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Abstract 

Objectives: Different types of ‘omics’ data are becoming available in the post genome 

era; still a single ‘omics’ assessment provides limited insights to understand the biological 

mechanism of complex diseases. Genomics, epigenomics and transcriptomics data 

provide insight into the molecular dysregulation of neoplastic diseases, among them 

urothelial bladder cancer (UBC). Here we propose a detailed analytical framework 

necessary to achieve an adequate integration of the three sets of ‘omics’ data to ultimate 

identify previously hidden genetic mechanisms in UBC. Methods: We build a multi-

staged framework to study possible pairwise combinations and integrate data in three-

way relationships. SNP genotypes, CpG methylation levels, and gene expression levels 

were determined for a total of 70 individuals with UBC and with available fresh tumor 

tissue. Results: We suggest two main hypothesis-based scenarios for gene regulation 

based on the “omics” integration analysis where DNA methylation affects gene 

expression and genetic variants co-regulate gene expression and DNA methylation. We 

identified several three-way trans-association “hotspots” that are found at the molecular 

level and that deserve further studies. Conclusions: The proposed integrative framework 

allowed us to identify relationships at the whole genome level providing some new 

biological insights and highlighting the importance of integrating ‘omics’ data. 
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Introduction  

Big data at the molecular field (‘omics’ data) is being generated at an unprecedented pace, 

this including genome, methylome, transcriptome, and microbiome, among others. There 

is a growing interest in combining the different types of ‘omics’ datasets that are 

becoming available since a single ‘omics’ assessment provides limited insights into the 

understanding of the underlying biological mechanisms of a physiological/pathological 

condition. For example, even when many genome-wide association studies (GWAS) have 

identified several Single Nucleotide Polymorphisms (SNP) involved in complex diseases, 

the functional implications of the susceptibility loci are still poorly understood and they 

only partially account for the phenotype variability. Combining different ‘omics’ data 

types seems to be a more suitable approach, as it will likely reveal previously hidden 

information.  

The simplest form of data integration involves the combination of two different data 

types, common examples being genetic variants and gene expression or, more recently, 

genetic variants and DNA methylation [1]. DNA methylation involves the addition of a 

methyl group to the 5’ position of the cytosine at a Cytosine-phosphate-Guanine (CpG) 

site. Genomic regions with high density of CpG dinucleotides are denominated CpG 

islands; they are often located in gene promoters and have important roles in gene 

regulation. CpG sites located up to 2kb from the island’s boundaries are called CpG 

shores and it has been demonstrated that they are also very important for gene regulation 

and that they are implicated in cancer [2]. Both CpG islands and shores, when 

hypermethylated and located in the promoter region of a gene, negatively regulate gene 

repression [3]. Therefore, it is important to take into account the relationship between 

DNA methylation and gene regulation in order to better understand complex diseases [4]. 

For example, it has been shown that hypermethylation of CpGs located in the promoter 
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region of some tumor suppressor genes (INK4A, Rb, VHL, hMLH1, BRCA1, etc) 

contribute to cancer development [5].  Therefore, analyzing gene expression data without 

considering epigenetics provides an incomplete genomic explanation of the 

transcriptome. Moreover, as DNA methylation regulates gene expression, genetic 

variants affecting CpG sites might, in turn, affect gene expression too. It is well known 

that genetic variants can alter gene expression levels and hence the importance of 

connecting the DNA sequence to the RNA level. The identification of these expression 

quantitative trait loci (eQTL) relationships may help to identify regulators of gene 

expression [6]. These eQTLs have been extensively studied to find associations between 

common genetic variants and gene expression levels [7–11]. By contrast, the study of 

potential associations between common variants, DNA methylation levels (methylation 

QTLs, methQTLs), and gene expression has generated less interest, so far [1,12–15].  

Genome, transcriptome, and methylome data offer unique opportunities when combined 

in the same analyses. This strategy has been applied to HapMap cell lines [14], whole 

blood from healthy human subjects [16], and human monocytes [17]. Furthermore, some 

studies have combined these types of data to better understand complex diseases, such as 

breast cancer [18] or type 2 diabetes [19]. As DNA methylation is tissue-specific, these 

analyses have also been applied to different types of tissues, such as human brain [12] or 

adipose tissue [15]. It is worth noting that the majority of these studies have only assessed 

cis- relationships, but trans- effects deserve further study within the ‘omics’ context, 

especially as the complex organization of chromatin in the nucleus is better understood.  

In the present study we built and propose a multi-staged analytical framework to integrate 

‘omics’ data. We tested it in an urothelial bladder cancer (UBC) model using common 

genetic variants, DNA methylation, and gene expression transcripts data from 70 cancer 

patients. We proved the ability of the framework to identify some “multi-omics” 
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relationships that provided further knowledge to better understand the biological 

mechanisms underlying the disease. 
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Material and Methods 

Study Subjects: SNP genotypes, CpG methylation levels, and gene expression levels 

were measured for a total of 70 individuals with available fresh tumor tissue that were 

recruited as part of the pilot phase of the EPICURO study. All of them were histologically 

confirmed UBC cases recruited in 2 hospitals in Spain during 1997-1998. Tumor DNA 

and RNA were extracted and used for ‘omics’ assessment. SNP data was available for 46 

patients, CpG methylation for 46 patients and gene expression for 43. The overlapping of 

patients between the three ‘omics’ was 31 for the expression-methylation relationship, 27 

for the eQTL, and 46 for the methQTL studies.  

SNP genotype data: Genotyping was performed using Illumina HumanHap 1M array in 

tumor samples. A total of 1,047,101 SNPs were genotyped in 46 individuals. For 

genotype calling, we used the cluster file obtained when the same array was applied to 

germline DNA from 2,424 subjects included in the main EPICURO study. We considered 

SNPs with <5% of missing values and with a minor allele frequency (MAF) ≥ 0.01. 

Standard Quality Control (QC) was performed using BeadStudio and R. From 

BeadStudio, the genotypes (AA, Aa, aa) were obtained in forward strand for those 

samples having a call rate higher than 90%.  

DNA methylation data: After bisulphite modification of 46 tumor DNA samples using 

EZ-96 DNA METHYLATIONGOLD KIT (Zymo Research, Irvin, CA, USA), CpG 

methylation data was generated using the Infinum Human Methylation 27 BeadChip Kit 

that detected the CpG sites with two probes, one designed against the unmethylated site 

(signal U) and the other against the methylated site (signal M). The level of methylation 

was determined at each locus by the intensity of the two possible fluorescent signals [20]. 

At each CpG site, the methylation levels were measured with the β-value, defined as: 
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𝛽 =
max(𝑀, 0)

max(𝑈, 0) + max(𝑀, 0) + 100
 

The maximum between signal intensity and 0 is used for β calculation to avoid the 

negative numbers caused by background subtractions, consequently, β-values rank 

between 0 (unmethylated) and 1 (methylated).  The constant 100 was used to regularize 

the β-values when they were very small. Although β-values are useful under some 

circumstances, it has been demonstrated that M-values are more statistically valid than 

β-values due to a better approximation of the homocedasticity [21]. This property is 

important when applying regression models that require this assumption. The M-value 

is calculated as follows:  

𝑀 = 𝑙𝑜𝑔2 (
max(𝑀, 0) + 1

max(𝑈, 0) + 1
) 

It ranges between -∞ (unmethylated) and +∞ (methylated). In our study, M-values were 

used when applying linear regression models, while β-values were used in the rest of the 

analyses.  

The initial number of CpGs in the studied array was 27,578. We then applied BeadStudio 

software and R to preprocess the data. Background normalization was performed 

minimizing the amount of variation in background signals between arrays and, as 

recommended by Illumina, CpGs were rejected when detection p-value was > 0.05. The 

β-values < 0 or > 1 were also excluded. CpGs with SNPs (N=908) or cross reactive probes 

(N=2,985) were deleted based on earlier reports for the 27K array [22]. After QC, a total 

number of 23,034 CpGs were kept for analysis.  These were classified in 3 categories for 

subsequent analyses: CpG islands (located in the promoter region of a gene), CpG island 

shores (in a sequence up to 2Kb from an island) and CpGs outside of an island or a shore. 
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Gene expression data: Gene expression data were obtained from 43 tumor samples using 

the Affymetrix DNA Microarray Human Gene 1.0 ST Array with 32,321 probes. This 

array was based on 2006 (UCSC hg19, NCBI build 37) human genome sequence with 

coverage of RefSeq, Ensembl and putative complete CDS GenBank transcripts 

(www.affymetrix.com). QC was performed using Bioconductor libraries in R 

(www.bioconductor.org/). The arrayQualityMetrics package [23] was used to implement 

a background correction and to carry out normalization of expression levels across arrays. 

Application of QC steps resulted in 20,899 probes and 37 individuals. The affy library in 

R [24] was used to annotate the probes. 

Statistical Analysis 

First, tumoral DNA methylation levels in CpG sites and gene expression levels were 

compared using Spearman’s rank correlation for non-normally distributed variables. 

Second, we assessed eQTLs and methQTLs, via linear regression modeling for those 

expression-methylation pair probes that were strongly associated in the previous step. To 

perform these analyses, we obtained a linear regression model for each SNP as: 

𝐺𝑒𝑛𝑒 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖 = 𝛼 + 𝛽 ∗ 𝑆𝑁𝑃𝑖 

𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑝𝐺 𝑖 = 𝛼 + 𝛾 ∗ 𝑆𝑁𝑃î 

Prior to analysis, we excluded those SNPs that had less than two individuals per genotype 

due to the imbalance that may produce a highly differential gene expression values, i.e: 

an individual with rare homozygous genotype and with an extreme gene expression value 

that could produce an artificial high significant p-value.  

Expression-methylation probe pairs and eQTLs and methQTLs were classified in three 

categories according to possible genomic distance effects: cis-acting, if probes were 

located within 1Mb; trans-acting, if probes were on the same chromosome but located 

http://(www.affymetrix.com/
http://(www.bioconductor.org/


9 
 

more than 1Mb apart; and trans-acting-outside, if they were on different chromosomes. 

To control the analyses for multiple testing we applied the Benjamini & Yekutieli  [25] 

FDR method that allows for panel dependencies between tests. We applied this correction 

taking into account the number of tests performed in the eQTL and the methQTL study 

independently. Finally, we checked the regions of the trait-associated SNPs already 

published for UBC.     

Third, in line with the study, we integrated the results obtained from pairwise analyses on 

genome, epigenome and trascriptome data. We checked the SNPs that were common in 

the eQTL and methQTL analysis based on those probes-CpGs that were previously 

correlated in order to have a complete view of the genome in individuals with UBC. We 

obtained the distribution of the triplets (SNP-CpG-Gene expression) that were 

significantly associated in the same relationship.  

Statistical analyses were performed with R and results were visualized with Circos 

software [26].  
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Results:  

The majority of the individuals included in our study were male (93%) and current (50%) 

or former (36%) smokers. According to established criteria based on tumor stage (T) and 

grade (G) for UBC, individuals were classified as having low-risk non-muscle invasive 

tumors (45%), high-risk non-muscle invasive tumors (22%) or muscle-invasive tumors 

(29%) (Table 1).  

Table 1. Characteristics of the studied patients 

 

Characteristics N (%) 

Total 72 

Gender 

          Male 

          Female 

 

67 (93) 

5   (7) 

Age 

          Mean (SD) 

          Min-max 

 

65.6 (9.5) 

41-80 

Region 

          Barcelona 

          Elche 

 

31 (43) 

41 (57) 

Smoking status 

          Non-smoker 

          Current 

          Former 

          Unknown 

 

8 (11) 

36 (50) 

26 (36) 

2   (3) 

Tumor-stage 

         Low-grade-NMIBC 

         High-grade-NMIBC 

         MIBC 

         Unknown 

 

32 (45%) 

16 (22%) 

21 (29%) 

3   (4%) 

 

The description of the study results is organized in four sections following the framework 

steps proposed (Figure 1): (1) Description of the patterns of individual ‘omics’ data, 

globally and according to epidemiological data, (2) Correlation analysis between 

methylation and expression probes, (3) Identification of cis- and trans- eQTLs and 

methQTLs, and (4) Integration of results derived from the previous pairwise analysis. 
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Figure 1. Framework for data integration showing the steps to integrate genetic variants, 

DNA methylation levels, and gene expression levels. Step 1 corresponds to the 

preprocessed data, quality control and global patterns individually per data set. Steps 2, 3 

and 4 are represented for purple boxes corresponding to the analysis performed and the 

input data, and green oval boxes correspond to the results and the input of the next step. 
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1. Patterns of individual ‘omics’ data. Table 2 shows the distribution of the genotypes 

according to their MAF; 14% had a MAF of 0 and were excluded from the analysis, 11% 

ranged between (0.01-0.05], 30% between (0.05-0.2] and 31% between (0.2-0.4]. 

Missingness <5% was observed in 84% of the SNPs.  

Table 2. Summary of SNPs genotyped 
 

SNPs N (%) 

Total number 1,047,101 
MAF 
      [0.0] 

      (0.0 – 0.01] 

      (0.01 – 0.05] 
      (0.05 – 0.2] 

(0.2 – 0.4] 
(0.4 – 1.0] 

 

150,548 (14) 

  0 (  0) 

108,496 (11) 

312,220 (30) 
327,762 (31) 

148,075 (14) 

Missingness 

      No    missing 
      5%   missing 

      20% missing 
   > 20% missing 

 

488,288 (47) 

400,918 (38) 

147,732 (14) 

10,163 (1) 
MAF = 0.0 means that all individuals are common  

homozygous for the measured SNP.  
 

The patterns for DNA methylation according to the β- and M-values were different for 

autosomal chromosomes and X-chromosomes in females due to the X-chromosome 

inactivation in females. The majority (71%) of CpGs in autosomal chromosomes were 

unmethylated (β < 0.3) while, as expected, the majority of the CpGs (66%) in the X-

chromosomes showed β-values in the range (0.3 ≤ β < 0.7). While the M-values for 

autosomal chromosomes displayed a bimodal distribution, X-chromosomes 

approximated a normal distribution (Supplementary Figure 1). No significant different 

methylation patterns were found according to the clinical/epidemiological data 

considered, i.e. smoking status, tumor stage, age, and sex (Pearson’s χ2-test, data not 

shown).  



13 
 

The expression of the gene probes after background correction and normalization 

followed a normal distribution (Supplementary Figure 2). We did not find any significant 

difference according to the clinical/epidemiological data by applying student’s t-test (data 

not shown). 

2. Correlation between gene expression and DNA methylation. While it is well 

established that DNA methylation may affect the expression of a gene, mainly when the 

relationship is in cis-, little is known when it is in trans-. We investigated a total of 

481,387,566 possible correlations between gene expression and methylation both in cis- 

and in trans-. The number of comparisons performed was based on data derived from 31 

individuals (Table 3). We obtained 19,335 strong-negative (ρ < -0.7) and 88,503 strong-

positive (ρ > 0.7) associations between gene expression and methylation corresponding 

to 7,359 expression traits and 9,537 CpG sites. The distribution of the stronger 

relationships according to the CpG location and direction is shown in Table 4: 5,414 

(28%) were located in CpG islands, 1,690 (59%) in CpG shores and 2,433 (57%) outside 

of CpG islands/shores. There were 263 (0.03%) cis-acting correlations, 6,177 (0.02%) 

trans-acting correlations within the same chromosome, and 101,398 (0.02%) trans-acting 

outside the chromosome (trans-out correlations). A whole list of CpGs with significant 

cis- association with a gene can be found in Supplementary Table 1.  
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Table 3. Strength of correlations between gene expression and DNA methylation 

 

Spearman’s rho Strength of correlation Nº of combinations 

(-0.9 : -1.0] Very Strong-negative 0 

(-0.7 : -0.9] Strong-negative 19,335 

(-0.4 : -0.7] Moderate-negative 9,266,544 

(-0.0 : -0.4] Weak-negative 
 

238,601,864 

[0.0] No correlation 380,834 

(0.0 : 0.4] Weak-positive 223,165,638 

(0.4 : 0.7] Moderate-positive 9,864,848 

(0.7 : 0.9] Strong-positive 88,503 

(0.9 : 1.0] Very Strong-positive 0 

 

Table 4. Strong correlation for cis-acting and trans-relationships between CpG 

methylation and gene expression 

 

  

Negative 

correlation 

N (%) 

Positive 

correlation 

N (%) 

Cis-acting 

(same gene) 

CpG island/shore 37 (80) 9 (20) 

CpG outside  3 (37) 5 (63) 

Cis-acting 

(dif. gene) 

CpG island/shore 41 (26) 116 (74) 

CpG outside 11 (21)  41 (79) 

Trans-acting 
CpG island/shoe 757 (17) 3,736 (83) 

CpG outside 412(24) 1,272 (76) 

Trans-acting-

outside 

chromosome 

CpG island/shore 11,860 (16) 63,054 (84) 

CpG outside  6,214 (23) 20,270 (76) 
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3. Identification of cis- and trans- eQTLs and methQTLs. In order to detect genetic 

variants affecting gene expression or DNA methylation, we investigated a total of 7,359 

expression traits and 9,537 CpG sites that were strongly correlated in the previous step. 

The number of SNPs considered here after QC was 429,892 for the eQTL and 492,189 

for the methQTL analyses, resulting in a total of 3,163,575,228 eQTLs in 27 individuals 

and 4,694,006,493 methQTLs explored in 46 individuals. After correction for multiple 

testing (FDR<0.05), we obtained 471,818 significant eQTLs involving 154,203 SNPs, 

and 643,095 methQTLs involving 148,528 SNPs. These results pointed to the fact that 

multiple expression probes and CpGs were significantly associated with more than one 

SNP. We refer to this phenomenon as “hotspots” (Supplementary Figure 3). We show the 

distribution of QTLs classified by genomic distance and MAF of the relationship for 

eQTLs in Table 5 and methQTLs in Table 6. When classifying the QTLs by genomic 

distance we observed 441 cis-eQTLs (0.02%), 23,685 trans-eQTLs (0.01%) and 447,692 

trans-out-eQTLs (0.01%); and 538 cis-methQTLs (0.01%), 29,938 trans-methQTLs 

(0.01%), and 612,619 trans-out-methQTLs (0.01%). When classifying the QTLs in terms 

of MAF the majority had a MAF ≤ 0.2 (0.006%), while 0.003% and 0.002% had MAFs 

of (0.2-0.4] and ≥ 0.4, respectively. Detailed information regarding the cis- relationship 

is provided in supplementary tables 2 and 3. When we checked how the significant 

findings are distributed in terms of the direction of the relationship, there were more QTLs 

positively than negatively (60% vs. 40% eQTL, 63% vs. 37% methQTLs) associated 

implying that having more copies of the rare allele increases the levels of the gene 

expression or the levels of methylation. Lastly, we investigated, for QTL associations in 

our study, how many of the SNPs involved have been previously reported as a trait 

associated SNPs for UBC. We found that the SNP rs401681-TERT/CLPTM1L on 

chromosome 5 was associated with the expression of FRMD6 located on chromosome 14 
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(p-value = 3.7*10-5), and with the cg18368125-TMED6 on chromosome 16 (p-value = 

4.8*10-5). Also, the SNP rs1495741-NAT2 on chromosome 8 was associated with the 

expression of C19orf73 located in chromosome 19 (Figure 2). 

Table 5: Significant (FDR<0.05) cis-eQTLs and trans-eQTLs by MAF and sign of the 

association 

MAF Sign cis-eQTL 

N (%) 

trans-eQTL 

N (%) 

Trans-out-eQTL 

N (%) 

 (0.01-0.2] 

Positive 
106 

(0.005) 

7,026 

(0.005) 

127,177 

(0.004) 

Negative 
56 

(0.002) 

2,857 

(0.002) 

61,134 

(0.002) 

 (0.2-0.4] 

Positive 
95 

(0.003) 

4,759 

(0.003) 

88,213 

(0.003) 

Negative 
66 

(0.002) 

3,220 

(0.002) 

65,457 

(0.002) 

> 0.4 

Positive 
57 

(0.003) 

2,930 

(0.002) 

54,087 

(0.002) 

Negative 
61 

(0.003) 

2,893 

(0.002) 

51,624 

(0.002) 

%: Percentage of significant eQTLs after multiple testing correction over the total number of 

cis- (2,331,808), trans- (151,738,928) and trans-out (3,009,504,492) eQTL  
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Table 6: Significant (FDR<0.05) cis-methQTLs and trans-methQTLs by MAF and sign 

 

MAF Sign 
cis-methQTL 

N (%) 

trans-methQTL 

N (%) 

trans-methQTL-out 

N (%) 

 (0.01-0.2] 

Positive 
137 

(0.004) 

8,576 

(0.004) 

190,221 

(0.004) 

Negative 
61 

(0.002) 

3,554 

(0.002) 

72,611 

(0.002) 

 (0.2-0.4] 

Positive 
118 

(0.003) 

6,864 

(0.003) 

139,830 

(0.003) 

Negative 
139 

(0.004) 

5,230 

(0.002) 

98,068 

(0.002) 

> 0.4 

Positive 
39 

(0.001) 

3,090 

(0.001) 

57,476 

(0.001) 

 

Negative 
44 

(0.001) 

2,624 

(0.001) 

54,413 

(0.001) 

%: Percentage of significant methQTLs after multiple testing correction over the total number 

of cis- (3,499,636), trans- (224,328,090) and trans-out (4,466,178,767) methQTL. 
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Figure 2. GWAS-reported SNPs significantly associated with gene expression levels 

and/or DNA methylation levels in UBC. 

 
 

 

4. Integration of results derived from the pairwise analysis. From the final subset of 

eQTLs and methQTLs, we obtained 49,708 common SNPs (50% from the total SNPs for 

eQTLs and methQTLs), affecting a total of 227,572 eQTLs (207 cis-acting) and 298,869 

methQTLs (247 cis-acting). Multiple expression probes and CpGs were significantly 

associated with more than one SNP and vice versa. We found that 1,469 QTLs belonged 

to a triple relationship (SNP-CpG-Gene expression) (Supplementary Table 4). Regarding 

the association patterns, majority (29%) of these 1,469 triplets show a positive association 
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pattern, that is, the higher the methylation the higher the expression, where the rare allele 

is classified with higher expression and methylation levels. A second pattern (19%) 

regarded to “the higher the methylation the lower the expression”, where the rare allele is 

associated with high expression levels and low methylation levels. When restricted to cis-

relationship, no triplets were found but there were 19 pairs (1 eQTL, 1 methQTL and 17 

CpG-Gene expression pairs) that were in cis. The distribution of these triplets was 

completely different than that of the rest of the triplets. The most frequent pattern (32%) 

show a positive association between the SNP and methylation and negative for the 

association of both (SNPs and CpGs) with the expression. All the possible patterns with 

their percentages are shown in Table 7. Lastly, we checked for the “hotspots” in these 

triplets and we found some of them for SNPs, CpGs and Gene Expression probes (Figure 

3).  

Table 7: Distribution of the 1,946 triple relationships directions per pairwise analysis  

 

eQTL methQTL Expr-methy N1 (%) N2 (%)  

+ + + 419 (29) 1 (5) 

- - - 58 (4) 3 (16) 

+ - - 276 (19) 4 (21) 

- + + 78 (5) 1 (5) 

- + - 262 (18) 6 (32) 

+ - + 62 (4) 3 (16) 

- - + 250 (17) 1 (5) 

+ + - 64 (4) 0 (0) 

1 The total distribution for the 1,469 triplets 
2 The distribution only for the ones that had one pair in cis-effect 
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Figure 3. Circular representation of the “hotspots” found for SNPs (A), CpGs (B) and 

gene expression probes (C) extracted from the relationships on the triplets. Each 

chromosome is represented with a different color and the color of the lines corresponds 

to the SNPs, CpGs or gene expression probes that are located in the chromosome that 

share the color with. The name of the genes is located in the gene with the “hotspot”. 
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Discussion 

The post genome era delivers a wealth of ‘omics’ data allowing to explore the 

relationships between genetics, epigenetics and gene expression being of great 

importance to better understand the biological mechanism underlying a disease. In the 

cancer field, this integrative approach becomes particularly crucial on the basis of the 

knowledge indicating that SNPs, CpGs, and gene expression play an important role in the 

development of these complex diseases [27,28]. 

In this work, we propose an ’omics’ integrative analytical framework based on a multi-

staged strategy and we apply it to explore the relationships between three sets of data 

measured at a genome-wide level in UBC tumor samples. We provide further evidences 

on how common genetic variation and DNA methylation are statistically associated with 

the regulation of gene expression. Based on the knowledge that DNA is looped, allowing 

the interaction between two DNA regions located far away from each other, we not only 

studied cis- but also trans- relationships [29]. Here, we show that some SNPs are 

associated with DNA methylation, that the latter is associated with gene expression, and 

that some SNPs associate with both DNA methylation and gene expression.  

Individual and pairwise analysis 

The global pattern for methylation observed in our study (Supplementary Figure 1) 

parallels that reported previously for germline (blood) [14]. Consistently with previous 

studies performed in blood [14,16] and human brain samples [13], we found that - when 

located in an island/shore - the correlations between DNA methylation and gene 

expression from the same gene are predominantly negative, supporting the known 

biological mechanisms of gene regulation (80%). DNA methylation occurs near the 

Transcription Start Site (TSS) of a gene, blocking the initiation of gene expression 
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(Review in [3]). To highlight relevant results, four different CpGs (cg01354473, 

cg07778029, cg25047280, cg26521404) located in a CpG island of HOXA9 gene on 

chromosome 8 were negatively correlated with the expression of the gene. It was reported 

that HOXA9 acts as a tumor suppressor gene in oral cancer [30] while methylation of this 

gene has been associated with the regulation of its expression in UBC [31] and with risk 

of different cancers such as breast [32], oral cavity [33], and ovarian [34], as well as with 

risk of recurrence in UBC [35]. The observed negative association between four CpGs 

and HOXA9 expression in our study suggests that the inhibition of HOXA9 expression 

may affect the development of UBC and supports the approach applied in this study.  

On the other hand, the ENCODE Project provided some clues in the understanding of the 

biological behavior of trans- relationships and of the CpGs belonging to cis-relationships 

when located in a different gene [36]. In our study, we mainly observed positive 

correlations (79%) in all of these scenarios, meaning that increasing levels of methylation 

correlates with increasing levels of gene expression or the other way around, suggesting 

either a direct mechanism or an indirect mechanism where methylation affects expression 

of a gene repressor, thus leading to apparent association with increased gene levels.  These 

results warrant further mechanistic studies explaining the complex association between 

DNA methylation and gene expression. 

Little is known about the relationship between genetic variants and DNA methylation. 

Heyn et al. [1] recently published a methQTL analysis using the cancer genome atlas data 

but only with SNPs detected in GWAS studies and cis-acting methQTLs. They detected 

one methQTL in UBC where the SNP rs401681 in TERT_CLPTM1L was associated with 

cg06550200 located in CLPTM1L; unfortunately we have not been able to replicate this 

association as this CpG is not present in the 27K methylation array. Nonetheless, for the 

first time we have performed cis- and trans- acting methQTL analysis in UBC tumor 
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tissue samples using CpGs that were previously correlated with gene expression. From 

this assessment, we found 538 cis- relationships listed in the supplementary Table 3 with 

all necessary information for further studies and validation. More frequently, cis- 

relationships between genetic variants and gene expression levels have been assessed. We 

also performed eQTL association studies in cis- and trans- in the same conditions that for 

methQTLs and found 441 cis-eQTLs (Supplementary Table 2). We performed these 

analyses on significant expression-methylation correlated probes identified in the first 

step upon the assumption that epigenetics interferes with the gene expression levels.  

The proportion of eQTLs (0.01%, 471,818) and methQTLs (0.01%, 643,477) was similar, 

although more SNPs were involved in eQTLs (32.6%, 154,203) than in methQTLs 

(22.7%, 148,528), possibly because of the smaller sample size of the former. Similarly, 

we found no major differences in the percentages of QTL associations classified as cis-, 

trans- and trans-out according to the genomic distance defined before. Nevertheless, 

when considering the MAF distribution, a higher number of QTLs were observed for 

SNPs with MAF ≤ 0.2. While these results should be interpreted cautiously, due to the 

possibility of false positives, it is worth highlighting that we found a greater number of 

positive than negative QTLs relationships, meaning that having the rare allele is 

associated with increased gene expression or methylation levels.  

Some studies have related SNPs associated with complex diseases at genome-wide 

significance level to gene expression or methylation levels [1,10,37]. Out of the 14 

GWAS UBC SNPs [38], two showed to be associated with gene expression and 

methylation in trans-relationships (Figure 2). Interestingly, rs401681-TERT/CPTL1M, a 

variant strongly associated with low grade and low risk UBC [38], was found associated 

with a lower expression of FRMD6 in our study, a gene that was reported to be involved 

in the inhibition of proliferation in human cells [39]. 
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Integrative analysis 

We observed an enrichment of significant associations of genetic variants with 

methylation and gene expression with 49,708 SNP related to 227,572 eQTLs and 298,869 

methQTLs (207 eQTLs and 247 methQTL in cis-) suggesting a co-regulated expression 

and methylation. The percentage of enrichment associated with eQTLs (11.5%) and 

methQTLs (10.0%) was similar to that found by Wagner et al. [40] who detected an 

enrichment of 9.5% in fibroblasts. Bell et al. [14] also found an enrichment in 

lymphoblastoid cell lines. By contrast, Gibbs et al. [12] found only a modest overlap 

between both data in brain tissues, while Drong et al. [15] found no enrichment in adipose 

tissue. This highlights the fact that a specific genetic variants may show tissue-specific 

effects and that little is known about them at a genome wide level. We also found a total 

of 1,469 QTLs where the same SNP was significantly associated with both eQTL and 

methQTL in previously identified gene expression-CpG significant pairs. This three-way 

type relationship between SNP-CpG-Gene expression supports the notion that the three 

data sets implemented in this study are closely related in regulating part of the genome, 

an observation that may provide new insight into the genetics of this complex disease. 

Furthermore, we observed that the most frequent pattern (29%) in these three way 

relationships is a positive association pattern, suggesting that hypermethylation may act 

through a direct mechanisms or affect a repressor gene associated with an over-expression 

of gene levels. In addition, having the rare allele is associated with hypermethylation and 

over-expression pattern. This finding together with the fact that, in our study, we have 

demonstrated that 82% of the CpGs that are related with gene expression in trans-effect 

are positively correlated suggest that if one SNP is co-regulating both, this relation should 

be positive. Thus, we could hypothesize that the rare allele of the SNP associates with 

hypermethylation that, at the same time, associates with over-expression, as a possible 
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regulation scenario in trans-effect. When inspecting the cis-relationships, no triplets were 

found, but there were 19 pairs (1 eQT, 1 methQTL and 17 CpG-gene expression pairs) 

that were in cis. In this scenario, the most frequent pattern (32%) suggests that having the 

rare allele is associated with hypermethylation and under-expression where the 

expression and methylation are associated inversely. This fact suggests another possible 

regulation scenario based on previous findings. We demonstrated that the 79% of the 

CpGs located in the promoter region of the gene are negatively correlated in cis with the 

gene expression levels; meaning that higher methylation levels may affect to a decrease 

in the gene expression levels. An example of this scenario is shown in Figure 4 where the 

SNP rs289516 located in gene DLC1 is negatively associated in trans with the expression 

of HOXA9 (β = -1.1; p-value = 3.7*10-5) and positively with the cg01354473 located in 

the island of the HOXA9 gene (β = 1.8; p-value = 9.9*10-5). The relationship between the 

expression and the methylation levels in HOXA9 gene was already reported as negatively 

correlated (r2 = -0.7; p-value = 1.4*10-5).  It has been already published that the 

methylation of HOXA9 is negatively correlated with the gene expression in UBC [31] as 

we observed in our study. We added a new step on this complex scenario, since the SNP 

rs289516 is also involved in this triple relationship. This SNP belongs to the DLC1 gene 

considered as a tumor suppressor gene and the particular SNP has been picked up in two 

GWAS, one for asthma [41] and one for breast cancer [42], but any of them passed the 

GWAS significant threshold. Other examples with biological support are the triplet 

composed by the SNP rs29658399 located in gene DNAH11, the gene expression of 

HSPA1A, and the cg00929855 located in gene HSPA1A. It has been published that the 

HSPA1A promoter methylation underlies the defect in gene expression reduction 

observed in UBC cell lines [43]. In addition we found some “hotspots” in these triplets 

regarding SNPs, CpGs and gene expressions probes. In the circos plot (Figure 3A) we 
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observed a predominant relation for one SNP (rs10569 located in the gene PGM2) in 

chromosome 4. PGM2 is a protein-coding gene and is associated with diseases such as 

pneumonia and hypoxia. While alterations in this gene have not yet been directly 

associated with cancer, hypoxia is a known relevant process for tumor survival. This SNP 

was positively associated with the expression of SETBP1, coding for an important cancer 

gene located in chromosome 18 that is observed also as a predominant “hotspot” in Figure 

3C. Somatic mutations in SETBP1 [44], as well as its expression patterns [45], are related 

with myeloid leukemia disease. Moreover in Figure 3B we observed a very predominant 

“hotspot” regarding three CpGs belonging to three different genes but close located in 

chromosome 6; Two of them (cg02622316 located in the gene ZNF96 and cg02599464 

located in the gene HIST1H41) were already published as hypermethylated in individuals 

with muscle invasive bladder cancer [46]. The first one is associated positively with many 

SNPs and gene expression probes and the second is associated positive and negative with 

some SNPs and positively with some gene expression probes. A more detailed discussion 

of the potential biological findings than involved the triple relationships is beyond this 

particularly study and detailed results about all the combinations are provided in 

Supplementary Table 4.  

  

http://www.malacards.org/card/pneumonia
http://www.malacards.org/card/hypoxia
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Figure 4. Example of one triple relationship where integrated common genetic variants 

with DNA methylation and gene expression in one of the main possible scenarios for 

regulation.  

 
  

 

The integrative framework 

We built and propose a multi-staged ‘omics’ integration framework that its application 

does not require a strong methodological knowledge, being easy and effective to use. The 

multi-staged framework we applied has the advantage of analyzing data of all subjects 

that overlap among pairs of data and has not to restrict only to the few individuals with a 

complete overlap among all the data types. Thus, we take advantage of more samples 
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using this framework than integrating the data in a multi-dimensional model. Therefore, 

we show here the application for the first time of multi-staged framework that allowed us 

to (1) integrate more than two ‘omics’ data for the same set of individuals, (2) dissect the 

biological relationships that may point to new mechanisms involved in the 

development/progression of UBC through a hypothesis-based models built step by step, 

and (3) to envision the complexities of the general scenario of genomic regulation.  

Conclusions 

While these results are exciting, we acknowledge the following limitations. First, in this 

study we use the 27K methylation array that only covers a selection of CpG sites making 

infeasible to replicate previous reported findings using the 450k array. Second, statistical 

power is a commonplace in any QTL analysis given the extensive amount of data 

analyzed and the small sample size. While this limitation needs to be considered in the 

interpretation of the results, it is worth mentioning that a large enough size will unlikely 

be available to meet the standard criteria of statistical power; therefore, our study 

represents a proof of concept in the integrative ’omics’ field. In addition, while we might 

not be able to address for unmeasured confounding factors, no differences were found 

between demographic factors and methylation and gene expression in our series. 

Validation of these results to discard false positive findings is not trivial due to the 

multiple genomic factors, the models considered, and the characteristics of the series. 

Despite these limitations, this study has several strengths. We have performed the study 

in tumor samples what gave us the opportunity to study in detail the regulation of three 

types of ‘omics’ data in UBC providing some evidences on the genomics regulation of 

the tumor. We have applied an easy, reproducible, and detailed framework to perform an 

integrative study of the relationships between genetic variations, DNA methylation and 

gene expression, showing a whole spectrum of the associations between them. We have 
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shown that ‘omics’ data integration helps unraveling biological mechanisms involved in 

UBC. All these relations may help in the identification of new molecular targets to be 

further explored in detail, mainly regarding trans- relationships.  

In conclusion, this study provides the scientific community with a pipeline to integrate 

more than two sets of ‘omics’ data that can be applied in future analyses seeking to better 

understand the biology behind the complex diseases. In addition, we highlight the 

importance of integrating ‘omics’ data to identify new genetic mechanisms in UBC. 

While several pieces of evidences support these findings, they still require of 

experimental validation to be considered conclusive. 
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