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Uber Apache Hadoop Platform Team Mission

Build products to support reliable, scalable, easy-to-use, compliant, and 
efficient data transfer (both ingestion & dispersal) as well as data storage 

leveraging the Hadoop ecosystem.



Overview

● Any Source to Any Sink
● Ease of onboarding 
● Business impact & importance of 

data & data store location
● Suite of Hadoop ecosystem tools 



Introducing 



Open Sourced in September 2018

https://github.com/uber/marmaray

Blog Post: https://eng.uber.com/marmaray-hadoop-ingestion-open-source/

https://github.com/uber/marmaray
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/


Marmaray (Ingestion): Why?  

● Raw data needed in Hadoop data lake 
● Ingested raw data -> Derived Datasets
● Reliable and correct schematized data
● Maintenance of multiple data pipelines



Marmaray (Dispersal): Why?

● Derived datasets in Hive
● Need arose to serve live 

traffic
● Duplicate and ad hoc 

dispersal pipelines 
● Future dispersal needs



Marmaray: Main Features

● Release to production end of 2017
● Automated schema management
● Integration w/ monitoring & alerting 

systems
● Fully integrated with workflow 

orchestration tool 
● Extensible architecture 
● Open sourced



Marmary: Uber Eats Use Case



Hadoop Data Ecosystem at Uber



Hadoop Data Ecosystem at Uber
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High-Level Architecture 
& Technical Deep Dive



Chain of converters
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Schema Service
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Chain of converters
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Metadata Manager
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Fork Operator - 
Why is it needed?

Input Records

Schema 
Conforming 

records

Error
Records

● Avoid reprocessing input 
records

● Avoid re-reading input 
records (or in Spark, 
re-executing input 
transformations)



Fork Operator & Fork Function
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Easy to Add Support for new Source & Sink

Data lake with GenericRecord
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Support for Writing into Multiple Systems

Data lake with GenericRecordKafka

Hive
Table 1

Hive
Table 2



JobDag & JobDagActions

JobDAG
Report metrics for monitoring

Register table in Hive

Job Dag Actions



Need for running multiple JobDags together

● Frequency of data arrival
● Number of messages
● Avg record size & complexity of schema
● Spark job has Driver + executors (1 or more)
● Not efficient model to handle spikes
● Too many topics to ingest. 2000+



JobManager

● Single Spark job for running 
ingestion for 300+ topics

● Executes multiple JobDAGs
● Manages execution ordering for 

multiple JobDAGs
● Manages shared Spark context
● Enables job and tier-level 

locking

Job
Mgr

1 
Spark
Job

Ingesting kafka-topic 1 (JobDAG 1)

Ingesting kafka-topic N (JobDAG N)

Waiting Q for JobDAGs



Completeness
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Completeness contd..

● Why not run queries on source and sink dataset periodically?
○ Possible for very small datasets
○ Won’t work for billions of records; very expensive!!

● Bucketizing records
○ How about creating time based buckets say for every 2min or 10min.
○ Count records at source and sink during every runs

■ Does it give 100% guarantee?? No but w.h.p. it is close to it.



Completeness - High level approach

Kafka Hoodie
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Hadoop old way of storing kafka data
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Data Deletion (Kafka)

● Old architecture is designed to be append/read only
● No indexes

○ Need to scan entire partition to find out if record is present or not

● Only way to update is to rewrite entire partition
○ Re-writing entire partition for 

● GDPR requires all data to be cleaned up once user requests deletion
● This is a big architectural change and many companies are struggling to 

solve this



Marmaray + HUDI (hoodie) 
to rescue



Hoodie Data layout
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Configuration
common:
  hadoop:
    fs.defaultFS: "hdfs://namenode/"
  hoodie:
    table_name: "mydb.table1"
    base_path: "/path/to/my.db/table1"
    metrics_prefix: "marmaray"
    enable_metrics: true
    parallelism: 64
  kafka:
    conn:
      bootstrap.servers: "kafkanode1:9092,kafkanode2:9092"
      fetch.wait.max.ms: 1000
      socket.receive.buffer.bytes: 5242880
      fetch.message.max.bytes: 20971520
      auto.commit.enable: false
      fetch.min.bytes: 5242880
  source:
    topic_name: "topic1"
    max_messages: 1024
    read_parallelism: 64
  error_table:
    enabled: true
    dest_path: "/path/to/my.db/table1/.error"
    date_partitioned: true



Monitoring & Alerting



Learnings

- Spark
- Off heap memory usage of spark and YARN killing our 

containers
- External shuffle server overloading

- Parquet
- Better record compression with column alignments

- Kafka
- Be gentle while reading from kafka brokers

- Cassandra
- Cassandra SSTable streaming (no throttling) , no monitoring
- No backfill for dispersal



External Acknowledgments

https://gobblin.readthedocs.io/en/latest/



Other Relevant Talks

Your 5 billion rides are arriving now: Scaling Apache Spark for data pipelines 
and intelligent systems at Uber - Wed 11:20am  

Hudi: Unifying storage and serving for batch and near-real-time analytics - Wed 
5:25 pm

 



We are hiring!

Positions available: Seattle, Palo Alto & San 
Francisco

 

email : hadoop-platform-jobs@uber.com

mailto:hadoop-platform-jobs@uber.com


Useful links

● https://github.com/uber/marmaray
● https://eng.uber.com/marmaray-hadoop-ingestion-open-sour

ce/
● https://github.com/uber/hudi
● https://eng.uber.com/michelangelo/
● https://eng.uber.com/m3/

https://github.com/uber/marmaray
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
https://eng.uber.com/marmaray-hadoop-ingestion-open-source/
https://github.com/uber/hudi
https://eng.uber.com/michelangelo/
https://eng.uber.com/m3/


Q & A?



Follow our Facebook page: 
www.facebook.com/uberopensource


