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i

Kurzreferat: Die vorliegende methodische Arbeit gibt einen umfassenden Überblick zur

Anwendung von Frailty-Modellen in der Lebensdaueranalyse. Zunächst wird der aktuelle

Stand der Forschung auf den Gebieten der univariaten und multivariaten Frailty-Modelle

dargestellt. Insbesondere wird die Bedeutung der Frailty-Modelle bei der Modellierung

von Heterogeneität (univariater Fall) und abhängigen Lebensdauern (multivariater Fall)

herausgearbeitet. Darauf aufbauend erfolgt die Weiterentwicklung des multivariaten

Korrelierten Frailty-Modells in verschiedene Richtungen. Ein erster Schwerpunkt ist

dabei die Einbeziehung beobachtbarer Kovariablen und von Interaktionen beobacht-

barer und nichtbeobachtbarer Kovariablen. Andere Erweiterungen dienen der Analyse

von abhängigen konkurrierenden Risiken, welche sich elegant mit Hilfe des Konzepts der

korrelierten Frailty-Modelle realisieren lassen. Ein weiterer Schwerpunkt der vorliegen-

den Arbeit ist die Einbeziehung von Teilpopulationen, welche dem analysierten Ereignis

gegenüber immun sind, sei es aufgrund einer genetischen Prädisposition, einer Impfung

oder einer entsprechenden Vorerkrankung. Zahlreiche Anwendungsbeispiele insbeson-

dere aus dem Schnittbereich von Medizin, (genetischer) Epidemiologie und Demografie

illustrieren die praktische Relevanz der neu entwickelten Modelle. Dazu werden unter

anderem weltweit einmalige Zwillingsdaten aus dem dänischen und schwedischen Zwill-

ingsregister analysiert, wobei Herzkreislauf- und Krebserkrankungen im Mittelpunkt ste-

hen. Simulationen demonstrieren die Eigenschaften der Parameterschätzer in den einzel-

nen Modellen für realistische Stichprobenumfänge.

Wienke, Andreas: Frailty Models in Survival Analysis. Universität Halle-Wittenberg,

Medizinische Fakultät, Habilitation, 153 Seiten, 2006
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Chapter 1

Introduction and Outline

The statistical analysis of lifetime data (or more exactly, time-to-event, event-history or

duration data) plays an important role in medicine, epidemiology, biology, demography,

economics, engineering and other fields. It has expanded rapidly in the last three decades,

with works having been published in various disciplines in addition to statistics. But

what distinguishes survival analysis from other fields of statistics? Why does survival

data need a special statistical theory? The reason is that we are observing something

that develops dynamically over time. There are two points related to this development.

First, survival times are usually a mixture of discrete and continuous data that lend

themselves to a different type of analysis than in the traditional discrete or continuous

case. The mixture is the result of censoring and has an important effect on data analysis.

To put it plainly, a censored observation contains only partial information about the

random variable of interest. The Kaplan-Meier estimator (Kaplan and Meier, 1958) of

the survival function is a major step in the development of suitable models for such kind

of data. Second, most evaluations are made conditionally on what is known at the time

of the analysis, and this changes over time. Usually, as the population under study is

changing, we only consider the individual risk to die for those who are still alive, but

this means that many standard statistical approaches cannot be applied.

Models based on the hazard function have dominated survival analysis since the con-

struction of the proportional hazards model by Cox (1972). One of the reasons this

model is so popular is because of the ease with which technical difficulties such as cen-

soring and truncation are handled. This is due to the appealing interpretation of the

hazard function as a risk that changes over time. Naturally, the concept allows for the

entering of covariates in order to describe their influence and to model different levels of

risk for different subgroups. However, in general it is impossible to include all relevant

risk factors, perhaps because we have no information on individual values, which is of-
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ten the case in demography. Furthermore, we may not know all relevant risk factors or

it is impossible to measure them without great financial costs, something that is com-

mon in medical and biological studies. The neglect of covariates leads to (unobserved)

heterogeneity. That is, the population consists of individuals with different risks.

The second important regression model in survival analysis is the accelerated failure

time model (AFT) (Lawless, 1982). The Cox model and its various generalizations are

mainly used in medical and biostatistical fields, while the AFT model is primarily applied

in reliability theory and industrial experiments. We will not treat the AFT model in

detail here but recommend a recent paper by Orbe et al. (2002) in which the authors

compare both the Cox and AFT models and discuss the advantages and limitations of

each. Especially, they consider a semi-parametric version of the AFT model.

This thesis focuses on frailty models, a specific area in survival analysis. The notion of

frailty provides a convenient way of introducing unobserved heterogeneity and associa-

tions into models for survival data. In its simplest form, frailty is an unobserved random

proportionality factor that modifies the hazard function of an individual, or of related

individuals. In essence the concept goes back to the work of Greenwood and Yule (1920)

on ‘accident proneness’. The term frailty itself was introduced by Vaupel et al. (1979)

in univariate survival models. Applications to problems in multivariate survival analysis

date from a seminal paper by Clayton (1978).

Ordinary methods in survival analysis implicitly assume that populations are homoge-

nous, meaning all individuals have the same risk of death. As mentioned above, it is

often important to consider the population as heterogeneous, i.e. a mixture of individ-

uals with different hazards. A frailty model is a random effects model for time-to-event

data, where the random effect (the frailty) has a multiplicative effect on the baseline

hazard function. It can be used for univariate (independent) lifetimes, i.e. to describe

the influence of unobserved covariates in a proportional hazards model (heterogeneity).

The variability of duration data is split into one part that depends on risk factors and is

thus theoretically predictable, and one part that is initially unpredictable, even knowing

all relevant information at that time. There are advantages in separating these sources

of variability: heterogeneity can explain some unexpected results or give an alternative

interpretation, for example crossing-over or levelling-off effects of hazard functions.

However, considering multivariate (dependent) duration times is more interesting. The

introduction of a common random effect - the frailty - is a natural way of modelling the

dependence of event times. The random effect explains the dependence in the sense that

had we known the frailty, the events would have been independent. In other words, the

lifetimes are conditionally independent given the frailty. This approach can be used for
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survival times of related individuals such as twins or family members, where indepen-

dence cannot be assumed, or for recurrent events in the same individual or for times

to several events for the same individual, such as onset of different diseases, relapse or

death (competing risks). Different extensions of univariate frailty models to multivariate

models are also possible and will be considered later.

The standard assumption is to use a gamma distribution for the frailty, but other dis-

tributions are also possible. The relationships between individual and observed survival

characteristics play a key role in the statistical analysis of duration data in heterogeneous

populations.

Various frailty models have been developed. However, compared with standard random

effect models, frailty models pose additional difficulties in developing inferential methods,

caused by incompleteness of data due to censoring and truncation and by the requirement

for a specification of a baseline hazard (or a non-parametric baseline hazard). Thus,

inferential methods have been less developed here than in other random effect models.

This thesis is organized as follows: In the next chapter, a short introduction to survival

analysis and a definition of common terminology is given. Chapter 3 deals with univariate

frailty models. It introduces the concept of frailty, gives an overview of the research field

and forms the basis for Chapter 4, which contains the main results of the thesis. Various

extensions of the correlated gamma frailty model are suggested and applied to cause-

specific mortality and incidence data from Danish and Swedish twins. Advantages and

limitations of the proposed models are discussed and simulations show the properties

of the parameter estimates for reasonable sample sizes. The appendix provides details

about the application data used in this thesis and some mathematical derivatives.

I would like to take this chance to express my thanks to everyone who supported this

thesis; my former Ph.D. advisor Friedrich Liese (Rostock) for waking my interest in

statistical research, Renee Flibotte (Rostock), Anatoli Yashin and Konstantin Arbeev

(Duke), Alexander Begun (Kiel), Nicole Giard (Gütersloh), Kaare Christensen and Ivan

Iachine (Odense), Isabella Locatelli (Lausanne), Slobodan Zdravkovic, Ulf de Faire and

Paul Lichtenstein (Stockholm) for many helpful discussions and fruitful collaboration,

and my colleagues at the Institute for Medical Epidemiology, Biostatistics and Infor-

matics at the University Halle, especially Johannes Haerting as head of the institute for

encouragement, support and providing me with an excellent research environment. I

would like to thank the Danish and Swedish Twin Registries for providing the unique

twin data. I also extend my sincere thanks to the Max Planck Institute for Demographic

Research and its founding Director, James Vaupel, in Rostock where I started work on

frailty models.
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Chapter 2

Survival analysis

2.1 Basic concepts in survival analysis

This section describes basic aspects of univariate survival data and contains notation

and important results which build the basis for specific points in later chapters.

We consider a single random variable X. Specifically, let X be non-negative, represent-

ing the lifetime of an individual. In that case this has given this field its name, the

event is death, but the term is also used with other events, such as the onset of disease,

complications after surgery or relapses in the medical field. In demography, time to

death, but also time to leaving home, pregnancy, birth or divorce is of special interest.

In industrial applications, it is typically time to failure of a technical unit. In economics,

it can denote the time until the acceptance of jobs by unemployed, for example. Usually,

X is assumed to be continuous, and we will restrict ourselves to this case in the present

thesis. All functions in the sequel are defined over the interval [0,∞). The probability

density function (p.d.f.) is denoted by f . The distribution of a random variable is com-

pletely and uniquely determined by its probability density function. But there many

other notions exist, which are very useful in describing a distribution in specific situa-

tions. An important one is F (x) = P(X < x) =
∫ x

0
f(s) ds, the cumulative distribution

function (c.d.f.) of X. In survival analysis, one is more interested in the probability of

an individual to survive to time x, which is given by the survival function

S(x) = 1− F (x) = P(X ≥ x) =

∫ ∞
x

f(s) ds.

The major notion in survival analysis is the hazard function λ(·) (also called mortality

rate, incidence rate, mortality curve or force of mortality), which is defined by

λ(x) = lim
∆→0

P(x ≤ X < x+ ∆|X ≥ x)

∆
=

f(x)

1− F (x)
. (2.1)

5



6 CHAPTER 2. SURVIVAL ANALYSIS

The hazard function characterizes the risk of dying changing over time or age. It specifies

the instantaneous failure rate at time x, given that the individual survives until x.

Sometimes, it is useful to deal with the cumulative (or integrated) hazard function

Λ(x) =

∫ x

0

λ(s) ds.

Especially for the topic covered by this thesis the notion of the Laplace transform L of a

random variable X is crucial to inference in this area: L(s) = Ee−sX =
∫∞

0
e−sxf(x) dx.

The functions f, F, S, λ,Λ and L give equivalent specifications of the distribution of the

(non-negative) random variable X. It is easy to derive relations between the different

notions, for example (2.1) implies that

Λ(x) =

∫ x

0

λ(s) ds =

∫ x

0

f(s)

1− F (s)
ds = − ln(1− F (x))

and consequently

S(x) = 1− F (x) = e−
R x
0 λ(s) ds = e−Λ(x). (2.2)

As mentioned before, the hazard function is particularly useful in survival analysis, since

it describes the way in which the instantaneous probability of failure for an individual

changes with time. Applications often have qualitative information about the hazard

function, which can be of help in selecting a model. For example, there may be reasons

to restrict the analysis to models with increasing hazards or with hazard functions that

have other well-defined characteristics. The shape of a hazard function can take different

forms: it can be increasing, decreasing, constant, or U-shaped. Models with these and

other hazard function shapes are all useful in practice: In demography, for example,

following humans from birth to death, a U-shaped hazard function is often appropriate.

After an initial period in which deaths result primarily from birth defects and infant

diseases, the death rate drops and remains relatively constant until the age of 30 or so,

after which it increases with age. This pattern is also observed in many other populations,

including those consisting of technical items. Models with increasing hazards are used

the most. This is because interest often centres on periods in the life of individuals in

which measurable ageing takes place (for example old ages in humans). Models with

a constant hazard function are of a very simple structure, as we will see in the next

section. Less common are models with a decreasing hazard, but they are sometimes used

to describe failure times of electronic devices, at least over a fairly long initial period of

use. The main points to remember here are that the hazard function represents an aspect

of a (non-negative) distribution that has a direct physical meaning and that qualitative

information about the form of the hazard function is useful in selecting an appropriate

model.
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2.2 Parametric models

Now we shall consider in outline some distributions that are useful in the field of sur-

vival analysis. Naturally any distribution of non-negative random variables could be

used to describe durations. The distributions to be discussed here are all continuous.

Throughout the literature on survival analysis, certain parametric models have been used

repeatedly such as exponential and Weibull models. These distributions have closed form

expressions for survival and hazard functions. Log-normal and gamma distributions are

generally less convenient computationally, but are still frequently applied. To avoid the

model validity issues, the non-parametric approach, supported by the well-developed

Kaplan-Meier-product limit estimator and related techniques, is often regarded as the

preferred course. However, this alternative is often inefficient, as noted by Miller (1983).

The pros and cons of different parametric, semi-parametric and non-parametric models

and methodology for statistical inference can be found in the monographs by Kalbfleisch

and Prentice (1980), Miller (1981), Lawless (1982), Cox and Oakes (1984) and Klein and

Moeschberger (1997).

Below we discuss some of the standard failure time models for homogeneous populations.

The properties and the theoretical bases of these distributions are considered here only

briefly. The distributions will be studied in the simplest case of independently and

identically distributed random variables. In this and the following sections the random

variable X denotes the lifetime which we are interested in making inferences about.

2.2.1 Exponential distribution

The exponential model (X ∼ Exp(λ)) is the simplest parametric model and assumes

a constant risk over time, which reflects the property of the distribution appropriately

called ‘lack of memory’. The probability to die within a particular time interval depends

only on the length but not on the location of this interval. This means that the distrib-

ution of X − x conditional on X ≥ x is the same as the original distribution. In other

words, it holds that

P(x ≤ X < x+ δ|X ≥ x) = P(X < δ)

for any positive δ. As a consequence, the exponential distribution (as the only one) is

not influenced by the definition of time zero. The parameter λ attains all positive values

and the distribution with λ = 1 is called the unit or standard exponential. Therefore,
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the following formulae can be derived by some simple algebraic calculations:

probability density function f(x) = λe−λx

survival function S(x) = e−λx

hazard function λ(x) = λ, λ > 0

cumulative hazard function Λ(x) = λx

mean EX =
1

λ

variance V(X) =
1

λ2

The exponential distribution was widely used in early work on the reliability of electronic

components and technical systems. The distribution of cX with a positive constant c

is again exponentially distributed with parameter λ/c. The minimum of n independent

exponential random variables with parameter λ is still exponential with parameter nλ:

P(min{X1, . . . , Xn} ≥ x) =
n∏
i=1

P(Xi ≥ x) =
n∏
i=1

e−λx = e−nλx.

The model is very sensitive to even a modest variation because it has only one adjustable

parameter, the inverse of which is both mean and standard deviation. Recent works have

overcome this limitation by using more flexible distributions.

2.2.2 Weibull distribution

The Weibull model (introduced by Waloddi Weibull in 1939) is an important generaliza-

tion of the exponential model with two positive parameters. The second parameter in the

model allows great flexibility of the model and different shapes of the hazard function.

The convenience of the Weibull model for empirical work stems on the one hand from

this flexibility and on the other from the simplicity of the hazard and survival function.

probability density function f(x) = λγxγ−1e−λx
γ

survival function S(x) = e−λx
γ

hazard function λ(x) = λγxγ−1

cumulative hazard function Λ(x) = λxγ

mean EX = λ−
1
γ Γ(1 +

1

γ
)

variance V(X) = λ−
2
γ
(
Γ(1 +

2

γ
)− Γ(1 +

1

γ
)2
)
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where Γ denotes the Gamma function with Γ(k) =
∫∞

0
sk−1e−s ds (k > 0). We abbreviate

the distribution as Weibull(λ, γ). In the case of γ = 1, the exponential distribution is

obtained. The hazard function decreases monotonously from ∞ at time zero to zero at

time ∞ for γ < 1, constant (exponential distribution) for γ = 1 and it monotonously

increases from zero at time zero to ∞ at time ∞ for γ > 1.

Figure 2.1: Weibull hazard functions with different shape parameters.

If X ∼ Weibull(λ, γ), then it holds that cX ∼ Weibull(λc−γ, γ), when c is a posi-

tive constant. Furthermore, the minimum of n i.i.d. variables from this distribution

is Weibull(nλ, γ) (minimum-stable distribution). The Weibull distribution can also be

generated as the limiting distribution of the minimum of a sample from a continuous

distribution with support on [0, u) for some u (0 < u < ∞). This extreme value char-

acter makes the Weibull distribution appropriate for the distribution of individual time

to death, because there are different causes of death which compete with each other and

the first one to strike will kill the individual.

The Weibull hazard has been theoretically derived for cancer incidence by Pike (1966),

but it is unknown whether it has relevance for other diseases. The Weibull distribution

is inappropriate when the hazard rate is indicated to be unimodal or bathtub-shaped. A

generalization of the Weibull distribution to include such kind of shapes was proposed

by Mudholkar et al. (1996).
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2.2.3 Gompertz distribution

In 1825 the British actuary Benjamin Gompertz made a simple but important observa-

tion that a law of geometrical progression pervades large portions of different tables of

mortality for humans. The simple formula he derived describing the exponential rise in

death rates between sexual maturity and old age is commonly referred to as the Gompertz

equation–a formula that remains a valuable tool in demography and in other scientific

disciplines. Gompertz’s observation of a mathematical regularity in human life tables

led him to believe in the presence of a law of mortality that explained why common age

patterns of death exist. It has been widely used, especially in actuarial and biological

applications and in demography. A random variable follows a Gompertz distribution

with parameters a > 0 and b > 0 (X ∼ Gompertz(a, b)), if the following relations hold:

probability density function f(x) = aebxe−
a
b

(ebx−1)

survival function S(x) = e−
a
b

(ebx−1)

hazard function λ(x) = aebx

cumulative hazard function Λ(x) =
a

b
(ebx − 1)

The hazard function is increasing from a at time zero to∞ at time∞. The model can be

generalized to the Gompertz-Makeham distribution by adding a constant to the hazard:

λ(x) = aebx + c.

Figure 2.2: Gompertz hazard functions with different parameters.
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2.2.4 Log-logistic distribution

An alternative model to the Weibull distribution is the log-logistic distribution. The

log-logistic distribution has a fairly flexible functional form, it is one of the parametric

survival time models in which the hazard rate may be decreasing, increasing, as well as

hump-shaped, that is it initially increases and then decreases. The distribution imposes

the following functional forms on the density, survival, hazard and cumulative hazard

function:

probability density function f(x) = abxb−1(1 + axb)−2

survival function S(x) = (1 + axb)−1

hazard function λ(x) =
abxb−1

1 + axb

cumulative hazard function Λ(x) = ln(1 + axb)

The general shape of the hazard function of a log-logistic distribution is very similar to

that of the log-normal distribution considered later. The log-logistic distribution can

be obtained as a mixture of Gompertz distributions with a gamma distributed mixture

variable with mean and variance equal to one.

2.2.5 Gamma distribution

The gamma distribution includes the exponential distribution as a special case. The

gamma distribution is of limited use in survival analysis because the gamma models do

not have closed form expressions for survival and hazard functions. Both include the

incomplete gamma integral

Ik(x) =

∫ x
0
sk−1e−s ds

Γ(k)
.

Consequently, traditional maximum likelihood estimation is difficult and requires the

calculation of such incomplete gamma integrals, which imposes additional numerical

problems in parameter estimation. A random variable X is gamma distributed with

parameter k and λ (X ∼ Γ(k, λ)), if the following holds:

probability density function f(x) =
λkxk−1e−λx

Γ(k)
k, λ > 0

survival function S(x) = 1− Ik(λx)
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hazard function λ(x) =
λkxk−1e−λx

(1− Ik(λx))Γ(k)

mean EX =
k

λ

variance V(X) =
k

λ2

Laplace transform L(s) = Ee−Xs = (1 +
s

λ
)−k

If k = 1, the gamma distribution is reduced to the exponential distribution. With integer

k, the gamma distribution is sometimes called a special Erlangian distribution. It can

be derived as the distribution of waiting time to the k-th emission from a Poisson source

with intensity parameter λ. Consequently, the sum of k independent exponential variates

with parameter λ has a gamma distribution with parameters k and λ (see Example 1)

and can be used to model life times of technical systems with repeated repairing after

failure.

Example 1 Let X1, X2, . . . , Xk denote k independent exponential distributed random

variables with Xi ∼ Exp(λ) (i = 1, . . . , k) and introduce X by X = X1 + . . .+Xk. Then

it holds that

L(s) = Ee−Xs = Ee−(X1+...+Xk)s

=
k∏
i=1

Ee−Xis =
k∏
i=1

E(1 +
s

λ
)−1 = (1 +

s

λ
)−k.

An extension of this idea was used by Aalen (1992) dealing with the compound Pois-

son distribution (see Section 3.6). Despite the fact that the gamma distribution is of

limited value as a life time distribution because of the problems mentioned above, the

gamma distribution is a widely used frailty (mixture) distribution because of some neat

mathematical features. It is mathematically tractable and readily computable. It is a

flexible distribution that takes on a variety of different shapes as k varies. Furthermore,

frailty cannot be negative and the gamma distribution is, along with the log-normal and

Weibull distribution, one of the most commonly used distributions to model positive

random variables. The assumption that frailty is gamma distributed yields some useful

mathematical results, including that the frailty among survivors of any age x is again

gamma distributed and frailty among those who die at any time x, too (see Vaupel et al.,

1979). We will discuss other properties of the gamma distribution as frailty distribution

later in more detail.
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2.2.6 Log-normal distribution

In the log-normal model (X ∼ logN(m, s2)), the natural logarithm ln(X) of the lifetime

X is assumed to be normally distributed (ln(X) ∼ N(m, s2)). A log normal distribution

results when the variable is the product of a large number of independent, identically

distributed variables in the same way that a normal distribution results when the variable

is the sum of a large number of independent, identically distributed variables. The

survival and hazard functions include the incomplete normal integral

Φ(x) =

∫ x

−∞
φ(s) ds,

where φ(x) = 1√
2π
e−

x2

2 denotes the probability density function of a standard normal

distribution. Consequently,

probability density function f(x) =
1√

2πsx
e−

(ln(x)−m)2

2s2

mean EX = em+ s2

2

variance V(X) = e2m+s2(es
2 − 1)

The log-normal distribution may be convenient to use with non-censored data, but when

this distribution is applied to censored data, the computations quickly become formi-

dable. Unfortunately, the hazard function has a strange form: it has value zero at x = 0,

increases to a maximum and then decreases, approaching zero as x heads to infinity.

Because of the decreasing form of the hazard function for older ages, the distributions

seem implausible as a lifetime model in most situations. Nevertheless, it makes sense if

interest is focused on time periods of younger ages. Despite its unattractive features, the

log-normal distribution has been widely used as failure distribution in diverse situations,

such as the analysis of electrical insulation or time to occurrence of lung cancer among

smokers.

Furthermore, the log-normal distribution has often been used as a frailty (mixing) dis-

tribution. Especially in the context of unobserved normal distributed covariates in the

Cox model, the log-normal frailty distributions provides an appealing interpretation of

the model. Unfortunately, the Laplace transform is intractable, and therefore numerical

integration is needed for probability results. The log-normal distributions are in practice

very close to the inverse Gaussian distributions.
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2.3 Censoring

Censoring is what distinguishes survival analysis from other fields of statistics. Basically,

a censored observation contains only partial information about the variable of interest.

There are different types of censoring, here we consider type I right censoring only.

-

x

x

x

x lifetimes censored observations

patient 1

patient 2

patient 3

patient 4

patient 5

patient 6

patient 7

patient 8

time

Right censoring

Figure 2.3: Right censored lifetimes of patients in an artificial clinical trial.

Let X1, X2, . . . , Xn be i.i.d. survival times with cumulative distribution function F

and let Y1, Y2, . . . , Yn be i.i.d. censoring times with cumulative distribution function G.

Throughout the thesis, we assume that F and G are absolutely continuous. Furthermore,

let f and g be probability density functions with respect to F and G. We can only observe

(T1,∆1), (T2,∆2), . . . , (Tn,∆n), where Ti = min{Xi, Yi} and

∆i =

{
1 : if Xi ≤ Yi, that is, Ti is not censored

0 : if Yi < Xi, that is, Ti is censored.
(2.3)

Random censoring arises especially in medical applications, for example in clinical trials

or epidemiological studies. Here, patients may enter the study at different times; then

each is treated with one of several possible drugs or therapies. We are interested in

observing their lifetimes, but censoring occurs in one of the following forms:
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• Loss to follow up. The patient may move elsewhere; he is never seen again.

• Drop out. The treatment may have such strong side effects that it is necessary to

stop the therapy. Or the patient may refuse to continue the treatment.

• Termination of the study. The study ends at a predefined point of time. This type

of censoring is called administrative censoring.

We use X and Y , with no subscripts, as shorthand for all the Xi and Yi variables.

Assumption: Lifetimes X and censoring times Y are independent. A weaker condition

is to assume that censoring is non-informative.

Remark: The cumulative distribution function of the non-censored observations (while

discarding the censored observations of the sample) is not F!

P(T < t,∆ = 1) = P(X < t,X ≤ Y ) =

∫ ∫

x<t,x≤y

f(x)g(y) dx dy

=

∫

x<t

f(x)
( ∫

x≤y

g(y) dy
)
dx =

∫

x<t

f(x)(1−G(x)) dx 6= F (t)(2.4)

Theorem 1 (Wienke (1996)) The probability density function of the data (T,∆) takes

the form

f(t, δ) = (f(t)(1−G(t)))δ(g(t)(1− F (t)))1−δ. (2.5)

Proof: Denote by H0 and H1 sub-distribution functions and by h0 and h1 sub-densities.

It holds (see (2.4)) H1(t) = P(T < t,∆ = 1) =
∫
x<t

f(x)(1−G(x)) dx. Furthermore,

H0(t) = P(T < t,∆ = 0) = P(Y < t, Y < X)

=

∫ ∫

y<t,y<x

f(x)g(y) dx dy =

∫

y<t

g(y)
( ∫

y<x

f(x) dx
)
dy =

∫

y<t

g(y)(1− F (y)) dy

Consequently,

h0(t) = H ′0(t) = g(t)(1− F (t))

h1(t) = H ′1(t) = f(t)(1−G(t))

f(t, δ) = δh1(t) + (1− δ)h0(t) = (h1(t))δ(h0(t))1−δ

= (f(t)(1−G(t)))δ(g(t)(1− F (t)))1−δ.

This completes the proof. �
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Remark: If the censoring is non-informative, meaning if the censoring distribution does

not contain any information about the parameters of interest, then it does not enter the

likelihood function:

L(t, δ) = f(t)δ(1− F (t))1−δ = δf(t) + (1− δ)(1− F (t)). (2.6)

As pointed out in Theorem 1, the density function under independent right censoring is

f(t, δ) = δf(t)(1−G(t)) + (1− δ)g(t)(1− F (t)).

The following example considers the case of dependent censoring. It turns out that the

likelihood function under dependent censoring is a composition of derivatives of the joint

survival function of life times and censoring times.

Example 2 Denote by (T,∆), T = min{X, Y }, ∆ = 1(X ≤ Y ) censored observa-

tions under the assumption of dependent censoring. Let S(x, y) and f(x, y) be the joint

survival and probability density function of X and Y , respectively. Consequently, the

sub-distribution functions can be derived as follows:

H1(t) = P(T < t,∆ = 1) = P(X < t,X ≤ Y )

=

∫ ∫

{x<t,x≤y}
f(x, y) dx dy = −

∫ t

0

Sx(x, x) dx.

This implies that the sub-density of a non-censored (δ = 1) observation is a derivative

of the sub-distribution function:

h1(t) = H ′1(t) = −Sx(t, t) = −∂S(x, y)

∂x
|x=t,y=t.

Similar calculations yield the sub-distribution and sub-density functions in the case of a

censored observation (δ = 0):

H0(t) = P(T < t,∆ = 0) = P(Y < t, Y < X)

=

∫ ∫

{y<t,y<x}
f(x, y) dxdy = −

∫ t

0

Sy(y, y) dy

and

h0(t) = H ′0(t) = −Sy(t, t) = −∂S(x, y)

∂y
|x=t,y=t.

The likelihood function is a composition of the sub-density functions:

L(t, δ) = −δSx(t, t)− (1− δ)Sy(t, t).
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2.4 Truncation

Now we shall take truncation into account. We restrict our treatment to the most com-

mon type of truncation, that is left truncation. Furthermore, let us assume that trun-

cation is non-random. Left truncation occurs when individuals come under observation

only some known time after the natural origin of the event under study. That is, had the

individual failed before the truncation time in question, that individual would not have

been recorded. For example, the second patient in Figure 2.4 cannot be observed, because

-
begin end

x

x

x

︷ ︸︸ ︷
︸ ︷︷ ︸

Left truncation and right censoring

︷ ︸︸ ︷
︸ ︷︷ ︸
lifetime T

truncation time t∗

lifetime T

truncation time t∗

Figure 2.4: Left truncated and right censored lifetimes.

he dies before the study started. That means, the person carrying out the study would

not be aware of that observation. In other words, truncation is sampling from a condi-

tional distribution. Denote observations by (T ∗,∆∗) with L(T ∗,∆∗)=L((T,∆)|T ≥ t∗)

with t∗ as known (non-random) truncation time. So we get

P(T ∗ ≥ t,∆∗ = δ) = P(T ≥ t,∆ = δ|T ≥ t∗)

=
P(T ≥ t,∆ = δ)

P(T ≥ t∗)
=

P(T ≥ t,∆ = δ)

(1− F (t∗))(1−G(t∗))

and the density of the non-random left truncated and right censored observations:

f(t, δ, t∗) =
h(t, δ)

(1− F (t∗))(1−G(t∗))

= δ
f(t)(1−G(t))

(1− F (t∗))(1−G(t∗))
+ (1− δ) g(t)(1− F (t))

(1− F (t∗))(1−G(t∗))
.

Hence, the likelihood function in the case of independent (non-informative) right censor-

ing and non-random left truncation at time t∗ can be written as

L(t, δ, t∗) = δ
f(t)

1− F (t∗)
+ (1− δ) 1− F (t)

1− F (t∗)
.
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2.5 Non-parametric and semi-parametric models

For parametric inference, it is necessary to make assumptions about the distribution of

failure times. In some circumstances this makes sense; for example, when additional

information about the nature of the ageing or disease process is available from other

experiments. When one is interested in avoiding such assumptions, it is common to use

non-parametric models. The simplest non-parametric estimate of a distribution func-

tion is the empirical distribution function. That means, even in the case of continuous

distributions we estimate it by a discrete distribution. Major steps in the development

of appropriate methods in survival analysis (in censored observations) were the intro-

duction of the Kaplan-Meier estimator (Kaplan and Meier (1958)) and the proportional

hazards model (Cox 1972).

A key question is whether we should use a parametric model as described above or a

non-parametric one. An advantage of non-parametric models is their good fit and the

resulting ability to deal with any distribution without any additional assumptions. But

there is a high price to pay. First, non-parametric methods need much more data to get

reasonable results. Second, it is very hard to get estimates of the hazard function, which

is often the most interesting and relevant information. For this, it is necessary to smooth

out the discrete point masses of the Kaplan-Meier estimator, for example by kernel

function smoothing. Otherwise, parametric models often allow closed form expressions

of the hazard function (depending on the chosen model) and other characteristics of the

failure distribution. Furthermore, parametric models can be described by the values of

a few parameters and they often give good results even in the case of moderate sample

size.

2.5.1 Kaplan-Meier estimator

A useful way of characterizing the survival in a homogeneous group of individuals is to

compute and graph the empirical survival function. If there are no censored observations

in the sample, the empirical survival function at time t is the ratio of survivors at time

t and the sample size n. This step function decreases by 1
n

just after each observed

failure (for ease of presentation we assume no ties here). When dealing with censored

data, a methodology for handling this with convenience is required. Remember that we

observe the pairs (T1,∆1), . . . , (Tn,∆n), where Ti = min{Xi, Yi} and ∆ = 1(Xi ≤ Yi).

Let T(1) < T(2) < . . . < T(n) be the order statistics of T1, T2, . . . , Tn, and with an abuse of

notation define ∆(i) to be the value of ∆ which is associated with T(i), that is, ∆(i) = ∆j

if T(i) = Tj. Note that the ∆(1),∆(2), . . . ,∆(n) are not ordered. In the sequel, we will
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use capital letters to denote random variables, for example (Ti,∆i), and small letters for

their real-value realizations: (ti, δi). The Kaplan-Meier estimator (also called product

limit estimator) was introduced by Kaplan and Meier (1958) as

Ŝ(t) =
∏

i:T(i)<t

(
1− ∆(i)

n− i+ 1

)
.

This function is a decreasing step function, with changes only at times of death. A

slightly problematic point is that Ŝ never reduces to zero if the largest observation is a

censored one, i.e. ∆(n) = 0. In this case, Ŝ is usually left unspecified for t > t(n).

2.5.2 Proportional hazards model

The models presented above deal with the simplest case of i.i.d. data. This implies a

homogeneous population. However, in most practical applications the population under

study is not homogeneous. For example, individuals in epidemiological studies may differ

in age (if age is not used as time scale), gender, socio-economic status, education, blood

pressure, body mass index, smoking habits, nutrition, physical activity level, heart rate

and so forth. Maybe some of these covariates are of special interest, such as the effect

of a treatment in a clinical trial, or they are nuisance parameters which influence the

variable lifetime. The proportional hazards model is a regression model with duration as

dependent variable. It allows inclusion of information about known (observed) covariates

in models of survival analysis and is the most applied model in this area. Statistical

strategies for prediction are similar to those utilized in ordinary regression. However,

the details for regression techniques in survival analysis are unique.

Let λ(t,X) denote the hazard of an individual at time (or age) t with covariate vector

X = (X1, . . . , Xk). The proportional hazards model (Cox 1972) specifies that

λ(t,X) = λ0(t)g(X) (2.7)

where λ0(t) is the baseline hazard function and g some positive function. The model

assumes a baseline hazard (risk of death or other event) that is common to all the

individuals in the study population. The parameters of primary interest are contained

in g(X) = g(β,X), often

g(X) = eβ
TX = e

kP
i=1

βiXi
.

In this model, covariates act multiplicatively on the baseline hazard, adding additional

risks on an individual basis, as determined by the individuals’ prognostic information.

This gives the model a simple and easily understood interpretation. The main idea

behind it is the separation of the age or time effect in the baseline hazard function on one
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side and the effect of the covariates in an exponential term on the other side. In essence

this assumption says that the hazard λ(t) of failure at time t is related to individuals

or groups of individuals by a proportionality constant which does not depend on t. The

simple two-sample situation is obtained by letting X1 be 0 or 1 (k = 1), depending

on group membership. In this case, the method is truly non-parametric and eβ is the

hazard ratio for mortality between the two groups. However, when X takes more than

two values, a parametric form of g is required. Now inference is dependent on that

form but still independent of λ0(t), and one speaks of a semi-parametric model. The

conditional survival function for T given X is

S(t|X) = S0(t)e
kP
i=1

βiXi

,

where S0(t) = e−
R t
0 λ0(s) ds and the β′s are unknown regression parameters. That means

the survival function of an individual with covariates X is the baseline survival function

raised to a power. The class of distributions generated by this procedure is sometimes

called Lehmann alternatives.

Two different approaches are possible. In the parametric case the baseline hazard is cho-

sen in the class of parametric lifetime distributions, for example as Weibull or Gompertz-

Makeham. But the model also works without any specification of the baseline hazard

function. In this second case, the model is natural and sufficiently flexible to suit many

purposes. Since e

kP
i=1

βiXi
is always positive, the individual hazard λ(t,X) is automatically

non-negative for all t and all β′s. One additional reason for considering this model is

that censoring and competing risks are relatively easily accommodated within this for-

mulation and in particular the technical problems of statistical inference have a simple

solution when the baseline hazard is arbitrary. Cox (1975) suggests using a partial likeli-

hood approach in the case of arbitrary baseline hazard. Inference for the Cox estimator is

almost exclusively based on asymptotic results (Andersen and Gill 1982). The validity of

these large sample properties have been found acceptable with moderately large sample

sizes, moderate amount of censoring and balanced covariate distributions. However it

frequently occurs that covariates have very skew distributions, for example when only a

small fraction of the individuals are exposed to the risk factor of interest. It is also very

common that a large fraction of lifetimes is censored. Especially in large cohort studies

analyzing the effect of a rare exposition on an event, the number of exposed cases may

be very small. One may then question the validity of inference based on large sample

results. Samuelsen (2003) investigates the possibilities and limitations of exact inference

in the proportional hazards model.

Note that covariate X could vary with time, but this is beyond the scope of this thesis.
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Univariate frailty models

The structure, properties, and applicability of survival models to practical problems de-

pend on the nature of time-to-event data, ancillary information about influential factors

and processes, and the aims of the studies. This chapter focuses on the analysis of

univariate data, i.e. single-spell data on unrelated individuals.

Ordinary survival models deal with the simplest case of independent and identically

distributed data. This is based on the assumption that the study population is homoge-

neous. But it is a basic observation of medical statistics that individuals differ greatly.

So do the effects of a drug, or the influence of various explanatory variables. This het-

erogeneity is often referred to as variability and it is generally recognized as one of the

most important sources of variability in medical and biological applications. The subject

of this chapter is heterogeneity in survival analysis. This heterogeneity may be difficult

to assess, but it is nevertheless of great importance. In recent decades, a large amount

of papers on ‘frailty models’ have appeared. The key idea of these models is that in-

dividuals have different frailties, and that the most frail will die earlier than the lesser

frail. Consequently, systematic selection of robust individuals takes place, which distorts

what is observed. When mortality rates are estimated, one may be interested in how

they change over time or age. Quite often, they rise at the beginning of the observation

period, reach a maximum and then decline (unimodal intensity) or level off. This, for

example, is typical for death rates of cancer patients, meaning that the longer the pa-

tient lives beyond a certain time, the better his or her chances of survival are. It is likely

that unimodal intensities are often the result of selection and that they do not reflect

an underlying development on the individual level. The population intensity starts to

decline simply because the high-risk individuals have already died. The intensity of a

given individual might well continue to increase.

If covariates are known, they can be included in the analysis, for example by using the

21
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proportional hazards model as described above. But it is nearly always impossible to

include all important risk factors, perhaps because we have little or no information on

the individual level (this applies for example to population studies, where often the only

known risk factors are sex and age). Furthermore, we may not know the relevance of

the risk factor or even that the factor exists. In other cases it may be impossible to

measure the risk factor without great financial cost or time effort. In such cases, two

sources of variability in duration data are useful to consider: variability accounted for by

observable risk factors (which is thus theoretically predictable) and heterogeneity caused

by unknown covariates and which is therefore theoretically unpredictable even when all

relevant information at that time is known. It is the latter which is of specific interest

here, and the subject of observable covariates is treated here only for completeness. As

Hougaard (1991) pointed out, there are advantages in considering these two sources of

variability separately: heterogeneity explains some ‘unexpected’ results or gives an alter-

native explanation of some results, for example non-proportional or decreasing hazards.

If some individuals experience a higher risk of failure, then the remaining individuals

at risk tend to form a more or less selected group with lower risk. An estimate of

the individual hazard rate without taking into account the unobserved frailty will thus

underestimate the hazard function to an increasingly greater extent as time goes by.

To be aware of such selection effects, mixture models could be used. That means the

population is assumed to be a mixture of individuals with (at least partly unknown)

different risks. The non-observable risks are described by the mixture variable, which is

called frailty. It is a random variable, which follows some distribution. Furthermore, as

the value is unknown, it has to be integrated out. The precise nature of the relationship

between individual and population ageing depends on the distribution of frailty among

individuals. Different choices of distributions for the unobserved covariates are possible,

including binary, gamma and log-normal, which show both qualitative and quantitative

differences. Especially, the variance of the frailty distribution determines the degree of

heterogeneity in the study population.

To address the problem of heterogeneity in a population resulting from unobserved co-

variates, Vaupel et al. (1979) suggested a random effects model for durations. They

introduced the notion of frailty and applied it to population data. The classical and

mostly applied frailty model assumes a proportional hazards model that is conditional

on the random effect (frailty). To be more specific, the hazard of an individual de-

pends additionally on an unobservable, age-independent random variable Z, which acts

multiplicatively on the baseline hazard function λ0

λ(t, Z) = Zλ0(t). (3.1)
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Here, Z is considered as a random mixture variable, varying across the population. Note

that a scale factor common to all subjects in the population maybe absorbed into the

baseline hazard function λ0(t), so that frailty distributions are standardized to EZ = 1.

The variance parameter σ2 = V(Z) is interpretable as a measure of heterogeneity across

the population in baseline risk. When σ2 is small, then the values of Z are closely

concentrated around one. If σ2 is large, then values of Z are more dispersed, inducing

greater heterogeneity in the individual hazards Zλ0(t). Frailty increases the individual

risk and is sometimes called liability or susceptibility in other settings. All individuals,

apart from an individual constant Z are assumed to follow the same mortality pattern.

What may be observed in a population is not the individual hazard, but the net result

for a number of individuals with different values of the random variable Z.

The following consideration shows that model (3.1) make sense. Let λ(t, Z) be an indi-

vidual hazard. By Taylor series expansion

λ(t, Z) = λ(t, 0) + Zλ′(t, 0) + o(Z)

where o(Z) denotes the terms containing Z of higher order than one. By omitting these

terms we get

λ(t, Z) ≈ λ(t, 0) + Zλ′(t, 0).

Making the natural assumption that zero frailty (susceptibility) yields zero mortality

(background mortality is not considered here) it holds that

λ(t, Z) ≈ Zλ0(t)

where λ0(t) = λ′(t, 0) = ∂λ(t,z)
∂z
|z=0. Thus the underlying hazard λ0(t) is a partial deriva-

tive of the individual hazard with respect to frailty taken at point Z = 0.

It is quite clear that a multiplicative frailty model as (3.1) represents a rather simplified

view of how heterogeneity might act. Nevertheless, simple mathematical models rep-

resent one way of understanding the consequences of heterogeneity. The assumptions

that the frailty is age-independent and that it acts multiplicatively on the underlying

baseline hazard function are in principle arbitrary, but they have been taken as the basis

for much subsequent work on unobserved heterogeneity in survival analysis.

Only for completeness do we want to mention other cases of frailty models which are not

based on the proportional hazards assumption. For example the additive frailty model,

where the frailty acts additively on the baseline hazard function. For more details in this

very uncommon case, see Rocha (1996). Proportional odds frailty models are considered

in Lam et al. (2002) and Lam and Lee (2004). Murphy et al. (1997) pointed out the
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link between proportional odds models and frailty models. AFT frailty models are dealt

with, for example, by Anderson and Louis (1995), Keiding et al. (1997), Klein et al.

(1999), Schnier et al. (2004) and Chang (2004).

In the natural way, it is possible to introduce known covariates into the model (3.1):

λ(t, Z,X) = Zλ0(t)e

kP
i=1

βiXi
= Zλ0(t)eβ

TX (3.2)

with X = (X1, . . . , Xk) and β = (β1, . . . , βk) as covariates and regression parameters,

respectively. Consequently, a frailty model is a generalization of the well-known propor-

tional hazards model. For the sake of simplicity, we will restrict our treatment to the

model (3.1) sometimes in order to focus on the main ideas of frailty models. Let S(t|Z)

denote the survival function of an individual conditional on the frailty Z, that means

S(t|Z) = e−
R t
0 λ(s,Z) ds = e−Z

R t
0 λ0(s) ds = e−ZΛ0(t), (3.3)

where Λ0(t) =
∫ t

0
λ0(s) ds denotes the cumulative baseline hazard function and equation

(3.3) is a generalization of relation (2.2). Up to now, the model has been described at the

individual level. However, this individual model is not observable. Consequently, it is

necessary to consider the population level. The survival function of the total population

is the mean of individual survival functions with respect to the frailty distribution. It

can be viewed as the survival function of a randomly drawn individual, and corresponds

to what can actually be observed. The survival and density functions as well as the mean

and the variance of the frailty distribution are characterized by the Laplace transform

of the frailty distribution

S(t) = ES(t|Z) = Ee−ZΛ0(t) = L(Λ0(t))

f(t) = −λ0(t)L′(Λ0(t))

EZ = −L′(0)

V(Z) = L′′(0)− (L′(0))2 (3.4)

which uses relation (3.3) and underlines the important role of the Laplace transform

in frailty models. Thus, if the latter has a simple form, performing this calculation is

easy. The connection with the Laplace transform was first pointed out and exploited

by Hougaard (1984, 1986a, 1986b). It follows that, when seeking distributions for the

frailty variable Z, it is natural to use those which have explicit Laplace transforms. This

allows for the use of traditional maximum-likelihood methods for parameter estimation.
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Theorem 2 (Vaupel et al. (1979)) Assume a frailty model given by (3.1). The hazard

function of the population λ(t) = f(t)
S(t)

is generally λ(t) = E(λ(t, Z)|T > t), or more

specifically,

λ(t) =

∫ ∞
0

λ(t, z)f(z|T > t) dz = λ0(t)

∫ ∞
0

zf(z|T > t) dz, (3.5)

where f(z|T > t) represents the density of frailty among the survivors of age t.

Proof: Starting with relation (3.1) we get

λ(t, z) =
f(t|z)

S(t|z)
= zλ0(x)

f(t|z) = zλ0(t)S(t|z)

f(t, z) = zλ0(t)S(t|z)fZ(z)

f(t) = λ0(t)

∫ ∞
0

zS(t|z)fZ(z) dz

with fZ as p.d.f. of the frailty distribution. Hence,

λ(t) =
λ0(t)

∫∞
0
zS(t|z)fZ(z) dz

S(t)
.

Because survival at age t implies an age of death greater than t, it holds that

f(z, T > t) = fZ(z)

∫ ∞
t

zλ0(s)S(s|z) ds = fZ(z)S(t|z)

f(z|T > t) =
fZ(z)S(t|z)

S(t)
.

This completes the proof. �

The hazard of the population is thus interpreted as the mean of individual hazards

among the survivors, see (3.5). Frail individuals with high values of Z will tend to die

first. Thus, the average frailty of the surviving cohort
∫∞

0
zf(z|t) dz will decline with age.

Consequently, equation (3.5) implies that the force of mortality for individuals increases

more rapidly than for the cohort to which the individuals belong: In this sense, then,

individuals ‘age faster’ than their cohort, see Figure 3.1. An illustrative example is given

in Manton and Stallard (1981), describing different mortality patterns of heterogeneous

populations.

To prove the existence of hidden heterogeneity in a population, stress experiments with

laboratory subjects (e.g. insects, worms) were suggested. The idea of using stress data
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for testing the heterogeneity assumption is based on the belief that the same exposure

to stress produces different survival outcomes in heterogeneous and homogeneous popu-

lations after the exposure to stress. During the exposure, the heterogeneous population

will experience higher selection (since the frailer individuals die first). Hence after expo-

sure to stress the mortality rate of the stress group will be lower than that of the control

group at the respective ages.

Figure 3.1: Conditional and unconditional hazard functions.

Under this model, the marginal hazard function can be expressed as the expectation

of the hazard function (Nielsen et al., 1992) conditional on being at risk at time t and

covariate value X; that is

λ(t|X) = λ0(t)eβ
TXE(Z|T ≥ t,X).

Taking the expectation represents an averaging over all individuals in the population.

Since the expectation is conditional on being at risk at time t, it constitutes averaging

over a subset of the original population. An intriguing implication is that studies of

human ageing based on cohort mortality data may be systematically biased or based on

erroneous functional forms. The precise nature of the relationship between individual

and cohort ageing depends on the distribution of frailty among individuals. Note that

parametric specification of the frailty distribution is not necessary, often it is a matter

of mathematical convenience. In the following sections, different frailty distributions are

discussed. For a more detailed discussion of the notion of frailty from a medical and

gerontological point of view see Morley et al. (2002).
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3.1 Discrete frailty model

To give a simple explanation of univariate frailty models, the population under study

is considered as consisting of two sub-populations with different risks. This could, for

example, correspond to the presence/non-presence of a genotype.

Figure 3.2: Mortality hazards of two populations with Gompertz hazard λ0(t) = aebt and

their mixing. The values of the parameters are a1 = 1.875 × 10−3, a2 = 0.625 × 10−3 and

b1 = b2 = 0.05 for the two sub-populations. At birth, the mixed population contains 70 %

of sub-population 1 and 30 % of sub-population 2. The mortality of the mixed population is

given by formula (3.6). The change over time in the proportion of the two sub-populations is

shown in Figure 3.3.

If, however, no information on the genotype of each individual exists, it is impossible

to include the genotype in the analysis and we instead have to consider the genotype

as random. Let us assume that the proportion of individuals carrying the genotype is

p. Consequently, a randomly selected person from the population carries the genotype

with probability p. Naturally, this leads to an increased variation in the response time

when compared to the case where the genotype is known. Assume P(Z = η1) = p and

P(Z = η2) = 1− p. In this case, we find

S(t) = Ee−ZΛ0(t) = pe−η1Λ0(t) + (1− p)e−η2Λ0(t)

and

f(t) = pη1λ0(t)e−η1Λ0(t) + (1− p)η2λ0(t)e−η2Λ0(t).
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This implies

λ(t) =
pη1e

−η1Λ0(t) + (1− p)η2e
−η2Λ0(t)

pe−η1Λ0(t) + (1− p)e−η2Λ0(t)
λ0(t). (3.6)

Denote by πi(t) (i = 1, 2) the size of the fraction of population i at time point t (e.g.

π1(t)+π2(t) = 1) and pi = πi(0). We are now interested in πi(t). These quantities change

over time as a result of the selection process. Selection takes place if the life times of

different subgroups follow different mortality patterns. To calculate πi(t), we introduce

the conditional survival and hazard function, respectively. Conditioning is w.r.t. the

event {I = i}, which means that the individual belongs to subpopulation i:

Si(t) = P(T > t|I = i) = e−ηiΛ0(t)

Now we can write the fraction in the following form:

πi(t) = P(I = i|T > t)

=
P(T > t, I = i)

P(T > t)

=
P(T > t|I = i)P(I = i)

P(T > t|I = 1)P(I = 1) + P(T > t|I = 2)P(I = 2)

=
pie
−ηiΛ0(t)

p1e−η1Λ0(t) + p2e−η2Λ0(t)
. (3.7)

The binary frailty model is sometimes also called the two-point frailty model. Nickell

(1979) used this model to account for heterogeneity in unemployment spell data. The

study population was divided into the groups of motivated and non-motivated searchers

of a new job. Furthermore, this frailty distribution was used for example by Vaupel and

Yashin (1985) and Schumacher et al. (1987). A special case of binary frailty is dividing

the population into a proportion who are at risk and a proportion who are never at

risk. The terminology to describe the never-at-risk group varies from field to field, but

includes ‘long-term survivors’ (Farewell, 1982) or ‘cured’ in epidemiology (Price and

Manatunga, 2001), ‘non-susceptibles’ in toxicology (Pack and Morgan, 1990), ‘stayers’

in finite Markov transition models of occupational mobility (Blumen et al., 1955), the

‘non-fecundable’ in fertility models (Heckman and Walker, 1990), and ‘non-recidivists’

among convicted criminals (Schmidt and Witte, 1989; Maller and Zhou, 2002).

Obviously, the binary frailty model can be extended with no additional efforts to the

finite discrete distribution of frailty Z (k-point distribution). In genetic studies, for

example, the grouping factor is the genotype and in most human studies this is not

directly observable. However, under a single-locus model with two alleles, A and a,

three genotypes will occur, AA, Aa and aa. With allelic frequencies of p and 1 − p

respectively, and under Hardy-Weinberg equilibrium the expected proportions of the
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Figure 3.3: Age trajectories of the proportions of the two sub-populations in the mixing of the

two Gompertz populations described in Figure 3.2. The proportions are given by (3.7). The

first population (with higher mortality) dies out over time. For this reason the hazards of the

mixed population and the second sub-population converge at older ages in Figure 3.2.

three unobservable genotypes are p2, 2p(1 − p) and (1 − p)2. Thus, three latent classes

with known expected proportions with parameter p to be estimated are assumed. If

alleles are codominant then the location of the heterozygote Aa will be midway between

AA and aa. If A is dominant, then genotypes AA and Aa will coincide and the model

collapses to a two class problem. Where A is recessive, Aa and aa will coincide.

Andersen et al. (1999) found advantages of the random effect model when compared

with the fixed effect model even in the case where it is known to which sub-group the

individuals belong if the number of sub-groups in the total population is large and the

number of individuals in each subgroup is only moderate. In this case the number of mass

points of frailty is held fixed (parametric model). Macdonald (1999) applied two- and

four-point frailty distributions to model the impact of genetics on insurance problems.

A more difficult case is the so-called non-parametric frailty distribution. In this case the

frailty distribution is a discrete one, too. But the number of mass points is an additional

parameter to be estimated (for example see Heckman and Singer, 1982b; dos Santos et

al., 1995; and Lindstrom, 1996). It is common to use an iterative procedure, starting with

one mass point and increasing the number until the likelihood fails to show a significant

improvement. Often, two or three points of support suffice (Guo and Rodriguez, 1992).
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3.2 Gamma frailty model

The gamma distribution has been widely applied as a mixture distribution (for example

Greenwood and Yule, 1920; Vaupel et al., 1979; Congdon, 1995; dos Santos et al.,

1995; Hougaard, 2000). From a computational and analytical point of view, it fits

very well to failure data because it is easy to derive the closed form expressions of

unconditional survival, cumulative density and hazard function. This is due to the

simplicity of the Laplace transform. This is also the reason why this distribution has

been used in most applications published to date. It is a flexible distribution that

takes a variety of shapes as k varies: when k = 1, it is identical to the well-known

exponential distribution; when k is large, it takes a bell-shaped form reminiscent of

a normal distribution. Despite these advantages it is necessary to mention that no

biological reason exists which makes the gamma distribution more preferable than other

frailty distributions. Nearly all arguments in favor of the gamma distribution are based

on mathematical and computational aspects. The paper by Abbring and van den Berg

(2005) rationalizes the use of gamma distributions for frailties in time-to-event data

analysis. The authors show that in a large class of (univariate and multivariate) frailty

models, the distribution of the frailty among survivors converges to a gamma distribution

under mild regularity assumptions.

Figure 3.4: Probability density functions of different gamma distributions with mean 1

and variances 1, 0.5, 0.25, and 0.125

Frailty cannot be negative and the gamma distribution is, along with the log-normal

distribution, one of the most commonly used distributions to model variables that are

necessarily positive. Furthermore, it turns out that the assumption that frailty at the

beginning of the follow-up is gamma distributed yields some useful mathematical results,
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including

• Frailty among the survivors at any time t is gamma distributed with the same

value of the shape parameter k as at birth or at begin of follow-up. The value of

the second parameter, however, is now given by λ+ Λ0(t), where Λ0(t) denotes the

cumulative baseline hazard function.

• Frailty among those who die at any age t is also gamma distributed, with the same

parameter λ+Λ0(t) as among those surviving to t but with shape parameter k+1.

In particular, it follows that the mean frailty among the deaths at age t is λ+1
λ+Λ(t)

compared

to λ
λ+Λ(t)

among the survivors at the same age. This demonstrates the selection by death

of the high risk individuals, e.g. the individuals with high values of frailty Z.

To make sure that the model is identifiable, it makes sense to use the parameter restric-

tion k = λ for the gamma distribution, which results in EZ = 1. Denote by σ2 := 1
λ

the

variance of the frailty variable. The unconditional hazard and survival function are

λ(t) =
λ0(t)

1 + σ2Λ0(t)
and S(t) = L(Λ0(t)) = (1 + σ2Λ0(t))−

1
σ2 . (3.8)

This model was introduced by Vaupel et al. (1979).

Example 3 Let λ0(t) = aebx (Gompertz) and frailty Z ∼ Γ( 1
σ2 ,

1
σ2 ). Hence, the hazard

and survival function on the population level are given by

λ(t) =
aebt

1 + σ2 a
b
(ebt − 1)

and S(t) = (1 + σ2a

b
(ebt − 1))−

1
σ2 .

Figures 3.5 and 3.6 deal with one of the most important topics related to frailty models,

so-called crossing over effects in the mortality hazards of different populations. Figure 3.5

shows the logarithm of two proportional baseline hazards, where the second population

has a higher mortality. Assuming a higher degree of heterogeneity in this population

(e.g., the variance of the gamma distributed frailty is higher in the second population)

results in the crossing over effect because of selection. Higher heterogeneity implies a

higher selection pressure in the second population. Consequently, frailer individuals die

out faster in the second population than in the first one. If heterogeneity is on the same

level in both populations, a convergence of the hazards will be observed instead of a

crossing over. Such effects are described by Clayton and Kaldor (1985).

This phenomenon was also observed for example by Manton and Vaupel (1995) com-

paring mortality in Sweden, France, England and Japan with that in the United States.
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Figure 3.5: Baseline hazard functions of two populations with Gompertz hazard. The para-

meters are a1 = 10−4, a2 = 4× 10−4 and b1 = b2 = 0.12.

They noticed that mortality was much lower in all countries except the USA up to the

ages of around 65. After the age of 80, the mortality was much lower in the United States.

The authors pointed out that greater heterogeneity in social and economic status and

health insurance coverage in the United States may account for the higher mortality

at younger ages in this country. To make this more clear, consider the form of the

conditional expectation for the gamma distributed random effect:

E(Z|T ≥ t,X) =
1

1 + σ2Λ0(t)eβTX

with Λ0(t) =
∫ t

0
λ0(s) ds. Clearly, the average frailty value is a decreasing function of

time. The decrease is faster in situations with greater heterogeneity in the population, as

measured by σ2, a higher cumulative baseline hazard function Λ0(t), and larger increases

due to covariates, which are modelled by eβ
TX . All these factors accelerate the ‘frailty

selection’ which results from unobserved heterogeneity in the individual risks.

Assume a single binary covariate X with values 0 (control group) and 1 (treatment

group). Frailty selection also affects the marginal hazard ratio for treatment. Under the

gamma frailty model, the marginal hazard ratio is (compare relation (3.8))

λ(t|X = 1)

λ(t|X = 0)
=

1 + σ2Λ0(t)

1 + σ2Λ0(t)eβ
eβ. (3.9)

A critical point here is that under the proportional hazards assumption for the condi-

tional model, the ratio of the treatment specific marginal hazards is not generally time-

invariant; unless σ2 or β is zero, the marginal hazard ratio (3.9) is a decreasing function.
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Figure 3.6: Mortality hazards of two populations with Gompertz baseline hazard and gamma

distributed frailty. The parameters of the baseline hazards are the same as in Figure 3.5. The

variance of the frailty is assumed to be 1 in Population 1 and 4 in Population 2.

Only at time zero is the marginal hazard ratio equal to the conditional hazard ratio eβ.

As t increases, the ratio tends to one. Under these conditions, the time-invariant hazard

ratio obtained by applying a simple marginal model is attenuated from the conditional

hazard ratio eβ. The attenuation is increased in situations with larger values of σ2, β

and Λ0(t), representing the three factors which accelerate frailty selection. Conversely,

the attenuation is modest if any of these factors is near zero, in which case the indi-

vidual and population averaged parameters are relatively close. Formal expressions and

approximations were obtained by Henderson and Oman (1999), who consider the effects

of fitting a marginal model to conditional covariate effects.

There are many applications of the gamma frailty model. In a very early paper Lancaster

(1979) suggested this model for the duration of unemployment spells and Vaupel et

al. (1979) used it to correct life tables of heterogeneous populations. Aalen (1987)

studied the expulsion of intra-uterine contraceptive devices. Manton et al. (1981) used

it for comparing the mortality experience of heterogeneous populations, Manton and

Stallard (1981) to explain the black/white mortality crossover in the US, Manton et al.

(1986) compared the inverse normal and the gamma models, together with Gompertz

and Weibull baseline hazards, in a study of survival at advanced ages, based on Medicare

data. Jeong et al. (2003) used a gamma frailty to model long-term follow-up survival

data from breast cancer clinical trials when the treatment effect diminishes over time as

an alternative to the proportional hazards model. Jones (1998) used a gamma-Gompertz

model for analyzing the impact of selective lapsation on mortality in life insurance.
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Example 4 This example deals with time from insertion of a catheter into dialysis pa-

tients until it has to be removed due to infection. It is possible that the catheters are

removed for other reasons, so censoring is present. McGilchrist and Aisbett (1991) pub-

lished a subset of the complete data including the first two infection times of 38 patients.

Restricting the analysis to age and sex as covariates and treating the two failure times

of every individual as independent, a Cox hazard model can be fitted to the data. To

account for heterogeneity within the observed failure times, Hougaard (2000) applied a

gamma frailty model. The results of the analysis are given in Table 3.1. As expected,

Cox model gamma frailty

age 0.002 (0.009) 0.007 (0.012)

gender -0.820 (0.300) -1.770 (0.610)

σ2 1.510 (0.980)

Table 3.1: Parameter estimates (s.e.) in the Cox model and the gamma frailty model

applied to catheter infection data

the effect of age and gender is biased downwards in the Cox model when not corrected

for unobserved heterogeneity in the study population. The gamma frailty model is able

to account (at least in part) for this unobserved heterogeneity. Note that the standard

deviation also increases in the gamma frailty model and that the large standard deviation

of the frailty variance (σ2) estimate does not exclude the possibility of no unobserved

heterogeneity (σ2 = 0).

Another extension of the gamma-frailty model was recently introduced by Barker and

Henderson (2004). The authors introduce a mixed model which allows for both pro-

portional and converging hazards. Two kinds of covariates are considered, X1 and X2.

The usual gamma frailty model with covariates X2 looks like λ(t) = Zλ0(t)eβ2X2 , but

the frailty distribution is assumed to depend on covariates X1, namely Z ∼ Γ( e
β1X1

σ2 , 1
σ2 ).

Then the unconditional survival function is obtained as

S(t|X1, X2) =

∫ ∞
0

e−ZΛ0(t)eβ2X2f(z|X1) dz =
(

1 + σ2Λ0(t)eβ2X2

)− eβ1X1

σ2

. (3.10)

When σ2 = 0, the model reduces to the standard Cox proportional hazards model with

covariates {X1, X2}. If β2 = 0, the model reduces to the proportional hazards model

with covariates X1, whereas if β1 = 0, it is clear from (3.10), that the mixed model

reduces to the standard gamma frailty model with covariates X2. The baseline hazard

function is left unspecified (semi-parametric approach).

Parametric versions of the univariate gamma frailty model are included in statistical

package STATA.
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3.3 Positive stable frailty model

A distribution is called positive stable if the appropriately normalized sum of n inde-

pendent random variables from this distribution has the same distribution. The nor-

malization is given by n
1
γ , where the index γ must be in the range of (0, 1] to get a

distribution on positive numbers. Despite the fact that no closed form expressions exist

for the probability density or the survival function of a random variable with positive

stable distribution, the Laplace transform has a very simple form:

L(s) = e−
ksγ

γ .

For reasons of identifiability, we restrict the two-parameter frailty distribution to the

case of k = γ. Consequently,

S(t) = L(Λ0(t)) = e−Λ0(t)γ ,

f(t) = γλ0(t)Λ0(t)γ−1e−Λ0(t)γ ,

λ(t) = γλ0(t)Λ0(t)γ−1.

This distribution was introduced as a frailty distribution by Hougaard (1986b) and ap-

plied for example by Wang et al. (1995) and Manatunga and Oakes (1999). Fine et

al. (2003) and Martinussen and Pipper (2005) recently suggested new estimation proce-

dures in the shared positive stable frailty model. It was further extended by Hougaard’s

power variance function distribution (Hougaard, 1986a) and Aalen’s compound Poisson

distribution (Aalen 1988, 1992). All moments of this distribution are infinite. This

result is important with respect to identifiability issues treated by Elbers and Ridder

(1982). They found that a finite mean of the frailty distribution is one condition (among

others) for identifiability of univariate frailty models. This was the main reason why

the positive stable distribution was introduced as a frailty distribution. Especially in

bivariate/multivariate applications, much attention is given to overcoming confounding

problems in the shared (gamma) frailty models (for more details see section 4.2).

The positive stable model implies some interesting features, which are given in the fol-

lowing examples. The most important one is the fact that the positive stable distribution

is the only frailty distribution which preserves the proportional hazards assumption in

the unconditional hazards after integrating out the frailty.
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Example 5 Let Z be positive stable with parameter γ. Denote by λ0(t) a baseline hazard

function and assume a frailty model for two populations in the classical form (3.1), e.g.

λ1(t, Z) = Zλ0(t) and λ2(t, Z) = Zρλ0(t). Obviously, the two individual hazards are

proportional to ratio λ2(t,Z)
λ1(t,Z)

= ρ for two individuals with the same frailty. Using the

relation above gives the unconditional hazards:

λ1(t) = γλ0(t)Λ0(t)γ−1

λ2(t) = γρλ0(t)(ρΛ0(t))γ−1

= ργγλ0(t)Λ0(t)γ−1.

Again, the two hazard functions are proportional, but now with a different ratio λ2(t)
λ1(t)

= ργ.

Example 6 (Extension of Example 5) Let Z be positive stable with parameter γ and

denote by λ0(t) a baseline hazard function and assume a frailty model for two populations

in a proportional hazards model with covariates, e.g.

λ1(t, Z,X) = Zλ0(t)e

kP
i=1

βiXi

and

λ2(t, Z,X) = Zρλ0(t)e

kP
i=1

βiXi
.

Again, the two individual hazards are proportional with ratio λ2(t,Z,X)
λ1(t,Z,X)

= ρ for two in-

dividuals with the same frailty and equal covariates. Using the relation above gives the

unconditional hazards:

λ1(t,X) = γλ0(t)e

kP
i=1

βiXi
(Λ0(t)e

kP
i
βiXi

)γ−1

λ2(t,X) = γρλ0(t)e

kP
i=1

βiXi
(ρΛ0(t)e

kP
i
βiXi

)γ−1

= ργγλ0(t)Λ0(t)γ−1e
γ
kP
i
βiXi

.

Then the (unconditional) hazards are still proportional, but with regression coefficients

γβi instead of βi. This shows that parameter estimates are biased if relevant covariates

are not included.

Example 7 Let Λ0(t) = atb (Weibull(a, b)) and assume that the frailty variable is pos-

itive stable distributed with parameter γ. Then the resulting survival function is

S(t) = e−Λ0(t)γ = e−a
γtγb .

This is again a Weibull distribution, but with parameters aγ and γb.
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3.4 Inverse Gaussian frailty model

The inverse Gaussian (inverse normal) distribution was introduced as an alternative to

the gamma distribution by Hougaard (1984) and has been used for example by Manton

et al. (1986), Klein et al. (1992), Keiding et al. (1997) and Price and Manatunga (2001).

The probability density function of an inverse normal distributed random variable with

mean one and variance σ2 is

f(z) =
1√

2πσ2z3
e−

1
2σ2z

(z−1)2

.

Consequently, the Laplace transform of the inverse normal distribution is given by

L(s) = e
1
σ2 (1−√1+2σ2s).

Hence, the conditional survival and hazard function take the forms

S(t) = e
1
σ2 (1−

√
1+2σ2Λ0(t))

and

λ(t) =
λ0(t)

(1 + 2σ2Λ0(t))1/2
.

Parametric versions of the inverse Gaussian frailty model are available in STATA.

3.5 PVF frailty model

An extended family of frailty distributions, including gamma, inverse Gaussian as well

as positive stable distributions, is the family of power variance function distributions,

suggested by Tweedy (1984) and later derived independently by Hougaard (1986a). This

is a three parameter family denoted by PV F (γ, k, λ). The Laplace transform is

L(s) = e−
k
γ

(
(λ+s)γ−λγ

)
.

Expectation and variance of a PVF distributed random variable Z are

EZ = kλγ−1 and V(Z) = k(1− γ)λγ−2. (3.11)

The resulting survival function is given by

S(t) = e−
k
γ

(
(λ+Λ0(t))γ−λγ

)

and the unconditional hazard function is

λ(t) = kλ0(t)(λ+ Λ0(t))γ−1.
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Using the constraint EZ = 1 and relation σ2 = 1−γ
λ

(see (3.11)) it holds that

λ(t) =
λ0(t)

(1 + σ2

1−γΛ0(t))1−γ .

For certain values of the parameters, the analytic expression above is not well defined

immediately, but should be defined by continuity. If γ = 0, the gamma distributions

Γ(k, λ) are obtained with the same parameterization. For γ = 0.5, the inverse Gaussian

distributions and for λ = 0 the positive stable distributions are obtained. The parameter

set is 0 ≤ γ ≤ 1, k > 0, with λ ≥ 0 for γ > 0, and λ > 0 for γ ≥ 0. The distribution

among survivors at age t is PV F (γ, k, λ + Λ0(t)). Hougaard et al. (1992) applied the

model to lifetimes of Danish twins.

3.6 Compound Poisson frailty model

The compound Poisson distribution was introduced by Aalen (1988, 1992) as a frailty

distribution. An interesting property of the model is that it yields a subgroup of zero

frailty, which survives forever. This is a model relevant to medicine and demography.

Despite the fact that the density of the continuous part is only given as an infinite series

which has to be calculated numerically, the distribution is mathematically convenient.

It may also be seen as a natural choice. The distribution can be constructed as the

sum of a Poisson distributed number of independent and identical gamma distributed

random variables. This can be viewed as a hit model, where each individual experiences

a random number of hits, each of a random size.

Z =

{
X1 +X2 + . . .+XN : if N > 0,

0 : if N = 0,
(3.12)

where N is Poisson distributed with expectation ρ, while X1, X2, . . . are independent and

gamma distributed with Xi ∼ Γ(k, λ). The Laplace transforms of gamma and Poisson

distributions are given by LX(s) = (1 + s
λ
)−k and LN(s) = e−ρ+ρe−s , respectively. The

following standard derivation can now be applied:

L(s) = Ee−sZ = Ee−s(X1+...+XN ) = ELX(s)N = LN(− ln(LX(s))).

Inserting the previous expressions results in the following Laplace transform of Z:

L(s) = e−ρ+ρ(1+ s
λ

)−k .

In the following we want to use another parameterization:

ρ = −kλ
γ

γ
, λ = λ, k = −γ.
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The Laplace transform of the compound Poisson distribution is now given by

L(s) = e−
k
γ

(
(λ+s)γ−λγ

)
. (3.13)

Parameter γ divides the class of distributions in two major subfamilies: For γ ≥ 0, the

distribution is a power variance function distribution (PVF). The extension to γ < 0

was suggested by Aalen (1988) and yields the compound Poisson distribution. The two

subclasses are separated by the gamma distribution (γ = 0). Note that a different

parameterization was used by Aalen. The notation cP (γ, k, λ) is used for a compound

Poisson distribution.

Using the Laplace transform given above implies the marginal survival and hazard func-

tion in case of a compound Poisson frailty model:

S(t) = e−
k
γ

(
(λ+Λ0(t))γ−λγ

)
and λ(t) = kλ0(t)(λ+ Λ0(t))γ−1.

This results in

S(t) = e
− 1−γ
γσ2 ((1+ σ2

1−γΛ0(t))γ−1)
and λ(t) =

λ0(t)

(1 + σ2

1−γΛ0(t))1−γ ,

similar to the PVF frailty model. It should be noted that the integral of λ(t) (cumulative

hazard function) over [0,∞) is finite when γ < 0. Consequently, the survival function

is incomplete because a fraction of individuals has zero frailty who will never experience

the event under study. The model was used by Aalen (1992) to model the incidence

of marriage of women born in Denmark. Marriage is an example of an event that does

not happen to everybody. A certain percentage of individuals never marry and models

of marriage incidence have to account for this. The fact that the observed incidence

peaks around age 23 and becomes rather low after age 30 is therefore interpreted to be a

selection phenomenon due to heterogeneity, meaning that those who are most prone to

marriage will marry quite early, and the reminder will have a lower tendency to marry.

A second application of Aalen (1992) deals with fertility data in Norwegian woman.

It is a well-known fact that around 5% to 10% of all couples are unable to conceive

children. Naturally, P(Z = 0) (where Z denotes the frailty to conceive a child) will

be the probability of infertility, and the variation of the frailty variable Z expresses the

varying fecundabilities among fertile couples.

Hougaard et al. (1994) applied the model to diabetic nephropathy onset data, a serious

complication experienced by some diabetic patients. In a recent paper, Aalen and Tretli

(1999) applied the compound Poisson distribution to testicular cancer. Testicular cancer

has two striking epidemiological features. First, its incidence has increased rapidly over

the past few decades. Secondly, the incidence is greatest among younger men, and
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then declines from a certain age. The idea of the model is that a subgroup of men is

particularly susceptible to testicular cancer, which results in selection over time. The

model is fit to incidence data from the Norwegian Cancer Registry collected between 1953

and 1993. This work is being continued by Moger et al. (2004a). Haukka et al. (2003)

applied the model to schizophrenia data from the Finnish population born 1950 - 1968.

They concluded that only a small part of the population is susceptible to schizophrenia

and found increasing individual risk with higher age among the susceptible part of the

population.

To illustrate the many interesting features of the model above, the malignant melanoma

data set is considered, given in Andersen et al. (1993). It includes records of 205 patients,

all of whom had a radical surgery for malignant melanoma (skin cancer) at the University

Hospital of Odense in Denmark. The time scale is the time since operation and the end

of the follow-up was 1977. There were 57 deaths related to malignant melanoma and 14

deaths to other causes (considered as censored). The covariates age, sex and thickness

of the tumor were included. Three models were applied to the data by Hougaard (2000),

the Cox regression model (2.7), the gamma frailty model and the PVF frailty model.

The results are given in Table 3.2.

Cox model gamma frailty PVF frailty

age 0.012 (0.008) 0.007 (0.015) 0.006 (0.008)

sex -0.550 (0.270) -0.920 (0.510) -0.910 (0.490)

thickness 0.151 (0.033) 0.513 (0.187) 0.520 (0.140)

λ 0.207 (0.091) 0.286 (0.159)

γ -0.130 (0.220)

Table 3.2: Parameter estimates (s.e.) in the Cox model, gamma frailty model and PVF

frailty model applied to malignant melanoma data.

As expected, the Cox analysis suggests that males face a higher risk of death caused

by malignant melanoma than women. Increasing age and increasing size of the tumor

are related to higher mortality. Using the same covariates and gamma and PVF frailty

models results in an increase in the effect of the covariates thickness and sex, where the

effect of age is decreased. The estimate of γ is negative, consequently this is a compound

Poisson frailty model. Consequently, some patients will never die from this disease.

This is possible because only death to malignant melanoma was studied and not total

mortality. The estimated proportion with zero risk is 11.6 %.

Further applications are considered in Price and Manatunga (2001).
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3.7 Log-normal frailty models

Log-normal frailty models are especially useful in modelling dependence structures in

multivariate frailty models, for example in McGilchrist and Aisbett (1991), McGilchrist

(1993), Lillard (1993), Lillard et al. (1995), Xue and Brookmeyer (1996), Sastry (1997),

Gustafson (1997), Ripatti and Palmgren (2000); Ripatti et al. (2002), Huang and Wolfe

(2002).

However, the log-normal distribution has also been applied in univariate cases, for ex-

ample by Flinn and Heckman (1982). Two variants of the log-normal model exist. We

assume a normally distributed random variable W to generate frailty as Z = eW . The

two variants of the model are given by the restrictions EW = 0 and EZ = 1, where the

first one is much more popular in the literature. Unfortunately, no explicit form of the

unconditional likelihood exists. Consequently, estimation strategies based on numerical

integration in the maximum likelihood approach are required.

3.8 Univariate frailty cure models

The Cox proportional hazards model is commonly used in the analysis of survival time

data. An often unstated assumption of this model (and of frailty models with the ex-

ception of those that use the compound poisson distribution) is that all individuals will

experience the event of interest. However, in some situations a fraction of individuals is

not expected to experience the event of interest; that is, these individuals are cured. For

example, researchers may be interested in analyzing the recurrence of a disease. Many

individuals may never experience a recurrence of that disease; therefore, a fraction in

the population exists that has recovered from disease. Historically, cure models have

been utilized to estimate the healed population fraction. These models extend the un-

derstanding of time-to-event data by allowing for the formulation of more accurate and

informative conclusions than previously made. These conclusions would otherwise be un-

obtainable from an analysis that fails to account for a cured fraction in the population. If

a cured fraction component is not present, the analysis is reduced to standard approaches

of survival analysis. Cure models assume that the individuals experiencing the event of

interest are homogeneous in risk. This section deals with extensions of cure models in

order to allow for heterogeneity among the fraction under risk by using frailty models.

Or, depending on the point of view, it deals with extensions of frailty models to allow for

a cured fraction in the study population. In this case, the distribution of the frailty is

a combination of discrete and continuous distributions. For example, when the omitted

variable is alcohol consumption in which a discrete proportion of non-drinkers occurs.
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Spilerman (1972) considered the ‘spiked-gamma’ as an example of such a distribution.

In cure models, the population is divided into two sub-populations so that an individual

is either cured with probability 1−φ, or has a proper survival function S0(t), with prob-

ability φ. Individuals regarded as cured will never experience the event of interest and

their survival time will be defined as infinity. Therefore, hazard and survival functions of

cured individuals are set to zero and one, respectively, for all finite values of t. A model

of survival times that incorporates a cured fraction is given by

S∗(t) = (1− φ) + φS(t).

Longini and Halloran (1996) have proposed frailty cure (cure-mixture) models that ex-

tend standard frailty models. The frailty random variable in the former has point mass

at zero with probability 1 − φ while heterogeneity among those experiencing the event

of interest is modelled via a continuous distribution with probability φ. In the gamma

frailty cure model, the survival function is given by

S∗(t) = (1− φ) + φ(1 + σ2Λ0(t))−1/σ2

. (3.14)

The idea behind this model is similar but not equivalent to the compound Poisson

frailty model suggested by Aalen (1988, 1992). Price and Manatunga (2001) gave a

comprehensive introduction to this area and applied different cure, frailty and frailty

cure models to leukaemia remission data. They conclude that frailty models are useful

in modelling data with a cured fraction and found that the gamma frailty cure model

provides a better fit to their remission data compared to the standard cure model.

The following example provides an extension of the above model to include censored

observations. Consider two types of expressions for a disease, the incidence and the age

of disease onset. Risk models for overall susceptibility (lifetime risk) that consider only

the first expression by treating the disease as a binary trait of being affected or not can

give wrong results because, for individuals without the disease, due to censoring, it is

often not known whether they will eventually develop the disease. On the other hand,

models from survival analysis typically assume that everyone has the same susceptibility

to the disease and will eventually be effected if followed up for a sufficiently long period

of time. It is possible that these models do not accurately describe the disease risk

factors. In models dealing with both types of expressions, the effect of a covariate can

act on either the overall susceptibility or the age at onset or both.

The application of mixture models for joint modelling of the overall risk of a disease and

the age-at-onset distribution of the diseased individuals is popular (Farewell 1977; Kuk

and Chen 1992; Lam et al. 2005). We define an individual to be susceptible if he/she
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will eventually develop the disease if followed for a sufficiently long time. Define

Y =

{
1 : if the individual is susceptible

0 : if otherwise
(3.15)

and let T denote the age at onset when Y = 1. With the above notion let φ = P(Y = 1)

and S(t) = P(T > t|Y = 1) describe the distribution of Y and the failure time T . It

is impossible to observe Y , but it is possible to observe whether or not a subject has

experienced the event during his/her follow-up time.

• For those observations which experience the event it holds that ∆ = 1. Obviously,

Y = 1 and the survival function for the uncensored observations is of the form

P(Y = 1)P(T ≤ C|Y = 1) = φ(1− S(C)), where C denotes the censoring time.

• For the other observations a failure is not observed (∆ = 0). This may occur

either because Y = 0 or because the observation is really censored. Therefore

P(Y = 0) + P(Y = 1)P(T > C|Y = 1) = (1− φ) + φS(C).

Combining these results the likelihood function takes the form

L(t, δ) = δφf(t) + (1− δ)(1− φ+ φS(t)
)
, (3.16)

which is a generalization of (2.6) in the case of independent censoring. This model is

applied to time-to-onset of breast cancer in Swedish twins. The data set contains records

of 11,714 female twins followed up from 1959/61 to 27 October 2000. Altogether, 715

cases of breast cancer were identified. More details about the Swedish Twin Register

can be found in Lichtenstein et al. (2002) and the Appendix A.1.

gamma gamma cure compound Poisson

γ 0 -0.089 (0.132)

σ 7.685 (0.499) 3.030 (1.887) 6.714 (1.141)

φ 1.000 0.221 (0.178) 0.237∗

likelihood 5236.5914 5236.2517 5236.2751

Table 3.3: Time-to-onset of breast cancer in 11,714 Swedish twins. ∗ calculated by φ = 1−e
1−γ
γσ2

In the first column of Table 3.3 the gamma frailty model is applied to account for

heterogeneity in the population. This model is described in more detail in Section 3.2.

The model is extended to the gamma frailty cure model (second column, see (3.14)),

which allows for a fraction of non-susceptible individuals, e.g. patients who are not at

risk of suffering from breast cancer. The third model is the compound Poisson frailty

model (Section 3.6). All models use a Gompertz baseline hazard function.



44 CHAPTER 3. UNIVARIATE FRAILTY MODELS

In the gamma frailty model the size of the susceptible fraction is 100 % per definition.The

gamma frailty cure model gives an estimate of 22.1% of the size of the susceptible fraction,

e.g. only 22.1% of all woman are at risk for breast cancer. The respective number

calculated from the compound Poisson frailty model is similar with 23.7%. The gamma

frailty model is a special case of the gamma frailty cure model (when φ = 1) and the

compound Poisson frailty model (when γ = 0). These estimates are in line with results

found by Chatterjee and Shih (2001) and Wienke et al. (2003a) in bivariate analysis and

estimates of a lifetime risk of breast cancer of around 8-12 % (Harris et al. 1992; Feuer

et al. 1993; Rosenthal and Puck 1999; Ries et al. 1999) in current western populations,

which give a lower boundary for the size of the susceptible fraction. A large estimate of

σ2 in the gamma model indicates the existence of large heterogeneity in the population,

which is partially accounted for by the introduction of a non-susceptible fraction in the

gamma frailty cure model, where the heterogeneity is smaller. In the compound Poisson

frailty model the parameter estimate γ is negative, indicating the existence of a non-

susceptible fraction. The good fit of the model is demonstrated in Figure 3.7.

Figure 3.7: Kaplan-Meier and compound Poisson model for Swedish breast cancer data.

The correlation between the times to onset of breast cancer in the twin pairs is neglected

in these univariate models. Cure models suffer from an inherent identifiability problem

with right censored observations. The event under study has not occurred either because

the person is insusceptible or because the person is susceptible, but follow-up was not

long enough to observe the event. For a discussion of the pro’s and con’s of univariate

frailty models as cure models see Schumacher (1989).



Chapter 4

Multivariate frailty models

So far, we have focused on the frailty model as a way of dealing with possible hetero-

geneity due to unobserved covariates. This is the main interpretation of frailty in the

application to univariate time-to-event data. This results in selection effects over time,

for example shown as levelling-off or crossing-over effects in population hazards.

Another, completely different aspect of this approach is to use it to model statistical

dependence, e.g., Clayton (1978). Implicitly, most of the statistical models and meth-

ods for failure time data (and here especially the Cox proportional hazards model) were

developed under the assumption that the observations from subjects are statistically

independent of each other. While this is sensible in many applications, it has become

obvious that this assumption does not hold in other situations which are not as uncom-

mon as originally thought. The following three examples given in Liang et al. (1995)

serve to illustrate this point:

• Diabetic retinopathy is one of the leading causes of visual loss and blindness. Given

the relatively high prevalence of this disease among the population, new treatments

to delay the onset of severe visual loss are critical. In 1971, the Diabetic Retinopa-

thy Study was initiated to study the effectiveness of laser photocoagulation. This

randomized, controlled clinical trial involved more than 1,700 patients enrolled at

15 medical centers in the US. Patients with diabetic retinopathy and visual acuity

of 20/100 or higher in both eyes were eligible to participate in the study. The de-

sign protocol randomly selected one of each participant’s eyes that was treated, and

the other eye was observed without having received treatment. The event was the

occurrence of visual acuity less than 5/200 at two consecutively completed follow-

ups of four months. This design differs from conventional randomized trials in that

each patient served as his own control. Consequently, each patient contributed two

correlated observations to the analysis, one from each eye.

45
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• Family studies are critical in assessing the role genetics play in the disease process.

Statistical methods such as variance component models and path analysis have

been developed and adopted to analyze family data with quantitative traits, such

as cholesterol level. Variance component models aim to measure the extent to

which the total variation in the quantitative trait is due to a correlation between

relatives, as well as the degree of correlation among full siblings and other relatives.

When the considered trait is the onset age of the disease, conventional methods are

not appropriate. This is partially due to the censoring and truncation feature of

this variable but also to the need for a measure of within-family correlation which

incorporates time, a feature not shared by the conventional measures such as the

correlation coefficient.

• The trial of gamma interferon as detailed in Fleming and Harrington (1991) is a

typical example of recurrent events. In their study, patients with chronic gran-

ulomatous disease (CGD) were randomly assigned to either gamma interferon or

placebo, with the event of interest being the diagnosis of a serious infection. It is

clear that infections can recur. Thus both the time and the number of infection

occurrence may be informative about the effectiveness of the treatment.

These three examples share an important feature, namely, that the failure times for

observations from the same cluster correlate with one another. In Examples 1 and 3

the cluster is an individual, in Example 2 it is a family. Typically, the cluster sizes are

small relative to the number of clusters. These three examples, however, differ from one

another in terms of their scientific objectives. The main objective for Examples 1 and 3

is to examine the effectiveness of a new treatment, which presumably can be character-

ized through regression modelling. The within-cluster correlation in these examples is

usually of secondary interest, although ignoring it could lead to erroneous conclusions.

The within-family association for Example 2 is of primary interest, although regression

adjustment for each related subject is critical in order to minimize the potential that the

observed association is mainly due to environmental factors shared by the family. Fur-

thermore, the mechanisms for the within-cluster associations may vary so that different

statistical models to describe the associations may be needed. It is clear, for instance,

that the mechanism leading to the correlation between two fellow eyes is different from

that attributed to the correlation of observations measured over time from the same eye.

Multivariate survival analysis may provide an effective tool for information from mul-

tiple/recurrent events in situations as described above. Available statistical models fall

into two broad classes - marginal and frailty models (Wei and Glidden 1997). Marginal
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methods of analysis specify models for the effect of covariates on the hazards of the indi-

vidual events (the margins), taking into account the fact that observed event times are

correlated but without the need for explicitly modelling this correlation (Wei et al. 1989;

Lee et al. 1992; Cai and Prentice 1995). The association between the events is considered

a nuisance parameter. The marginal baseline hazards can be modelled differently (Wei

et al. 1989) or with a common functional form (Lee et al. 1992). As with the analysis

of longitudinal data, regression parameters are estimated from generalized estimating

equations, and the corresponding variance-covariance estimators are corrected properly

to account for the dependence structure. An excellent review of the robust and well

developed marginal approach is given in Lin (1994).

The marginal approach is ideal for making inferences on the population average effect

of risk factors on failure time. However, it provides no insight into the multivariate

relationship among failure times. These type of questions are answered by frailty models,

explicitly considering the association between various events. In general, frailty models

have an intuitive appeal and provide insight into the relationship between failures, and

we will focus on this approach in the present thesis.

An approach occupying an intermediate position between the two aforementioned models

to estimate both regression coefficients with traditional interpretation as well as corre-

lations is described by Mahé and Chevret (1999).

A commonly used and very general approach to the problem of modelling multivariate

data is to specify independence among observed data items conditional on a set of un-

observed or latent variables. A multivariate model for the observed data is then induced

by averaging over an assumed distribution for the latent variables. The dependence

structure in the multivariate model arises when dependent latent variables enter into the

conditional models for multiple observed data items, and the dependence parameters

may often be interpreted as variance components. Frailty models for multivariate sur-

vival data are derived under a conditional independence assumption by specifying latent

variables which act multiplicatively on the baseline hazard.

Let us now focus on multivariate models with dependent random hazards as described

above. This concept provides a multivariate extension of the traditional univariate frailty

model (Vaupel et al. 1979), and it allows us to take mutual dependence of life times

of related individuals into account in the analysis of survival data. Survival models

for dependent life times are useful because they allow us to address more sophisticated

questions about the nature of ageing, disease and the mortality processes.

The first important approach is the shared frailty concept. In a shared frailty model,

frailty is defined as a measure of the relative risk which individuals in a group share.
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Thus, the frailty variable is associated with groups of individuals rather than individuals

as such. The hazard model for each individual, however, looks exactly the same as in

the standard univariate frailty model:

λ(t, Z) = Zλ0(t).

The model assumes that all failure times are independent given the frailties. In other

words, the lifetimes are conditionally independent. The value of the frailty Z is constant

over time and common to the individuals in the group, and thus it is responsible for

creating dependence. This dependence is always positive. The conditional survival

function in the bivariate case is

S(t1, t2|Z) = S(t1|Z)S(t2|Z) = e−ZΛ0(t1)e−ZΛ0(t2).

The correlated frailty model is the second important concept in multivariate frailty

models. This is a natural extension of the shared frailty model. In the correlated

frailty model, the individuals in a group share only parts of the frailty Z. It enables

the explicit inclusion of an additional correlation parameter which then allows questions

about genetic and environmental effects on individual frailty. The conditional survival

function in the bivariate case looks like

S(t1, t2|Z1, Z2) = S(t1|Z1)S(t2|Z2) = e−Z1Λ0(t1)e−Z2Λ0(t2),

where Z1 and Z2 are two correlated random variables. The assumption of conditional

independence plays an important role in genetic analysis of survival. Under this as-

sumption the frailty variable becomes the only carrier of genetic influence on longevity.

It means that the underlying hazard represents only non-genetic influence on life span.

Univariate frailty models do not have such a property.

In the case of a degenerated frailty Z there exists no dependence between the lifetimes

within a group. Different groups are considered as independent. The number of indi-

viduals in a group is assumed to be known. We will consider the bivariate case of pairs

of individuals in more detail in order to explain the main ideas. Twin studies provide

typical examples of bivariate event data and will be considered in detail later. Another

example are the times to failure for several similar human organs, like time to blind-

ness of the right and the left eye as in studies on diabetic retinopathy. Extensions to

higher-dimensional cases are given where necessary.

In all cases, it is necessary to assign a distribution to the frailty. Assuming a random

frailty means that we can integrate the frailty out of the expressions, and thus evaluate

the multivariate survival times. Almost all calculations can be made based on the Laplace

transform of the respective frailty distribution.
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4.1 Shared frailty model

A shared frailty model in survival analysis is defined as follows. Suppose there are n

clusters and that the i-th cluster has ni individuals and associates with an unobserved

frailty Zi, (1 ≤ i ≤ n). A vector Xij (1 ≤ i ≤ n, 1 ≤ j ≤ ni) is associated with the

ij-th complete survival time Tij of the j-th individual in the i-th cluster. Conditional on

frailties Zi, the survival times are assumed to be independent and their hazard functions

to be of the form

λ(t) = Ziλ0j(t)e
βTXij ,

where λ0j(t) are the baseline hazard functions and β is a vector of fixed effect parame-

ters to be estimated. The frailties Zi are assumed to be identically and independently

distributed random variables with a common density function f(z, θ), where θ is the

parameter of the frailty distribution. A semi-parametric shared frailty model is a frailty

model with a non-parametric baseline hazard function λ0j(t).

For simplicity, we restrict our treatment of frailty models to the bivariate case (ni = 2),

because extensions to the multivariate case are straightforward. The assumption of a

shared frailty model is that both individuals in a pair share the same frailty Z, and

this is why the model is called the shared frailty model. It was introduced by Clayton

(1978) (who did not use the notion of ‘frailty’) and extensively studied in Hougaard

(2000), Therneau and Grambsch (2000), Duchateau et al. (2002), (2003) and Duchateau

and Janssen (2004). The two lifetimes are assumed to be conditionally independent with

respect to the shared (common) frailty. We derive the quantities based on this conditional

formulation below. Conditionally on Z, the hazard function of an individual in a pair is

of the form Zλ0(t), where the value of Z is common to both individuals in the pair, and

thus is the cause for dependence between life times within pairs. Independence of the life

times within a pair corresponds to a degenerate frailty distribution (no variability in Z).

In all other cases, the dependence is positive. It is assumed that there is independence

between different pairs. If P(Z > 0) = 1 holds, the shared frailty model leads to

absolute continuous distributions and thus cannot model dependence due to common

events. Consequently, it is not appropriate for event-related dependence (shock models),

because an event in one individual is not relevant for the partner, it only changes the

information available on the frailty.

Using an argument similar to equation (3.4) we can derive the bivariate survival function.

Conditional on Z, it is

S(t1, t2|Z) = S1(t1)ZS2(t2)Z = e−ZΛ01(t1)e−ZΛ02(t2) = e−Z(Λ01(t1)+Λ02(t2)), (4.1)

where Λ0i(t) =
∫ t

0
λ0i(s) ds, i = 1, 2 are the cumulative baseline hazard functions.
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Averaging (4.1) with respect to Z produces the marginal bivariate survival function

S(t1, t2) = ES(t1, t2|Z)

= ES1(t1)ZS2(t2)Z

= Ee−Z(Λ01(t1)+Λ02(t2))

= L(Λ01(t1) + Λ02(t2)),

where L denotes the Laplace transform of Z. Thus, the bivariate survival function is

expressed as the Laplace transform of the frailty distribution, evaluated at the cumulative

baseline hazard. For the marginal survival functions the following holds:

Si(ti) = ESi(ti|Z) = ESi(ti)
Z = Ee−Z(Λ0i(ti)) = L(Λ0i(ti)) = p(Λ0i(ti)).

with p = L and i = 1, 2. Consequently, Λ0i(ti) = q(Si(ti)), where q denotes the inverse

function of p and the bivariate unconditional survival function is given by

S(t1, t2) = p(q(S1(t1)) + q(S2(t2))),

the archimedian copula family of Genest and MacKay (1986), where p is a function that

can be differentiated twice with p(0) = 1, p′(·) < 0 and p′′(·) > 0.

The standard assumption about the frailty distribution is that it is a gamma distribution

with mean 1 and variance σ2. Averaging (4.1) with respect to Z produces the marginal

bivariate survival function

S(t1, t2) = L(Λ01(t1) + Λ02(t2))

= (1 + σ2(Λ01(t1) + Λ02(t2)))−1/σ2

= (S1(t1)−σ
2

+ S2(t2)−σ
2 − 1)−1/σ2

, (4.2)

where the last relation is a consequence of equation (3.8). The notion of shared frailty

is different from the definition of individual frailty introduced by Vaupel et al. (1979)

in their analysis of univariate duration data. This difference has gone largely unrecog-

nized, perhaps because of the superficial similarity of the individual hazards in the two

approaches. The frailty in the bivariate shared frailty model is only a part of the indi-

vidual frailty, capturing only the components of frailty that both individuals share.

Clayton (1978), Cox and Oakes (1984) and Yashin and Iachine (1999a) pointed out

that the bivariate survival function calculated above in the shared gamma frailty model

(4.2) can also be derived using a radically different approach. Denote dependent life

spans by T1, T2 , and let S(t1, t2) = P(T1 > t1, T2 > t2) be a bivariate survival function

that is absolutely continuous with marginals S1(t1) = S(t1, 0) and S2(t2) = S(0, t2).
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Consequently, the conditional survival function of T1 given T2 > t2 is S(t1|T2 > t2) =
S(t1,t2)
S(t2)

and that of T1 given T2 = t2 is

S(t1|T2 = t2) =

∂S(t1,t2)
∂t2

∂S(t2)
∂t2

.

The respective conditional hazards are important for the following considerations. Using

the relation λ(t) = −S′(t)
S(t)

implies

λ(t1|T2 > t2) = − ∂

∂t1
ln(S(t1, t2)) (4.3)

and

λ(t1|T2 = t2) = − ∂

∂t1
ln
(− ∂

∂t2
S(t1, t2)

)
. (4.4)

These hazards describe the risk of failure at age ti for the i-th individual, given the

information about the status of the second individual. The first hazard (4.3) uses the

condition {Tj > tj} and the second one (4.4) is conditional on {Tj = tj}. The deviation

of the ratio of these hazards from 1 was used by Oakes (1989) as a measure of mutual

dependence of respective marginal life times. The shared gamma frailty model can now

be based on the introduction of the following relation between the above hazards:

λ(t1|T2 = t2) = (1 + σ2)λ(t1|T2 > t2) (4.5)

Clearly, (4.5) is equivalent to a similar condition with the roles of T1 and T2 being

interchanged. This relation defines the bivariate survival function (4.2) uniquely (up to

the marginal distributions):

λ(t1|T2 = t2) = (1 + σ2)λ(t1|T2 > t2)

∂

∂t1
ln
(− ∂

∂t2
S(t1, t2)

)
= (1 + σ2)

∂

∂t1
ln(S(t1, t2))

∫ t1

0

∂

∂t
ln
(− ∂

∂t2
S(t, t2)

)
dt = (1 + σ2)

∫ t1

0

∂

∂t
ln(S(t, t2)) dt

ln
(− ∂

∂t2
S(t1, t2)

)− ln
(− ∂

∂t2
S2(t2)

)
= (1 + σ2)

(
ln(S(t1, t2))− ln(S2(t2))

)

ln
(− ∂

∂t2
S(t1, t2)

)− (1 + σ2) ln(S(t1, t2)) = ln
(− ∂

∂t2
S2(t2)

)− (1 + σ2) ln(S2(t2))

∂
∂t2
S(t1, t2)

S(t1, t2)1+σ2 =
∂
∂t2
S2(t2)

S2(t2)1+σ2

∫ t2

0

∂
∂t
S(t1, t)

S(t1, t)1+σ2 dt =

∫ t2

0

∂
∂t
S2(t)

S2(t)1+σ2 dt

S(t1, t2)−σ
2 − S1(t1)−σ

2

= S2(t2)−σ
2 − 1

S(t1, t2) =
(
S1(t1)−σ

2

+ S2(t2)−σ
2 − 1

)− 1
σ2
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The advantage of model (4.5) is the nice interpretation of (1 + σ2) as the relative risk

associated with a non-surviving relative. Thus, there are two ways of deriving (4.2)

based on radically different concepts: one uses the assumption (4.5), which concerns

proportionality of conditional hazards; the other uses the concept of random hazards

with a gamma distributed shared frailty.

The bivariate shared frailty model can be extended to the multivariate case with p related

failure times, which results in the case of gamma distributed frailty in the following

unconditional multivariate survival function:

S(t1, . . . , tp) = (

p∑
i=1

Si(ti)
−σ2 − p+ 1)−1/σ2

,

which was used for example by Cook and Johnson (1981). The characterization (4.5) was

extended to the multivariate case by Guo and Rodriguez (1992) and Guo (1993). The

correlation between life times of randomly selected pairs is always the same, which makes

the model less useful for modelling correlations in family studies with groups of different

relatives (mother-father, mother-daughter, grandfather-son, brother-brother etc.).

In the shared gamma frailty model with observed covariates the frailty Zi, (i = 1, . . . , n)

in each cluster can be estimated (Nielsen et al., 1992) by

Ẑi =
1/σ2 +

∑ni
j=1 δij

1/σ2 +
∑ni

j=1 e
βXijΛ(tij)

.

This is possible because of the repeated observations in each cluster, where all observa-

tions in one cluster are based on the same value of the frailty variable. This approach was

used by Carvalho et al. (2003) to investigate the quality of dialysis centers (represented

by the unobserved frailties) in Brazil.

Asymptotic properties of the non-parametric maximum likelihood estimates in the shared

gamma frailty model are well established. Murphy shows consistency (Murphy, 1994)

and asymptotic normality (Murphy, 1995) in the shared gamma frailty model without

covariates. These results were generalized to the correlated gamma frailty model with ob-

served covariates by Parner (1998). Shih and Louis (1995) proposed a graphical method

for assessing the gamma distribution assumption when the baseline hazard is parametric

and in the absence of covariates. Glidden (1999) suggested a test for the gamma frailty

model without parameterizing the baseline hazard and without covariates in the model.

A graphical as well as a numerical method for checking the adequacy of the gamma

distribution in a shared frailty model is suggested by Cui and Sun (2004). Their test is

based on the posterior expectation of the frailties given the observable data over time,

extending the work by Glidden (1999).
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4.2 Limitations of the shared frailty model

Shared (or common) frailty explains correlations within clusters (here, a cluster can

consist of individuals from the same group, such as a family, litter, clinic, community; or

of multiple or recurrent events from the same individual). However, it does have some

limitations. In the following, we use some of the arguments by Xue and Brookmeyer

(1996).

First, it forces the unobserved factors to be the same within the cluster, which is generally

not appropriate. For example, in general it may be inappropriate to assume that both

partners in a twin pair share all of their unobserved risk factors; for a multi-staged

disease, usually heterogeneity is higher in the earlier stages and people tend to be more

homogeneous in the later stages.

Second, in most cases shared frailty will only induce positive associations within the

cluster (for exceptions, see Joe 1993). However, in some situations the survival times for

subjects within the same cluster are negatively associated. For example, growth rates

of animals living in the same litter with limited food supply are probably negatively

associated. Another example are transplantation studies, which found out that generally

the longer an individual must wait for a transplantation, the shorter the chances of

survival after the transplantation are. Thus, the waiting and the survival time may be

negatively associated. As another example, suppose a patient is repeatedly admitted to

hospital for the same disease. The sicker the patient is, the higher the risk of re-admission

is and the lower the ‘risk’ (chance) of discharge. Therefore, the duration of the stays

inside hospital, on one hand, and outside hospital, on the other, are expected to be

negatively associated. An additional example is provided by competing risk scenarios,

where the reduction of the risk of dying from one disease increases the risk to die from

another disease.

Third, the dependence between survival times within the cluster is based on marginal

distributions of survival times. To see this, when covariates are present in a proportional

hazards model with a gamma distributed frailty, the dependence parameter and the pop-

ulation heterogeneity are confounded (Clayton and Cuzick 1985), meaning that the joint

distribution can be identified from the marginal distributions (Hougaard 1986a). Elbers

and Ridder (1982) show that this problem exists for any univariate frailty distribution

with a finite mean. However, ‘shared frailty’ in bivariate models differs from ‘individual

frailty’ used in the case of univariate data. Initially this difference in the notions of

frailty was not clearly understood. It is worth noting that the value of σ2 estimated

from the univariate data may, in fact, have nothing to do with association. Indeed, con-

sider two hypothetical bivariate data sets with different associations between life spans
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of respective related individuals, for example the lifetimes of men and their sons and for

the same men and their grandsons. In both situations the value of the parameter σ2

will be the same estimated from the data on the group of men (grandfathers), despite

the fact that associations between life spans of grandfathers and their grandsons and

grandfathers and their sons are different.

This last and maybe most important limitation of shared frailty models is a consequence

of identifiability of the univariate frailty model with observed covariates. Hence, it is an

inherent feature to all shared frailty models with a finite mean of frailty distribution. To

overcome this problem, Hougaard (1986a, 1987) suggests the shared positive stable frailty

model. In this case the univariate model with observed covariates is not identifiable

because the mean of the positive stable distribution is infinite. So one can expect more

flexibility from a shared frailty model with positive stable distribution than from models

with gamma frailty. The bivariate survival function in the shared positive stable frailty

model is

S(t1, t2) = exp{−((− ln(S1(t1)))1/γ + (− ln(S2(t2)))1/γ
)γ}. (4.6)

When covariates Xi, (i = 1, 2) are observed, and the conditional hazard is (3.2) then the

univariate survival functions are

Si(t) = exp{−Λγ
i (t)e

γβiXi} = exp{−Λ∗i (t)e
β∗iXi},

where β∗i = γβi and Λ∗i (t) = Λγ
i (t). Using a shared positive stable frailty model one can

estimate both the association parameter γ and regression coefficients βi from data on

related individuals. One problem remains yet unsolved: the interpretation of regression

parameters βi. To illustrate this problem let β = β1 = β2 for two groups of relatives,

for example MZ and DZ twins. It is clear that the association parameter γ is different

for MZ and DZ twins. Hence the values of parameter β∗ = γβ and H∗(t) in equation

(4.6) are also different for MZ and DZ twins, which contradicts the natural assumption

that the survival of these individuals conditioned on observed covariates follow the same

Cox type model. If the parameters β∗ = γβ are assumed to be the same for MZ and DZ

twins then the parameters β and the baseline hazards λ0(t) should be different for these

individuals, which creates a problem for the interpretation of the conditional hazard

(3.2) for this model.

To avoid such methodological problems, correlated frailty models have been developed

for the analysis of multivariate failure time data. These models have two associated

random variables that characterize the frailty effect for each cluster. One random vari-

able, for example, is assigned to twin 1 and one to twin 2 so that they are no longer



4.2. LIMITATIONS OF THE SHARED FRAILTY MODEL 55

constrained by having a common frailty. The two variables are associated and jointly

distributed, therefore knowing one of them does not necessarily imply the other. Also,

the two variables can certainly be negatively associated, and this would induce a negative

association between survival times.

Between shared and correlated frailty models (sometimes also called univariate and bi-

variate frailty models with respect to the dimension of the frailty, but both models deal

with bivariate time-to-event data), there is an intermediate approach in which two vari-

ables are assigned for each cluster to count for heterogeneity; but they are generated

from one common random variable. For example, a bivariate survival time (T1, T2) with

Z1 to account for heterogeneity of T1 and Z2 for T2, where Z1 and Z2 are defined as

follows:

Z1 = eαW and Z2 = eβW (4.7)

in which W is a random variable and α and β are parameters. This one factor error

specification has been used frequently (Flinn and Heckman, 1982; Clayton and Cuzick,

1985; Heckman and Walker, 1990; Huang and Wolfe, 2002). This approach is more

flexible than that of assuming shared frailty for T1 and T2, and to some extent it allows

for a negative association by allowing different signs of α and β. However, it still imposes

a linkage between the variance and the correlation, and also the mean and the variance.

The overall hazard for the population (rather than the individual hazard) in consequence

is forced to move between restricted ranges. Therefore, Lindeboom and Van Den Berg

(1994) concluded that it is hazardous to estimate bivariate survival models in which the

mixing distribution is parameterized univariately, in that a univariate random variable

may not be able to account for both the dependence of the survival times and for the

change in the composition of the sample due to the unobserved heterogeneity.

Clearly, such kinds of problems do not arise in a genuine bivariate approach in which

the dependence of T1 and T2 can be changed without changing the marginal distribution

of T1 and T2. Aalen (1987) discussed multivariate mixing distributions applied on a

Markov Chain. Marshall and Olkin (1988) discussed various multivariate correlated

frailty distributions. Their work was continued by Yashin et al. (1993, 1995), who

considered the bivariate correlated gamma frailty model and applied it to twin survival

data. This approach forms the starting point for different extensions analyzed in this

thesis which will be discussed in more detail after the following section.
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4.3 Correlated frailty model

Consider some bivariate observations, e.g., the life times of twins, or age at onset of

a disease in spouses, time to disease in paired organs like kidneys or eyes etc. In the

(bivariate) correlated frailty model the frailty of each individual in a pair is defined by

a measure of relative risk, i.e., exactly as it was defined in the univariate case. For two

individuals in a pair, frailties are not necessarily the same, as they are in the shared frailty

model. We are assuming that the frailties are acting multiplicatively on the baseline

hazard function and that the observations in a pair are conditionally independent, given

the frailties. Hence, the hazard of individual j (j = 1, 2) in pair i (i = 1, . . . , n) has the

form

λ(t) = Zijλ0j(t)e
βTXij , (4.8)

where t denotes age or time, Xij is a vector of observable covariates, β is a vector of

unknown regression coefficients describing the effect of the covariates Xij, λ0j(t) are

baseline hazard functions, and Zij are unobserved (random) effect or frailty. Bivariate

correlated frailty models are characterized by the joint distribution of a two-dimensional

vector of frailties (Zi1, Zi2).

Any method in this context is based on likelihood functions. In order to derive a marginal

likelihood function, the assumption of conditional independence of life spans given the

frailty is always used. Let δij be a censoring indicator for an individual j (j = 1, 2) in

pair i (i = 1, . . . , n). Indicator δij is 1 if the individual has experienced the event of

interest, and 0 otherwise. According to (4.8), the conditional survival function of the

j-th individual in the i-th pair is

S(t|Zij, Xij) = eZijΛ0j(t)e
βTXij

, (4.9)

where Λ0j(t) is the cumulative baseline hazard function. Here and in the following, S is

used as a generic symbol for a survival function. The contribution of the j-th individual

in the i-th pair of the conditional likelihood is given by

L(tij, δij|Zij, Xij) =
(
Zijλ0j(tij)e

βTXij
)δij

eZijΛ0j(tij)e
βTXij

, (4.10)

where tij stands for age at death or the censoring time of individual j from pair i. Then,

assuming the conditional independence of life spans given the frailty and integrating out

the frailty, we obtain the marginal likelihood function:
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L(t, δ|X) =
n∏
i=1

∫∫

R+×R+

(
zi1λ01(ti1)eβ

TXi1
)δi1

ezi1Λ01(ti1)eβ
TXi1 (4.11)

∗
(
zi2λ02(ti2)eβ

TXi2
)δi2

ezi2Λ02(ti2)eβ
TXi2fZ(zi1, zi2) dzi1 dzi2,

where t = (t1, . . . , tn), ti = (ti1, ti2), δ = (δ1, . . . , δn), δi = (δi1, δi2), X = (X1, . . . , Xn),

Xi = (Xi1, Xi2), and fZ(·, ·) is the probability density function of the corresponding

frailty distribution.

A different approach to bivariate frailty modelling was used by Bandyopadhyay and Basu

(1990) and Gupta and Gupta (1990). The key idea of their (more specific) model is a

bivariate hazard model:

λ(t1, t2, Z) = Zλ0(t1, t2).

Here the two lifetimes are not conditionally independent given the frailty. Dependence

is caused by the bivariate model λ0(t1, t2) as well as by integrating out the frailty Z.

As in univariate frailty models, the choice of the frailty distribution is important for

modelling. Below three correlated frailty models are considered: the correlated gamma

frailty model and the correlated log-normal frailty model as the two most popular. Fur-

thermore, a new correlated frailty model based on the compound Poisson distribution is

suggested.

4.4 Correlated gamma frailty model

This model was introduced by Yashin et al. (1993, 1995) and applied to related lifetimes

in many different settings, for example by Pickles et al. (1994), Yashin and Iachine

(1995a,b, 1997, 1999a,b), Yashin et al. (1996), Iachine et al. (1998), Iachine (2002),

Petersen (1998), Wienke et al. (2000, 2001, 2002, 2003a,b, 2004, 2005a), Zdravkovic et

al. (2002, 2004).

Let k0, k1, k2 be some real positive variables. Set λ1 = k0 + k1 and λ2 = k0 + k2. Let

Y0, Y1, Y2 be independently gamma distributed random variables with Y0 ∼ Γ(k0, λ0),

Y1 ∼ Γ(k1, λ1), Y2 ∼ Γ(k2, λ2). Consequently,

Z1 =
λ0

λ1

Y0 + Y1 ∼ Γ(k0 + k1, λ1) (4.12)

Z2 =
λ0

λ2

Y0 + Y2 ∼ Γ(k0 + k2, λ2) (4.13)

and EZ1 = EZ2 = 1,V(Z1) = 1
λ1

:= σ2
1, V(Z2) = 1

λ2
:= σ2

2.
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The following relations hold:

EY 2
0 = V(Y0) + (EY0)2 =

k0

λ2
0

+
(k0

λ0

)2
=
k2

0 + k0

λ2
0

EZ1Z2 = E(
λ0

λ1

Y0 + Y1)(
λ0

λ2

Y0 + Y2)

= E(
λ2

0

λ1λ2

Y 2
0 +

λ0

λ1

Y0Y2 +
λ0

λ2

Y0Y1 + Y1Y2)

=
λ2

0

λ1λ2

k2
0 + k0

λ2
0

+
λ0

λ1

k0k2

λ0λ2

+
λ0

λ2

k0k1

λ0λ1

+
k1k2

λ1λ2

=
k0 + (k0 + k1)(k0 + k2)

λ1λ2

=
k0

(k0 + k1)(k0 + k2)
+ 1

cov(Z1, Z2) = EZ1Z2 − EZ1EZ2 =
k0

(k0 + k1)(k0 + k2)
.

This leads to the correlation

ρ =
cov(Z1, Z2)√
V(Z1)V(Z2)

=
k0√

(k0 + k1)(k0 + k2)
. (4.14)

Consequently, because of relation k0 + ki = λi = 1
σ2
i
, (i = 1, 2) it holds that k0 = ρ

σ1σ2

and ki = 1
σ2
i
− k0 =

1− σi
σj
ρ

σ2
i

(i, j = 1, 2; i 6= j).

Now we can derive the unconditional model, applying the Laplace transform of gamma

distributed random variables. Hence,

S(t1, t2) = ES(t1, t2|Z1, Z2) (4.15)

= ES1(t1|Z1)S2(t2|Z2)

= Ee−Z1Λ1(t1)e−Z2Λ2(t2)

= Ee
−(

λ0
λ1
Y0+Y1)Λ1(t1)

e
−(

λ0
λ2
Y0+Y2)Λ2(t2)

= Ee
−Y0(

λ0
λ1

Λ1(t1)+
λ0
λ2

Λ2(t2))−Y1Λ1(t1)−Y2Λ2(t2)

= (1 +
1

λ0

(
λ0

λ1

Λ1(t1) +
λ0

λ2

Λ2(t2)))−k0(1 +
1

λ1

Λ1(t1))−k1(1 +
1

λ2

Λ2(t2))−k2

= (1 + σ2
1Λ1(t1) + σ2

2Λ2(t2))
−ρ
σ1σ2 (1 + σ2

1Λ1(t1))

−1+
σ1
σ2
ρ

σ2
1 (1 + σ2

2Λ1(t2))

−1+
σ2
σ1
ρ

σ2
2

which results in the following representation of the correlated gamma frailty model:

S(t1, t2) =
S1(t1)

1−σ1
σ2
ρ
S2(t2)

1−σ2
σ1
ρ

(S1(t1)−σ2
1 + S2(t2)−σ2

2 − 1)
ρ

σ1σ2

, (4.16)
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using the independence of the gamma distributed random variables Y0, Y1, Y2 and (3.8).

The range of the correlation between frailties depends on the values of σ1 and σ2:

0 ≤ ρ ≤ min{σ1

σ2

,
σ2

σ1

}.

Hence, if σ1 6= σ2, it is always less than one. This property can be a serious limitation

when the values of σ1 and σ2 differ strongly.

Partial derivatives of the bivariate survival function (which are necessary for the likeli-

hood) are given in Appendix C. The log-likelihood in case of non-censored observations

is given by:

lnL =
ρ

σ1σ2

ln(S1(t1)−σ
2
1) +

ρ

σ1σ2

ln(S2(t2)−σ
2
2)

− (
ρ

σ1σ2

+ 2) ln(S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1)

+ ln
(
1− σ1

σ2

ρ− σ2

σ1

ρ+ ρ2 + (1− σ2

σ1

ρ)S1(t1)−2σ2
1 + (1− σ1

σ2

ρ)S2(t2)−2σ2
2

+ (2− σ1

σ2

ρ− σ2

σ1

ρ+ σ1σ2ρ+ ρ2)S1(t1)−σ
2
1S2(t2)−σ

2
2

+ (−2 +
σ1

σ2

ρ+ 2
σ2

σ1

ρ− ρ2)S1(t1)−σ
2
1 + (−2 +

σ2

σ1

ρ+ 2
σ1

σ2

ρ− ρ2)S2(t2)−σ
2
2
)

In the following we apply the correlated gamma frailty model to cause-specific mortality

data of Danish twins, described in more detail in Appendix A.2. All cause-mortality,

death by cancer (all cases of cancer combined), coronary heart disease (CHD), stroke

and respiratory diseases are considered. Because of the symmetric structure of the twin

data we use the simplification S(t) = S1(t) = S2(t) and σ2 = σ2
1 = σ2

2. We use both

a parametric and a semi-parametric approach. In the parametric approach a Gamma-

Gompertz model is applied, e.g.

S(t) = (1 + s2a

b
(ebt − 1))−

1
s2 ,

in the semi-parametric model the univariate marginal survival is left unspecified. The

data is right censored, which has to be included into the likelihood. The results of the

maximum likelihood parameter estimation procedure are given in Tables 4.1 and 4.2 for

males and females, respectively.

For each cause of death a separate analysis of the same data was performed, treating all

other causes of death as independent censored observations. In all considered cases of

cause-specific mortality the estimates of correlations of frailty for MZ twins (ρMZ) tend

to be higher than for DZ twins (ρDZ) with one exception - the correlation for respiratory

diseases is nearly equal for MZ and DZ twins in males. Higher correlations in MZ twins
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model a b s σ ρMZ ρDZ

all causes (4877 deaths)

parametric model 5.31e-5 0.094 0.187 1.333 0.573 0.340

(6.73e-6) (0.002) (0.088) (0.177) (0.071) (0.056)

semi-parametric model 1.318 0.563 0.337

(0.177) (0.073) (0.057)

cancer (1249 deaths)

parametric model 4.71e-6 0.117 1.806 2.431 0.275 0.148

(1.61e-6) (0.006) (0.160) (0.647) (0.090) (0.061)

semi-parametric model 2.411 0.267 0.147

(0.637) (0.090) (0.061)

CHD (1403 deaths)

parametric model 3.34e-6 0.117 0.812 2.315 0.538 0.242

(9.70e-7) (0.005) (0.149) (0.493) (0.106) (0.074)

semi-parametric model 2.433 0.510 0.228

(0.489) (0.099) (0.068)

stroke (439 deaths)

parametric model 8.41e-8 0.154 2.068 5.202 0.422 0.098

(5.52e-8) (0.010) (0.318) (1.353) (0.104) (0.063)

semi-parametric model 4.404 0.453 0.106

(1.014) (0.113) (0.066)

resp. diseases (346 deaths)

parametric model 2.44e-7 0.133 1.130 3.059 0.415 0.425

(1.44e-7) (0.009) (0.548) (1.557) (0.291) (0.255)

semi-parametric model 3.155 0.384 0.402

(1.484) (0.253) (0.232)

Table 4.1: Parameter estimates (s.e.) in the correlated gamma frailty model applied to 3755

Danish male twin pairs.

compared to DZ twins indicate the influence of genetic factors in frailty to cause-specific

and total mortality. Estimates of correlations range between 0.01 (respiratory diseases,

DZ female twins) and 0.62 (CHD, MZ female twins). Large differences in the estimates of

the standard deviation σ indicate different levels of heterogeneity. Especially for stroke

and respiratory diseases in females, heterogeneity seems to be huge. Another important

aspect is the similarity of the results in parametric and semi-parametric analysis. The

estimates are nearly identical, which supports the choice of the Gompertz baseline hazard

in the parametric model. A re-analysis of this data to get quantitative results about the

heritability of cause-specific mortality can be found in Wienke (2004).

It is necessary to keep in mind that the parameter ρ describes the correlation between

the frailties and not the correlation of the respective lifetimes. Lindeboom and Van Den

Berg (1994) analyzed the relation of correlation between frailties and between lifetimes.
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model a b s σ ρMZ ρDZ

all causes (4493 deaths)

parametric model 3.17e-5 0.095 0.002 1.168 0.612 0.276

(2.58e-5) (0.001) (0.000) (0.228) (0.122) (0.073)

semi-parametric model 1.208 0.566 0.258

(0.224) (0.106) (0.066)

cancer (1246 deaths)

parametric model 7.98e-6 0.110 2.642 5.088 0.163 0.054

(3.07e-6) (0.007) (0.223) (1.214) (0.049) (0.026)

semi-parametric model 5.432 0.148 0.051

(1.293) (0.046) (0.024)

CHD (1073 deaths)

parametric model 2.10e-7 0.144 0.841 1.906 0.618 0.230

(8.00e-8) (0.005) (0.156) (0.404) (0.141) (0.089)

semi-parametric model 1.996 0.600 0.220

(0.412) (0.134) (0.084)

stroke (521 deaths)

parametric model 1.30e-7 0.141 1.226 9.149 0.239 0.046

(7.00e-8) (0.008) (0.322) (2.006) (0.072) (0.039)

semi-parametric model 9.751 0.237 0.041

(2.019) (0.069) (0.034)

resp. diseases (294 deaths)

parametric model 4.90e-7 0.114 0.041 10.385 0.209 0.016

(1.70e-7) (0.004) (0.033) (3.680) (0.097) (0.038)

semi-parametric model 10.684 0.189 0.014

(3.814) (0.091) (0.034)

Table 4.2: Parameter estimates (s.e.) in the correlated gamma frailty model applied to 4200

Danish female twin pairs.

The bivariate correlated gamma frailty model can be extended to the case with p related

life spans, which results in the gamma distributed frailty case in

S(t1, . . . , tp) =

p∏
i=1

Si(ti)
1−ρ(

p∑
i=1

Si(ti)
−σ2 − p+ 1)−ρ/σ

2

.

In this model, identical marginal frailty distributions are assumed, and all possible corre-

lations between frailties in a group of individuals are described by parameter ρ. Further

extensions of this model can be found in Yashin and Iachine (1999a), but they need

additional requirements, which may be rather restrictive for real applications.

Parner (1998) proved consistency and asymptotic normality of the non-parametric max-

imum likelihood estimator in the multivariate correlated gamma frailty model with ob-

served covariates.
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Paik et al. (1994) provided an extension of the correlated gamma frailty model. It uses

a decomposition of the frailty into a shared and unique part, e.g. Z1 = Y0 + Y1 and

Z2 = Y0 + Y2 with independent random variables Y0 ∼ Γ(k0, λ0), Y1 ∼ Γ(k1, λ1) and

Y2 ∼ Γ(k2, λ2). In the correlated gamma frailty model, the assumption λ0 = λ1 = λ2 is

essential, because it yields the gamma distribution of Z1 and Z2. Paik et al. allow the λ’s

to differ, which on the one hand complicates the computation of the likelihood function,

yet on the other hand generates a more flexible model. In both models, the restriction

EZi = 1 (i = 1, 2) is imposed. The model is only identifiable with repeated (at least two)

observations per individual. The main feature of the model is to allow the frailty (and

consequently the dependence function) to vary over time intervals. Restricting the model

to two related individuals with two recurrent observation times each gives the following

structure of frailties, shown in Figure 4.1: Note that Paik et al. (1994) considered a non-

time interval 2

Yi + Yi21 = Zi21

Yi + Yi22 = Zi22

time interval 1 Zi11 = Yi11 + Yi

Zi12 = Yi12 + Yi
??

individual 1

6 6

-

-�

�

individual 2

Figure 4.1: Time-varying frailties for two relatives from family i in the Paik model

competing risk situation, that means it is assumed that all four life times are observable

(with independent censoring). Different extensions to the Paik model are discussed in

Wintrebert et al. (2004).

In most applications of frailty models, a parametric approach is used, which means

that the baseline hazard function is specified up to a finite dimensional parameter (e.g.

Weibull or Gompertz). The main advantage of multivariate frailty models when com-

pared with univariate frailty models is that it is possible to relax the parametric assump-

tion about the baseline hazard function in a way similar to the Cox regression model.

In semi-parametric frailty models no parametric assumption about the form of the base-

line hazard function is necessary. This causes problems in the calculation of the exact

standard errors of the estimates. Andersen et al. (1997) analyzed this problem in detail.
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4.5 Correlated compound Poisson frailty model

This model is an extension of the correlated PVF frailty model (correlated three-parameter

frailty model) suggested by Yashin et al. (1999a) and has not yet been considered in

bivariate survival studies. It is based on a bivariate extension of the compound Poisson

frailty model introduced to univariate survival analysis by Aalen (1988, 1992). It is also

related to the correlated gamma frailty cure model by Wienke et al. (2003a), which

allows for a non-susceptible fraction in the population, as well as the compound Poisson

frailty models with a random scale considered by Moger et al. (2004b) and Moger and

Aalen (2005).

Let k0, k1 be some real positive variables and let Y0, Y1, Y2 be independently compound

Poisson distributed random variables with Y0 ∼ cP (γ, k0, λ), Y1 ∼ cP (γ, k1, λ) and

Y2 ∼ cP (γ, k1, λ). Consequently, using a similar additive structure for the frailties as in

(4.12) it holds that

Z1 = Y0 + Y1 ∼ cP (γ, k0 + k1, λ)

Z2 = Y0 + Y2 ∼ cP (γ, k0 + k1, λ).

For simplicity, we shall present only the symmetric case here, where the two life times

are interchangeable. An extension to the non-symmetric case is straightforward.

Furthermore, the following relations are assumed:

EZ1 = EZ2 = 1,V(Z1) = V(Z2) = σ2.

This implies (see 3.11) (k0 + k1)λγ−1 = 1 and (k0 + k1)(1− γ)λγ−2 = σ2. Consequently,

(k0 + k1)λγ−2 = 1/λ and (k0 + k1)λγ−2 = σ2

1−γ = 1
λ
. Hence, λ = 1−γ

σ2 , which results in

(k0 + k1)λγ = λ =
1− γ
σ2

(4.17)

It holds that

EY 2
0 = V(Y0) + (EY0)2 = k0(1− γ)λγ−2 + (k0λ

γ−1)2

EZ1Z2 = E(Y0 + Y1)(Y0 + Y2)

= E(Y 2
0 + Y0Y1 + Y0Y2 + Y1Y2)

= k0(1− γ)λγ−2 + k2
0λ

2γ−2 + k0k1λ
2γ−2 + k0k1λ

2γ−2 + k2
1λ

2γ−2

= k0(1− γ)λγ−2 + (k0 + k1)2λ2γ−2

= k0(1− γ)λγ−2 + 1

cov(Z1, Z2) = EZ1Z2 − EZ1EZ2 = k0(1− γ)λγ−2.
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This leads to the correlation

ρ =
cov(Z1, Z2)√
V(Z1)V(Z2)

=
k0(1− γ)λγ−2

(k0 + k1)(1− γ)λγ−2
=

k0

k0 + k1

. (4.18)

Consequently, because of (4.17) and (4.18)

k0λ
γ =

k0

k0 + k1

(k0 + k1)λγ = ρ
1− γ
σ2

. (4.19)

Now we can derive the unconditional model, applying the Laplace transform of compound

Poisson distributed random variables (3.13). Hence,

S(t1, t2) = ES(t1, t2|Z1, Z2)

= ES(t1|Z1)S(t2|Z2)

= Ee−Z1Λ0(t1)e−Z2Λ0(t2)

= Ee−(Y0+Y1)Λ0(t1)e−(Y0+Y2)Λ0(t2)

= Ee−Y0(Λ0(t1)+Λ0(t2))−Y1Λ0(t1)−Y2Λ0(t2)

= e−
k0
γ

((λ+Λ0(t1)+Λ0(t2))γ−λγ)e−
k1
γ

((λ+Λ0(t1))γ−λγ)e−
k1
γ

((λ+Λ0(t2))γ−λγ). (4.20)

The three terms are considered in detail. For the marginal survival function holds that

S(t) = e−
k0+k1
γ

((λ+Λ0(t))γ−λγ), (4.21)

which implies

λ+ Λ0(t) = (λγ − γ

k0 + k1

lnS(t))1/γ. (4.22)

Hence, using (4.18) and (4.21)

e−
k1
γ

((λ+Λ0(t))γ−λγ) = e
− k1
k0+k1

k0+k1
γ

((λ+Λ0(t))γ−λγ)

= e−(1−ρ)
k0+k1
γ

((λ+Λ0(t))γ−λγ)

= (e−
k0+k1
γ

((λ+Λ0(t))γ−λγ))1−ρ

= S(t)1−ρ.

For the first term in (4.20) holds because of (4.22)

e−
k0
γ

((λ+Λ0(t1)+Λ0(t2))γ−λγ) = e−
k0
γ

((λ+Λ0(t1)+λ+Λ0(t2)−λ)γ−λγ)

= e
− k0
γ

(((λγ− γ
k0+k1

ln(S(t1)))1/γ+(λγ− γ
k0+k1

ln(S(t2)))1/γ−λ)γ−λγ)

= e
k0λ

γ

γ
(1−((1− γ

(k0+k1)λγ
ln(S(t1)))1/γ+(1− γ

(k0+k1)λγ
ln(S(t2)))1/γ−1)γ)

,
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which results because of (4.17) and (4.19) in the following representation of the correlated

compound Poisson frailty model:

S(t1, t2) = S(t1)1−ρS(t2)1−ρ

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}.

This model includes both gamma and inverse Gaussian correlated frailty models as spe-

cial cases, the gamma model corresponds to γ = 0, the inverse Gaussian model has

γ = 0.5. For γ ≥ 0 the correlated PVF frailty model is obtained, which was introduced

by Yashin et al. (1999a). For γ < 0 the correlated compound Poisson frailty model

is obtained, including a fraction of individuals in the population with zero frailty. The

model is successfully applied to breast cancer incidence data by Wienke et al. (2006a,c)

for identical (MZ) and fraternal (DZ) female Swedish twins born 1886 - 1925. This data

set contains records of 2003 MZ twin pairs and 3854 DZ twin pairs. Individuals were

followed up from 1959/61 to 27 October 2000, and 715 cases of breast cancer were identi-

fied during the follow-up (see Appendix A.1). Age at onset of breast cancer ranges from

36 years to 93 years. More detailed information about the construction of the Swedish

Twin Register can be found in Lichtenstein et al. (2002). The results of the analysis are

given in Table 4.3:

gamma frailty inverse Gaussian frailty compound Poisson frailty

a 2.50e-7 (1.60e-7) 6.25e-6 (1.66e-6) 3.20e-7 (2.30e-07)

b 0.161 (0.012) 0.097 (0.005) 0.155 (0.015)

γ 0 0.5 -0.052 (0.096)

σ 7.612 (0.470) 7.406 (1.084) 7.034 (0.994)

ρMZ 0.124 (0.040) 0.199 (0.064) 0.124 (0.040)

ρDZ 0.097 (0.029) 0.161 (0.047) 0.099 (0.030)

susceptible 100% 100% 33.6%

likelihood -5218.6397 -5265.7593 -5218.4581

Table 4.3: Parameter estimates (s.e.) in the analysis of time to onset of breast cancer in 5857

Swedish twin pairs. The size of the susceptible fraction is calculated by 1− e
1−γ
γσ2 .

Parameters a and b denote the parameters of the Gompertz baseline hazard. The model

in the first column is the correlated gamma frailty model (4.4). Parameter σ2 is a measure

of heterogeneity, which is large in these data, and all individuals of the population are

assumed to be susceptible to breast cancer. The correlated gamma frailty model is a

special case of the correlated compound Poisson/PVF frailty model with γ = 0.
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In the second model inverse Gaussian distributed frailty is used to account for hetero-

geneity in the population and to model dependence between times to onset of breast

cancer in twin pairs. Parameter estimates are different from those in the gamma case

with smaller heterogeneity and larger correlations. As in the first model, all women are

assumed to be susceptible to breast cancer. The correlated inverse Gaussian frailty model

is a special case of the correlated compound Poisson/PVF frailty model with γ = 0.5.

The most interesting parameter in the compound Poisson model is γ, which is negative

(γ = −0.052) and indicates the existence of a fraction of individuals who are nonsuscep-

tible to breast cancer. The size of the susceptible fraction depends on γ and σ2 and is

around 0.336. The estimate of the size of a susceptible fraction (due to breast cancer) is

larger than the estimate 0.22 found by Chatterjee and Shih (2001) in a study population

that is completely different and by Wienke et al. (2003a) applying a correlated gamma

frailty cure model to the same data. The compound Poisson model fits the data better

than the two submodels, but on the costs of an additional parameter. Compared to the

gamma model the improvement is not significant.

Additionally, the estimate of the size of the susceptible fraction in the compound Poisson

frailty model is not far from the range of the figures obtained by Farewell et al. (1977)

for different combinations of four risk factors. The authors found that, if none of the risk

factors is present, the susceptible fraction is around 0.015. If all risk factors are present,

the estimate increases to 0.272.

In all models, correlations in monozygotic pairs are higher than in dizygotic pairs, but

the differences are small. This is in line with the well known fact that the influence of

genetic factors on susceptibility to breast cancer is small (5 - 10 %). A disadvantage of

the model is that it is not able to handle negative dependencies.

The newly introduced correlated compound Poisson/PVF frailty model offers a very

elegant approach to integrating the concept of cure models into frailty modelling. The

likelihood function is explicitly available in a very simple form and is the most important

advantage of the proposed model compared to the model suggested by Moger and Aalen

(2005). Popular frailty models like the correlated and shared gamma (γ = 0) and

inverse Gaussian model (γ = 0.5) are included in this model family and provide a great

flexibility of the model. Because of the extension to negative values of γ the gamma

distribution (γ = 0) as the most popular frailty distribution is no longer on the border of

the parameter space. Consequently, traditional tests can be applied to test hypotheses

about the frailty distribution (for example H0 : γ = 0 versus HA : γ 6= 0). Simulation

studies show a good performance of the parameter estimates in this model with nearly

no bias.
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4.6 Correlated log-normal frailty model

The log-normal model is much more flexible than the gamma model, because it is not

based on the additive composition of the two frailties as used in (4.12) and (4.13). How-

ever, the log-normal distribution does not allow for an explicit representation of the

likelihood function, which requires more sophisticated estimation strategies. The distri-

bution can be obtained by assuming a bivariate normal distribution on the logarithm of

the frailty vector

(
W1

W2

)
= ln

(
Z1

Z2

)
with

(
W1

W2

)
∼ N

( (
m

m

)
,

(
s2 rs2

rs2 s2

) )
, (4.23)

with N denoting the bivariate normal distribution whose parameters are some functions

of the frailty parameters σ2 and ρ (see for example Hutchinson and Lai, 1991):

µ = EZj = em+ s2

2 (4.24)

σ2 = V(Zj) = e2m+s2(es
2 − 1) (4.25)

ρ = corr(Z1, Z2) =
ers

2 − 1

es2 − 1
. (4.26)

Two different types of log-normal frailty models arise from two restrictions on the para-

meters of frailty distribution. First, one can use the restriction m = 0. This means that

the logarithm of frailty has a mean of zero. In this case, a ‘standard’ individual has the

logarithm of the hazard rate which is equal to lnλ0(t). Any individual in a population

has the logarithm of the hazard rate distorted by some random variables Wj = lnZj.

This value is added to the ‘true’ logarithm of the hazard rate ln λ0(t) to provide the

logarithm of hazard rate of the individual. In this interpretation, it is natural to assume

that the distortions Wj have a normal distribution with a mean of zero. Second, fol-

lowing the usual definition of frailty used in demography (Vaupel et al., 1979; Clayton,

1978), one can use µ = 1. It follows from (4.24) - (4.26) that

m = E lnZj = −1

2
s2 (4.27)

s2 = V(lnZj) = ln(1 + σ2) . (4.28)

In this model, a ‘standard’ individual has the hazard rate λ0(t). Individual j in the i-th

pair has the hazard rate of a ‘standard’ individual multiplied by the frailty Zij. The

above restriction on µ means that the average frailty in a population equals 1 (at the

beginning of the follow-up).
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The shared log-normal model was applied by, for example, McGilchrist and Aisbett

(1991), McGilchrist (1993), Gustafson (1997) and Bellamy et al. (2004). In the latter

paper, the case of interval censored data is considered assuming an underlying Weibull

baseline hazard function. The model was extended to allow for heterogeneity in the

frailty distribution (dispersed frailty) by Lee and Lee (2003).

Xue and Brookmeyer (1996) were the first to consider the correlated log-normal frailty

model and applied it to mental health data to evaluate the health policy effects for in-

patient psychiatric care. Yau and McGilchrist (1997) used a GLMM approach to analyze

data from litter matched tumorigenesis experiments in rats with help of the correlated

log-normal model. Cook et al. (1999) used a correlated log-normal frailty in two-state

mixed renewal processes for chronic disease. Other examples can be found in Ripatti and

Palmgren (2000) and Ripatti et al. (2002). Using correlated log-normal frailty models

Pankratz et al. (2005) perform genetic analysis on age at onset in breast cancer in a large

familial cohort. Their method is based on a Laplace approximation similar to Ripatti

and Palmgren (2000).

4.7 Other correlated frailty models

A general correlated frailty model can be introduced with the help of frailties generated

by non-negative Lévy processes. Aalen and Hjort (2002) considered such frailty distri-

butions in the univariate case. Let Z1 = D(u0) + D(u1) and Z2 = D(u0) + D(u2) be

frailties with respect to two correlated lifetimes.

The univariate unconditional survival function (for simplicity it is assumed to be equal

for both partners) is given by S(t) = ES(t|Zi) = Ee−(D(u0)+D(ui))Λ0(t) = e−(u0+ui)ψ(Λ0(t)).

Consequently, after some simple algebra we arrive at

Λ0(t) = ψ−1(
−1

u0 + ui
lnS(t)).

Hence,

S(t1, t2) = Ee−Z(u0)(Λ0(t1)+Λ0(t2))−Z(u1)Λ0(t1)−Z(u2)Λ0(t2)

= e−u0ψ(Λ0(t1)+Λ0(t2))e−u1ψ(Λ0(t1))e−u2ψ(Λ0(t2))

= e−u0ψ(Λ0(t1)+Λ0(t2))e
− u1
u0+u1

(u0+u1)ψ(Λ0(t1))
e
− u2
u0+u2

(u0+u2)ψ(Λ0(t2))

= e
−u0ψ(ψ−1( −1

u0+u1
lnS(t1))+ψ−1( −1

u0+u2
lnS(t2)))

S(t1)
u1

u0+u1 S(t2)
u2

u0+u2

Assuming the symmetric case (u1 = u2) and introducing the parameter ρ = u0

u0+ui
as the



4.8. CORRELATED GAMMA FRAILTY MODEL WITH COVARIATES 69

correlation between Z1 and Z2, we get the final form in the general correlated frailty

model:

S(t1, t2) = S(t1)1−ρS(t2)1−ρe−u0ψ(ψ−1( −1
u0+u1

lnS(t1))+ψ−1( −1
u0+u2

lnS(t2)))

Special cases are the correlated gamma frailty model and the correlated compound Pois-

son frailty model. Another special case is the shared positive stable frailty model, con-

sidered by Hougaard (1986a,b, 1995), Lam and Kuk (1997) and Qiou et al. (1999).

Another approach is suggested by Henderson and Shimakura (2003). They used their

correlated frailty model with gamma distributed frailty to model longitudinal count data.

Applying their concept of gamma distributed frailty to bivariate time-to-event data, the

bivariate survival function is

S(t1, t2) =
(
S(t1)−σ

2

S(t2)−σ
2 − ρ(S(t1)−σ

2 − 1)(S(t2)−σ
2−)
)−1/σ2

,

which is another correlated gamma frailty model, not based on the additive decomposi-

tion of the gamma distributed frailties as is the model in section 4.4. But it is also an

extension of the shared gamma frailty model (ρ = 1).

4.8 Correlated gamma frailty model with covariates

One reason for the popularity of frailty models is that (observed) covariates can easily be

included into the model. We demonstrate the use of the correlated gamma frailty model

with covariates by applying it to cause-specific mortality data on Danish monozygotic

and dizygotic twins. We analyze the influence of smoking and body mass index (BMI)

on heritability estimates of susceptibility to coronary heart disease (CHD).

Twin studies are one of the most widely used methods for quantifying the influence of

genetic and environmental factors on specific diseases. In the case of binary traits (where

the disease is either present or not), concordance analysis provides a powerful and widely

accepted method in genetic epidemiology. Concordance rates are easily calculated and

allow for a clear interpretation (McGue 1993; Gatz et al. 2000). In practical applications,

time-to-event data (time of onset of disease, age at death) is often available, but usually

in a censored form. Censoring of bivariate observations can be a complex problem, as

either or both individuals of a pair may be subject to censoring, and the censoring times

need not be the same for both individuals. Furthermore, covariates are available in

many cases. Unfortunately, it is difficult to manage censored time-to-event data and

covariates within the context of concordance analysis. A large part of the motivation

for the methodology of this section is exploring the potential for censored data and
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the inclusion of measured covariates. One key question here is whether the inclusion

of observed covariates changes the heritability estimates of susceptibility to the disease

under study.

We apply the bivariate correlated gamma frailty model to twin data on mortality due to

coronary heart disease (CHD). The role of family aggregation of CHD is well established.

Questions about the nature of the genetic effects (additive versus non-additive) can be

addressed. Former studies from the Danish (Harvald and Hauge 1970) and Swedish (de

Faire 1975; Marenberg et al. 1994) twin registries found a genetic component in the

risk of death from coronary heart disease. Recent studies (Wienke et al. 2001, 2006b;

Zdravkovic et al. 2002, 2004) used approaches from survival analysis to account for cen-

soring present in the data. Such kinds of methods have to be combined with methods

from genetic epidemiology. Heterogeneity of individuals with susceptibility to CHD as

well as important covariates are included in the present model. For such a combined

analysis, we apply the correlated gamma frailty model with observed covariates (Yashin

et al. 1996; Yashin and Iachine 1997), which takes into account the dependence of life

spans of relatives (twins). This allows the estimation of the effect of genetic factors in

susceptibility to CHD and the evaluation as to what extent smoking, BMI, and suscep-

tibility to CHD are all influenced by common genetic factors. This approach allows the

combination of data on age at death with data on cause of death, smoking, and BMI; and

further, dealing with censored observations. For each individual we assume two indepen-

dent underlying competing risks of latent times (lifetime with respect to death due to

CHD and lifetime with respect to death due to all other diseases (including censoring)).

In addition, we assume that these competing risks are independent. An extension of the

model to more than two competing risks is possible, but it is beyond the scope of the

present thesis. We empirically demonstrate the advantages of the model in the statisti-

cal analysis of lifetime data from Danish twins, which were already used in Herskind et

al. (1996a), but now with a special focus on mortality caused by CHD and applying a

frailty model. The model allows us to check hypotheses about genetic confounding in the

relationship between the covariates (smoking and BMI) and susceptibility to CHD. The

concept of genetic confounding was originally introduced by R.A. Fisher, who suggested

that the association between smoking and lung cancer was caused by common genetic

factors (Fisher, 1958). For further references related to the discussion in this field, see

for example the paper by Herskind et al. (1996a).
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4.8.1 Material and methods

Mortality data of twins were provided by the Danish Twin Registry, founded in 1954 as

the world’s first nation-wide twin registry. This population-based registry includes twins

born in Denmark during the period 1870 - 1910 and all like-sex pairs born between 1911

and 1930. For more detailed information about the data from the Danish Twin Registry,

see Appendix A.2.

In 1966, a questionnaire including questions about smoking, height, and weight was

mailed to all twins born 1890-1920 who were alive and traceable on 1 January 1966.

3709 individuals answered the questionnaire (response rate 65 %). Excluded from the

study were 813 twins with non-responding partners, four pairs with unknown zygosity

and 212 pairs with incomplete or uncertain information on height and weight. 23 pairs

were excluded because of incomplete information about cause of death, resulting in a

study population of 1209 twin pairs.

Individuals were followed from 1 January 1966 to 31 December 1993. Those persons

identified as deceased after the end of the follow up period are classified for our purposes

as ’living’. At the end of follow-up, approximately 40 % of the twins were still alive,

resulting in right censored data. Altogether, there are 210 male monozygotic twin pairs

and 316 dizygotic twin pairs, 273 female monozygotic twin pairs and 410 dizygotic twin

pairs. In addition to age at death, there is also information on cause of death available for

all individuals who died during the follow-up. For the present study, only the underlying

cause of death was considered. Detailed information about death status, gender, zygosity,

smoking, and BMI of the study population is given in Table 4.4 and 4.5.

Non-smokers Other pipe/cigar cigarette Total

(ex-smokers etc.) smokers smokers

males

BMI < 22 11 12 45 31 99 ( 9.4%)

BMI 22- 28 78 141 333 208 760 (72.2%)

BMI > 28 24 35 91 43 193 (18.3%)

Total 113 (10.7%) 188 (17.9%) 469 (44.6%) 282 (26.8%)

females

BMI < 22 105 46 47 99 297 (21.7%)

BMI 22- 28 350 138 134 171 793 (58.1%)

BMI > 28 157 40 37 42 276 (20.2%)

Total 612 (44.8%) 224 (16.4%) 218 (16.0%) 312 (22.8%)

Table 4.4: Study population (number of individuals) by sex, BMI and smoking
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males females

MZ twins DZ twins MZ twins DZ twins

deaths

–CHD 96 153 76 110

–other 206 280 204 312

all causes 302 433 280 422

alive 118 199 266 398

total 420 632 546 820

Table 4.5: Study population (number of individuals) by gender, zygosity and cause of death

4.8.2 Mortality

After the age of six, death rates for Danish twins born between 1870 and 1900 are almost

the same as those for the same cohorts of the Danish population. The distributions of

age at death for monozygotic twins are close to those of dizygotic twins for both sexes

(Christensen et al., 1995). Recent papers dealing with twin cohorts born during the

period of 1870 - 1930 found similar mortality patterns for Danish twins and the general

Danish population with respect to CHD (Wienke et al., 2001; Christensen et al., 2001).

This similarity suggests that it is possible to generalize genetic results from survival

analysis of twins to the total population with respect to mortality due to CHD.

For the present analysis, CHD is grouped as ICD 420 in the sixth and seventh revision

and as ICD 410 - 414 in the eighth ICD revision.

4.8.3 Statistical methods

Now we make more specific assumptions about the structure of the lifetimes. To in-

clude heterogeneity in our model, we assume a correlated gamma frailty model. Let

Zj (j = 1, 2) be the frailties, and Xj (j = 1, 2) vectors of observable covariates of the

two individuals of a twin pair. Assume that their individual hazards are represented by

the proportional hazards model λ(t) = Zjλ0(t)eβ
TXj (j = 1, 2) with a baseline hazard

function λ0(t) describing the risk of dying as a function of age and β denotes the vector

of regression parameters. Let the lifetimes of the two twin partners be conditionally

independent given their frailties Z1 and Z2. Because frailties Zj (j = 1, 2) are usually

unobservable, their correlation coefficient used in the methods of quantitative genetics

cannot be estimated directly from the empirical data. So a bivariate lifetime model

which allows indirect calculation of the parameters is needed. The unconditional bivari-

ate survival function of the correlated gamma frailty model with observed covariates is
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given by:

S(t1, t2|X1, X2) = S(t1|X1)1−ρS(t2|X2)1−ρ(S(t1|X1)−σ
2

+ S(t2|X2)−σ
2 − 1)−

ρ

σ2 , (4.29)

where S(t|X) denotes the marginal univariate survival function, assumed to be equal

for both partners in a twin pair. Using a parametric approach we fit a Gamma-

Gompertz model to the data, e.g. S(t|X) =
(

1 + [(1 + s2 a
b
(ebt − 1))

σ2

s2 − 1]eβX
)− 1

s2

,

where a, b, s2, β, σ2, ρ, are parameters to be estimated.

The lifetimes are assumed to be independently censored from the right by i.i.d. pairs of

non-negative random variables, which are independent of the lifetimes. Thus, we observe

(Ti1, Ti2,∆i1,∆i2, Xi1, Xi2) (4.30)

with ∆ij (i = 1, . . . , n; j = 1, 2) as a binary variable with values 1 (event) and 0 (no

event). Let the lifetimes follow a distribution (dependent on covariates X1, X2) given by

the bivariate survival function S(t1, t2|X1, X2) = P(Ti1 > t1, Ti2 > t2|X1, X2). Starting

from this model, we are able to derive the likelihood function of the data given by (4.30)

(see Appendix E):

L(t1, t2, δ1, δ2, X1, X2) = δ1δ2St1t2(t1, t2|X1, X2)− δ1(1− δ2)St1(t1, t2|X1, X2) (4.31)

− (1− δ1)δ2St2(t1, t2|X1, X2) + (1− δ1)(1− δ2)S(t1, t2|X1, X2).

Partial derivatives of the marginal survival functions are given by Stj(t1, t2) = ∂S(t1,t2)
∂tj

(j = 1, 2) and St1t2(t1, t2) = ∂S(t1,t2)
∂t1∂t2

. Because of the independence assumption between

lifetimes and censoring times, the distribution of the censoring times does not enter the

likelihood function.

For a combined analysis of monozygotic and dizygotic twins we include two correlation

coefficients, ρMZ and ρDZ , respectively. These correlations between monozygotic and

dizygotic twins provide information about genetic and environmental influences on frailty

within individuals (see Appendix B).

4.8.4 Results

Because not all models are nested, the likelihood ratio test can not be applied to compare

all genetic models. Applying the correlated gamma frailty model with and without

observed covariates the Akaike Information Criterion (AIC) prefers the AE and DE

model. Using these two models, heritability changes from 0.45 (0.11) without covariates,

to 0.55 (0.13) with covariates (see Table 4.6). Standard errors for the ACE model are

not shown since c2 = 0 is the boundary of the parameter space.
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Using the best fitting DE model, the likelihood ratio test indicates a significant influ-

ence of BMI on CHD mortality (β1 = 0.53 (0.25) and β2 = 0.47 (0.24)). Here β1 and

β2 describe individuals with BMI less than 22 kg/m2 and more than 28 kg/m2, respec-

tively. The reference group are individuals with BMI between 22kg/m2 and 28 kg/m2.

Cigarette smoking shows a significant influence on CHD mortality (β3 = 0.57 (0.24),

β4 = 0.32 (0.23) and β5 = 0.48 (0.26)). Here β3, β4 and β5 denote cigarette smokers,

pipe/cigar smokers and former smokers, respectively. The reference group is the non-

smokers. β6 = 1.44 (0.28) denotes the log hazard of males compared to females. The

results with respect to the (second best) AE model are similar.

σ2 a2 d2 c2 e2 BMI BMI cigarette other former males AIC

< 22 > 28 smokers smokers smokers

ACE model

7.74 0.45 0.00 0.55

( - ) ( - ) ( - ) ( - ) 4566.1

4.54 0.48 0.00 0.52 0.54 0.47 0.56 0.32 0.49 1.47

( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - ) ( - ) 4494.6

AE model

7.74 0.45 0.55

(4.02) (0.11) (0.11) 4564.1

4.54 0.48 0.52 0.54 0.47 0.57 0.32 0.49 1.47

(1.71) (0.12) (0.12) (0.26) (0.25) (0.24) (0.24) (0.26) (0.29) 4492.6

ADE model

7.73 0.44 0.01 0.55

(4.05) (0.33) (0.37) (0.13) 4566.1

4.38 0.17 0.36 0.47 0.53 0.47 0.57 0.32 0.49 1.45

(1.66) (0.41) (0.47) (0.14) (0.26) (0.25) (0.24) (0.23) (0.26) (0.28) 4494.0

DE model

7.16 0.50 0.50

(4.07) (0.13) (0.13) 4565.9

4.28 0.55 0.45 0.53 0.47 0.57 0.32 0.48 1.44

(1.61) (0.13) (0.13) (0.25) (0.24) (0.24) (0.23) (0.26) (0.28) 4492.2

CE model

8.77 0.30 0.70

(4.36) (0.08) (0.08) 4567.4

4.83 0.31 0.69 0.55 0.45 0.56 0.32 0.50 1.50

(1.80) (0.08) (0.08) (0.27) (0.25) (0.25) (0.24) (0.27) (0.30) 4497.2

Table 4.6: Estimates (s.e.) of variance components in frailty to mortality from CHD (n=1209).

σ2 - variance of frailty, a2 - additive genetic effects, d2 - genetic effects as a result of dominance,

c2 - common environment, e2 - non-shared (individual) environment (including measurement

errors), AIC - Akaike Information Criterion, other smokers - pipe/cigar smokers
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4.8.5 Discussion

The method in this section with its suitability for censored data and the possibility

to include observed covariates allows us to overcome the well-known drawbacks of the

traditional concordance analysis in twin studies with time-to-event data. An important

question arising in genetic analysis of models with observed covariates (here smoking

and BMI) is whether genes that are responsible for variation in observed covariates also

contribute to a variation in susceptibility to CHD. In that case traditional methods of

regression analysis can lead to spurious effects of covariates. In extreme cases it is not

covariates, but common genes which may be responsible for the variation in life span.

Both smoking and BMI are influenced by genes with heritability estimates 0.35 − 0.75

(smoking) and 0.5− 0.8 (BMI) (Bouchard, 1994; Heath and Madden, 1995; Herskind et

al., 1996b). However, whether common genes influence these phenotypic traits, as well

as susceptibility to CHD, is an open question. In 1958 R.A. Fisher suggested that the

association between smoking and lung cancer is spurious and reflects only the circum-

stance that the same genes influence both smoking habits and lung cancer. This was the

starting point for a long debate on genetic confounding.

The main result of the present analysis was that the inclusion of smoking and BMI do

not cause any substantial decrease in the heritability estimates. Hence, no evidence

was found for common genetic factors acting on smoking and susceptibility to CHD or

BMI and susceptibility to CHD. This study confirms the earlier finding that the genetic

influence on susceptibility to CHD is not mediated through genetic influence on smoking

and BMI. Similar results were found by Zdravkovic et al. (2004) in Swedish twins.

As expected the inclusion of observable covariates decreases the heterogeneity in the

population, which can be seen in the decline of the variance in frailty from σ2 = 7.74 to

σ2 = 4.54 (AE model) and from σ2 = 7.16 to σ2 = 4.28 in the DE model. This makes

clear that frailty is not a phenotypic trait. Frailty depends on the model, and it describes

factors not included in the model.

When observed covariates are included in the model, the relative importance of envi-

ronmental factors (shared environment, C, and non-shared environment, E) is reduced,

leading to an increase in the heritability estimates observed in the present analysis.

This looks a bit strange, although use of the heritability coefficient when computed as

a proportion of variance may be misleading. The variance in the trait (frailty) can be

decomposed as follows: σ2 = σ2
genes + σ2

environment. One does not know whether the heri-

tability increases due to an increase in the genetic variance or due to a decrease in the

environmental variance. In the present case, the (moderate) increase was largely due to

the influences of the latter. By including smoking and BMI, the genetic variance was
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reduced from σ2
genes = 3.48 to σ2

genes = 2.18 in the AE model and from σ2
genes = 3.58 to

σ2
genes = 2.35 in the DE model, respectively. The reduction of the environmental hetero-

geneity in frailty is more pronounced, e.g. from σ2
environment = 4.26 to σ2

environment = 2.36

in the AE model and from σ2
environment = 3.58 to σ2

environment = 1.93 in the DE model.

Thus, the focus should not be on the increase in heritability but rather on the decrease

in the environmental variance. These results help us understand that the risk factors

studied primarily represent environmental sources of variation for CHD-death, despite

the role that genetic influences may play for the specific risk factors. For a more detailed

discussion of variance components see Hopper (1993).

This point is also important when discussing why the AE model could be replaced by

the DE model when observed covariates are taken into account. For example, this could

occur when the additive genetic component of observed covariates contains a substantial

portion of the additive genetic component of a trait (as well as a part of independent

environmental component). The resulting genetic and environmental variances of the

trait may be reduced substantially as in this case. The sizes of these parts will determine

the best fitting model and the new value of heritability estimate. It may well be then

that the residual proportion of genetic variation in the trait (frailty) in the presence of

observed covariates is mostly due to dominant genetic effects.

The analysis underlines the importance of genetic factors on individual susceptibility to

CHD. Otherwise, the heritability estimate in our study (0.45 in the AE model without

covariates) is lower than those found in a previous analysis of an extension of the pre-

sented data (without covariates) with heritability estimates of 0.53 and 0.58 for males

and females, respectively (Wienke et al., 2001). The lower estimates in the subsample

analyzed here may be a consequence of a decline in the heritability of CHD with increas-

ing age, as found in Marenberg et al. (1994) and Zdravkovic et al. (2002). The twin

population in this study is much older compared with the one in Wienke et al. (2001).

The main limitation of the present study is that the information on risk factors was

obtained from the self-report questionnaire in 1966. It can not be ruled out that self-

reported information, especially regarding weight, is biased downwards. Smoking infor-

mation appears reliable, as smoking was widely accepted in the 1960s. Alternatively,

people reported as smokers in the 1960s may have since stopped smoking, but may still

be in the smoking category, which could result in a downward risk bias for smokers.

Detailed information about tobacco smoked per day over the follow-up time is not avail-

able. Consequently, the group of smokers consists of both heavy and light smokers, which

may result in an additional downward risk bias for smokers. More details in a slightly

different analysis can be found in Wienke et al. (2005a).
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4.9 MCMC methods for the log-normal frailty model

Two important assumptions in frailty models are related to the shape of the underlying

hazard and the distribution of the frailty variables. Frailty models have been estimated

both parametrically and semi-parametrically. In parametric models, the baseline hazard

is assumed to follow a known distribution family up to a few finite-dimensional unknown

parameters. The parametric hypothesis that is most commonly used is the Gompertz

baseline hazard (Vaupel et al. 1992; Iachine et al. 1998; Wienke et al., 2001, 2002,

2005b) but other shapes are also possible, for example the Weibull (Sahu et al. 1997) or

exponential shape (Xue and Ding 1999).

Every distribution of a positive random variable can be adapted to model frailty. The

gamma distribution has been widely applied in the literature (Sections 3.2 and 4.4).

The gamma choice is convenient from a mathematical point of view, because of the

simplicity of the Laplace transform, which allows for the use of traditional maximum

likelihood procedures in parameter estimation. Another possibility is to assume that

frailty is log-normally distributed (Sections 3.7 and 4.6). The log-normal approach is

much more flexible than the gamma model in creating correlated but different frailties as

required in the correlated frailty model. Unfortunately, with a log-normal assumption it

is impossible to derive the marginal likelihood function in an explicit form and parameter

estimation has to be performed with the help of more sophisticated estimation strategies.

Methods for estimation in frailty models are put into the two categories: maximum

likelihood and Markov Chain Monte Carlo (MCMC) methods. Yashin et al. (1995),

Wienke et al. (2003a,b) applied procedures based on maximum likelihood methods in

the gamma context, where an explicit representation of the likelihood function is always

available. The maximum likelihood method has also been adopted in the log-normal

framework with the help of different numerical algorithms (McGilchrist and Aisbett 1991;

McGilchrist 1993; Lillard 1993; Lillard et al. 1995; Sastry 1997; Ripatti and Palmgren

2000; Ripatti et al. 2002). These methods are implemented in the aML software package

(Lillard and Panis 2000).

In the present section (based on work together with Isabella Locatelli, see Locatelli 2003,

Locatelli et al., 2004), we consider an example of how to apply MCMC methods to the

correlated log normal frailty model as described in section 4.6 with EZ = µ = 1. We

assume that the two frailties in each pair have the same variance σ2 because of the

symmetry of twin data, which is the object of applications here.

Bayesian MCMC methods have been applied as estimation procedures especially in
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shared frailty models (Clayton, 1991; Spiegelhalter et al. 1996; Sahu et al. 1997; Sinha

and Dey 1997) but also in correlated frailty models (Xue and Ding 1999). The Bayesian

framework is in fact natural when we are dealing with conditionally independent obser-

vations and when we are working with hierarchical models, with the frailty variables at

an intermediate stage between the observations and the so-called hyperparameters. In

the Bayesian context, the frailty distribution represents a ‘prior’ of the model, and its

parameters (hyperparameters) are also considered as random variables following some

non-informative distribution. An MCMC method consists in generating a set of Markov

chains whose joint stationary distribution corresponds to the joint posterior of the model,

this one being in the Bayesian framework the distribution of random parameters given

observed data. In a hierarchical model, the posterior distribution is often very difficult

to work with and almost always impossible to integrate out in order to find the marginal

posterior of each random parameter. The MCMC methods enable us to circumvent this

problem. The posterior of each parameter is approximated by the empirical distribu-

tion of the values of the corresponding Markov chain and empirical summary statistics

calculated along each chain can be used to make inferences about the true value of

the corresponding parameter (see Gilks et al. 1996 for a review). The Gibbs sampling

(Geman and Geman 1984) is one of the algorithms that have been created in order to

obtain Markov chains with the desired stationary distribution. The basic idea behind

the Gibbs sampling is to successively sample from the conditional distribution of each

random node, given all the others in the model. These distributions are known as ‘full

conditional distributions’. It can be shown that, under broad conditions, this process

eventually provides samples from the joint posterior distribution of the unknown quan-

tities.

In this study, Bayesian MCMC methods have been adopted to estimate the correlated

log-normal frailty model. Calculations are performed within the software WinBUGS 1.4

(Spiegelhalter et al. 1999). The correlated log-normal frailty model applied here can be

represented as a Bayesian hierarchical (3 - levels) model in the following way:

1. Likelihood function:

L(t, δ|W,a, b) =
n∏
i=1

2∏
j=1

(exp(Wij)a exp(btij))
δij exp(− exp(Wij)

a

b
(exp(btij)− 1))

2. Priors:

(i)

(
Wi1

Wi2

)
∼ N

((
−1

2
ln(σ2 + 1)

−1
2

ln(σ2 + 1)

)
,

(
ln(σ2 + 1) ln(ρσ2 + 1)

ln(ρσ2 + 1) ln(σ2 + 1)

))

(ii) a ∼ Γ(0.01, 0.01)

(iii) b ∼ Γ(0.01, 0.01)
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3. Hyperpriors:

(i) σ2 ∼ Γ(0.01, 0.01)

(ii) ρ ∼ U(−1, 1)

where W = (W1, ...,Wn), Wi = (Wi1,Wi2); t = (t1, ..., tn), ti = (ti1, ti2); Γ and U denote

the gamma and uniform distribution, respectively, and a and b are parameters of the

Gompertz baseline hazard. The prior (i), assigned to the vector (Wi1,Wi2), is chosen in

order to have, according to the traditional definition of frailty, a vector of log-normal

distributed frailties (Zi1, Zi2) = exp(Wi1,Wi2) whose mean is equal to one. Finally,

non-informative priors are assigned to the parameters of the Gompertz curve and to the

frailty parameters (hyperparameters). The full conditional distributions can be obtained

because they are proportional to the joint distribution of all the random quantities of

the model. In our case, this joint distribution takes the form:

π(t, δ,W, a, b, σ2, ρ) = L(t, δ|W,a, b)
n∏
i=1

[
2∏
j=1

π(Wij|σ2, ρ)]π(a)π(b)π(σ2)π(ρ) (4.32)

where π(·) indicates the density function of the corresponding argument.

Often, the full conditional distributions have a complicated form, which makes it impos-

sible to sample from them directly. That is why a slice-sampler algorithm (in version 1.4

of the software WinBUGS) is used for non log-concave densities defined on a restricted

range (Neal 1997). This has an adaptive phase of 500 iterations, which are discarded

from all summary statistics. A Metropolis within Gibbs algorithm based on a sym-

metric normal proposal distribution is applied in the case of non log-concave densities

defined on an unrestricted range (Metropolis et al. 1953; Hastings 1970; Besag and

Green 1993). In this case, the adaptive phase is of 5,000 iterations. The Metropolis

within Gibbs procedure is applied in the log-normal case. The results of applying the

a b σ2 ρMZ ρDZ

Mean 2.54e-5 0.072 45.19 0.311 0.104

Median 2.52e-5 0.072 41.50 0.299 0.097

sdv 3.24e-6 0.003 17.05 0.046 0.108

MC error 7.92e-8 8.94e-5 0.824 0.005 0.002

CSRF 1.002 1.006 1.055 1.008 1.005

Table 4.7: Correlated log-normal frailty model. Convergence achieved after 50,000 iterations.

correlated log-normal frailty model to the Swedish breast cancer data are presented in

Table 4.7. The study population consists of 12,568 female twin pairs, e.g. the old cohort

(born between 1886 and 1925 with both partners alive in 1959) and the middle cohort
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(born between 1926 and 1967 with both partners alive in 1970). 1096 cases of breast

cancer were identified through 27 October 2000. Estimated values include the Gompertz

parameters a and b, the variance of the frailty distribution σ2, which can be seen as

the extent of population heterogeneity with respect to breast cancer, and estimates of

the correlation coefficient for both monozygotic twins (ρMZ) and dizygotic twins (ρDZ).

Two estimates for each parameter are given in terms of the mean and the median of the

correspondent Markov chain. In all cases, the two values are very close to one another.

This means that empirical estimates of the marginal posterior densities (kernel density

estimates) are approximately symmetric. For each parameter, the sample standard de-

viation and an estimate of the standard error of the mean are also given. This one is

obtained following Roberts’ (1996) batch means method. In the last row, we reported

the value of the Corrected Scale Reduction Factor (CSRF) for each parameter. This

value corresponds to the Gelman-Rubin convergence statistic (Gelman and Rubin 1992),

as modified by Brooks and Gelman (1998), and is based on a comparison of the inter and

intra chain variance for each variable. When values of this diagnostic are approximately

equal to one, the sample must have arisen from the stationary distribution. In this case,

descriptive statistics are valid estimates of unknown parameters.

According to the above model, the population would be largely heterogenous (σ2) in

terms of susceptibility towards breast cancer. The estimated correlation between frail-

ties is larger for monozygotic than for dizygotic twins. This means that monozygotic

individuals who genetically are more similar than dizygotic twins also present a larger

correlation in terms of frailty towards breast cancer. This finding suggests that there

is a genetic influence on breast cancer propensity. We estimate the extent of such an

influence with the help of three different genetic models (see Appendix B).

In Table 4.8, we compare an ACE, AE and ADE model. Estimates of each parameter

are given in terms of the sample mean. Sample median values are omitted because they

are very close to the mean as in Table 4.7. We give the posterior standard deviation

of each parameter in parentheses. This quantity is a measure of the dispersion of the

posterior density estimate, giving an idea of a parameter’s significance.

The last column of Table 4.8 shows the values of the Deviance Information Criterion

(DIC) for the three models. This is a statistic introduced by Spiegelhalter et al. (2002)

in order to compare Bayesian models in terms of adequacy and complexity. DIC is

defined as: DIC = D (θ) + pD where D (θ) represents an estimate (in terms of the

posterior mean) of the model’s deviance and is suggested to be a Bayesian measure of

fit or adequacy; pD is the difference between the posterior mean of the deviance and the

deviance of the posterior mean of the parameters of interest and is proposed as a measure
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of the effective number of the model’s parameters (complexity). The deviance D (θ) is

defined as equal to −2 ln p (y|θ) where y comprises all stochastic nodes giving values (i.e.

data), and θ comprises the stochastic nodes upon which the distribution of y depends.

Spiegelhalter et al. (2002) have shown that DIC is related to other information criteria

and that, particularly, in models with negligible prior information, DIC is approximately

equivalent to Akaike’s criterion. The model with the smallest DIC possibly best predicts

a replicate data set of the same structure as that currently observed. In Table 4.8, the

model which presents the lowest value of DIC is the ADE model.

Thus, from the comparison between the three models we conclude that genetic effects

explain globally almost 30% of the variability of propensity to breast cancer. Environ-

mental effects would be predominant in breast cancer susceptibility and these would

be primarily individual-specific, that is non-shared effects. Finally, a model including

dominance genetic effects should preferably be used for genetic and statistical reasons.

σ2 a2 c2 d2 e2 DIC

ACE 45.21 0.176 0.053 0.771 15138.6

(17.7) (0.094) (0.046) (0.089)

AE 47.31 0.230 0.770 15102.3

(18.3) (0.091) (0.091)

ADE 48.30 0.127 0.149 0.724 15091.8

(16.7) (0.086) (0.100) (0.084)

Table 4.8: Three genetic models. Convergence achieved after 50,000 iterations

The WinBUGS package proved to be extremely useful and flexible enough to estimate

correlated frailty models and to add to them equations typical of genetic models. With

the same software it is easy to modify the hypothesis on the frailty distribution. Different

assumptions about the frailty distribution and the shape of the baseline hazard function

can be compared using the same software with a Bayesian information criterion (DIC).

A disadvantage of using WinBUGS is the time required for estimation. In fact, we

are working with models that include a very large number of parameters, especially

when we deal with large data sets. This means that every MCMC algorithm which

updates parameters one by one (like the Gibbs Sampling used in WinBUGS) is very

time consuming. To overcome this problem, an algorithm that enables the updating of

parameters all together (or groups of parameters) at the same time should be adopted.

More details about the MCMC approach can be found in Locatelli (2003) and Locatelli

et al. (2004).
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4.10 Comparison of different estimation strategies

In this section, we examine bivariate correlated frailty models, and especially the behav-

ior of the parameter estimates when using different estimation strategies. We consider

three different correlated frailty models: the gamma model and two versions of the log-

normal model. The traditional maximum likelihood procedure of parameter estimation

in the gamma case with an explicitly available likelihood function is compared with max-

imum likelihood methods based on numerical integration and a Bayesian approach using

MCMC methods by means of a comprehensive simulation study. We detected a strong

dependence between the two parameter estimates (variance and correlation of frailties)

in the bivariate correlated frailty model and analyzed it in detail.

The most common frailty distribution is the gamma distribution. It has been widely

applied as a mixture distribution (sections 3.2 and 4.4). From a computational and

analytical point of view, the gamma distribution fits well into the proportional hazards

framework, because it leads to closed form expressions of survival, density and hazard

function. This is due to the simplicity of the Laplace transform. Throughout this section

we will refer to the correlated gamma frailty model as Model 1.

The second frailty model considered in detail in this section is the log-normal model

(sections 3.7 and 4.6). Again, the frailty is acting multiplicatively on the baseline hazard

following a log-normal distribution. Especially in multivariate modelling, the log-normal

approach is much more flexible than the gamma model in creating correlated but different

frailties. Two variants of the log-normal model are analyzed here. We assume a normally

distributed random variable W to generate frailty as Z = eW . The two variants of

the model are given by the constraints EW = 0 (Model 2) and EZ = 1 (Model 3).

Unfortunately, no explicit form of the unconditional likelihood exists. Consequently,

estimation strategies based on numerical integration are required.

To see whether the dependence is related to the estimation strategy or the choice of

frailty distribution we use the bivariate models mentioned above and apply three different

estimation strategies. First, we perform a traditional maximum likelihood estimation

procedure (only possible in the gamma model); second, we use a maximum likelihood

approach based on numerical integration; and finally we apply MCMC methods.

4.10.1 Estimation strategies

Parameter estimation in the gamma model is straightforward. The frailty term can

be integrated out and an explicit representation of the unconditional bivariate survival

function exists (4.29), which can be used to derive the likelihood function.
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Unfortunately, the integrals in (4.11) have no explicit solution in the log-normal model.

Several estimation methods for bivariate log-normal frailty models in consequence have

been suggested to be used within a non-Bayesian framework. Various modifications of

the maximum likelihood procedure are applicable to the bivariate frailty models. Ripatti

and Palmgren (2000) derived an estimating algorithm based on the penalized partial

likelihood (PPL). Xue and Brookmeyer (1996) suggested a modified EM algorithm for

the log-normal frailty models. Sastry (1997) developed the modified EM algorithm for

the multiplicative two-level gamma frailty model. Ripatti et al. (2002) present yet

another method to deal with EM-like algorithms in a log-normal frailty model.

In the present section we use numerical integration procedures. Integrals over univariate

and multivariate normal distributions can be approximated in different ways. One possi-

bility is to use Gauss-Hermite quadratures (Naylor and Smith 1982; Smith et al. 1987).

Similar ideas are employed in various applications of random effect models in survival

analysis (Lillard 1993; Lillard et al. 1995; Panis and Lillard 1995; among others). The

methods are implemented in the aML software package (Lillard and Panis 2000).

Several studies on the application of Bayesian methods to multivariate frailty models

exist. Bolstad and Manda (2001) considered the gamma frailty model. Gibbs’ sampling

scheme for the bivariate log-normal frailty model with an exponential baseline hazard is

given in Xue and Ding (1999). Korsgaard et al. (1998) present a Bayesian inference in

the log-normal frailty model with a semi-parametric hazard.

In the Bayesian framework the correlated frailty model takes the form of a hierarchical

model, with the frailty variables at an intermediate stage between observations and so-

called hyperparameters. The conditional likelihood, that is the distribution of observed

data given all the random parameters, represents the first level of the model:

L(t, δ|Z, a, b, β) =
n∏
i=1

(
Zi1λ0(ti1)eβXi1

)δi1
e−Zi1Λ0(ti1)eβXi1

(
Zi2λ0(ti2)eβXi2

)δi2
e−Zi2Λ0(ti2)eβXi2 ,

with t = (t1, . . . , tn), ti = (ti1, ti2), δ = (δ1, . . . , δn), δi = (δi1, δi2), X = (X1, . . . , Xn),

Xi = (Xi1, Xi2), Z = (Z1, . . . , Zn), Zi = (Zi1, Zi2), and a, b representing parameters of

the Gompertz baseline hazard λ0(t).

By definition, the vector of frailties (Zi1, Zi2) is assumed to follow a bivariate log-normal

distribution, with variances σ2 and correlation coefficient ρ. Parameters of the baseline

hazard, regression coefficients β, σ2 and ρ (the latter two being the hyperparameters)

are presumed to follow a non-informative distribution. We adopt uniform priors over

the intervals [1e-7, 0.005], [0.05, 0.15] and [-1, 1] for a, b and ρ, respectively; log-normal

priors with mean 0.5 and variance 0.25 for σ2; multivariate normal priors for β. More

details about the MCMC approach can be found in section 4.9.
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4.10.2 Simulations

We estimated Model 1 following a maximization procedure and Models 2 and 3 using

a numerical integration procedure (Gauss-Hermite quadrature). MCMC methods are

employed in all three models. We generated data sets with different frailty distributions.

First, we used σ2 = 1 and ρ = 0.7. Second, we used σ2 = 0.3 and ρ = 0.2. In both cases

a = 0.003, b = 0.07, β = (β1, β2) , β1 = 0.1, and β2 = −0.2. The observed covariates

were generated as

Xij1 =

{
1 if i ≤ n

2

0 if i > n
2

(4.33)

and Xij2 ∼ N(0, 1). Consequently, the first covariate is pair-specific where the second

covariate is individual-specific. We used sample sizes of 500 and 5,000 pairs and simu-

lated 500 data sets in each case (50 data sets only in Bayes methods because of time

constraints). Censoring was not allowed. Results are shown in Tables 4.9 - 4.11.

Method Sample size a b σ2 ρ β1 β2

true values 3.00e-3 0.070 0.300 0.200 0.100 -0.200

ML 500 3.01e-3 0.070 0.294 0.222 0.105 -0.198

(3.70e-4) (0.004) (0.087) (0.194) (0.082) (0.042)

ML 5000 3.01e-3 0.070 0.299 0.197 0.099 -0.200

(1.25e-4) (0.001) (0.027) (0.069) (0.026) (0.013)

Bayes 5000 3.04e-3 0.070 0.292 0.208 0.093 -0.196

(1.16e-4) (0.001) (0.024) (0.059) (0.027) (0.013)

true values 3.00e-3 0.070 1.000 0.700 0.100 -0.200

ML 500 2.99e-3 0.070 1.001 0.699 0.107 -0.202

(4.03e-4) (0.005) (0.141) (0.080) (0.105) (0.054)

ML 5000 3.01e-3 0.070 1.000 0.700 0.098 -0.199

(1.34e-4) (0.002) (0.044) (0.023) (0.034) (0.017)

Table 4.9: Model 1 with Gompertz baseline hazard and two covariates, simulated data, 500

data sets (Bayes 50 data sets), means of estimates, standard errors in parentheses

The three models show the same pattern. As expected, the estimations for the larger

sample size are far more accurate. The most striking effect is the strong negative cor-

relation between estimates of ρ and σ2, independently of the model and the estimation

procedure (see Table 4.12).

As Bayesian methods proved to be very time-consuming, we generated only 50 data sets

with 5,000 pairs each. We run two parallel chains from different starting points and

considered the first 4,000 iterations for each chain as a ‘burn-in’ interval.
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Method Sample size a b σ2 ρ β1 β2

true values 3.00e-3 0.070 0.300 0.200 0.100 -0.200

ML 500 3.02e-3 0.071 0.372 0.237 0.097 -0.203

(num. int.) (8.23e-4) (0.008) (0.378) (0.352) (0.080) (0.045)

ML 5000 2.99e-3 0.070 0.308 0.204 0.099 -0.200

(num. int.) (2.04e-4) (0.002) (0.077) (0.083) (0.025) (0.013)

Bayes 5000 3.04e-3 0.070 0.300 0.218 0.095 -0.199

(2.01e-4) (0.002) (0.067) (0.089) (0.022) (0.012)

true values 3.00e-3 0.070 1.000 0.700 0.100 -0.200

ML 500 2.81e-3 0.075 1.283 0.689 0.113 -0.211

(num. int.) (1.06e-3) (0.014) (0.731) (0.186) (0.118) (0.059)

ML 5000 3.07e-3 0.069 0.977 0.720 0.098 -0.199

(num. int.) (3.44e-4) (0.004) (0.173) (0.072) (0.034) (0.017)

Bayes 5000 3.12e-3 0.069 0.981 0.726 0.091 -0.198

(3.93e-4) (0.004) (0.193) (0.074) (0.031) (0.015)

Table 4.10: Model 2 with Gompertz baseline hazard and two covariates, simulated data, 500

data sets (Bayes 50 data sets), means of estimates, standard errors in parentheses

The simulated values of parameters of random effects in our case have auto-correlations

close to unity. Convergence is very slow. Altogether 10,000-60,000 iterations per chain

were generated after a ‘burn-in’ interval for each data set. The values of the Gelman-

Rubin statistics are quite close to one (see Section 4.9 for details).

4.10.3 Discussion

Because of their simplicity, multivariate frailty models have become very popular over the

last decade. A wide range of papers have been published, dealing with different structures

of multivariate models (shared vs. correlated frailty models), different distributions

of frailty (gamma, log-normal, stable etc.), different assumptions about the baseline

hazard (parametric vs. semi-parametric models), and different estimation strategies

(traditional maximum likelihood procedures, maximum likelihood procedures based on

numerical integration, EM algorithm, MCMC methods). After dealing with correlated

frailty models for a long time, we recognized a striking correlation between the variance

and the correlation estimates. The present study is the first to analyze this kind of

correlation. Our aim has been to draw attention to the problem, to elaborate possible

reasons for this effect and to present (very preliminary) suggestions on how to overcome

the problem.
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Method Sample size a b σ2 ρ β1 β2

true values 3.00e-3 0.070 0.300 0.200 0.100 -0.200

ML 500 3.01e-3 0.071 0.361 0.243 0.095 -0.204

(num. int.) (4.22e-4) (0.007) (0.297) (0.358) (0.078) (0.043)

ML 5000 2.99e-3 0.070 0.308 0.204 0.099 -0.200

(num. int.) (1.38e-4) (0.002) (0.075) (0.082) (0.025) (0.013)

Bayes 5000 3.03e-3 0.070 0.302 0.218 0.095 -0.199

(1.36e-4) (0.002) (0.070) (0.092) (0.022) (0.012)

true values 3.00e-3 0.070 1.000 0.700 0.100 -0.200

ML 500 3.00e-3 0.075 1.323 0.683 0.107 -0.212

(num. int.) (4.35e-4) (0.015) (0.998) (0.160) (0.117) (0.064)

ML 5000 3.00e-3 0.070 1.022 0.701 0.099 -0.201

(num. int.) (1.46e-4) (0.004) (0.179) (0.067) (0.034) (0.018)

Bayes 5000 3.02e-3 0.070 1.000 0.713 0.102 -0.199

(1.30e-4) (0.003) (0.134) (0.058) (0.034) (0.015)

Table 4.11: Model 3 with Gompertz baseline hazard and two covariates, simulated data, 500

data sets (Bayes 50 data sets), means of estimates, standard errors in parentheses

First we tested whether the correlation of the estimates is dependent on the distribution

of the frailty. We used three very popular frailty distributions to answer this question:

the gamma distribution and two log-normal distributions (Models 1 - 3).

Second we tested whether the observed effect was caused by the estimation strategy.

This is why we used three different estimation strategies: traditional maximum likelihood

estimation (using a self-written GAUSS code), maximum likelihood estimation based on

numerical integration (using routines in aML and a self-written code in Matlab), and

MCMC methods in WinBUGS.

The results of the simulations are very clear. The observed effect is stable over different

frailty distributions and different estimation strategies. Moreover, different choices of

parameters and sample sizes did not change the correlation.

A high correlation of parameter estimates could be a sign of identifiability problems in

the model. Correlated frailty models were investigated in order to overcome the prob-

lems of the shared frailty models, which provide only one parameter to model variance

and correlation. One idea was to include observed covariates into the models to im-

prove identifiability characteristics. This is why all models were run both with and

without observed covariates. The results in both cases are very similar; consequently, we

dropped the results for models without observed covariates. Two covariates were used,

one dichotomous and one continuous. No effect of the covariates was detected.
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Model Method Sample size corr(ρ, σ2) Parameter

1 ML 500 -0.229∗∗ σ2 = 0.3, ρ = 0.2

1 ML 5000 -0.227∗∗

1 Bayes 5000 -0.331∗

1 ML 500 -0.431∗∗ σ2 = 1, ρ = 0.7

1 ML 5000 -0.396∗∗

2 ML (num. int.) 500 -0.241∗∗ σ2 = 0.3, ρ = 0.2

2 ML (num. int.) 5000 -0.414∗∗

2 Bayes 5000 -0.382∗∗

2 ML (num. int.) 500 -0.789∗∗ σ2 = 1, ρ = 0.7

2 ML (num. int.) 5000 -0.875∗∗

2 Bayes 5000 -0.921∗∗

3 ML (num. int.) 500 -0.242∗∗ σ2 = 0.3, ρ = 0.2

3 ML (num. int.) 5000 -0.409∗∗

3 Bayes 5000 -0.438∗∗

3 ML (num. int.) 500 -0.717∗∗ σ2 = 1, ρ = 0.7

3 ML (num. int.) 5000 -0.862∗∗

3 Bayes 5000 -0.854∗∗

Table 4.12: Models 1-3 with Gompertz baseline hazard and 2 covariates: correlation between

parameter estimates, 500 simulated data sets (Bayes 50 data sets). ∗ p < 0.05, ∗∗ p < 0.01.

The present study focuses on parametric models, which implies the parametric specifi-

cation of the baseline hazard. In a separate simulation of the correlated gamma frailty

model with an unspecified baseline hazard (semi-parametric model), we found the cor-

relation between the estimates similar to that in the parametric models.

Regarding identifiability aspects, note that heterogeneity and correlation between frail-

ties are not completely independent in a frailty model based on conditional independence.

To see this, assume that the variance of the frailty tends to zero. This implies zero corre-

lation. The assumption about the conditional independence of lifetimes given the frailty

could be the reason for the correlation linking the estimates of variance (heterogeneity)

and correlation between frailties. This would explain why the observed effect is stable

over different models and estimation procedures.

The conclusion to draw is that researchers should be cautious, and be aware of the

problem presented in applying these models. Nevertheless, this study shows that the

models perform well and that there is nearly no bias in the estimates. No correlation

between the estimates of the regression coefficients β1 and β2 was found. This supports

the use of correlated frailty models for obtaining accurate estimates of covariate effects.
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4.11 Bivariate frailty cure models

A bivariate frailty cure approach for modelling familiar association in diseases was es-

tablished by Chatterjee and Shih (2001), which is an extension of the univariate frailty

cure model in (3.16). For a pair of individuals we define

Yj =

{
1 : if the j-th individual is susceptible

0 : if otherwise
(4.34)

and let Tj denote the age at onset for the j-th individual when Yj = 1 (j=1,2). In that

case, the likelihood function is:

L(t1, t2, δ1, δ2) = δ1δ2φ11St1,t2(t1, t2)

+ δ1(1− δ2)
(
φ11St1(t1, t2) + φ10St1(t1)

)

+ (1− δ1)δ2

(
φ11St2(t1, t2) + φ01St2(t2)

)

+ (1− δ1)(1− δ2)
(
φ11S(t1, t2) + φ10S(t1) + φ01S(t2) + φ00

)

where φ11 = P(Y1 = 1, Y2 = 1), φ10 = P(Y1 = 1, Y2 = 0), φ01 = P(Y1 = 0, Y2 = 1)

φ00 = P(Y1 = 0, Y2 = 0). S(t1, t2) denotes the bivariate survival function of pairs

with both individuals susceptible to the event under study. This bivariate survival

is often given in form of a copula. Chatterjee and Shih (2001) used three different

copulas in their approach: the shared gamma frailty model (Claytons model), Frank’s

copula, and Hougaard’s shared positive stable frailty model. The authors applied a two

step estimation procedure to breast cancer using the kinship data from the Washington

Ashkenazi Study by ignoring the dependency among different pairs within the same

family.

Their model was extended by Wienke et al. (2003a), who substituted the shared gamma

frailty model by the correlated gamma frailty model (see 4.16):

S(t1, t2) = S(t1)1−ρS(t2)1−ρ(S(t1)−σ
2

+ S(t2)−σ
2 − 1)

ρ

σ2 .

Furthermore, all parameters were estimated in a one-step maximum likelihood procedure.

A parametric model with Gompertz baseline hazard was used, e.g.

S(t) = S(0, t) = S(t, 0) =
(
1 + s2a

b
(ebt − 1)

)− 1
s2 .
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The likelihood function of bivariate right censored lifetime data in this model is given

by the expression

L(t1, t2, δ1, δ2) =
(
δ1δ2φ11St1,t2(t1, t2) + δ1(1− δ2)

(
φ11St1(t1, t2) + φ10St1(t1)

)

+ (1− δ1)δ2

(
φ11St2(t1, t2) + φ01St2(t2)

)

+ (1− δ1)(1− δ2)
(
φ11S(t1, t2) + φ10S(t1) + φ01S(t2) + φ00

))
.

The model was applied to breast cancer incidence data of identical and fraternal female

twins provided by the Swedish Twin Registry. This data set contains records of 5857

female twin pairs with both partners being alive in 1959-61 (old cohort). Individuals were

followed up from 1959/61 to 27 October 2000. Altogether, we have 2003 monozygotic

and 3854 dizygotic twin pairs, and 715 cases of breast cancer were identified during the

follow-up. For more details see Appendix A.1. The results are given in Table 4.13:

gamma frailty gamma frailty gamma frailty log-normal frailty

without cure fraction with cure fraction1 with cure fraction2 with cure fraction1

a 2.50e-7 (1.60e-7) 2.22e-6 (2.00e-6) 1.98e-6 (2.16e-6) 6.27e-6 (2.85e-06)

b 0.161 (0.012) 0.148 (0.013) 0.148 (0.013) 0.147 (0.010)

σ 7.612 (0.470) 2.780 (0.931) 2.963 (1.391) 4.865 (3.791)

ρMZ 0.124 (0.040) 0.900 (0.552) 0.934 (0.609) 0.717 (0.196)

ρDZ 0.097 (0.029) 0.725 (0.465) 0.761 (0.527) 0.645 (0.223)

φ11 1.000 ( - ) 0.040 ( - ) 0.043 (0.040) 0.010 ( - )

φ10 0.000 ( - ) 0.160 ( - ) 0.176 (0.100) 0.092 ( - )

φ00 0.000 ( - ) 0.639 ( - ) 0.605 (0.235) 0.806 ( - )

φ 1.000 ( - ) 0.201 (0.081) 0.2193 ( - ) 0.102 (0.007)

likelihood -5218.6397 -5217.3336 -5217.3102

Table 4.13: Results of breast cancer data with the correlated gamma frailty model without

and with a cure fraction. 1 constrained by φ11 = φ2, φ10 = φ01 = φ(1− φ), φ00 = (1− φ)2,
2 constrained by φ10 = φ01, φ11 + φ10 + φ01 + φ00 = 1, 3 calculated by φ = φ11 + φ10

We consider three different cases of cure models. In the first case, it is assumed that the

susceptible status of the individuals in a pair is independent, e.g. P(Y1 = p1, Y2 = p2) =

P(Y1 = p1)P(Y2 = p2) with p1, p2 ∈ {0, 1}. The cure fraction is uniquely described by

the univariate probability φ = P(Y1 = 1) = P(Y2 = 1), which results in φ11 = φ2, φ10 =

φ01 = φ(1−φ), φ00 = (1−φ)2. In the second case, which is an extension of the first, the

restriction of independence between the susceptibility status of the two partners in a pair

is relaxed and substituted by the weaker constraints φ10 = φ01, φ11 +φ10 +φ01 +φ00 = 1.

When comparing the likelihoods, it turns out that the cure model with an independent
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susceptible status of the twin partners shows a non-significantly better fit than the

model without a cure fraction (χ2
1 = 2.61, p = 0.11). The more complicated cure model

without an independence assumption between the susceptible status of the twin partners

shows no significant improvement compared to the cure model assuming independence

(χ2
1 = 0.05, p = 0.83). Interestingly, the estimate of the size of a susceptible fraction

(due to breast cancer) with φ = 0.201 (0.081) is close to the estimate φ = 0.22 (0.0093)

in the parametric model found by Chatterjee and Shih (2001) in a study population that

is completely different. In the third case shown in the fourth column of Table 4.13 it

is again assumed that the susceptible status of the individuals in a pair is independent

of each other. But the frailty distribution was chosen to be log-normal (see section

4.6) and a MCMC approach was used to estimate the model parameter (see section

4.9). Interestingly, parameter estimates are quite different depending on whether the

frailty distribution among the susceptible individuals is chosen as gamma or log-normal.

But even with log-normal distributed frailty, only a small fraction (φ = 0.102) of all

women is indicated to be susceptible to breast cancer. Nevertheless, the estimates of the

susceptible fraction in all three models in Table 4.13 are perfectly in the range of the

figures obtained by Farewell et al. (1977) for different combinations of four risk factors.

If none of the risk factors is present the susceptible fraction is around 0.015; if all risk

factors are present, the estimate increases to 0.272.

A simulation study was performed to evaluate the properties of the estimates in the

proposed gamma frailty model. All simulations involve generating gamma-distributed

frailties, bivariate lifetimes, censoring times as well as the inclusion of a cured fraction in

the study population. A total of 5000 twin pairs are simulated. Samples are generated

as follows:

• Generate frailty variables using independent gamma-distributed random variables.

• Generate lifetimes given the frailties using S(t|Z) = e−Z
a
b

(ebt−1).

• Define cured individuals by using a random variable.

• Censored lifetimes are generated by using the year 2000 as the end of the study.

• Birth years are generated by using a uniform distribution on [1886,1925] to mimic

the censoring pattern.

The simulated data are generated assuming dependence between the susceptibility status

of the partners (second column in Table 4.13), but in the estimation procedure the more

general model with independent susceptibility status was applied (see third column in

Table 4.13). 1000 data sets were simulated.
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The mean parameter estimates of the model are shown in Table 4.14, in comparison with

the true values used for simulation. There appears to be nearly no bias in the parameter

estimates, and the overall performance is very good.

Parameter true value Mean of estimates standard deviation

a 0.100 0.116 0.067

b 0.120 0.120 0.010

σ 2.000 2.016 0.270

ρ 0.600 0.606 0.132

φ11 0.160 0.164 0.027

φ10 0.240 0.241 0.014

φ00 0.360 0.354 0.046

Table 4.14: Parameter estimation in the simulation study.

Multivariate cure models suffer from the same inherent identifiability problem with the

right censored observations as univariate cure models (compare last paragraph of section

3.8). For such observations the event under study has not occurred, either because the

person is insusceptible or the person is susceptible, but the follow-up did not last long

enough to observe the event. The identifiability problem grows with increasing censoring,

but is less of a problem with parametric modelling of the baseline hazard. The simulation

study shows that the estimation procedures work well under the given censoring scheme

in the sample data set. Stronger right censoring causes strong identifiability problems.

For example, another simulation study (not shown here) that uses the same parameters

as described in the simulation section but uses the birth years 1926-1958 (describing the

middle cohort of the Swedish Twin Registry) results in a complete breakdown of the

estimation procedure. In cure models with fixed censoring times (caused by ending the

study) censoring is no longer non-informative, even if censoring times and the survival

times are independent. The proportion of censored observations contains important

information about parameters in the model. For example, in what would be an ideal

case of no censoring it holds φ = 1. More information about this study is given in Wienke

et al. (2003a).

Another approach to include a cure fraction into a bivariate frailty model is the correlated

compound Poisson model in section 4.5.
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4.12 Dependent competing risks in frailty models

In section 4.4 we analyzed cause-specific mortality data using the correlated gamma-

frailty model, assuming independence among causes of death in a ‘competing risk’ sce-

nario (Wienke et al., 2000, 2001, 2003b). In this section, we investigate the effect of

removing this limitation. The model allows us to test the hypothesis on dependence

between the competing risks. The class of multivariate distributions presented is char-

acterized by the association parameters, using arbitrary marginal distributions. The

multivariate distribution is specified in full by the association and variance parameters

and the marginal distribution functions.

We can empirically demonstrate the advantages of this new model, having revisited

the statistical analysis of the lifespan data previously explored in Wienke et al. (2000,

2001, 2003b). In the present analysis, we focus on the mortality rates of coronary heart

disease (CHD). To simplify description, in this thesis we consider models limited to two

competing risks (death as a result of CHD and death arising from other causes). The

model can be extended to the case of multiple competing risks or multivariate lifetimes.

Results of a simulation study are included. Both limitations and future uses for this

model are discussed.

4.12.1 The statistical model

Identifying correlations of durations is a requirement for successfully analyzing genetic

factors. In survival analysis there is a recurring problem of censored data, which com-

plicates the statistical analysis far more than does complete data. Using a survival

model to estimate correlations among lifetimes can solve this problem. In this thesis,

instead of treating life spans directly, we wish to analyze both genetic and environmen-

tal factors acting on frailty for cause-specific mortality. The correlated gamma frailty

model can be used to fit the lifetime data and provide a specific parameter for the cor-

relation among frailties. This model was used to describe total mortality in twins by

Yashin and Iachine (1995a) and cause-specific mortality in twins under the assumption

of independence between competing risks by Wienke et al. (2000, 2001). However, the

assumption of independence between competing risks is questionable. Typically, in clin-

ical and epidemiological studies two different types of censoring occur. The observations

of certain individuals are censored due to the fact that they are still alive at the end of

the study. Other individuals drop from the follow-up for reasons not associated with the

disease under study, but through life-events beyond the control of the researcher, such

as migration.
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If censoring can be assumed to be non-informative with regard to all different causes, then

the traditional model may be applied with the censoring times taken as the minimum

of the hypothetical censoring times arising from the different causes of censoring. For

estimating the marginal survival function S the Kaplan-Meier estimator is appropriate.

However, the situation becomes much more difficult if the censoring arising from at least

one of the different causes can be assumed to be informative.

Various approaches have been proposed to account for informative censoring. Link (1989)

proposed a model for informative censoring in which censoring only occurs in a subpopu-

lation defined by the frailty distribution. Emoto and Matthews (1990) assumed a bivari-

ate Weibull model for failure and censoring times. Zheng and Klein (1995) used a copula

to study dependent competing risks. Lin et al. (1996) used data collected after non-fatal

failure events to model dependent censoring by death or selective patient withdrawal.

Lee and Wolfe (1998) proposed a test for independent censoring. Their method involves

further follow-up of a subpopulation of lost-to-follow-up censored subjects. Asymptotic

results in a specific situation are obtained by Wienke (1998). All these methods con-

sider uncorrelated subjects only. The method described in this section is to be applied

to correlated subjects and was published by Wienke et al. (2002). Essentially it views

correlated subjects as partial replicates for each other, and hence gains identifiability for

informative censoring.

We consider a case where two types of censoring occur, one non-informative and the other

informative. Let (Xi1, Yi1, Ci1, Xi2, Yi2, Ci2) (i = 1, . . . , n) be i.i.d. vectors of non-negative

random variables. The variables (Xi1, Xi2) denote the (usually non-observable) lifetimes

(with respect to the cause of death of interest) of pairs of individuals. The (Yi1, Yi2) are

informative censoring times (which may be lifetimes with respect to causes of death not

under study) and (Ci1, Ci2) are non-informative censoring times (for example caused by

end of study). Again, for i = 1, . . . , n and j = 1, 2 we observe Tij = min{Xij, Yij, Cij}
and

∆ij =





1 : if Xij ≤ min{Cij, Yij}
0 : if Cij < min{Xij, Yij}
−1 : if Yij < min{Xij, Cij}

(4.35)

where ∆ij = 1 means no censoring, ∆ij = 0 is non-informative censoring and ∆ij = −1 is

informative censoring. Now we derive the four-dimensional survival function of the data.

Suppose that we use (X1, Y1, X2, Y2) as a shorthand for (Xi1, Yi1, Xi2, Yi2) (i = 1, . . . , n).

Let (X1, Y1, X2, Y2) and (Z1, Z2, Z3, Z4) be the survival times of life- and (informative)

censoring times and the frailties of the two individuals with respect to two different
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causes of death; let their individual hazards be given by the proportional hazards model

X1 ∼ λ1(x1, Z1) = Z1λ1(x1) X2 ∼ λ1(x2, Z3) = Z3λ1(x2)

Y1 ∼ λ2(y1, Z2) = Z2λ2(y1) Y2 ∼ λ2(y2, Z4) = Z4λ2(y2), (4.36)

where X ∼ λ means that λ denotes the hazard function of X. Hence, the baseline hazard

of the lifetime of the first (X1) and second twin (X2) with respect to the first cause of

death are assumed to be equal (given by λ1). The same is true for the lifetime of the first

(Y1) and second twin (Y2) with respect to the second cause of death (λ2). We assume

that X1, Y1, X2, and Y2 are independent given the vector of frailties (Z1, Z2, Z3, Z4). Let

V1, V8 ∼ Γ(k1, λ0), V2 ∼ Γ(k2, λ1), V3 ∼ Γ(k3, λ2), V4, V7 ∼ Γ(k4, λ2), V5, V6 ∼ Γ(k5, λ1)

independent gamma distributed random variables with parameters k1+k2+k5 := λ1 = 1
σ2

1

and k1 + k3 + k4 := λ2 = 1
σ2

2
. Now the frailties are given by the following construction:

cause of death 2

V2 + V6 + λ0

λ1
V8 = Z3

V3 + V7 + λ0

λ2
V8 = Z4

cause of death 1 Z1 = λ0

λ1
V1 + V5 + V2

Z2 = λ0

λ2
V1 + V4 + V3

??

twin 1

6 6

-

-�

�

ρ

twin 2

ρ

ρ1

ρ2

Figure 4.2: Cause-specific frailties and their correlations in a twin pair

Here, Z1, Z3 denote frailties with respect to the first cause of death (cause under study)

and Z2, Z4 denote frailties with respect to the second cause of death of both individuals.

Furthermore, the parameter ρ describes the correlations between the frailties: ρ1 =

corr(Z1, Z3), ρ2 = corr(Z2, Z4) and ρ = corr(Z1, Z2) = corr(Z3, Z4). Now the four-

dimensional survival function can be derived by averaging over the conditional lifetimes,

using relation (4.36) and applying the Laplace transform of gamma distributed random

variables (for more detailed calculations see Appendix F):

S(x1, y1, x2, y2) = ES1(x1)Z1S2(y1)Z2S1(x2)Z3S2(y2)Z4 (4.37)

= (S1(x1)−σ
2
1 + S1(x2)−σ

2
1 − 1)

− ρ1
σ2

1 (S2(y1)−σ
2
2 + S2(y2)−σ

2
2 − 1)

− ρ2
σ2

2

∗ (S1(x1)−σ
2
1 + S2(y1)−σ

2
2 − 1)

− ρ
σ1σ2 (S1(x2)−σ

2
1 + S2(y2)−σ

2
2 − 1)

− ρ
σ1σ2

∗ S1(x1)
1−ρ1−σ1

σ2
ρ
S1(x2)

1−ρ1−σ1
σ2
ρ
S2(y1)

1−ρ2−σ2
σ1
ρ
S2(y2)

1−ρ2−σ2
σ1
ρ
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with 0 ≤ ρ ≤ min{σ2

σ1
(1−ρ1), σ1

σ2
(1−ρ2)}. In this model ρ1 denotes the correlation between

Z1 and Z3, the main parameter of interest. This parameter describes the correlation of

frailties of individuals in a pair with respect to the cause of death under study and is the

key figure for genetic analysis of susceptibility to death from cause-specific mortality.

The second parameter ρ2 models the correlation between frailties with respect to all

other causes of death (combined to the second cause of death or informative censoring).

The parameter ρ is responsible for the association between causes of death in each

individual. With this parameter, it is possible to test the hypothesis of dependence

between competing risks in the above model.

S1 and S2 are the marginal survival functions with respect to the first and second cause of

death. Note that it is impossible to use the Kaplan-Meier estimator to get non-parametric

estimates of the marginal survival functions because of the assumed dependence between

the two competing risks. To overcome this problem we use a parametric approach by

fitting a Gamma-Gompertz model to the data, so that Sj(t) =
(
1+s2

j
aj
bj

(ebjt−1)
)− 1

s2
j , (j =

1, 2), where aj, bj, s
2
j are parameters to be estimated. It is necessary to account for left

truncation in the data. The likelihood function of this model is given in Appendix F.

Due to the assumption concerning non-informative censoring with respect to (C1j, C2j),

the function C does not enter the likelihood function.

4.12.2 Simulation study

To evaluate the performance of the estimates in the model described above a simulation

study was carried out. All simulations involve generating gamma-distributed frailties,

bivariate lifetimes, dependent and independent censoring times and truncation times.

We will try to mimic the characteristics of the Danish twin data which we analyze in

the next section. A total of 8000 twin pairs (3000 MZ and 5000 DZ pairs) are simulated,

a number which is reduced by the truncation process to a final sample size of around

4200-4300 twin pairs. Samples are generated as follows:

• Generate frailty variables Z1, Z2, Z3, Z4 using independent gamma-distributed ran-

dom variables V1, . . . , V8.

• Generate lifetimes with respect to the first (X1, X2) and second disease (Y1, Y2)

given the frailties using Si(t|Z) = e
−Z ai

bi
(ebit−1)

, (i = 1, 2).

• The censored (bivariate) lifetimes Tij = min{Xij, Yij, Cij} are generated by using

the lifetimes with respect to the second cause of death as dependent censoring times

and uniform distributed random variables on [40,100] as independent censoring

times.
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• Birth years are generated by using a uniform distribution on [1870,1930] to mimic

the truncation pattern.

• The year of truncation is 1943.

For the simulations 1,000 data sets were generated. The mean parameter estimates of the

model are shown in Table 4.15, in comparison with the true values used for simulation.

Although there appears to be some bias in certain parameter estimates, the magnitude

does not appear to be of any practical significance and the overall performance is quite

good.

Parameter true value Mean of estimates standard deviation

a1 1.000 1.008 0.278

b1 0.120 0.121 0.008

s1 2.000 1.991 0.200

a2 1.000 0.974 0.303

b2 0.120 0.123 0.009

s2 2.000 2.061 0.254

σ1 2.000 1.964 0.288

σ2 2.000 2.174 0.689

ρ1(MZ) 0.400 0.408 0.073

ρ1(DZ) 0.200 0.205 0.051

ρ2(MZ) 0.100 0.107 0.064

ρ2(DZ) 0.060 0.067 0.047

ρ 0.500 0.539 0.237

Table 4.15: Parameter estimation in the simulation study.

4.12.3 Example

In our example, we investigated how well the method performed when used to analyze

the respective influence of genetic and environmental factors affecting risk of mortality

from coronary heart disease (CHD). In this example the second cause of death is all

other causes combined. The data we use for our analysis are the survival times of MZ

and DZ female twins sampled from the Danish Twin Registry, described in more detail

in Appendix A.2

Based on methods of quantitative genetics described in detail in Appendix B, we com-

pared the ADE and DE as well as the ACE and CE models. The likelihood ratio test

prefers the DE and the ACE model (Table 4.16). The ACE model converges to the AE
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model. Standard errors are not given in the ACE model since 0 is the boundary of the

parameter space. A comparison of the AE and the DE model cannot be done using

the likelihood ratio test because the models are not nested. According to the Akaike

Information Criterion (AIC), the AE model fits the data best and gives a inheritance

estimate of 0.29, with standard error 0.09. Using the sub-model of independent causes

of death (ρ = 0, standard correlated gamma frailty model), the inheritance estimate was

found to be 0.58 (0.14).

σ a2 d2 c2 e2 ρ Log-L

ACE 1.35 ( — ) 0.29 ( — ) 0.00 ( — ) 0.71 ( — ) 1.00 ( — ) -22266.97

AE 1.35 (0.18) 0.29 (0.09) 0.71 (0.09) 1.00 ( — ) -22266.97

ADE 1.34 (0.18) 0.25 (0.18) 0.05 (0.19) 0.71 (0.09) 1.00 ( — ) -22266.97

DE 1.34 (0.27) 0.32 (0.09) 0.68 (0.09) 1.00 ( — ) -22268.06

CE 1.34 (0.19) 0.19 (0.06) 0.81 (0.06) 1.00 ( — ) -22270.21

AE* 1.87 (0.41) 0.58 (0.14) 0.42 (0.14) 0.00 ( — ) -22269.24

Table 4.16: Parameter estimates (s.e.) σ2 - variance of frailty, a2 - additive genetic effects,

d2 - genetic effects due to dominance, c2 - shared environment, e2 - non-shared environment,

ρ - correlation between frailties associated with competing risks, Log-L - value of the Log-

Likelihood function, AE* - AE model with ρ = 0 (independent model)

4.12.4 Discussion

Frailty models are mixture models within survival analysis. In survival analysis, one typ-

ically has to deal with censored observations. In most applications censoring is assumed

to be simply non-informative. In clinical studies, for example, where patients contribute

censored observations because they are still alive at the preassigned termination point

of study, this assumption is realistic. Some others get lost during the time of follow-up

for reasons that are not related to the event under study. In such cases censoring can

be assumed to be non-informative. However, in some cases this assumption is question-

able, especially in cases where there are competing causes of death. This thesis suggests

that in such cases, where only a part of the censored observations is assumed to be

non-informatively censored an extension of the bivariate correlated gamma frailty model

(Yashin et al., 1993; Pickles et al., 1994) be used. Because competing risks can also

be correlated within families and may share unobserved dependencies with the cause of

interest, the standard approach, which treats competing risks as independent, could lead

to biased estimates of the variance components associated with the cause of interest.

Here, the frailties are modelled in terms of standard variance components for additive
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and dominance genetic effects and shared and unique environmental effects. This thus

provides a rich class of models for analyzing this complex pattern of dependencies be-

tween family members and between causes of death. Furthermore, frailty models are

well suited for inclusion of observed covariates in the analysis (Wienke et al., 2005a).

Using cause-specific mortality data of relatives (here twins) it is possible to overcome

problems due to identifiability in univariate censored lifetimes as stated in Tsiatis (1975).

The model we have developed allows for dependencies among competing risks, and makes

it possible to test for such dependencies. Furthermore, combining methods from survival

analysis (especially from frailty models) and genetic analysis as we did, improves the

genetic analysis of time-to-event data in the case of informative and non-informative

censoring together as well as accounting for heterogeneity in the population. Our example

is an extension of the analysis in the case of independent causes of death (Wienke et

al., 2000, 2001, 2003b, 2004), where deaths from other causes than the cause under

study are treated as non-informative and collapsed with censored observations caused

by end of study. In both cases (called here dependent and independent) the AE model

is the best fitting model for CHD. This shows a certain degree of consistency in the

model. Comparing both cases, it turns out that the heritability of frailty on mortality

due to CHD changes substantially. Fixing the correlation between frailty on mortality

from CHD and frailty on mortality from other causes to zero has an impact on the

heritability estimate - changing it from 0.29 (0.09) to 0.58 (0.14). Both models detected

the significant influence of genetic factors. The parameter ρ can be used to test the

hypothesis of dependence between the competing risks. In the present case ρ = 1 holds,

which means that a shared frailty model is the best fitting model for the competing

risks. The likelihood ratio test indicates that the simpler independent model is sufficient

to describe the data.

Mortality patterns in twins and in the general population are very similar (Christensen

et al., 1995, 2001), which is an important argument for generalizing the results of twin

studies to the general population.

The proof of consistency and asymptotic normality of the maximum likelihood estimators

is still an open problem, but our simulation results support the asymptotic validity of

the proposed method.

One important limitation of the presented model should be kept in mind; the correlation

coefficients between the frailties are always non-negative by construction. This restriction

makes sense when comparing the lifetimes of relatives, but it is not clear that the same

holds for the competing risks in an individual. On one hand, many major diseases

have risk factors in common and consequently, the presence of any one of these risk
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factors will increase the risk of death with respect to all diseases. On the other hand,

everyone dies eventually, so it is only logical that if the risk of death from one cause is

decreased then the risk from another cause is increased. Furthermore, the parameter ρ

is only identifiable in a ‘real’ multivariate case. Having pairs of unrelated individuals

(e.g. ρ1 = ρ2 = 0), implying the univariate case, make the parameter ρ non-identifiable.

The nature of dependencies among competing risks deserves further study.

Classical twin studies are based on the important assumption that MZ and DZ twins

have the same correlation with respect to environmental factors (equal environment

assumption). This standard assumption is necessary for the identifiability of heritability,

i.e. so as to be able to interpret the difference in concordance between MZ and DZ twins

as being explained in full by their difference in genetic concordance. However, without

doubt, the assumption is also questionable: MZ twins are generally treated the same by

their parents to a much greater extend than are DZ twins. This implies an overestimation

of heritability. The equal environment assumption seems to be acceptable with respect

to environmental factors related to CHD.

The suggested model gives a clear illustration of how the methods of survival analysis

and genetic epidemiology may be merged to improve the genetic investigation of time-to-

event data. Further extensions of the model to multiple causes of death and/or multiple

related lifetimes will be important in elucidating the properties of this strategy.

A similar model for current state data was established in Giard (2001) and Giard et

al. (2002). A more general approach compared to our model (4.37) was investigated by

Bandeen-Roche and Liang (1996). Their hierarchical model is given by

S(t1, . . . , tp) = Ee−
PN
k Zk

P
j∈Ik Λ(tj),

where p denotes the dimension of the multivariate observations in the cluster, N is the

number of sub-clusters, Zk the shared frailty in each sub-cluster, and Ik contains the

indices of all observations belonging to sub-cluster k. In our case p = 4 holds and there

exist four sub-clusters each with one single observation. The Zk are given in picture

4.2. The difference in the models is in the observed data. In the model presented above

only the minimum of two competing lifetimes in each individual is observed, whereas

Bandeen-Roche and Liang (1996) assume that all (four) lifetimes are observable.

A similar approach was used by Huang and Wolfe (2002). Their model is based on

log-normal frailty and relation (4.7), which means a model somewhere between shared

and correlated frailty models. In a recent paper Huang et al. (2004) suggested a test

procedure to test the hypothesis of dependence between survival and censoring times in

their model.
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Chapter 5

Different aspects of frailty modelling

5.1 Omitted covariates in hazard models

The result of omitted covariates in simple regression models is known: Parameter es-

timates are unbiased unless the omitted risk factors are correlated with the included

observed covariates. In hazard models even this result does not hold. Many univariate

biostatistical studies have focused on evaluating the effect of omitted covariates on the es-

timates of regression parameters β, see for example Gail et al. (1984), Schumacher et al.

(1987), Schumacher (1989), Bretagnolle and Huber-Carol (1988), Chamberlain (1992),

Hougaard et al. (1994), Schmoor and Schumacher (1997), and Keiding et al. (1997).

In hazard models, neglecting a subset of the important covariates leads to biased esti-

mates of both regression coefficients and the hazard rate. The reason for such bias is the

time-dependent hazard rate, a unique element in survival analysis. To understand this

result, consider the example of a population initially consisting of two sub-populations,

a high-risk group and a low-risk group, each subject to a constant risk (binary frailty

model). If this heterogeneity is not accounted for and a common hazard is assumed for

the whole population (as a step function for example), the estimated hazard will not be

a simple average of the constant hazards of the two groups, but it will fall over time.

Consequently, in a simple proportional hazards model with observed covariates, an omit-

ted covariate results in distorted parameter estimates for the included factors, even when

the distribution of omitted characteristics is initially the same in all categories of included

covariates. The problem is that the distribution of characteristics can not remain the

same across categories over time. This holds because high-risk individuals with certain

values of the omitted covariate will die earlier, so that the distribution of omitted char-

acteristics within each category of an included covariate must also change over time. As

consequence, all parameter estimates must be contaminated by the effect of the omitted

101
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risk factor. This is quite disturbing since one can never know the true model.

Bretagnolle and Huber-Carol (1988) predict the sign of the bias in the two following cases:

first, when there is only one covariate left in the used model, whatever the number of

omitted covariates is. Then the effect on the survival of the covariate under study is

always underestimated. Second, in case of several covariates remaining in the analyzed

model the authors prove that the same result of underestimation holds for each of them at

least up to some fixed time which, in practical cases, is reasonably long. The asymptotic

bias resulting from such omissions is not negligible, as shown by simulations. In the

case of left truncated and right censored data it may even happen that the estimates

crosses 0, that is a beneficial covariate (β < 0) results, through the biased estimate in

an unfavorable one (β > 0). Nevertheless this crossing 0 phenomenon does not happen

with only right censoring if one assumes that censoring is independent on the included

covariates.

Univariate frailty models are one (but not the only) way to account for the effect of omit-

ted covariates in a proportional hazards model with observed covariates. For reasons of

convenience, analysts frequently choose parametric representations of the frailty distri-

bution that are mathematically tractable. With such parametric assumptions about he-

terogeneity, the hazard can be represented parametrically or semi-parametrically. There

could be the issue of misspecifying the frailty distribution. Heckman and Singer (1982b)

demonstrate, however, for a given parametric baseline hazard function results can be

very sensitive to the choice of the parametric form of the frailty distribution, even when

a flexible form is chosen (see also Heckman and Singer (1984), Keiding et al. (1997)).

For this purpose, Heckman and Singer (1982b) use a simple parametric family of dis-

tributions to investigate this sensitivity (log normal, normal, gamma distribution). The

authors propose a non-parametric representation of the frailty distribution and through

simulations show, that parameter estimates of the covariate effects can be estimated

with great precision. The frailty distribution is approximated by a discrete mixture

with finitely many mass points, where the number, location and probability mass as-

sociated with each point are to be estimated (see last part of section 3.1). The results

of Heckman and Singer (1982b) indicate that the distribution of heterogeneity cannot

be approximated well. Thus their procedure corrects for heterogeneity without clearly

identifying its distribution.

It should be noted that Heckman and Singer’s (1982b) arguments against parametric

assumptions about the frailty distribution are points of discussion and controversies by

authors who claim that Heckman and Singer misspecified the duration dependence in the

example data set used to demonstrate the potentials of their nonparametric approach.
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Newer studies conclude that parameter estimates are not that sensitive with respect to

the choice of the frailty distribution (see Manton et al. 1986; Klein et al. 1992; Guo and

Rodriguez 1992; Guo 1993).

To get any results at all with a non-parametric frailty distribution, however, one must

impose a parametric form on the baseline hazard function like Weibull or Gompertz dis-

tribution. What is not mentioned in Heckman and Singer (1982b) but is demonstrated,

though not emphasized, by Manton et al. (1981) is that results can also be sensitive to

the functional form of the assumed baseline hazard. Trussell and Richards (1985) show

that parameter estimates could be very sensitive with respect to the assumed parametric

form of the baseline hazard function when using the non-parametric frailty distribution

suggested by Heckman and Singer (1982b).

Henderson and Oman (1999) intend to quantify the bias which may occur in estimated

covariate effects and fitted marginal distributions when frailty effects are present in

survival data but ignored in a wrongly specified proportional hazards analysis. They

considered this problem for positive stable frailty models (see Example 6). In general,

however, no explicit solutions were found. Henderson and Oman (1999) used first order

approximations to estimate the bias in different situations. It turns out that the amount

of bias depends on the form of frailty distribution, but to the first order approximation

the bias is independent of the covariate distribution. Censoring in the Koziol-Green

model (the censoring survival function is a power of the baseline survival function) and

type I censoring show that the asymptotic bias is reduced by censoring, particularly

with log-normal frailty. For non-censored survival and gamma-distributed frailty with

variance parameter σ2, the following approximation holds:

β = (1 + σ2)β∗ (5.1)

where β, β∗ denote the unbiased and biased parameter, respectively, in the Cox model,

assuming that the covariates are centered. Consequently, the bias due to omitted co-

variates becomes more important with increasing heterogeneity (frailty variance) and

relation (5.1) could be used to compensate for the frailty effect.

Congdon (1995) used Weibull and Gompertz hazard specifications to investigate the

influence of different frailty distributions (gamma, inverse Gaussian, stable, binary) on

total and cause-specific mortality data from London area 1988 - 1990.
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5.2 Dependence between frailty and observed co-

variates

Nearly all contributions and applications on frailty models in a regression setting like

(3.2) consider the frailty Z as independent of the observed explanatory variables X.

This strong assumption is made only for mathematical convenience. Of course, in some

cases this independence assumption is inappropriate. In a competing risk setting this

question was analyzed by di Serio (1997) to explain the effect of unexpected protectivity.

This problem occurs when one covariate shows a protective impact not expected from

a medical point of view. A simulation study was conducted in a two competing risks

scenario with two frailties. Each frailty is related to one competing event. It turns

out that dependence between the two frailties alone does not cause false protectivity;

conversely, false protectivity may occur according to the magnitude and the sign of

the dependence between frailty and the observed covariate. Here, dependence between

the two frailties means dependence on the two competing event times, resulting in a

univariate lifetime model with dependent censoring. The problem is that an assumption

about the distribution of the frailty is not enough, since what we need are actually (non-

testable) assumptions about the direction and the intensity of the dependence between

the frailty and the observable covariates, which makes analysis quite arbitrary. Thus,

survival models where observed covariates depend on unobserved frailty may not be

identifiable from univariate data.

It turns out that such models can be identified from bivariate data when they are imbed-

ded into a correlated gamma frailty model by using the relation σ(X) = σeγX , where

γ is a parameter to be estimated and σ2 denotes the variance of the frailty variable Z.

Thus, the distribution of Z (or more specificly their variance) depends on the observed

covariate values X.

An example of such kind of models (but only in the multivariate case) can be found

in Wassell and Moeschberger (1993), who study the impact of interventions in the Fra-

mingham Heart Study by introducing the notion of modified gamma frailty. Yashin et

al. (1999b) investigate the heritability of susceptibility to death after accounting for

the dependence between frailty and observed covariates (BMI and smoking) in Danish

twins. Noh et al. (2006) suggested the notion of dispersed frailty for such kind of models

and applied it to the well known kidney infection data from McGilchrist and Aisbett

(1991) to verify the hypothesis of heterogeneity in the frailty distribution in the study

population.
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5.3 Tests for heterogeneity

In practical application of methods from survival analysis the researcher is usually con-

fronted with the problem of whether unobserved heterogeneity is present in the data or

not. For this problem a number of tests for heterogeneity have been proposed during

the last 15 years. The relevant testing problem for the null hypothesis of no unobserved

heterogeneity is

H0 : σ2 = 0 versus HA : σ2 > 0,

where σ2 denotes the variance of the frailty (unobserved heterogeneity). In this situation

a one-sided testing hypothesis is natural. The main problem here is that the heterogene-

ity parameter is on the boundary of its parameter space under H0 and the classical

likelihood ratio asymptotic chi-squared distribution theory is no longer valid. It turns

out that in many cases the likelihood ratio statistic has an asymptotic null distribution

which is an equal mixture of a point mass at zero and a chi-square distribution with

one degree of freedom, often denoted 0.5 χ2
0 + 0.5 χ2

1. Rigourously established limiting

distributions of the likelihood ratio statistic are provided by Maller and Zhou (2003) and

Nguti et al. (2004). Other, generally more applied results about tests for heterogeneity in

survival data can be found in Oakes (1982), Blossfeld und Hamerle (1989, 1992), Hamerle

(1992), Commenges and Andersen (1995), Gray (1995), Commenges and Jacqmin-Gadda

(1997), Verweij et al. (1998), Bordes and Commenges (2001), Dunson and Chen (2004).

A test procedure for proportional hazards in the presence of nonobserved heterogeneity

is suggested by McCall (1994).

5.4 Log-rank test in frailty models

In analyzing time-to-event data of two groups with the log-rank test, a proportional

hazards model is usually assumed. Nevertheless, this hypothesis is no longer valid in the

case of unobserved covariates. Omission of a balanced covariate from a proportional ha-

zards model generally leads to a model with non-proportional hazards. As a consequence,

the simple log-rank test is no longer optimal. A general treatment of this problem is

given in Oakes and Jeong (1998). The authors establish connections between theories

of weighted log-rank tests and of frailty models and analyze parametric as well as non-

parametric models. Furthermore, the authors consider different frailty distributions:

positive stable, inverse Gaussian, gamma and two-point distribution and the models are

extended to include random censoring. The optimal limiting weight function is

w(t) = 1 + Λ0(t)
(L′′(Λ0(t))

L′(Λ0(t))
− L′(Λ0(t))

L(Λ0(t))

)
,



106 CHAPTER 5. DIFFERENT ASPECTS OF FRAILTY MODELLING

where L′ and L′′ are the first and second derivative of the Laplace transform L of the

frailty distribution. For example, in the gamma frailty model Oakes and Jeong (1998)

derived the expression

w(t) = (1 + σ2Λ0(t))−1

(corrected for an error in their formula and transformed to our notation). The asymptotic

relative efficiency of the simple log-rank test and of the optimally weighted log-rank test

relative to the adjusted test that would be used if the covariate values were known are

given in terms of the Laplace transform of the frailty distributions. These frailties repre-

sent the effect of the missing covariates. Two main conclusions are derived by Oakes and

Jeong (1998) from their analysis. First, the loss of efficiency from omitting a covariate

is generally more important than the additional loss due to the misspecification of the

resulting non-proportional hazards model. Furthermore, the loss of efficiency increases

with higher variance of the frailty distribution. However, binary frailty distributions can

provide exceptions to this rule, reflecting the fact that for a very extreme frailty distri-

bution, one can identify the values of the frailties from the ordering of the failures - the

individuals who experience the event of interest first are almost certain to have the higher

(of the only two possible) values of frailty. Consequently, the knowledge of the values

of the frailties (which means the values of missing covariates) becomes less important.

Second, censoring tends to remove the late events and, consequently, reduces the loss of

efficiency in the simple log-rank test compared to the adjusted log-rank test. The above

results depend on the knowledge of the unknown frailty variance σ2, consequently, their

practical applicability is limited.

Jeong (2003) extended the aforementioned results to quantify and visualize the loss

of efficiency of the log-rank test when a dependence structure between survival and

censoring times is being ignored. The assumed dependence structure is based on a

correlated gamma frailty model (see section 4.4). In the given situation the loss of

efficiency is minimal under the proportional hazards model, even when the correlation

between potential survival and censoring times is strong unless the dependent censorship

causes a severe non-proportionality.

Broe̋t et al. (1999) suggest a more practical approach for taking into account unobserved

covariates in a weighted log-rank test. The construction of the test is based on a gamma

distribution of the frailty. For the frailty parameter σ2 a range is assumed. Simulations

investigate the power of the test for different frailty distributions.
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5.5 Time-dependent frailty models

Standard frailty models assume that the individual frailty Z is determined at time zero

(begin of follow-up) and follows the individual throughout the rest of life, resulting in

the individual risk later in life being perfectly correlated with that at the beginning. It

is clearly of interest to overcome this restrictive assumption of fixed frailty in order to

develop more flexible models.

There are different approaches to dealing with time-dependent frailty models by regard-

ing the hazard of an individual as a stochastic process. This provides individual flexi-

bility. However, since what is observable is still the average hazard function, the main

problem is to find models which show a tractable mathematical connection between the

individual hazard functions and the average one. One attempt to tackle this problem

was suggested by Yashin and Manton (1997), defining the hazard function as a diffusion

process by means of a stochastic differential equation. By using Ornstein-Uhlenbeck-

type processes such kind of models reflect the fact that many biological parameters tend

to stabilize around certain values, which is called homeostasis.

In a second approach McGilchrist and Yau (1996) and Yau and McGilchrist (1998) focus

on recurrent event time data. For the inter-recurrence time data, it is conceived that

inter-recurrence times closed to each other on the times scale are highly associated,

while times which are further apart from each other on the time scale are less correlated.

To model such kind of serial dependence structure, a dynamic frailty model can be

constructed by assuming the frailties of subsequent time intervals following an auto-

regressive process of order one. Yau and McGilchrist (1998) adopted AR(1) frailty models

to analyze chronic granulomatous disease data. A similar but simpler idea without using

an AR(1) process was suggested by Wintrebert et al. (2004). A Bayesian approach can

be found in Manda and Meyer (2005).

The third approach is based on Lévy processes (Gjessing et al., 2003). Like diffusion

processes, hazard functions driven by Lévy processes also yield some degree of tractabil-

ity. It is possible to get explicit formulae for the relationship between conditional and

unconditional hazard, and the frailty and hazard of survivors may be calculated. A basic

difference between this and the first approach is the jump nature of the Lévy processes.

However, it could well be imagined that the individual hazard may increase in jumps,

for example with the onset of an acute disease. The model is an extension of the fixed

frailty model in Aalen and Hjort (2002).
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5.6 Identifiability of frailty models

One of the aims of frailty modelling is to study the properties of the hazard function and

the frailty distribution in real life applications. Such analysis is possible if the frailty

distribution as well as the hazard function can be reconstructed (identified) from the

survival data. Let S(t) represent some survival function. It turns out that S(t) can

always be represented as a marginal survival function in some model with unobserved

frailty Z and cumulative baseline hazard Λ0(t). In other words univariate frailty models

are not identifiable if only the marginal distribution of the failure times are known.

Indeed, let L be the Laplace transform of some arbitrary distribution of the non-negative

random variable Z, and let L−1 be the inverse function of L. For any 0 ≤ t < ∞ the

cumulative hazard is defined as

Λ(t) = L−1(S(t)).

To prove that Λ(t) is a cumulative hazard function of a survival distribution it is sufficient

to show that Λ(t) is a non-decreasing function. This follows from the fact that both S(t)

and L−1(t) are non-increasing functions of t. Thus, for any given survival function

S(t) and probability distribution on the positive half-line (given by Laplace transform

L), one can construct a frailty model with marginal survival function S(t). The non-

identifiability aspect for particular distributions of frailty was discussed by Heckman and

Singer (1982a, 1984) and Hoem (1990) among others. Elbers and Ridder (1982) show

that if frailty distribution has a finite mean then the presence of observed covariates

makes the univariate proportional hazards frailty model identifiable. Other conditions

are given by Heckman and Honoré (1989). These findings stimulated the use of frailty

models with observed covariates (regression models) in the analysis of univariate survival

data (Andersen et al., 1993).

Bivariate data present an opportunity to identify the frailty distribution and the baseline

hazards. For example, all shared frailty models are identifiable from bivariate data

without additional information such as observed covariates or parametric assumptions

about the baseline hazards. It turns out that the identifiability property holds for a

broader class of frailty models, including correlated frailty models. Furthermore, the

condition of a finite mean required for the identifiability in a univariate frailty model

with observed covariates by Elbers and Ridder (1982) is not needed in this case. For

more details see Yashin and Iachine (1999b). Identifiability aspects of the correlated

frailty model are analyzed in detail by Iachine and Yashin (1998) and further extended

by Iachine (2004), where the latter paper contains an interesting counterexample.



Chapter 6

Summary

In the present thesis we discuss several aspects of univariate and bivariate frailty models.

The proportionality of hazards make frailty models a simple tool for analytical and

computer calculations. Despite their simplicity these models turn out to be useful in

providing insights and ideas for analyzing reality.

In the univariate case they explain the deceleration of mortality rates at older ages

(Vaupel et al., 1998) and allow for the evaluation of bias in regression coefficients when

calculating the effect of observed covariates on survival in the presence of heterogeneity.

This heterogeneity may be difficult to assess, but it is nevertheless of great importance.

The key idea of univariate frailty models is that individuals have different frailties, and

that the most frail will die earlier than the lesser frail. Consequently, systematic selection

of robust individuals takes place, which distorts what is observed. When mortality rates

are estimated, one may be interested in how they change over time or age. Quite often,

they rise at the beginning of the observation period, reach a maximum and then decline

(unimodal intensity) or level off. This, for example, is typical for death rates of cancer

patients, meaning that the longer the patient lives beyond a certain time, the better his

or her chances of survival are. It is likely that unimodal intensities are often the result

of selection and that they do not reflect an underlying development on the individual

level. The population intensity starts to decline simply because the high-risk individuals

have already died. The intensity of a given individual might well continue to increase.

An estimate of the individual hazard rate without taking into account the unobserved

frailty will thus underestimate the hazard function to an increasingly greater extent as

time goes by.

In general, two sources of variability in duration data are useful to consider: variability

accounted for by observable risk factors (which is thus theoretically predictable) and

heterogeneity caused by unknown covariates, and which is therefore theoretically unpre-
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dictable even when all relevant information at that time is known. It is the latter which

is of specific interest in the present thesis, and the subject of observable covariates is

treated here only for completeness. As Hougaard (1991) pointed out, there are advan-

tages in considering these two sources of variability separately: heterogeneity explains

some ‘unexpected’ results or gives an alternative explanation of some results, for example

non-proportional or decreasing hazards.

The precise nature of the relationship between individual and population ageing depends

on the distribution of frailty among individuals. Different choices of distributions for

the unobserved covariates are possible, including binary, gamma and log-normal, which

show both qualitative and quantitative differences. The compound Poisson frailty model

includes interesting special cases (gamma and log-normal frailty model) and is very

flexible. Even cure models can be integrated in this framework in an elegant and natural

way. The variance of the frailty distribution determines the degree of heterogeneity in

the study population.

Bivariate frailty models help to clarify the roles of genes and environment in life span,

time to onset of diseases, and other durations. Some of the bivariate frailty models

admit semi-parametric representations (copulae). Such representation allows us to avoid

unjustifiable technical assumptions about the parametric structure of the conditional

survival function given frailty. It also facilitates the estimation procedure and improves

the interpretation of the results of data analysis. The structure of the correlated frailty

models is appropriate for addressing questions about the genetic nature of individual

susceptibility to disease and death. The bivariate models are identifiable even without

observed covariates. The dependent competing risks problem (which is non-identifiable

in the univariate case) becomes identifiable from bivariate data about cause-specific

mortality for related individuals. The methodology of heterogeneity analysis is thereby

extended to the multivariate case. As a result, new heterogeneity models arise. For

example, the newly proposed correlated compound Poisson frailty model is an interesting

extension of the correlated gamma frailty model, which allows us to consider a much

richer class of models in the data analysis. As in the univariate case, the problem of a

possible cure fraction is also solved by this model.

Despite this clear advantage of frailty modelling, further work in improving the methods

of analysis of univariate and bivariate survival data is needed. This is because the as-

sumptions of fixed frailty and the proportionality of hazard, used in these models, are not

always realistic. The interpretation of frailty often depends on identifiability conditions.

For example, the characteristics of frailty identified by parametric demographic (e.g.

gamma-Makeham) models differs from characteristics of frailty in biostatistical mod-
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els with Elbers and Ridder (1982) identifiability conditions, which in turn differ from

characteristics of frailty identified from bivariate data using a correlated gamma frailty

model. The assumption that frailty is independent of observed covariates is question-

able. Shared frailty models for related individuals should be used with care. Correlated

frailty models may be not flexible enough in describing multiple correlations in clusters

of larger size. To overcome current problems with the genetic analysis of durations,

extended versions of susceptibility models have to be developed. For example, dynamic

models of frailty need to be introduced and analyzed. Possible dependence between

frailty and observed covariates should be taken into account. Models for pedigree data

with observed covariates need to be developed. Quadratic hazards models of liability

should be tested.

The major criticism of frailty models is concerned with the lack of sufficient biological

background for their basic assumptions: the proportional structure of the hazards, the

form of a frailty distribution, and the independence of observed and omitted covariates.

Furthermore, the inability to measure frailty directly often complicates the interpretation

of the results of a frailty based analysis. Another limitation is that frailty models are

usually formulated in terms of the survival function. Consequently, their application

to p-variate survival data requires taking partial derivatives of the order p. Hence,

generalization from the bivariate to the multivariate case is not trivial.

Despite these limitations, frailty models provide a valuable tool for the analysis of uni-

variate and bivariate time-to-event data especially in medicine, (genetic) epidemiology,

demography, biology and other sciences. They form an interesting alternative to tradi-

tional models in survival analysis.
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Appendix A

Data

To emphasize the practical purpose of the frailty models considered, we provide brief de-

scriptions of data sets from the Swedish and Danish twin registries serving as illustrations

for the chapters above.

A.1 The Swedish Twin Registry

First established in the late 1950s to study the importance of smoking and alcohol con-

sumption on cancer and cardiovascular diseases while controlling for genetic propensity

to disease, the Swedish Twin Registry has today developed into a unique source. Since

its establishment, the registry has been expanded and updated on several occasions, and

the focus has similarly been broadened to include most common complex diseases. To-

day it contains around 70,000 twin pairs born between 1886-1990. Nearly 400 papers

have been published based on data from the Swedish Twin Registry.

When the twin registry was initiated, the church registers from all parishes of the time

period 1886-1925 were checked manually to identify all twin births. Between 1959 and

1961, a questionnaire was sent to all twins, which included a question about phenotypic

similarities to assess the zygosity: ‘Were you as children as alike as two peas in a pod?’

When both partners agreed, they were defined as MZ twins. If both responded ‘not

alike’ they were classified as dizygotic. If the twins did not agree, or if only one member

of the pair answered the question, the pair was classified as unknown zygosity. This

zygosity classification was compared with laboratory methods (serological markers). The

misclassification rate for this method was found to be very low (Cederlöf et al., 1961).

At present, the Swedish Twin Registry contains information about three cohorts of

Swedish twins referred to as the ‘old’, ‘middle’ and ‘young’ cohort. The old cohort

consists of all same-sexed pairs born between 1886 and 1925 where both members in
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a pair were living in Sweden in 1959. In 1970 a new cohort of twins born between

1926 and 1958, the middle cohort, was compiled, this time by use of nationalized birth

registrations. Twins born later than 1958 are not considered in the present analysis

because of the small number of cases. The data are described in Table A.1 and A.2,

categorized according to the censoring status. The event under study is the onset of

breast cancer. If a woman did not develop breast cancer or if she died from other causes

during the follow-up, the corresponding observation is censored.

The data set was created by merging the Swedish Twin Registry with the Swedish Cancer

Registry maintained by the National Board of Health and Welfare. At the time of record

linkage, the Swedish Cancer Registry contained all cases of cancer that were diagnosed

during the period from 1959 through 2000.

Data about coronary heart disease in the old and middle cohorts (including information

about observed covariates which are important with respect to coronary heart disease)

are also available and were analyzed in detail by Zdravkovic et al. (2002, 2004).

For a comprehensive description of the Swedish Twin Registry database, with a focus on

the recent data collection efforts and a review of the principal findings that have come

from the registry, see Lichtenstein et al. (2002).

both censored one censored none censored total

MZ 1767 218 18 2003

DZ 3420 407 27 3854

total 5187 625 45 5857

Table A.1: Composition of the old cohort (born 1886 - 1925) by zygosity and censoring status.

Swedish Twin Registry. Number of twin pairs. End of follow-up October 2000.

both censored one censored none censored total

MZ 2537 117 15 2669

DZ 3816 218 8 4042

total 6353 335 23 6711

Table A.2: Composition of the middle cohort (born 1926 - 1967) by zygosity and censoring

status. Swedish Twin Registry. Number of twin pairs. End of follow-up October 2000.
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A.2 The Danish Twin Registry

The Danish Twin Registry was the world’s first nation-wide twin registry, established

in 1954 by Bent Harvald and Mogens Hauge. The older part of this population-based

registry includes all twins born in Denmark during the period 1870-1910 and all like-sex

pairs born between 1911 and 1930 in which both partners survived to the age of 6 years.

The birth registers from all 2,200 parishes of the relevant calendar years were manually

scrutinized to identify all multiple births. A search was then carried out for twins, or

whenever needed, for their closest relatives in regional population registers (in operation

since 1924) or other public sources, especially the archives of probate courts and censuses.

As soon as a twin was traced, a questionnaire was sent to the twin (if he/she was alive)

or to the closest relatives (if not). Questions about phenotypic similarities were included

in the questionnaires, so as to assess the zygosity by self-reported similarities. The

reliability of this method was validated by comparison with laboratory methods based

on blood, serum enzyme group determination. The misclassification rate was found to

be less than 5% (Holm, 1983). The follow-up procedure traced nearly all twins who

did not die or emigrate before the age of 6. For further, detailed information about

the construction and the composition of the Danish Twin Registry see Hauge (1981).

The data provided by the Danish twin registry contains records of 8,201 MZ and DZ

twin pairs who were born between 1 January 1870 and 31 December 1930 and who were

both still alive on 1 January 1943. 246 pairs with incomplete cause of death information

were excluded, leaving a study population of 7,955 pairs. Individuals were followed up

through 31 December 1993, and those identified as deceased after that date have been

classified here as ‘living’. Altogether, we have 1,344 male MZ twin pairs and 2,411 DZ

twin pairs, 1,470 female MZ twin pairs and 2,730 DZ twin pairs. In addition to the

lifetimes, there is information about cause of death for all non-censored lifetimes, i.e. for

all individuals in the study population who died before 31 December 1993. For more

detailed information about cause of death, gender, and zygosity of the study population

see Table A.3.

Death status, age at death and cause of death were obtained from the Central Person

Register, the Danish Cause-of-Death Register, the Danish Cancer Register, and other

public registries in Denmark. The main source for obtaining information on cause of

death was the Death Register at the National Institute of Public Health. Information

about cause of death is available from this register for individuals who died after 1942

(Juel and Helweg-Larsen, 1999). Consequently, cause of death information was included

in the twin register only for twins who died after this year. The validity of the twin
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cause of death males females

MZ twins DZ twins MZ twins DZ twins

cancer 440 809 423 823

coronary heart disease 506 897 369 704

stroke 161 278 186 335

respiratory diseases 143 203 89 205

other causes 496 944 509 850

all causes together 1746 3131 1576 2917

alive (censored) 942 1691 1364 2543

Table A.3: Danish twin data by sex, zygosity and cause of death. Number of individuals.

register was established on the basis of a comparison of information about year of death

with the nation-wide Danish Cancer Register. There was 99 % agreement, although both

registries were independent. Further data corrections increased this level of agreement

to almost 100 %.

Information about cause of death was coded following the International Classification

of Diseases (ICD, sixth, seventh and eighth editions). Four different groups of causes of

death are considered here: cancer, coronary heart disease (CHD), stroke, and diseases

of the respiratory system. Codes in three revisions of the ICD for these broad cause-of-

death groups are given in the following table:

cause of death ICD revision 6 & 7 ICD revision 8

cancer 140 - 205 140 - 209

coronary heart disease 420 410 - 414

stroke 330 - 334 430 - 439

respiratory diseases 470 - 527 460 - 519

Table A.4: Cause of death groups by ICD.
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Quantitative Genetics

The aim of genetic analysis is to determine whether and to which extent genetic variation

may account for the variation of a specific phenotype (e.g. lifetime, susceptibility to

disease). To address this question, measurements of the phenotype must be combined

with genetic information. In studies of related individuals (families, twins, litter, etc.)

genetic information is usually available as pedigree. Based on methods of quantitative

genetics developed by Falconer (1990) and Neale and Cardon (1992) the relative role of

genetic factors is determined by estimating heritability.

The classic twin method, attributed to Francis Galton (1887), argues that whereas in MZ

twins the differences in a pair must be due to environmental differences, for DZ twins

it includes effects associated with their genetic difference. Through making a critical

assumption, that differences with respect to environmental factors between identical

pairs are of the same (average) strength as those between DZ twins (equal environment

assumption), inference can be made about the role of genetic factors simply by comparing

MZ and DZ pair correlations.

Typical models of quantitative genetics can be incorporated with ease into the correlated

frailty model described above. Models of quantitative genetics (Falconer, 1990) are based

on the decomposition of a phenotypic trait in a sum of different components, which are

assumed to be independent. Using this approach, it is possible to estimate the proportion

of the total variability of the phenotype which is related to genetic factors. In particular, a

heritability estimate can be calculated for human longevity by identifying the phenotype

with the life span variable (McGue et al. 1993). Usually, heritability is defined as the

percentage of variation of the trait explained by the variation of genetic factors.

Yashin and Iachine (1995a) suggested an approach based on the frailty variable Z instead

of the life span T . It is interesting to find out the relative importance of genes and the

environment in determining individual susceptibility towards mortality (overall or cause
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specific). An advantage of this approach is that, through the additive decomposition

of frailty into a genetic and an environmental component, one can obtain a competing

risk structure for the respective survival model. In other words, observed mortality is

represented as a sum of two terms: one depends on genetic and another on environmental

parameters, both estimated from bivariate data.

In more detail, let the frailty be represented by:

Z = genes+ environment = A+D + I + C + E (B.1)

where A represents additive genetic effects, D corresponds to genetic effects caused by

dominance, I denotes epistatic genetic effects, and C and E stand for shared and non-

shared environmental effects, respectively. All factors are assumed to be independent.

The associated variance proportions of the components are defined as follows:

a2 =
V (A)

V (Z)
, d2 =

V (D)

V (Z)
, i2 =

V (I)

V (Z)
, c2 =

V (C)

V (Z)
, e2 =

V (E)

V (Z)

The following additive decomposition of the frailty variance and the correlation coefficient

between co-twins’ frailty hold that:

1 = a2 + d2 + i2 + c2 + e2 (B.2)

ρ = ρ1a
2 + ρ2d

2 + ρ3i
2 + ρ4c

2 + ρ5e
2 (B.3)

where lowercase letters a2, d2, i2, c2, e2 indicate the proportions of the total variance

σ2 associated with the correspondent components of frailty, and ρi (i = 1, ..., 5) are

correlations between respective components within a twin pair. In this case broad sense

heritability can be expressed as

H2 = a2 + d2 + i2,

where a2 denotes small sense heritability. Standard assumptions of quantitative genetics

models specify different values of ρi (i = 1, ..., 5) for monozygotic and dizygotic twins.

In the case of monozygotic twins ρi = 1, i = 1, ..., 4 and ρ5 = 0, while for dizygotic

twins ρ1 = 0.5, ρ2 = 0.25, ρ3 = m, ρ4 = 1, ρ5 = 0 and 0 ≤ m ≤ 0.25 is an unknown

parameter. Not all parameters of the genetic decomposition of frailty can be estimated

simultaneously, even under the assumption of no epistasis (i2 = 0). In this case it is only

possible to conclude that the true heritability H2 is in the interval (Iachine, 2002)

4

3
(ρMZ − ρDZ) ≤ H2 ≤ min{ρMZ , 2(ρMZ − ρDZ)}.

The model in fact reduces to three equations (two relationships (B.3) for monozygotic

and dizygotic twins and one constraint (B.2)) allowing estimations of no more than three



119

parameters at the same time. One possibility is to consider an ACE (additive genetic

- common environmental - uncommon environmental) model. In this case, equations

(B.2) and (B.3) lead to the following:

1 = a2 + c2 + e2

ρMZ = a2 + c2 (B.4)

ρDZ = 0.5a2 + c2

This system can be integrated into the correlated frailty model giving place to a re-

parameterization of the original model. The only difference is that, if we are interested

in estimating parameters of a genetic model, data for monozygotic and dizygotic twins

have to be analyzed simultaneously and a likelihood function for combined data has to

be drawn. Equally, other genetic models can be obtained combining no more than three

components of frailty (Yashin and Iachine, 1995a).

It is necessary to note that heritability estimation requires strong assumptions which

are often difficult to verify in practice. For example, the trait must be represented

as an additive combination of uncorrelated genetic and environmental factors and the

variances of phenotypic traits associated with related individuals must be the same. This

does not decrease the statistical attractiveness of this direction of research, however the

interpretation of heritability estimates must be used with care as pointed out by Feldman

and Lewontin (1975).



120 APPENDIX B. QUANTITATIVE GENETICS



Appendix C

Correlated gamma frailty model

S(t1, t2) = S1(t1)
1−σ1

σ2
ρ
S2(t2)

1−σ2
σ1
ρ
(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

St1(t1, t2) = −(1− σ1

σ2

ρ)S1(t1)
−σ1
σ2
ρ
f1(t1)S2(t2)

1−σ2
σ1
ρ
(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

− σ1

σ2

ρS1(t1)
−σ1
σ2
ρ−σ2

1f1(t1)S2(t2)
1−σ2

σ1
ρ
(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−1

= S1(t1)
−σ1
σ2
ρ
f1(t1)S2(t2)

1−σ2
σ1
ρ
(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−1

∗ (− S1(t1)−σ
2
1 − (1− σ1

σ2

ρ)S2(t2)−σ
2
2 + (1− σ1

σ2

ρ)
)

St2(t1, t2) = −S1(t1)
1−σ1

σ2
ρ
(1− σ2

σ1

ρ)S2(t2)
−σ2
σ1
ρ
f2(t2)(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

− S1(t1)
1−σ1

σ2
ρσ2

σ1

ρS2(t2)
−σ2
σ1
ρ−σ2

2f2(t2)(S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−1

= S1(t1)
1−σ1

σ2
ρ
S2(t2)

−σ2
σ1
ρ
f2(t2)(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−1

∗ (− (1− σ2

σ1

ρ)S1(t1)−σ
2
1 − S2(t2)−σ

2
2 + (1− σ2

σ1

ρ)
)
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St1t2(t1, t2) = (1− σ1

σ2

ρ)(1− σ2

σ1

ρ)S1(t1)
−σ1
σ2
ρ
f1(t1)S2(t2)

−σ2
σ1
ρ
f2(t2)

∗ (S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

+ (1− σ1

σ2

ρ)
σ2

σ1

ρS1(t1)
−σ1
σ2
ρ
f1(t1)S2(t2)

−σ2
σ1
ρ−σ2

2f2(t2)

∗ (S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−1

+ (1− σ2

σ1

ρ)
σ1

σ2

ρS1(t1)
−σ1
σ2
ρ−σ2

1f1(t1)S2(t2)
−σ2
σ1
ρ
f2(t2)

∗ (S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−1

+ ρ(ρ+ σ1σ2)S1(t1)
−σ1
σ2
ρ−σ2

1f1(t1)S2(t2)
−σ2
σ1
ρ−σ2

2f2(t2)

∗ (S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−2

=
(
S1(t1)

−σ1
σ2
ρ
f1(t1)S2(t2)

−σ2
σ1
ρ
f2(t2)(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

− ρ
σ1σ2

−2)
(
(1− σ1

σ2

ρ)(1− σ2

σ1

ρ)(S1(t1)−σ
2
1 + S2(t2)−σ

2
2 − 1)2

+ (1− σ1

σ2

ρ)
σ2

σ1

ρS2(t2)−σ
2
2(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

+ (1− σ2

σ1

ρ)
σ1

σ2

ρS1(t1)−σ
2
1(S1(t1)−σ

2
1 + S2(t2)−σ

2
2 − 1)

+ ρ(ρ+ σ1σ2)S1(t1)−σ
2
1S2(t2)−σ

2
2
)



Appendix D

Correlated compound Poisson frailty

model

S(t1, t2) = S(t1)1−ρS(t2)1−ρ

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

St1(t1, t2) = −(1− ρ)f(t1)S(t1)−ρS(t2)1−ρ

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

− ρf(t1)S(t1)−ρS(t2)1−ρ(1− γσ2

1− γ ln(S(t1)))1/γ−1

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

∗ ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ−1

St2(t1, t2) = −(1− ρ)f(t2)S(t1)1−ρS(t2)−ρ

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

− ρf(t2)S(t1)1−ρS(t2)−ρ(1− γσ2

1− γ ln(S(t2)))1/γ−1

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

∗ ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ−1
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St1t2(t1, t2) = (1− ρ)2f(t1)S(t1)−ρf(t2)S(t2)−ρ

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

+ ρ(1− ρ)f(t1)S(t1)−ρf(t2)S(t2)−ρ(1− γσ2

1− γ ln(S(t1)))1/γ−1

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

∗ ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ−1

+ ρ(1− ρ)f(t1)S(t1)−ρf(t2)S(t2)−ρ(1− γσ2

1− γ ln(S(t2)))1/γ−1

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

∗ ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ−1

+ ρ2f(t1)S(t1)−ρf(t2)S(t2)−ρ

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

∗ ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)2γ−2

∗ (1− γσ2

1− γ ln(S(t1)))1/γ−1(1− γσ2

1− γ ln(S(t2)))1/γ−1

+ ρσ2f(t1)S(t1)−ρf(t2)S(t2)−ρ

∗ exp{ρ(1− γ)

γσ2

[
1− ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ
]}

∗ ((1− γσ2

1− γ ln(S(t1)))1/γ + (1− γσ2

1− γ ln(S(t2)))1/γ − 1)γ−2

∗ (1− γσ2

1− γ ln(S(t1)))1/γ−1(1− γσ2

1− γ ln(S(t2)))1/γ−1



Appendix E

Bivariate lifetime models with

censoring

As mentioned in the introduction, a unique feature of survival data is censoring. The

present section deals with the problem of censoring in bivariate failure data. For this

purpose, let (T1, T2,∆1,∆2) be the censored observations with

Ti = min{Xi, Yi}, ∆i = 1(Xi ≤ Yi), i = 1, 2

and denote the bivariate survival function of (T1, T2) by S(t1, t2). Furthermore, denote

the density of (X1, X2) and (Y1, Y2), respectively, by f(x1, x2) and g(y1, y2). Assume that

the lifetimes (X1, X2) and censoring times (Y1, Y2) are independent.

H(t1, t2, 1, 1) = P (T1 > t1, T2 > t2,∆1 = 1,∆2 = 1)

= P (X1 > t1, X2 > t2, X1 ≤ Y1, X2 ≤ Y2)

=

∫ ∫ ∫ ∫

{x1>t1,x2>t2,x1≤y1,x2≤y2}
f(x1, x2)g(y1, y2) dx1dx2dy1dy2

=

∫ ∞
t2

∫ ∞
t1

f(x1, x2)
(∫ ∞

x2

∫ ∞
x1

g(y1, y2) dy1dy2

)
dx1dx2

Consequently, the sub-density for non-censored pairs of lifetimes is

h(t1, t2, 1, 1) = Λt1,t2(t1, t2, 1, 1) = f(t1, t2)

∫ ∞
t2

∫ ∞
t1

g(y1, y2) dy1dy2.

Analogously, the calculation of the other sub-densities is:

H(t1, t2, 1, 0) = P (T1 > t1, T2 > t2,∆1 = 1,∆2 = 0)

= P (X1 > t1, Y2 > y2, X1 ≤ Y1, X2 > Y2)

=

∫ ∫ ∫ ∫

{x1>t1,y2>t2,x1≤y1,x2>y2}
f(x1, x2)g(y1, y2) dx1dx2dy1dy2

=

∫ ∞
t2

∫ ∞
t1

(∫ ∞
y2

f(x1, x2) dx2

∫ ∞
x1

g(y1, y2) dy1

)
dx1dy2
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Consequently,

h(t1, t2, 1, 0) = Λt1,t2(t1, t2, 1, 0) = −St1(t1, t2)

∫ ∞
t1

g(y1, t2) dy1.

H(t1, t2, 0, 1) = P (T1 > t1, T2 > t2,∆1 = 0,∆2 = 1)

= P (Y1 > t1, X2 > t2, X1 > Y1, X2 ≤ Y2)

=

∫ ∫ ∫ ∫

{y1>t1,x2>t2,x1>y1,x2≤y2}
f(x1, x2)g(y1, y2) dx1dx2dy1dy2

=

∫ ∞
t2

∫ ∞
t1

(∫ ∞
y1

f(x1, x2) dx1

∫ ∞
x2

g(y1, y2) dy2

)
dx2dy1

Hence,

h(t1, t2, 0, 1) = Λt1,t2(t1, t2, 0, 1) = −St2(t1, t2)

∫ ∞
t2

g(t1, y2) dy2.

H(t1, t2, 0, 0) = P (T1 > t1, T2 > t2,∆1 = 0,∆2 = 0)

= P (Y1 > t1, Y2 > t2, X1 > Y1, X2 > Y2)

=

∫ ∫ ∫ ∫

{y1>t1,y2>t2,x1>y1,x2>y2}
f(x1, x2)g(y1, y2) dx1dx2dy1dy2

=

∫ ∞
t1

∫ ∞
t2

(∫ ∞
y1

∫ ∞
y2

f(x1, x2) dx1dx2

)
g(y1, y2) dy1dy2

Consequently,

h(t1, t2, 0, 0) = Λt1,t2(t1, t2, 0, 1) = S(t1, t2)g(t1, t2).

Hence, the likelihood function under independent censoring is given by

L(t1, t2, δ1, δ2) = δ1δ2h(t1, t2, 1, 1) + δ1(1− δ2)h(t1, t2, 1, 0)

+ (1− δ1)δ2h(t1, t2, 0, 1) + (1− δ1)(1− δ2)h(t1, t2, 0, 0)

= δ1δ2St1t2(t1, t2)− δ1(1− δ2)St1(t1, t2)

− (1− δ1)δ2St2(t1, t2) + (1− δ1)(1− δ2)S(t1, t2).



Appendix F

Dependent competing risks model

The following relations are used in the calculations: EZ1 = EZ2 = EZ3 = EZ4 = 1,

V(Z1) = V(Z3) = 1
k1+k2+k5

= σ2
1, V(Z2) = V(Z4) = 1

k1+k3+k4
= σ2

2.

The second moment of V2 is needed to calculate the mixed moment EZ1Z3:

EV 2
2 = V(V2) + (EV2)2 =

k2

λ2
1

+
(k2

λ1

)2
=
k2

2 + k2

λ2
1

Hence,

EZ1Z3 = E(
λ0

λ1

V1 + V2 + V5)(V2 + V6 +
λ0

λ1

V8)

= E
(λ0

λ1

V1V2 +
λ0

λ1

V1V6 +
λ2

0

λ2
1

V1V8

+ V 2
2 + V2V6 +

λ0

λ1

V2V8 + V2V5 + V5V6 +
λ0

λ1

V5V8

)

=
k1k2

λ2
1

+
k1k5

λ2
1

+
k2

1

λ2
1

+
k2

2 + k2

λ2
1

+
k2k5

λ2
1

+
k1k2

λ2
1

+
k2k5

λ2
1

+
k2

5

λ2
1

+
k1k5

λ2
1

=
k2

λ2
1

+ 1

and consequently

cov(Z1, Z3) = EZ1Z2 − EZ1EZ2 =
k2

λ2
1

.

Now we are able to derive the correlation:

ρ1 =
cov(Z1, Z3)√
V (Z1)V (Z3)

=
k2

λ1

= k2σ
2
1 (F.1)

Similar calculations imply ρ2 = k3σ
2
2 and ρ = k1σ1σ2. Consequently, k1 + k2 + k5 = 1

σ2
1

and k1 + k3 + k4 = 1
σ2

2
imply the following relations:
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k5 =
1

σ2
1

− k2 − k1 =
1

σ2
1

− ρ1

σ2
1

− ρ

σ1σ2

and k4 =
1

σ2
2

− k3 − k4 =
1

σ2
2

− ρ2

σ2
2

− ρ

σ1σ2

.

If Y ∼ Γ(k, λ), then Ee−sY = (1 + s
λ
)−k. Now we are able to derive the survival function

in (4.37):

S(x1, y1, x2, y2)

= ES1(x1)Z1S2(y1)Z2S1(x2)Z3S2(y2)Z4

= Ee
−V1(

λ0
λ1
H1(x1)+

λ0
λ2
H2(y1))

e−V2(H1(x1)+H1(x2))

∗ e−V3(H2(y1)+H2(y2))e
−V8(

λ0
λ1
H1(x2)+

λ0
λ2
H2(y2))

e−V4H2(y1)e−V5H1(x1)e−V6H1(x2)e−V7H2(y2)

= (1 +
1

λ0

(
λ0

λ1

H1(x1) +
λ0

λ2

H2(y1)))−k1(1 +
1

λ1

H1(x1) +
1

λ1

H1(x2))−k2

∗ (1 +
1

λ2

H2(y1) +
1

λ2

H2(y2))−k3(1 +
1

λ0

(
λ0

λ1

H1(x2) +
λ0

λ2

H2(y2)))−k1

∗ (1 +
1

λ2

H2(y1))−k4(1 +
1

λ1

H1(x1))−k5(1 +
1

λ1

H1(x2))−k5(1 +
1

λ2

H2(y2))−k4

= (S1(x1)−σ
2
1 + S1(x2)−σ

2
1 − 1)−ρ1/σ2

1(S2(y1)−σ
2
2 + S2(y2)−σ

2
2 − 1)−ρ2/σ2

2

∗ (S1(x1)−σ
2
1 + S2(y1)−σ

2
2 − 1)−ρ/σ1σ2(S1(x2)−σ

2
1 + S2(y2)−σ

2
2 − 1)−ρ/σ1σ2

∗ S2(y1)
1−ρ2−σ2

σ1
ρ
S1(x1)

1−ρ1−σ1
σ2
ρ
S1(x2)

1−ρ1−σ1
σ2
ρ
S2(y2)

1−ρ2−σ2
σ1
ρ

The likelihood function (of the truncated data) takes the following form:

L(t1, t2, δ1, δ2, t
∗) =

(
1(δ1 = 1, δ2 = 1)Sx1x2(t1, t1, t2, t2)

+ 1(δ1 = 1, δ2 = 0)Sx1(t1, t1, t2, t2)

+ 1(δ1 = 0, δ2 = 1)Sx2(t1, t1, t2, t2)

+ 1(δ1 = 0, δ2 = 0)S(t1, t1, t2, t2)

+ 1(δ1 = −1, δ2 = −1)Sy1y2(t1, t1, t2, t2)

+ 1(δ1 = −1, δ2 = 0)Sy1(t1, t1, t2, t2)

+ 1(δ1 = 0, δ2 = −1)Sy2(t1, t1, t2, t2)

+ 1(δ1 = 1, δ2 = −1)Sx1y2(t1, t1, t2, t2)

+ 1(δ1 = −1, δ2 = 1)Sy1x2(t1, t1, t2, t2)
)
/S(t∗, t∗, t∗, t∗)
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The derivatives are given by

Sx1(x1, y1, x2, y2) = −ρ1(S1(x1)−σ
2
1 + S1(y1)−σ

2
1 − 1)

− ρ1
σ2

1
−1

∗ (S2(x2)−σ
2
2 + S2(y2)−σ

2
2 − 1)

− ρ2
σ2

2

∗ (S1(x1)−σ
2
1 + S2(x2)−σ

2
2 − 1)

− ρ
σ1σ2

∗ (S1(y1)−σ
2
1 + S2(y2)−σ

2
2 − 1)

− ρ
σ1σ2

∗ S1(x1)
1−ρ1−σ1

σ2
ρ−σ2

1µ1(x1)

∗ S1(y1)
1−ρ1−σ1

σ2
ρ

∗ S2(x2)
1−ρ2−σ2

σ1
ρ

∗ S2(y2)
1−ρ2−σ2

σ1
ρ

− σ1

σ2

ρ(S1(x1)−σ
2
1 + S1(y1)−σ

2
1 − 1)

− ρ1
σ2

1

∗ (S2(x2)−σ
2
2 + S2(y2)−σ

2
2 − 1)

− ρ2
σ2

2

∗ (S1(x1)−σ
2
1 + S2(x2)−σ

2
2 − 1)

− ρ
σ1σ2

−1

∗ (S1(y1)−σ
2
1 + S2(y2)−σ

2
2 − 1)

− ρ
σ1σ2

∗ S1(x1)
1−ρ1−σ1

σ2
ρ−σ2

1µ1(x1)

∗ S1(y1)
1−ρ1−σ1

σ2
ρ

∗ S2(x2)
1−ρ2−σ2

σ1
ρ

∗ S2(y2)
1−ρ2−σ2

σ1
ρ

− (1− ρ1 − σ1

σ2

ρ)σ2
1(S1(x1)−σ

2
1 + S1(y1)−σ

2
1 − 1)

− ρ1
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Thesen

1. Frailty-Modelle sind statistische Modelle in der Lebensdaueranalyse mit zufälligen

Effekten. Univariate Frailty-Modelle dienen der Modellierung unbeobachteter Ko-

variablen in Lebensdauerdaten, d.h. von unbeobachteter Heterogenität. Bei mul-

tivariaten Frailty-Modellen steht die Modellierung von Korrelationsstrukturen bei

Lebensdauern in Clustern (Familie, Studienzentrum, Patient, Arztpraxis) im Vorder-

grund. Dazu wird das Konzept der bedingten Unabhängigkeit verwendet.

2. Der Schwerpunkt der vorliegenden methodischen Arbeit liegt auf bivariaten Frailty-

Modellen. Das Ziel ist es, das etablierte Shared-Frailty-Modell zu erweitern und

neue Modelle einzuführen, welche eine flexiblere Korrelationsstruktur zwischen den

Lebensdauern und eine bessere Interpretierbarkeit der Parameter erlauben. Dabei

spielt die Verteilung der zufälligen Effekte (Frailty) eine wichtige Rolle.

3. Ausgangspunkt ist das Korrelierte Gamma-Frailty-Modell mit dem Shared-Gamma-

Frailty-Modell als Spezialfall. Zusätzlich zum Heterogenitätsparameter σ2 beinhal-

tet es den Parameter ρ, der die Korrelation zwischen den Frailtyvariablen beschreibt.

4. Dieser Korrelationsparameter ist zum Beispiel von zentralem Interesse bei der

Analyse des Einflusses von genetischen und Umweltfaktoren auf ein Merkmal.

5. Das Korrelierte Gamma-Frailty-Modell eignet sich hervorragend, um todesursachen-

spezifische Lebensdauern von Familienangehörigen zu analysieren. Angewendet

wird das Modell auf die Lebensdauern von 7955 dänischen Zwillingspaaren der

Geburtsjahrgänge 1870 - 1930 bezüglich totaler Mortalität, Krebs, KHK, Schlag-

anfall und Atemwegserkrankungen in einem follow-up von 1943 - 1993. Mit Hilfe

einer Modellvariante wurde die Heritabilität der Todesursachen aus den Zwillings-

daten heraus geschätzt. So zeigt sich eine hohe Heritabilität (ca. 50-60%) bei to-

taler und KHK-Mortalität, während die Mortalität bedingt durch Atemwegserkran-

kungen nur in geringem Umfang dem Einfluss genetischer Faktoren unterliegt.

Krebsmortalität wird moderat (ca. 20-25%) durch genetische Faktoren beeinflusst.

6. In das Korrelierte Gamma-Frailty Modell können beobachtete Kovariablen wie im

proportionalen Hazardmodell auf integriert werden. Dies führt in der Regel zur

Verringerung der Heterogenität in der Population, die in kleineren Schätzwerten

für den Parameter σ2 ihren Ausdruck findet. Dies wird für KHK-Sterblichkeit bei

1209 dänischen Zwillingspaaren unter Betrachtung der Kovariablen Rauchen, BMI

und Geschlecht demonstriert, wobei sich die Varianz der Frailty nahezu halbiert.
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Der Einfluss der beobachtbaren Kovariablen liegt im erwarteten Bereich und ist

unabhängig von den betrachteten genetischen Modellen. So ist das relative Risiko

für Tod durch KHK eines Rauchers verglichen mit einem Nichtraucher bei 1.77

(95% KI 1.11 - 2.83), für Männer verglichen mit Frauen 4.35 (95% KI 2.46 - 7.69).

7. Eine wichtige Erweiterung der bisher existierenden Modelle stellt die Einführung

des Korrelierten compound-Poisson-Frailty-Modells durch den Autor dar. Dieses

Modell enthält als Spezialfälle das Korrelierte Gamma-Frailty und das Korre-

lierte inverse-Gauss-Frailty Modell. Entscheidender Vorteil ist die einfache Darstel-

lung der bivariaten Lebensdauerfunktion. Damit können Maximum-Likelihood-

Schätzverfahren angewendet und technische Schwierigkeiten vermieden werden.

8. Das Korrelierte compound-Poisson-Frailty-Modell beinhaltet die Existenz einer

gegenüber dem interessierenden Ereignis resistenten Subpopulation, sei es durch

Immunisierung oder genetische Prädisposition. Dieses Modell zeigt gute Eigen-

schaften bei der Analyse von Brustkrebs bei 5857 schwedischen Zwillingspaaren

der Geburtsjahrgänge 1886 - 1925 in einem follow-up von 1958 bis 2000. Lediglich

34% der Frauen erweisen sich als anfällig gegenüber Brustkrebs.

9. Moderne MCMC Methoden erlauben eine hohe Flexibilität bei Frailty-Modellen.

Insbesondere Parameter in log-Normal-Frailty-Modellen lassen sich damit hervor-

ragend schätzen. Diese Modelle bieten keine explizite Darstellung der Lebensdauer-

funktion und Maximum-Likelihood-Schätzungen erweisen sich als technisch schwierig.

10. In umfangreichen Simulationsstudien wurden die Eigenschaften unterschiedlicher

Schätzverfahren in verschiedenen Modellen analysiert. Die Parameter lassen sich

in den betrachteten Modellklassen ohne Verzerrung schätzen.

11. Frailty-Modelle eignen sich hervorragend zur Modellierung von konkurrierenden

Risiken. Hierfür wurde vom Autor ein vierdimensionales Korreliertes Gamma-

Frailty-Modell eingeführt, welches eine Korrelation zwischen verschiedenen Todesur-

sachen erlaubt. Während sich diese Korrelation im univariaten Fall aufgrund feh-

lender Identifizierbarkeit nicht schätzen lässt, ist dies im multivariaten Fall möglich.

12. Die vorliegende Arbeit zeigt anhand zahlreicher praktischer Anwendungen und

Simulationen die hervorragenden statistischen Eigenschaften korrelierter Frailty-

Modelle und deren Potential für die Analyse von multivariaten Lebensdauerdaten

in der medizinischen Forschung.
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