
Apache Hadoop
Ingestion & Dispersal

Framework

Danny Chen dannyc@uber.com,
Omkar Joshi omkar@uber.com
Eric Sayle esayle@uber.com

Uber Hadoop Platform Team

Strata NY 2018

September 12, 2018

mailto:dannyc@uber.com
mailto:omkar@uber.com
mailto:esayle@uber.com

Agenda
● Mission
● Overview
● Need for Hadoop ingestion &

dispersal framework
● Deep Dive

○ High Level Architecture
○ Abstractions and Building Blocks

● Configuration & Monitoring of Jobs
● Completeness & Data Deletion
● Learnings

Uber Apache Hadoop Platform Team Mission

Build products to support reliable, scalable, easy-to-use, compliant, and
efficient data transfer (both ingestion & dispersal) as well as data storage

leveraging the Hadoop ecosystem.

Overview

● Any Source to Any Sink
● Ease of onboarding
● Business impact & importance of

data & data store location
● Suite of Hadoop ecosystem tools

Introducing

Open Sourced in September 2018

https://github.com/uber/marmaray

Blog Post: https://eng.uber.com/marmaray-hadoop-ingestion-open-source/

https://github.com/uber/marmaray
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/

Marmaray (Ingestion): Why?

● Raw data needed in Hadoop data lake
● Ingested raw data -> Derived Datasets
● Reliable and correct schematized data
● Maintenance of multiple data pipelines

Marmaray (Dispersal): Why?

● Derived datasets in Hive
● Need arose to serve live

traffic
● Duplicate and ad hoc

dispersal pipelines
● Future dispersal needs

Marmaray: Main Features

● Release to production end of 2017
● Automated schema management
● Integration w/ monitoring & alerting

systems
● Fully integrated with workflow

orchestration tool
● Extensible architecture
● Open sourced

Marmary: Uber Eats Use Case

Hadoop Data Ecosystem at Uber

Hadoop Data Ecosystem at Uber

Marmaray
Ingestion Marmaray

DispersalHadoop
Data
Lake

Schemaless

Analytical
Processing

High-Level Architecture
& Technical Deep Dive

Chain of converters

High-Level Architecture

Schema Service

Input
Storage
System

Source
Connector

M3 Monitoring & Alerting System

Work
Unit

Calculator

Metadata Manager
(Checkpoint store)

Converter1 Converter 2
Sink

Connector
Output
Storage
System

Error Tables

Datafeed Config Store

Chain of converters

High-Level Architecture

Schema Service

Input
Storage
System

Source
Connector

M3 Monitoring System

Work
Unit

Calculator

Metadata Manager
(Checkpoint store)

Converter1 Converter 2
Sink

Connector
Output
Storage
System

Error Tables

Datafeed Config Store

Schema Service

Schema
Service

Get Schema by Name & version

Get Schema
Service Reader Reader /

Decoder

Binary Data

Generic Record

Get Schema
Service Writer Writer /

Encoder

Generic Data

Binary Data

Chain of converters

High-Level Architecture

Schema Service

Input
Storage
System

Source
Connector

M3 Monitoring System

Work
Unit

Calculator

Metadata Manager
(Checkpoint store)

Converter1 Converter 2
Sink

Connector
Output
Storage
System

Error Tables

Topic Config Store

Metadata Manager

Persistent
Storage

(ex.HDFS)

In-Memory
Copy

Metadata Managerinit()
Called on
Job start

Different Job
DAG

Components

persist()
Called after
Job finish

Set (key, value)
called 0 or more

times

Get(key) -> value
called 0 or more

times

Fork Operator -
Why is it needed?

Input Records

Schema
Conforming

records

Error
Records

● Avoid reprocessing input
records

● Avoid re-reading input
records (or in Spark,
re-executing input
transformations)

Fork Operator & Fork Function

Input Records

Schema Conforming
records

Error
Records

Fork
Function

Tagged
Records

r1, S/F

r2, S/F

rx, S/F

Success Filter
 function

Failure Filter
 function

Persisted using Spark’s disk/
memory persistence level

Easy to Add Support for new Source & Sink

Data lake with GenericRecord

Kafka

Hive

S3

New
Source

Cassandra

Support for Writing into Multiple Systems

Data lake with GenericRecordKafka

Hive
Table 1

Hive
Table 2

JobDag & JobDagActions

JobDAG
Report metrics for monitoring

Register table in Hive

Job Dag Actions

Need for running multiple JobDags together

● Frequency of data arrival
● Number of messages
● Avg record size & complexity of schema
● Spark job has Driver + executors (1 or more)
● Not efficient model to handle spikes
● Too many topics to ingest. 2000+

JobManager

● Single Spark job for running
ingestion for 300+ topics

● Executes multiple JobDAGs
● Manages execution ordering for

multiple JobDAGs
● Manages shared Spark context
● Enables job and tier-level

locking

Job
Mgr

1
Spark
Job

Ingesting kafka-topic 1 (JobDAG 1)

Ingesting kafka-topic N (JobDAG N)

Waiting Q for JobDAGs

Completeness

Source
(Kafka)

10 min buckets
Latest
Bucket

Sink
(Hive)

10 min buckets
Latest
Bucket

Completeness contd..

● Why not run queries on source and sink dataset periodically?
○ Possible for very small datasets
○ Won’t work for billions of records; very expensive!!

● Bucketizing records
○ How about creating time based buckets say for every 2min or 10min.
○ Count records at source and sink during every runs

■ Does it give 100% guarantee?? No but w.h.p. it is close to it.

Completeness - High level approach

Kafka Hoodie
(Hive)

Marmaray

Src
Converter

Sink
Converter

Error Table

Input
Record
(IR)

Input
Success
Record
(ISR)

Input
Error
Record
(IER)

Output
Error
Record
(OER)

Output
Records
(OR)

IR IER OER OR

Hadoop old way of storing kafka data

Kafka topic1

2014

2015

2018

01

02

08

01

02

06

Latest Date
Partition

Stitched parquet files
(~4GB) (~400 files per
partition)

Non-stitched parquet
files (~40MB) (~20-40K
files per partition)

Data Deletion (Kafka)

● Old architecture is designed to be append/read only
● No indexes

○ Need to scan entire partition to find out if record is present or not

● Only way to update is to rewrite entire partition
○ Re-writing entire partition for

● GDPR requires all data to be cleaned up once user requests deletion
● This is a big architectural change and many companies are struggling to

solve this

Marmaray + HUDI (hoodie)
to rescue

Hoodie Data layout

Kafka Topic

2014

2015

2018

01

02

08

01

02

06

.hoodie

Hoodie metadata

ts1.commit

ts2.commit

ts3.commit

f1_ts1.parquet f2_ts1.parquet

f4_ts1.parquetf3_ts1.parquet

f5_ts2.parquet f6_ts2.parquet

f7_ts2.parquet

f1_ts3.parquet f8_ts3.parquet

Updates

Configuration
common:
 hadoop:
 fs.defaultFS: "hdfs://namenode/"
 hoodie:
 table_name: "mydb.table1"
 base_path: "/path/to/my.db/table1"
 metrics_prefix: "marmaray"
 enable_metrics: true
 parallelism: 64
 kafka:
 conn:
 bootstrap.servers: "kafkanode1:9092,kafkanode2:9092"
 fetch.wait.max.ms: 1000
 socket.receive.buffer.bytes: 5242880
 fetch.message.max.bytes: 20971520
 auto.commit.enable: false
 fetch.min.bytes: 5242880
 source:
 topic_name: "topic1"
 max_messages: 1024
 read_parallelism: 64
 error_table:
 enabled: true
 dest_path: "/path/to/my.db/table1/.error"
 date_partitioned: true

Monitoring & Alerting

Learnings

- Spark
- Off heap memory usage of spark and YARN killing our

containers
- External shuffle server overloading

- Parquet
- Better record compression with column alignments

- Kafka
- Be gentle while reading from kafka brokers

- Cassandra
- Cassandra SSTable streaming (no throttling) , no monitoring
- No backfill for dispersal

External Acknowledgments

https://gobblin.readthedocs.io/en/latest/

Other Relevant Talks

Your 5 billion rides are arriving now: Scaling Apache Spark for data pipelines
and intelligent systems at Uber - Wed 11:20am

Hudi: Unifying storage and serving for batch and near-real-time analytics - Wed
5:25 pm

We are hiring!

Positions available: Seattle, Palo Alto & San
Francisco

email : hadoop-platform-jobs@uber.com

mailto:hadoop-platform-jobs@uber.com

Useful links

● https://github.com/uber/marmaray
● https://eng.uber.com/marmaray-hadoop-ingestion-open-sour

ce/
● https://github.com/uber/hudi
● https://eng.uber.com/michelangelo/
● https://eng.uber.com/m3/

https://github.com/uber/marmaray
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
https://github.com/uber/hudi
https://eng.uber.com/michelangelo/
https://eng.uber.com/m3/

Q & A?

Follow our Facebook page:
www.facebook.com/uberopensource

