions. The stability region of a commeasure transfer 

function is bounded by a cone whose vertex at the origin. The stable region covers the 

region determined by  
2

arg


 i  while unstable region covers the region 

 
2

arg


 i  as shown in Figure 4.3. 

 

Figure  4.3: The stability regions in the Riemann surface 

 

Example 4.5 

This example illustrates the stability of the following fractional transfer function 
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 

42

1

5

1

5

2





ss

sG  

Solution  

By assuming that 5

1

s , we get 
5

1
 . So 

 
42

1
2 




G                                                                                                     (4.110) 

The roots of the denominator are 312,1 j . Hence,  
3

arg 2,1


   

Therefore, the system is stable. Since 

  
10

arg 2,1


                                                                                                             (4.111) 

The roots and the stable region can be represented in the Riemann surface as shown in 

Figure 4.4. 

 

Figure  4.4: The location of the roots in the Riemann surface 

 

The step response of the system can be shown in Figure 4.5. 
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Figure  4.5: The step response of  
42

1

5

1

5

2





ss

sG  

 

The following table shows the effect of pole location on system behavior. 

 

Table  4.2:  Impact of pole location on system behavior 

Pole 

k  

Corresponding 

natural 

response 

component 

Stability 

condition 

Location of the 

pole 
Step response 

Real pair, 

negative, 

equal 

Pure 

exponential 

Absolutely 

stable 
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Complex 

conjugate 

pair with 

negative real 

parts 

Pure 

exponential 

Absolutely 

stable 

 

 

Complex 

conjugate 

pair with 

zero real 

parts 

Pure 

exponential 

Absolutely 

stable 

 

 

Complex 

conjugate 

pair with 

positive real 

parts with 

 k


arg
2



 

Exponentially 

decaying 

sinusoid 

Under 

damped 

(Stable) 

 

 

Complex 

conjugate 

pair with 

positive real 

parts 

With 

 
2

arg


 k

 

Sinusoid 

Un damped 

(marginally 

stable) 

 

 

Complex 

conjugate 

pair with 

positive real 

parts ok 

Exponentially 

saturating 

sinusoid 

Oscillatory 

instability 
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4.4 Some Examples of Fractional Transfer Functions 

This section reviews some fractional transfer functions. They can be used as 

targets for the tuning of the fractional PID using the frequency loop shaping technique 

(FLS) in chapter 6.  

4.4.1    
s

sL
1

  

The logarithmic magnitude of the fractional integrator in dB is  

 
 







log20
1

log20log20 
j

jL                                                               (4.112) 

The phase is given by  

 
  2

1 







j
jL                                                                                        (4.113) 

Figure 4.6 shows the frequency response of the fractional integrator for different values 

of the integral order. 

 It can be seen the magnitude plot is a straight line with a slop of  20  dB/decade, 

passing through the 0 dB line at  1  rad/sec. The phase angle is constant and equal to











2


. 
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Figure  4.6: The frequency response for different values of the integral order 

 

The step response of the unity feedback system in Figure 4.7 is given by  

 
 









 

1

11

ss
Lty                                                                                                   (4.114) 

Therefore 

   


 tEtty  1,                                                                                                    (4.115) 
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Figure  4.7: Unity feedback system 

 

Figure 4.8 shows the step response of the system in Figure 4.7 for different values of the 

integral order. 

 

Figure  4.8: The step response for different values of the integral order 

 

The stability region of a fractional integrator with  10   can be shown in Figure 4.9. 
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Figure  4.9: The stability region of the fractional integrator with  10   

 

Figure  4.10: The stability region of the fractional integrator with  21   

 

Figure 4.10 shows the effect of adding a pure integrator to the system in Figure 4.9 which 

decreases the region of stability.  

4.4.2     ssL   

The logarithmic magnitude of the fractional integrator in dB is  
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    


log20log20log20  jjL                                                                  (4.116) 

The phase is given by  

   
2





 jjL                                                                                            (4.117) 

Figure 4.11 shows the frequency response of the fractional differentiator for different 

values of the differential order. It can be seen that the magnitude plot is a straight line 

with a slop of  20  dB/decade, passing through the 0 dB line at  1  rad/sec. The 

phase angle is constant and equal to 








2


.  

 

Figure  4.11: The frequency response for different values of the differential order 
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The step response of the unity feedback system in Figure 4.12 is given by  

 
 









 

1

1





ss

s
Lty                                                                                                   (4.118) 

Therefore 

   
 tEty                                                                                                             (4.119) 

 

Figure  4.12: Unity feedback system 

 

Figure 4.13 shows the step response of the system in Figure 4.12 for different values of 

the differential order. 
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Figure  4.13: The step response for different values of the differential order 

 

4.4.3    
 

2.2s

as
sL




  

It is known that the term 
2.2

1

s
 is not stable since the order of the fractional integrator is 

greater than two. The step response of this term is shown in Figure 4.14. 
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Figure  4.14: The step response of the term 







2.2

1

s
 

 

The fractional term  as  can be added to the previous term to make the system in 

Figure 4.15 stable.  

 

Figure  4.15: Unity feedback system 
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The step response of the unity feedback system is shown in Figure 4.16. 

 

Figure  4.16: The step response of the system for  0.9    7.0  a  

It can be seen that the system behaves as a fractional integrator of order  2.2  when 

the value of  a  approaches zero (the origin). The frequency response of the system is 

shown in Figure 4.17. 
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Figure  4.17: The frequency response of the unity feedback system 

 

4.4.4    
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The characteristic equation of the system is given by 

012

2



























 nn

ss
                                                                                       (4.120) 

The roots are  12

2,1  
ns                                                                       (4.121) 

The nature of these roots is dependent on damping ratio   . Therefore, the stability of 

the system has some cases based on the value of the damping ratio    as the following  
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 Case  1  

The roots of the characteristic equation are real and negative. According to the theorem 

of stability, the system is always stable since   

  012  
n

 

 Case  1  

The roots of the characteristic equation are real and positive. According to the theorem of 

stability, the system is unstable since   

  012  
n  

 Case  0  

The roots of the characteristic equation are complex on the imaginary axis. According to 

the theorem of stability, the system is stable if  1  

 Case  1  

The roots of the characteristic equation are complex. The phase of the roots is given as  
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01-                
1

tan

2

1

2

1
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








                                                               (4.122) 

When  01    and  10  , the system is stable if 
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2

1
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1 
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
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


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
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                                                                                                (4.123) 

since   is negative, Therefore 















2
tan

1 2





                                                                                                  (4.124) 

since    is positive, so  











2
cos22 

                                                                                                          (4.125) 

Therefore, the system is stable under this condition 











2
cos


                                                                                                           (4.126) 

When  01    and  21  , the system is unstable because the roots of the 

characteristic equation are off the stable area.  

When  10    and  21  , the system is stable if 

2
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since    is positive, Therefore 















2
tan

1 2
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
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                                                                                               (4.128) 



70 

 

 

or 













2
tan

1 2

2

2 




                                                                                                    (4.129) 

since    is positive, so  











2
cos22 

                                                                                                          (4.130) 

Therefore, the system is stable under this condition 











2
cos


                                                                                                           (4.131) 

 

Table 4.3 shows the effect of   on the system stability. 

Table  4.3: Effect of   on the system stability 

Case Stability Condition The roots location 

1  Stable None 
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1  Unstable None 

 
 

0  

and 

10   

Stable None 

 

 
 

01    

and 

10   

Stable 









2
cos


  

 

 
 

10    

and 

21   

Stable 









2
cos


  

 

 
 

01    

and 

21   

Unstable None 
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The number of resonance peaks of the system can be calculated from 
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where   
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  (4.134) 

The gain in dB,  
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we have 
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Therefore 
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The number of resonance peaks depends on the number of positive real valued of 
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The positive real valued of 










n


 should be corresponded to maxima of 
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minima. The following figure shows the distribution of the stability and the number of 

peak frequencies based on the values of    and   . 

 

Figure  4.18: The stability and resonance peak frequencies of the system 
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The following fractional transfer function has two resonance peaks as shown in Figure 

4.19. 
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sL                                  

 

 

Figure  4.19: The frequency response of 








 14

1
9.18.3 ss

 

Therefore, there are two positive real valued of 










n


 correspond to maxima of 

dBn

jL 













 in the following equation 
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4.5 Oustaloup’s Recursive Approximation 

Oustaloup filter was introduced by the professor Alain Oustaloup in the mid-

1990s. This filter is commonly used in fractional systems. It provides a simple method to 

approximate a fractional differentiator. 

 

Figure  4.20: Professor Alain Oustaloup 

  

This filer is given by the following expression  


 




N

Nk k

k

s

s
Ks




'

                                                                                                      (4.140) 

where the gain, zero, and the pole of the filer are calculated as  
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hK                                                                                                                         (4.141) 
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where  hb  ,  is the frequency range of the approximation. It can be seen that the 

approximation depends on the order of the filer  N  and the frequency range  hb  , . 

The fractional integrator 







63.0

1

s
 can be approximated using Matlab by selecting the 

order  4N  and the frequency range  33 10,10  as 

  s 105.597 + s109.077 + s103.165 + s 102.3598.364

 s109.077 + s 105.597 +s 107.419 + s 2102 +  12.36 +  0.012881
4555657489

455564789

63.0 








ss

ss

s

                  
0.01288 + s 12.36 +s 2102 + s 107.419 + 

1 + s 364.8 + s 102.359 + s 103.165 +
234

2435








                               (4.144) 

Also, the frequency response of the approximated fractional integrator can be shown in 

Figure 4.21.  
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Figure  4.21: The frequency response of the fractional integrator 







63.0

1

s
 

 

The same figure shows that the approximation of the fractional integrator appears only in 

the frequency range  hb  , . The approximation of the same fractional integrator may 

have another form. Selecting  3N  and the frequency range  22 10,10  provide the 

following approximation 

0.05495 + s 5.887 + s 133.4 +s 766.2 + s 1160 +s 462.4 + s 46.76 + s

1 + s 46.76 + s 462.4 +s 1160 + s 766.2 + s 133.4 + s 5.887 + s 0.054951
234567

234567

63.0


s
       (4.145) 

The fractional integrator shows that it can be expressed as a non fractional transfer 

function which contains zeros and poles. The frequency response of the two 

approximations can be combined together in Figure 4.22. It can be seen that the 
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frequency responses of the two filters are almost the same in the frequency range of the 

second approximation.  

 

 

Figure  4.22: The frequency response of the fractional integrator 







63.0

1

s
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CHAPTER 5 

5 THE FRACTIONAL PID CONTROLLER 

           This chapter covers the properties of the fractional PID controller with the effect 

of the fractional orders on the system transient. The performance of the fractional PID is 

introduced.  

5.1 PID Controller  

The PID controller is a physical device which can be used in control systems to 

control the steady state error and enhance the transient response of a system. Figure 5.1 

shows a simple closed loop feedback control system. The error signal  te  is the input of 

the controller and the output signal of the controller is  tu . The classical PID controller 

can be presented as just a point in the fractional PID plane  1  and   1    as shown 

in Figure 5.2. There are infinite controllers in the fractional PID plane as shown in Figure 

5.3. The fractional plane can be extended to have fractional controllers up to orders 

 2  and   2    as shown in Figure 5.4. The fractional PID controller was introduced 

in 1990s by Podlubny. This controller consists of five parameters  ,,,, dip KKK , 

where  dip KKK ,,  are the proportional gain, integral gain, derivative gain, respectively. 

The two parameters  ,  represent the integral and derivative orders, respectively. 
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Figure  5.1: A feedback control system with controller  sC  and plant  sP  

 

 

 

Figure  5.2: The representation of the classic PID controller in the fractional controller 

plane 
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Figure  5.3: The fractional controller DPI plane  10    and  10    

 

 

Figure  5.4: The extended fractional controller plane  20    and  20    

 

The classical controllers (PID, PI, PD) can be designed from DPI  based on the values 

of   and   as shown in the following table. 
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Table  5.1: Values of  and   

The controller     

PID 1 1 

PI 1 0 

PD 0 1 

 

5.1.1 The Proportional Controller (P-Controller)  

This controller can be presented as a gain  pK . This gain is known as the 

proportional gain constant which describes the relation between the error signal and the 

controller output at present. This relation in time domain is given by 

   teKtu p                                                                                                                   (5.1) 

Or, in Laplace domain as  

   sEKsU p                                                                                                                (5.2) 

The P controller can be given as  

  pKsC                                                                                                                         (5.3) 

 

Figure  5.5: Representation of the proportional controller in the time and frequency 

domains 
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The relation between the input and output controller is linear. The increase in the 

proportional gain constant  pK  improves the steady state but does not eliminate it as 

shown in Figure 5.6. Hence, offset error always is present. Large values of the 

proportional gain constant  pK  may cause the system is unstable. The proportional 

controller has the following effects  

 Rise time decreases as the proportional gain constant  pK  increases.  

 Steady state error decreases as the proportional gain constant  pK  increases.  

 Overshoot increases as the proportional gain constant  pK  increases.  

 

Figure  5.6: The offset error in proportional controller 
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5.1.2 Fractional Integrator  

The fractional integrator produces the control signal  tu  which is proportional to 

the fractional integral of the error signal  te . It can be described by the following 

relation in the time domain  

   teDKtu i

                                                                                                              (5.4) 

Or, in Laplace domain as 

   sE
s

K
sU i


                                                                                                                (5.5) 

The controller is given by 

 
s

K
sC i                                                                                                                       (5.6) 

 

Figure  5.7: Representation of the fractional integrator controller in the time and 

frequency domains 

 

The relation between the controller out and the error signal can be described by a 

fractional integral equation. Increasing the order    reduces the steady state error. The 
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fractional integrator can eliminate the offset error completely when the order    is equal 

or greater than one without making the integral constant  iK  very large. It is possible to 

eliminate the offset error when the order    is less than one by adding a pole and zero at 

the origin. Therefore, the fractional integrator in this case can be expressed as  

10           
111 1   λ  s
ss

s

ss




                                                                              (5.7) 

Equation (5.7) shows that fractional integrator can be expressed as the result of 

multiplying a pure integral by a fractional differentiator. Figure 5.8 shows the step 

response of fractional integrator 







6.0

1

s
 before adding a pure integrator and differentiator 

at the origin and how the steady state error can be eliminated after adding them up. 

 

 

Figure  5.8: The step response of the fractional integrator
6.0

1

s
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5.1.3 Fractional Differentiator 

The fractional differentiator produces the control signal  tu  which is proportional to the 

fractional derivative of the error signal  te . The fractional differentiator action can be 

expressed in the time and Laplace domains as  

   teDKtu d

                                                                                                              (5.8) 

   sEsKsU d

                                                                                                            (5.9) 

The controller can be expressed as 

  sKsC d                                                                                                                  (5.10) 

 

Figure  5.9: Representation of the fractional differentiator controller in the time and 

frequency domains 

 

The relation between the controller output and the error signal can be described by a 

fractional differential equation. The fractional differentiator acts on the rate of change of 

the error based on the order   . The fractional differentiator can be used to anticipate 

the error. Therefore, it reduces the rate of change of error which improves the control 

performance. The fractional differentiator cannot be implemented alone. Hence, 
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proportional or integrator controllers should be added to the fractional differentiator in 

most cases. Fractional differentiators have some disadvantages such as amplifying noise 

signals especially when the order    increases and have no effect on the steady state 

error. To illustrate that, Figure 5.10 shows that the noise signal appears in the feedback 

control system. The noise signal can be assumed as  

   tAtn sin                                                                                                              (5.11) 

 

Figure  5.10: A feedback control system with noise 

We have 

       tntytrte                                                                                                    (5.12)           

So 

The control signal is given by 

              tntytrtctetctu                                                                              (5.13) 

Therefore, the output signal of the controller contains the derivative part of the noise 

signal as   
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  









2
sin


  tAKtu dNoise

                                                                               (5.14)  

It can be seen that the amplitude of the controller output increases when the frequency is 

high and the differentiation order    increases. Also, it can be noticed that the controller 

output due to the noise decreases when differentiation order    decreases at high 

frequencies.  

 

5.1.4 Fractional PI Controller  PI  

This controller combines between the proportional action and the fractional 

integral action. It takes the following expression in the time domain 

     teDKteKtu ip

                                                                                             (5.15) 

Or, in Laplace domain as 

     sE
s

K
sEKsU i

p 
                                                                                              (5.16) 

The controller can be expressed as  

 
s

K
KsC i

p                                                                                                             (5.17) 

Figure 5.11 shows the frequency response of the following fractional PI 

 
7.0

1
1

s
sC                                                                                                                (5.18) 
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It can be seen that at low frequencies, the integral action is present. The slope of the 

straight line is  dB/dec 14207.0   and the phase angle is   63907.0 . At 

high frequencies, the proportional controller is dominant. The phase angle is almost zero.  

 

Figure  5.11: The frequency response of a PI controller 

 

This controller has the following features 

 It eliminates the steady state error as the order    increases. 

 It decreases the rise time as the order    increases. 

 It filters out the noise at high frequencies.  

 It increases bandwidth of the system as the order    increases. 

 It increases order and type of the system. 
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5.1.5 Fractional PD Controller  PD  

The series combination of proportional controller and fractional derivative 

controller provides the fractional proportional derivative controller. The mathematical 

expression of this controller in time and Laplace domains can be expressed, respectively 

as 

     teDKteKtu dp

                                                                                              (5.19) 

     sEsKsEKsU dp

                                                                                           (5.20) 

The controller can be give as 

  sKKsC dp                                                                                                          (5.21) 

Figure 5.12 shows the frequency response of the following fractional PI 

  4.01 ssC                                                                                                                 (5.22) 

It can be seen that at low frequencies, the proportional controller is dominant. The phase 

angle is almost zero. At high frequencies, the derivative action is present. The slope of 

the straight line is  dB/dec 5204.0   and the phase angle is   36904.0 .  
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Figure  5.12: The frequency response of a PD controller 

 

The fractional PD controller has the following properties  

 It reduces the overshoot as the order    increases. 

 It improves transient.  

 It reduces the settling time. 

 It improves the bandwidth of the system. 

 It may make noises at high frequencies as the order    increases.  

 It does not affect on steady state error. 
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5.1.6 Fractional PID   DPI  

The combination of the three control actions (proportional, fractional integral and 

fractional derivative) gives the fractional PID. It can be given in the time domain as  

       teDKteDKteKtu dip

                                                                            (5.23) 

And, in Laplace domain as  

       sEsKsE
s

K
sEKsU d

i
p




                                                                          (5.24) 

The noise at high frequencies is caused by the fractional differentiator. The noise can be 

reduced by adding a low pass filer whose time constant is  T . Therefore, the fractional 

PID may take this form  

  


s

Ts
K

s

K
KsC d

i
p

1

1


                                                                                     (5.25) 

Figure 5.13 shows the effect of adding a low pass filer to a factional differentiator with

 0.8   01.0   1  TKd . 
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Figure  5.13: The effect of adding a low pass filter to a fractional differentiator 

 

It can be seen that the low pass filter reduced the amplification from 42 dB to 28 dB at 

high frequencies. The range of approximation is  33 10,10  rad/s. The fractional PID 

controller improves the transient by reducing the settling time. Also, it eliminates the 

steady state error. The fractional PID controller should be tuned properly to achieve 

optimal performance. Figure 5.14 shows the frequency response of the following 

fractional controller with unity gains 

  7.0

3.0
sK

s

K
KsC d

i
p                                                                                              (5.26) 
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It can be seen that at low frequencies the controller behaves as a fractional integrator, at 

high frequencies behaves as a fractional differentiator in the range of approximation 

 33 10,10  rad/sec. 

 

 

Figure  5.14: The frequency response of the fractional PID controller   7.0

3.0

1
1 s

s
sC   

The effect of the P-controller can be seen between the low and high frequencies as shown 

in Figure 5.15 where dip KKK , . 
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Figure  5.15: The frequency response of the fractional PID controller

  5.0

5.0

1
20 s

s
sC 

 

 

5.2 Robust Control system 

The aim of the robust control is to deal with uncertainties caused by noise, 

disturbance, and modeling of the plant while designing a feedback controller. The 

controller is said to be robust if it is stable under different set of uncertainties. Figure 5.16 

shows a closed loop system with uncertainties. Uncertainty can be found in the plant 

itself or due to the disturbance or the noise.  
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Figure  5.16: feedback control with uncertainties 

 

The system in Figure 5.16 can be developed to the following robust control system as 

shown in Figure 5.17. 

 

Figure  5.17: Robust control system 
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The transfer function  sP  is the plant model without uncertainties which is considered to 

be nominal model where  sP  represents the difference between the true and nominal 

values of the plant transfer function. In control theory, uncertainty can be represented by 

the following block diagram which shows additive uncertainty. 

 

Figure  5.18: Additive uncertainty 

 

The relationship between nominal plant  sP0  and the true plant or perturbed plant  sP  

is given by  

     sPssP 0                                                                                                        (5.27) 

The output of the system should be stable and work in the desired level of design when 

the nominal plant changes by an amount  s . Disturbance and noise rejections measure 

the performance and robustness of the controller in the robust control system.  
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5.2.1 The Sensitivity and Complementary Sensitivity Functions 

 

Figure  5.19: A Simple feedback system 

 

Figure 5.19 shows a simple feedback system in presence of disturbance and noise signals. 

The performance of the controller is measured by shaping the dynamic, rejecting the 

disturbance, and attenuating the noise. The output of the system can be expressed as  

 
   
   

 
   

 
   
   

 sN
sPsC

sPsC
sD

sPsC
sR

sPsC

sPsC
sY










11

1

1
                                (5.28) 

The definitions of sensitivity  sS  and complementary sensitivity  sT  are given by the 

following expressions 

 
   sPsC

sS



1

1
                                                                                                      (5.29) 

 
   
   sPsC

sPsC
sT




1
                                                                                                      (5.30) 
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Therefore, the error signal can be given by 

 
   

 
   

 
   

 sN
sPsC

sD
sPsC

sR
sPsC

sE









1

1

1

1

1

1
                                (5.31) 

Reducing the error signal can be done by making the sensitivity  sS  and complementary 

sensitivity  sT  small. The relationship between the sensitivity  sS  and complementary 

sensitivity  sT  is given by 

    1 sTsS                                                                                                               (5.32) 

In applied applications, the sensitivity and complementary sensitivity should be small 

which is not applied mathematically at all frequencies. The solution to this problem is 

making both of them small at some frequencies. It is known that the disturbance signal is 

applied at low frequencies, while the noise signal is applied at high frequencies. 

Therefore, the sensitivity should be small at low frequencies to reduce the effect of the 

disturbance, while the complementary sensitivity should be small at low frequencies to 

reduce the effect of measurement noise. The magnitude of    sPsC1  should be large 

enough to make  sS  small. Therefore, the magnitude of the controller should be large if 

the magnitude of the plant is small at low frequencies. Similarly, the magnitude of the 

open loop    sPsC  should be close to zero at high frequencies to make  sT  small. The 

disturbance rejection of a fractional PID controller can be calculated by assuming that the 

fractional PID has the following form 

  


sK

s

K
KsC d

i
p 
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



s

sKKsK dip


                                                                                                   (5.33)                         

Also, the plant is given by the following transfer function  

 
 
 sb

sa
sP                                                                                                                    (5.34) 

Therefore, the open loop is  

   
  

 sbs

sKKsKsa
sPsC

dip



 
                                                                         (5.35) 

The relationship between the output and the disturbance can be written as   

 
     

  
 sbs

sKKsKsa

sPsCsD

sY

dip



 







1

1

1

1

 

 
    






sKKsKsasbs

sbs

dip

                                                                            (5.36) 

From the final value theorem, we have 

 
   

 sD
sPsC

sy
s













 1

1
lim

0
                                                                                   (5.37) 

Assuming that  
s

A
sD                                                                                              (5.38) 

Therefore 
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 
    
 

 
















s
Ka

Ab
s

s

A

sKKsKsasbs

sbs
s

i
s

dip
s

0

0
lim

lim

0

0

 

Hence, the output can be evaluated as  

  α    λ       if y  0                                                                                                 (5.39) 

The result above shows that the disturbance signal is attenuated at low frequencies when 

the order of the fractional integrator is equal to the order of the fractional disturbance 

signal.  
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CHAPTER 6 

6 FRACTIONAL PID CONTROLLER TUNING BY FREQUENCY LOOP-SHAPING 

This chapter includes the algorithms of the frequency loop shaping technique. It 

also contains some fractional order systems models from some references and the results 

are obtained by using a Matlab program. 

 

6.1 The Frequency Loop-Shaping Technique  

The frequency loop shaping technique is a method to tune the controller 

parameters. Minimizing the difference between the actual and a target transfer function is 

an objective to determine the fractional PID gains  dip KKK ,,  and the fractional orders 

 ,  to achieve a closed loop sensitivity bandwidth approximately to a desired 

bandwidth (Target bandwidth) with a small sensitivity peak value. The optimization 

problem using the frequency loop shaping can be illustrated by the following steps.  

 

Figure  6.1: Two equivalent systems 

Figure 6.1 shows system (1) which contains a controller  sC  and plant  sP  while 

system (2) contains a target representation with additive uncertainty. The two systems are 
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assumed to be equivalent. Therefore, the relationship between the two systems can be 

given as  

       sLsPsCs                                                                                                      (6.1) 

The closed loop of system (2) is robustly stable according to the small gain theorem if  

    1


ssS                                                                                                            (6.2) 

The expression above can be rewritten as  

        1


sLsPsCsS                                                                                          (6.3) 

Therefore 

          1


sLsSsPsCsS                                                                                        (6.4) 

Knowing that      sTsLsS  , we have 

        1


sTsPsCsS                                                                                               (6.5) 

The controller  sC  can have this form  

  


sK

s

K
KsC d

i
p                                                                                                   (6.6) 

Therefore 

              1
1




sTKssPsSK
s

sPsSKsPsS dip




                                         (6.7) 

The previous equation may take this form  
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        1;; 321 


sTKjfKjfKjf dip                                                    (6.8) 

A frequency weighting function 1W  can be introduced in equation 6.8 to adjust the 

overshoot and the sensitivity peak value over an interval of frequencies. The frequency 

range for the approximation is around the crossover frequency  Bw100  toBw0.01  . 

Therefore, the previous equation would become 

           1;; 3211 


sTKjfKjfKjfjW dip                                       (6.9) 

Assuming that  

     

 
     





jZjTjW

KKK

jFjfjW

T

dip







1

1

,,

,;,;

                                                                                (6.10)                                    

Equation 6.9 becomes 

    1,; 


 jZjF                                                                                         (6.11) 

The fractional PID gains can be computed with a certain range for fractional orders 

 ,  using the following optimization problem  

   


jZjF
C




,;min                                                                                           (6.12) 

where C  is the convex set of constraints for   which provide positive gains for the 

fractional orders  20    and  20   . Also, the optimization problem can be 

solved by using the following expression  
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Ub
dip KKK  ,,,, ,

min                                                                                                               (6.13) 

where bU  is the fitting error. It can be given as  

        



jsdip sLKKKsCsPjSUb


 ,,,,; ,                                                      (6.14) 

The value of fitting error should be less than one to guarantee closed loop stability. The 

value around  3.02.0   or less provides best results. Figure 6.2 shows the representation 

of the fitting error function  bU  with the fractional orders  ,  for computing the 

fraction PID gains.   

 

Figure  6.2: The fitting error  bU with fractional orders  ,  

 



107 

 

 

6.2 Choosing the Order of the Fractional Integrator as a Target  

One of the most important questions is how the order of the fractional integrator 

can be chosen. The order of the fractional integrator can be chosen through of the 

following methods: 

 

6.2.1 Knowing the Behavior of the Disturbance Signal 

The resonant peak  rM  is defined as the maximum value of the magnitude of the 

closed loop frequency response where the resonant frequency  r  is the frequency at 

which the resonant peak occurs.  

Figure 6.3 shows a closed loop system with the disturbance signal  td .  

 

Figure  6.3: A closed loop with disturbance signal 

It is possible to link between choosing the order of fractional integrator    and the 

resonant peak  rM . In order to obtain the best rejection of the following disturbance 
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signal
  
















 1At
, the open loop of the system should contain a fractional integrator of order

  . The output of the system in the presence of the disturbance signal can be expressed 

as  

 
   sLsD

sY




1

1
                                                                                                            (6.15) 

Hence 

 
 

 sD
sL

sY



1

1
 

The target can be chosen as  

 
s

A
sL                                                                                                                       (6.16) 

Therefore 

   sD
sA

s
sY






                                                                                                        (6.17) 

If the disturbance signal is  
 






1At
td , the output will have this expression  

 
sA

A
sY


                                                                                                                (6.18) 

The resonant peak can be obtained by finding the maximum frequency of the following 

expression  
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  0


jY
d

d
                                                                                                             (6.19) 

We have 

 
 


jA

A
jY


                                                                                                       (6.20) 

Therefore 

 
22

2
sin

2
cos 













































A

A
jY                                                                  

 


 22

2
cos2 












AA

A
                                                                                 (6.21) 

  0


jY
d

d
 

Therefore 

0

2
cos2

2
cos

2

3

22








































AA

AA













                                                                         (6.22) 

Having the maximum at  

0
2

cos 















 AA


                                                                                     (6.23) 

Therefore 
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









2
cos


 A                                                                                                        (6.24) 

The resonant peak is given by 

1      ,
2

cos

1

















 






Ar                                                                                   (6.25) 

The magnitude of resonant peak  rM  at the resonant frequency  r can be calculated as 

 rr jYM 


max                                                                                                                              (6.26) 
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

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



























































































































































2
sin

1

2
sin

1

2
cos1

1

2
cos

2
cos21

2
cos

2
cos

2
cos21

2
cos

2
cos

2
cos2

2
cos

2
cos

2
cos2

22

22

22

2222

2

2













A

A

A

A

AAA

A

AAAA

A

 






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
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2
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
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It can be seen that the magnitude of resonant peak  rM depends only on the order of the 

fractional integrator   .  Figure 6.4 shows the magnitude of resonant peak for different 

values of the order of the fractional integrator. The slope of the straight line is 

 dB/dec 20 . 

 

Figure  6.4: The frequency response of the system 

 

It can be seen that the resonant peak value increases as the negative slop increases. Table 

6.1 shows the resonant peak  rM  and slope line for different values of the fractional 

integrator order   . 
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Table  6.1: The resonant peak and slope for different    

  Resonant peak  rM  Slope 

1 0 dB   0 dB/dec 

1.1 0.107601 dB -22 dB/dec 

1.2 0.435873 dB -24 dB/dec 

1.3 1.00238   dB -26 dB/dec 

1.4 1.84085   dB -28 dB/dec 

1.5 3.0103     dB -30 dB/dec 

1.6 4.61563   dB -32 dB/dec 

1.7 6.85906   dB -34 dB/dec 

1.8 10.2004   dB -36 dB/dec 

1.9 16.1136   dB -38 dB/dec 

 

The resonant peak  rM  provides a good way to measure the relative stability of a closed 

loop system. The overshoot in the transient response increases as the resonant peak 

increases. Many applied systems are designed with the resonant peak between 1.1 and 

1.5. Similarly, the resonant frequency  r  provides a good way to measure the speed 

response of the system. The system response is expected to be fast when the resonant 

frequency is high.  

 

6.2.2 Bandwidth 

The bandwidth is defined as the range of the frequencies for which the magnitude 

of the open loop system has dropped  dB 3  from its DC gain. It is possible to link 

between the order of the fractional integrator (The target) and the bandwidth directly as 

the following  

The target is assumed to be  
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 
s

A
sL                                                                                                                       (6.28) 

The closed loop is  

 
As

A
sH





                                                                                                             (6.29) 

Therefore 

 
  Aj

A
jH







  

Aj

A





                                                                                                                 (6.30) 

It is known that 


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
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
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
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
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Since  

1
2

sin
2

cos 22 















 
                                                                                          (6.33) 

Thus 

 
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A
jH



















                                                                    (6.34) 

The bandwidth is found by equating the magnitude of  jH  to
2

1
.  

Hence 

 
2

12

3 dbjH                                                                                                              (6.35) 

Therefore 
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Solving the quadratic equation for  dB3
, yields 
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Since  dB3
 is always positive, Therefore 
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It can be seen that the bandwidth of the system depends directly on the values of 

fractional integrator order    and the constant  A  which depends on the raise time of 

the system. Therefore, it is expected to have a faster rise time when the bandwidth is 

high.  
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6.2.3 Phase Margin 

The phase margin is the difference between the phase of the open loop system at 

the gain crossover frequency and  180 . It is possible to link between the order of the 

fractional integrator (The target) and phase margin as the following  

The target is assumed to be  

 
s

A
sL                                                                                                                       (6.40) 

The phase margin can be calculated from  

    cjLargMargin Phase                                                                                   (6.41) 

where  
2

arg


 cjL                                                                                            (6.42) 

Therefore 

Margin Phase
2

 


                                                                                           (6.43) 

So 

Margin Phase
2

2


       

90

Margin Phase
-2                                                                                                                            (6.44)          

Table 6.2 shows the phase margin for different values of the order of the fractional 

integrator   . 
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Table  6.2: The phase margin for different    

           Phase Margin 

  0 180  

 0.1 171  

 0.2 162  

 0.3 153  

 0.4 144  
 0.6 126  

 0.7 117  

   1 90  

 1.1 81  

 1.2 72  

 1.3 63  

 1.5 45  

 1.7 27  

 1.9 9  

   2 0  

 

6.3 Fractional Order Systems and Results  

This section contains three fractional examples with their mathematical modeling. 

The first example is the motion of an immersed plate in a viscous Newtonian fluid. The 

second example is the Buck converter circuit. The third example is furnace temperature 

control. All mathematical equations with their fractional transfer functions are found in 

the listed references. All results and plots were made using Matlab.  
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6.3.1 Heating Furnace  

Furnaces are used for extracting metals from their ores. They are mainly used for 

the production of iron and steel as used for other metals. Figure 6.5 shows a blast furnace 

in a factory.  

 

Figure  6.5: Blast furnace in Luxembourg 

Fuel is supplied in the form of coal and iron ore continuously from the top of the furnace. 

The air which is powered by extra oxygen is blown into the bottom of the furnace, so that 

the chemical reactions occur inside the furnace as shown in Figure 6.6.  
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Figure  6.6: Mechanism of heating furnace system 

When the materials are heated inside the furnace, the gas is formed inside the chambers, 

which may cause an explosion due to the high pressure on the furnace wall, causing a 

threat to the facility and its employees. One solution is to reduce the heat inside the 

furnace to ensure that there is no explosion occurs but this solution is useless because the 

end result will have steady state error and the settling time is too high.  

Therefore, the material flow rate and gas pressure must be adjusted inside the furnace. 

The end result will eliminate the steady state error and reduce the settling time when the 

maximum heat is used. The dynamical modeling of the system contains the mass, energy, 

and all heat transfer inside the system  

The heating furnace can be expressed mathematically as the following differential 

equation 

kxxbxmF 


                                                                                                          (6.45) 
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The equation above shows that the total force is the sum of individual forces caused by 

mass  m , damping  b  and spring  k  element. Reference [16] shows that the 

differential equation of the heating furnace system is giving by  

xxxF 93.1489373043 


                                                                                        (6.46) 

It can be expressed in the Laplace domain as the following transfer function  

 
93.1489373043

1
2 


ss

sG                                                                                    (6.47) 

The fractional order model of heating furnace system can be evaluated using Grunwald-

Letnikov definition as 

 
69.15.600914494

1
97.031.1 


ss

sGFOM                                                                    (6.48) 

 Where  sGFOM  represent the transfer function of the plant in the fractional order 

system. In the same reference, the fractional order controller was obtained using Nelder-

Mead optimization technique as 

  068221.0

35073.0
94.99

852.99
998.99 s

s
sC                                                                          (4.49) 
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6.3.1.1 Results  

 

Figure  6.7: The step response of the uncompensated system 

 

Figure 6.7 shows the step response of the uncompensated system. It can be seen that the 

uncompensated system is stable and has a steady state response of  4.0  in response. The 

bandwidth of the desired system is around  048928.0  rad/sec.  

A fractional PID controller can be designed to eliminate the steady state error and 

improve the system transient. The target can be chosen to have the desired bandwidth as  

 
35.1

00987.0

s
sL                                                                                                              (6.50) 

The obtained results would be as follows  

The distribution of the fitting error all over the range of the fractional orders is shown in  
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Figure 6.8. 

 

Figure  6.8: The fitting error  bU  with fractional orders  ,  

 

Figure  6.9: The fitting error at  1.0  and  6.0    
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From Figure 6.9, the best choice for the orders of the fractional PID controller would be

 1.0  and  6.0   . It satisfies the relationship Ub
dip KKK  ,,,, ,

min .  

The values of the fractional PID parameters are: 

17.0

1.0

6.0

106543.9

272.13

108186.2

6

2















b

d

i

p

U

K

K

K




                                                                              

The information above shows that the fractional PID behaves as a fractional PI controller. 

 

Figure  6.10: The target loop and plant 
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Figure  6.11: The approximation error (fitting error) 

The obtained approximation error is  1705.0  at the bandwidth frequency which is less 

than  3.0 . Figure 6.11 shows that the approximation error decreases at high frequencies.   

 

Figure  6.12: The sensitivity and complementary sensitivity functions 
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Figure 6.12 shows that the closed loop transfer function has good noise rejection at high 

frequencies and the disturbance at low frequencies will not affect the output. Also, it can 

be seen that the bandwidth of the closed loop sensitivity is approximately around the 

desired bandwidth  048928.0  rad/sec.  

 

Figure  6.13: The frequency responses of the system 

The frequency responses and the step response of the system are shown in Figure 6.13 

and Figure 6.14, respectively.  
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Figure  6.14: The step response of the system 

The fractional integrator 







6.0

1

s
 needs adding a pure integrator and differentiator at the 

origin to eliminate the steady state error as shown in Figure 6.14. Figure 6.15 shows that 

disturbance at the plant input has been eliminated for the same reason.  
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Figure  6.15: The disturbance rejection response 

 

Therefore, the final form of the fractional PID is  

  1.06

6.0

2

101.0

1
106543.9

272.13
108186.2 s

ss
sC 










 

                                       (6.51) 

Or, equivalently  

  1.064.02

101.0

1
106543.9

272.13
108186.2 s

s
s

s
sC 










 

                                 (6.52) 

Choosing  1  and  1    with the same target gives a classical PID controller with the 

following results 
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100682.3
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The information above shows that classical PID controller behaves as a PI controller. The 

fitting error is slightly higher than the typical value  3.02.0  .  The following Figure 

shows a comparison between the fractional PID controller and the classical PID 

controller. 

 

 

Figure  6.16: The approximation error (fitting error) 
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Figure  6.17: The sensitivity and complementary sensitivity functions 

 

Figure 6.17 shows that the fractional PID and the classical PID achieved the closed loop 

sensitivity bandwidth approximately equal to the desired value.  

 

Figure  6.18: The step responses 
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Figure 6.18 shows that the fractional PID controller has eliminated the steady state error 

faster than the classical PID controller despite the obtained overshoot is higher than the 

overshoot caused by the classical PID. Figure 6.19 shows that disturbance rejection due 

to the fractional PID controller is faster than the used classical PID.  

 

Figure  6.19: The disturbance rejection responses 

 

The fractional controller in Reference [16] has the following form  

  3486.0

2972.0
66945.0

100
100 s

s
sC                                                                               (6.53) 

The compared results between the fractional controller obtained by the frequency loop 

shaping and the fractional controller in Reference [16] are shown in the following figures  
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Figure  6.20: The sensitivity and complementary sensitivity functions 

Figure 6.20 shows that the fractional PID and the fractional PID in Reference [16] 

achieved the closed loop sensitivity bandwidth approximately equal to the desired value.  

 

Figure  6.21: The step responses 
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Figure 6.21 shows both of step responses of the two systems have no steady state error. 

Figure 6.22 shows that disturbance rejection due to the fractional PID using the frequency 

loop shaping is faster than the used fractional PID in Reference [16]. The fractional 

controller should contain a pure integrator to reject the disturbance at the input plant.  

 

Figure  6.22: The disturbance rejection responses 

 

Therefore, an integrator and differentiator are added at the origin to the fractional 

controller in Reference [16] to eliminate the disturbance as shown in Figure 6.23. 
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Figure  6.23: The disturbance rejection responses 

 

It can be seen that the fractional PID using the frequency loop shaping has rejected the 

disturbance faster than one used in Reference [16]. 

Similarly, the following target can be chosen to achieve the desired design  

 
 

1.2

9.0

01586.0
s

as
sL


                                                                                               (6.54) 

where 







 BW

4

1
a   

The obtained results would be as follows  

The distribution of the fitting error all over the range of the fractional orders is shown in 

Figure 6.24. 
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Figure  6.24: The fitting error  bU  with fractional orders  ,  

 

 

Figure  6.25: The fitting error at  1.0  and  1.1    
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From Figure 6.25, the best choice for the orders of the fractional PID controller would be

 0.1   1.1   . It satisfies the relationship Ub
dip KKK  ,,,, ,

min .  

The values of the fractional PID parameters are: 

299.0

1.0

1.1

102.1412

2.7737

101.8725

2

2






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



b
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K

K

K
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
 

The information above shows that the fractional PID behaves as a fractional PD 

controller. 

 

Figure  6.26: The target loop and plant 
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Figure  6.27: The approximation error (fitting error) 

 

The obtained approximation error is  299.0  at the bandwidth frequency which is in 

between  3.02.0  . Figure 6.27 shows that the approximation error decreases at high 

frequencies.   

 

Figure  6.28: The sensitivity and complementary sensitivity functions 
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Figure 6.28 shows that the closed loop transfer function has good noise rejection at high 

frequencies and the disturbance at low frequencies will not affect the output. Also, it can 

be seen that the bandwidth of the closed loop sensitivity is approximately around the 

desired bandwidth  048928.0  rad/sec.  

 

Figure  6.29: The frequency responses of the system 

 

The frequency responses and the step response of the system are shown in Figure 6.29 

and Figure 6.30, respectively.  
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Figure  6.30: The step response of the system 

It can be seen that the fractional integrator 







1.1

1

s
 which contains a pure integrator 









s

1

eliminates the steady state error. Figure 6.31 shows that disturbance at the plant input has 

been eliminated for the same reason.  

 

Figure  6.31: The disturbance rejection response 
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Therefore, the final form of the fractional PID is  

  1.02

1.1

2

101.0

1
102.1412

2.7737
101.8725 s

ss
sC 










                                         (6.55) 

Choosing  1  and  1    with the same target gives a classical PID controller with the 

following results 
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The fitting error is greater than the typical value  3.02.0  .  The following figure shows a 

comparison between the fractional PID controller and the classical PID controller. 

 

Figure  6.32: The approximation error (fitting error) 
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Figure  6.33: The sensitivity and complementary sensitivity functions 

 

Figure 6.33 shows that resonant peak due to the classical PID controller is higher than the 

resonant peak due to the classical PID.  

 

Figure  6.34: The step responses 
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Figure 6.34 shows that the fractional PID controller has improved the transient of the 

system with a reduction of overshoot and oscillation are obtained. Figure 6.35 shows that 

disturbance rejection responses are eliminated as time goes to infinity.  

 

Figure  6.35: The disturbance rejection responses 

 

The compared results between the fractional controller obtained by the frequency loop 

shaping and the fractional controller in Reference [16] are shown in the following figures  
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Figure  6.36: The sensitivity and complementary sensitivity functions 

 

It is expected that fractional PID using the frequency loop shaping has a high resonant 

peak due to the value of the fitting error which is around  3.0 . Therefore, an overshoot 

should appear in the step response as shown in Figure 6.37.  

 

Figure  6.37: The step responses 
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Figure 6.37 shows both of the step responses of the two systems have no steady state 

error. Figure 6.38 shows that disturbance rejection due to the fractional PID using the 

frequency loop shaping is faster than the used fractional PID in Reference [16]. The 

fractional controller should contain a pure integrator to reject the disturbance at the input 

plant. The same figure shows the effect of adding a pure integrator and differentiator at 

the origin to the fractional controller used in Reference [16].   

 

Figure  6.38: The disturbance rejection responses 

 

6.3.2 Motion of an Immersed Plate 

The motion of a rigid plate immersed in a viscous Newtonian fluid can be 

described by a fractional differential equation. The system consists of a thin rigid plate of 
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mass  M  in a Newtonian fluid with density    and viscoelastic constant    connected 

by a spring of stiffness constant  K  as shown in Figure 6.39. 

 

Figure  6.39: A rigid plate immersed in a viscous Newtonian fluid 

R.L. Bagley and P.J.Torvik showed that the displacement  tx  of the plate due to an 

external force  tf  in a Newtonian fluid system can be described by the following 

fractional differential equation 

       txDtKxtftxM t
2

3

0 2 


                                                                        (6.56) 

By taking the Laplace transform of equation 6.56, we have  

       sXssKXsFsXMs 2

3

2 2                                                                      (6.57) 

Therefore, the transfer function of the system is given by 

 

KsMs

sG





2

3

2 2

1



                                                                                         (6.58) 
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Comparing between equation 6.58 and the transfer function given in References [29] and 

[24] with unity stiffness constant 

 

12

1
2
























m

nn

ss
sG






                                                                                     (6.59) 

It can be deduced that  

M
n

1
                                                                                                                     (6.60) 

 n   for  
2

3
m                                                                                               (6.61) 

The analytical solution  tx  for the inhomogeneous Bagley-Torvik equation in (6.56) can 

be calculated as 

      

t

dfthtx
0

                                                                                                  (6.62) 

where 

 
   
































 t
M

Et
M

k

nM
th n

n

n

n

nn 2

!

11

2

3
2,

2

1

12

0

                                                     (6.63) 
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 
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6.3.2.1 Results  

The transfer function of the system with the parameters values used in Reference [29] is 

 
128284.025.0

1
5.12 


ss

sG                                                                                    (6.65) 

Figure 6.40 shows the step response of the uncompensated system.  

 

Figure  6.40: The step response of the uncompensated system 

 

It can be seen that the uncompensated system oscillatory. The bandwidth of the system is 

around  5523.3  rad/sec. The fractional PID controller for the design is expected to 

reduce the overshoot and reach the stability faster than the uncompensated system.  

The target can be chosen to have the desired bandwidth as 
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 
4.1

37.3

s
sL                                                                                                                    (6.66) 

The obtained results would be as follows  

The distribution of the fitting error all over the range of the fractional orders is shown in  

Figure 6.41. 

 

Figure  6.41: The fitting error  bU  with fractional orders  ,  
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Figure  6.42: The fitting error at  5.0   4.1    

 

From Figure 6.42, the best choice for the orders of the fractional PID controller would be

 5.0   4.1   . It satisfies the relationship Ub
dip KKK  ,,,, ,

min . 

The values of the fractional PID controller 
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Figure  6.43: The target loop and plant 

 

 

Figure  6.44: The approximation error (fitting error) 
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The obtained approximation error is  035.0  at the bandwidth frequency which is less 

than  3.02.0  . Figure 6.44 shows that the approximation error decreases at high 

frequencies.   

 

 

Figure  6.45: The sensitivity and complementary sensitivity functions 

 

Figure 6.45 shows that the closed loop transfer function has good noise rejection at high 

frequencies and the disturbance at low frequencies will not affect the output. Also, it can 

be seen that the bandwidth of the closed loop sensitivity is approximately around the 

desired bandwidth  4107144.2   rad/sec.  
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Figure  6.46: The frequency responses of the system 

 

The frequency responses of and the step response of the system are shown in Figure 6.46 

and Figure 6.47, respectively.  

 

Figure  6.47: The step response of the system 
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It can be seen that the fractional integrator 







4.1

1

s
 which contains a pure integrator 









s

1

eliminates the steady state error. Figure 6.48 shows that disturbance at the plant input has 

been eliminated for the same reason.  

 

Figure  6.48: The disturbance rejection response 

 

Therefore, the final form of the fractional PID is  

  5.0

4.1 101.0

1
2387.1

388.3
51383.0 s

ss
sC 
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





                                                           (6.67) 

Choosing  1  and  1    with the same target gives a classical PID controller with the 

following results 
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The information above shows that classical PID controller behaves as a pure integrator. 

The fitting error is greater than the typical value  3.02.0  . The following figures show a 

comparison between the fractional PID controller and the classical PID controller.  

 

Figure  6.49: The approximation error (fitting error) 

 

 

Figure  6.50: The sensitivity and complementary sensitivity functions 
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Figure 5.50 shows that resonant peak due to the classical PID controller is higher than the 

resonant peak due to the fractional PID. Definitely, the fractional PID meets the desired 

design.  

 

Figure  6.51: The step responses 

 

Figure 6.51 shows that the fractional PID controller has improved the transient of the 

system with a reduction of overshoot and oscillation are obtained. Figure 6.52 shows that 

disturbance rejection due to the fractional PID controller is faster than the used classical 

PID.  



155 

 

 

 

Figure  6.52: The disturbance rejection responses 

 

6.3.3 The Buck Converter  

The Buck circuit is a DC to DC converter. It is used to step down the input 

voltage to a lower output voltage. The buck network contains a voltage source  inv , 

switch  S , fractional inductor  L , fractional capacitor  C , Diode  D , and the load 

 R  which has the output voltage  ov  as shown in Figure 6.53.  

 

Figure  6.53: Buck converter circuit 
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The fractional order inductor contains a chain of resistors and a chain of capacitors in 

parallel combinations at each node connected with a series resistor as shown in Figure 

6.54. 

 

Figure  6.54: Fractional order inductor 

 

The voltage and current in the fractional order inductor  L  are related as 

 
 





dt

tdi
Ltv L

L                                                                                                          (6.68) 

Taking Laplace transform, 

   sisLsv LL


                                                                                                          (6.69) 

Similarly, the fractional order capacitor can be represented by a chain of resistors and a 

chain of capacitors in parallel combinations at each node as shown in Figure 6.55. 



157 

 

 

 

Figure  6.55: Fractional order capacitor 

 

The current across a fractional order capacitor  C  is given by 

 
 





dt

tdv
Cti o

C                                                                                                          (6.70) 

Taking Laplace transform, 

   svCti oC



                                                                                                            (6.71) 

The transfer function from the input voltage to the output voltage 










in

o

v

v
 of the circuit can 

be obtained by replacing the switch and the diode by a current-dependent current source 

and voltage-dependent current source as shown in Figure 6.56 which represents the 

circuit averaged model of the Buck circuit.  
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Figure  6.56: Circuit averaged model of the Buck converter 

Therefore 

 LS idi                                                                                                            (6.72) 

 inD vdv                                                                                                          (6.73) 

where  d  is the duty cycle with a value between 0 and 1. The DC equivalent circuit of 

Figure can be obtained by replacing the inductor with a short circuit and replacing the 

capacitor with an open circuit as shown in Figure 6.57. 

 

Figure  6.57: The DC equivalent circuit 

Therefore 
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ino DVV                                                                                                                       (6.74) 

inL V
R

D
I                                                                                                                      (6.75) 

Also, the small-signal (AC-signal) equivalent circuit model can be obtained from the 

following relationships as 



 LLL iIi                                                                                                              (6.76) 



 ooo vVv                                                                                                             (6.77) 



 ininin vVv                                                                                                           (6.78) 



 dDd                                                                                                                      (6.79) 

Substituting equations (6.76), (6.77), (6.78) and (6.79) into (6.74) and (6.75), yields 



 LLLS iDIdDIi                                                                                             (6.80) 



 LLLS vDVdDIv                                                                                           (6.81) 

Equations (6.80) and (6.81) represent the summation of the DC and AC signals. 

Therefore, the small-signal equivalent circuit model can be designed as shown in Figure 

6.58. 
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Figure  6.58: The small-signal equivalent circuit 

 

The circuit in Figure 6.58 can be reduced to the following circuit  

 

Figure  6.59: The small-signal equivalent circuit model of the Buck converter circuit 

 

The relationship between the input voltage and the output voltage can be determined 

using Kirchhoff’s current and voltage laws as 

     svsvDsisL oinL




                                                                                          (6.82) 

   
 
R

sv
sisvsC o

Lo





                                                                                             (6.83) 
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The transfer function 
 

 



















sv

sv

in

o  can be easily obtained by solving the previous two 

fractional order equations. Therefore, 

 

  1









 s

R

L
sCL

D

sv

sv

in

o                                                                                     (6.84)  

which represents the transfer function of the open loop Buck converter.  

The following parameters are used as in Reference [27].  

6.0

20

H 3

F 100









D

R

mL

C



 

 

 

6.3.3.1 Results  

Since  D  is a constant, the fractional transfer function of the system can be written as  

 

  1

1











 s

R

L
sCLsv

svo                                                                                     (6.85) 

where  

   Dsvsv in



                                                                                                               (6.86) 
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Therefore, fractional the transfer function of the system with the parameters values used 

in Reference [27] would be  

 

  1105.1103

1
8.046.17 






ss
sv

svo                                                                          (6.87) 

 

Figure  6.60: The step response of the uncompensated system 

 

Figure 6.60 shows the step response of the uncompensated system. It can be seen that the 

uncompensated system is stable and has overshoot. The bandwidth of the system is 

around  4107144.2   rad/sec.  

A fractional PID controller can be designed to reduce the overshoot and improve the 

system transient. The target can be chosen to have the desired bandwidth as  

 
1.1

410435.6

s
sL


                                                                                                        (6.88) 

The obtained results would be as follows  
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The distribution of the fitting error all over the range of the fractional orders is shown in  

Figure 6.61. 

 

Figure  6.61: The fitting error  bU  with fractional orders  ,  

 

Figure  6.62: The fitting error at  1.7   1.1    
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From Figure 6.62, the best choice for the orders of the fractional PID controller would be

 1.7   1.1   . It satisfies the relationship Ub
dip KKK  ,,,, ,

min .  

The values of the fractional PID parameters are: 

038.0

7.1

1.1

108718.1

105182.6

3171.1

5

4















b

d

i

p

U

K

K

K




 

 

The information above shows that the fractional PID behaves as a fractional PI controller. 

 

Figure  6.63: The target loop and plant 
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Figure  6.64: The approximation error (fitting error) 

The obtained approximation error is  038.0  at the bandwidth frequency which is less 

than  3.02.0  . Figure 6.64 shows that the approximation error decreases at high 

frequencies.   

 

Figure  6.65: The sensitivity and complementary sensitivity functions 
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Figure 6.65 shows that the closed loop transfer function has good noise rejection at high 

frequencies and the disturbance at low frequencies will not affect the output. Also, it can 

be seen that the bandwidth of the closed loop sensitivity is approximately around the 

desired bandwidth  4107144.2   rad/sec.  

 

 

Figure  6.66: The frequency responses of the system 

 

The frequency responses and the step response of the system are shown in Figure 6.66 

and Figure 6.67, respectively.  
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Figure  6.67: The step response of the system 

It can be seen that the fractional integrator 







1.1

1

s
 which contains a pure integrator 









s

1

eliminates the steady state error. Figure 6.68 shows that disturbance at the plant input has 

been eliminated for the same reason.  

 

Figure  6.68: The disturbance rejection response 
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Therefore, the final form of the fractional PID is  

  7.15

1.1

4

101.0

1
108718.1

105182.6
3171.1 s

ss
sC 













 

                                       (6.89) 

Choosing  1  and  1    with the same target gives a classical PID controller with the 

following results 

53.0

101007.2

107542.1

108617.3

2

4
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











b

d

i

p

U

K

K

K

 

The information above shows that classical PID controller behaves as a pure integrator. 

The fitting error is greater than the typical value  3.02.0  . The following figure shows a 

comparison between the fractional PID controller and the classical PID controller. 

 

Figure  6.69: The approximation error (fitting error) 
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Figure  6.70: The sensitivity and complementary sensitivity functions 

 

Figure 6.70 shows that resonant peak due to the classical PID controller is higher than the 

resonant peak due to the classical PID.  

 

Figure  6.71: The step responses 
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Figure 7.71 shows that the fractional PID controller has improved the transient of the 

system with a reduction of overshoot and oscillation are obtained. Figure 7.72 shows that 

disturbance rejection responses are eliminated as time goes to infinity.  

 

Figure  6.72: The disturbance rejection responses 

 

The step response of the system when the duty cycle is (0.6) can be obtained as shown in 

 Figure 6.73. It has the following fractional transfer as shown in Reference [27].  

 

  1105.1103

6.0
8.046.17 






ss
sv

sv

in

o                                                                         (6.90)  
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Figure  6.73: The step responses 
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CHAPTER 7 

7 CONCLUSIONS 

Fractional order calculus provides a good way to study the behavior of functions 

in the past and future. The fractional orders tell how far the behavior of a function is from 

present. Also, fractional order calculus can be used to approximate functions without 

using a sub of functions for the same purpose. The Oustaloup filter can be used to 

approximate fractional order systems although the shape around the boundary frequencies 

is not ideal due the expression of approximation. Instead of having slopes in multiple of 

 dB/dec 20  or zero in the frequency response of a certain system, slopes in multiple of 

 dB/dec  20  or zero can be used in the frequency response to describe fractional 

order systems. Fractional PID controller has some advantages over classical PID 

controller like increasing stability as shown in Riemann surface plan, improving the 

performance of fractional systems and more freedom to tune. Riemann surface plan 

shows that the response of a fractional order integrator whose order is less than one is 

slow. This problem can be solved by adding a pure integrator and differentiator at origin. 

The effect of the fractional orders on the shape of fractional transfer functions is 

presented. A target can be used for the tuning to achieve a robust performance. Choosing 

a fractional integrator as a target in the frequency loop shaping technique has some 

advantages such as rejecting disturbances or satisfying frequency domain constraints 

(e.g., arising from an associated uncertainty description). The fractional orders play an 

important role on sensitivity shaping, and they have been shown to provide a significant 

advantage in cases where the plant itself or the target loop shape are fractional. The 
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Sensitivity and Complementary Sensitivity transfer functions describe both the effect of 

the standard perturbation signals on the loop, as well as provide metrics to characterize 

the loop robustness to dynamic uncertainty. The results obtained in this dissertation show 

significant improvement in the transient response and satisfactory results through the 

achievement of a closed loop sensitivity bandwidth approximately to a desired value of 

bandwidth. Future work will be focusing on the following points: 

 Generating the target loop shape using LQR techniques. Such techniques have 

been known to yield general controllers with excellent properties, so it is 

reasonable to use the resulting loop shapes as targets for approximation with a 

fractional PID. 

 Development of the corresponding fractional system identification and 

uncertainty estimation framework to complement the controller design from 

input-output data. It is anticipated that such an approach may have an advantage 

over the classical, general, high-order identification and controller design 

approach in the case of fractional order systems because it would require less 

degrees of freedom (tunable parameters) and, hence, impose weaker excitation 

conditions on the test signals.   
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