Ooliveboard

QUANTITATIVE APTITUDE FORMULAS - GEOMETRY, SIMPLIFICATION \& TRIGONOMETRY

For Bank and Government Exams

Quantitative Aptitude section is one of the difficult sections of any Bank and Government Exam. However, with right tricks and practice it can also turn out to be a high scoring section. To help you prepare most effectively for Quantitative Aptitude, we are providing you with Free E-books about tips, tricks and formulas for the most important topics from the Quantitative Aptitude syllabus for the exams.

In this E-book we are providing you with all the Important Quantitative Aptitude formulas for Geometry (Mensuration), Simplification and Trigonometry to help you solve the questions in various Bank and Government Exams.

Quantitative Aptitude Formulas: AREA

Figure	Formula of Area
Circle -:	$=p i^{*} R^{2}$ or $=\left(p i * D^{2}\right) / 4$
Square -:	$=\mathbf{s x s}$
Rectangle -:	$=I^{*} \mathbf{w}$
Triangle -:	$=\left(b^{*} \mathrm{~h}\right) / 2$
Parallelogram -:	$=b \times h$
Rhombus -:	$=b \times h$
Trapezoid -:	$=(a+b) / 2 \times h$

Quantitative Aptitude Formulas: Perimeter

Figure	Formula of Perimeter
Circle -:	$=2 \times p i \times r$ or $=p i * d$
Square -:	$\begin{gathered} =s+s+s+s \\ =4 \times s \end{gathered}$
Rectangle -:	$=I+I+w+w$ or $=2 \times 1+2 \times w$
Triangle -:	$=\mathrm{a}+\mathrm{b}+\mathrm{c}$
Parallelogram -:	$\begin{aligned} & =a+a+b+b \\ & \text { or } \\ & =2 \times a+2 \times b \end{aligned}$
Rhombus -:	$\begin{gathered} *=b+b+b+b \\ =4 \times b \end{gathered}$
Trapezoid -:	$=a+b+c+d$

Quantitative Aptitude Formulas: Volume

Figure	Formula of Volume
Cube -:	$\begin{gathered} =a^{3} \\ =a \times a \times a \end{gathered}$
Cylinder -:	$=p i \times r^{2} \times h$
Rectangular Solid -:	$=\mathbf{l} \times \mathbf{w} \times \mathbf{h}$
Sphere -:	$=\left(4 \times p i \times r^{3}\right) / 3$
Cone -:	$=\left(p i \times r^{2} \times h\right) / 3$
Pyramid -:	$=(B \times h) / 3$

Quantitative Aptitude Formulas: Simplification

$$
\begin{aligned}
& (a+b)(a-b)=\left(a^{2}-b^{2}\right) \\
& (a+b)^{2}=\left(a^{2}+b^{2}+2 a b\right) \\
& (a-b)^{2}=\left(a^{2}+b^{2}-2 a b\right) \\
& (a-b)^{2}=\left(a^{2}+b^{2}-2 a b\right) \\
& (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a) \\
& \left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& \left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& \left(a^{3}+b^{3}+c^{3}-3 a b c\right)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-a c\right) \\
& \text { If } a+b+c=0, \\
& \text { then } a^{3}+b^{3}+c^{3}=3 a b c .
\end{aligned}
$$

BODMAS Rule:

The rule is basically a sequence of operations to follow for solving and finding the correct value of the given arithmetic expression.

Here, BODMAS is an acronym depicting the correct sequence of operations to follow. It stands for -:

B - Bracket
O-Of
D - Division
M - Multiplication
A - Addition
S - Subtraction

```
Quantitative Aptitude Formulas: Trigonometry
* \(\operatorname{Cos}^{2} x+\sin ^{2} x=1\)
* \(\sin ^{2} \theta=1-\cos ^{2} \theta\)
* \(\cos ^{2} \theta=1-\sin ^{2} \theta\)
* \(1+\tan ^{2} x=\sec ^{2} x\)
\& \(1+\cot ^{2} x=\operatorname{cosec}^{2} x\)
* \(\sin \theta \times \operatorname{cosec} \theta=1\)
* \(\cos (x \pm y)=\cos (x) \cdot \cos (y) \pm \sin (x) \cdot \sin (y)\)
\(* \sin (x \pm y)=\sin (x) \cdot \cos (y) \pm \cos (x) \cdot \sin (y)\)
* \(\sin (2 x)=2 \sin (x) \cdot \cos (x)\)
* \(\cos (2 x)=2 \cos ^{2}(x)-1\)
* \(\sin (2 x)=\cos ^{2}(x)-\sin ^{2}(x)\)
* \(\cos (2 x)=1-2 \sin (x)\)
* \(\tan (x \pm y)=[\tan (x) \pm \tan (y)] /[1 \pm \tan (x) \cdot \tan (y)]\)
* \(\sin (x) x \sin (y)=1 / 2[\cos (x-y)-\cos (x+y)]\)
* \(\cos (x) x \cos (y)=1 / 2[\cos (x-y)+\cos (x+y)]\)
岡 \((x) x \cos (y)=1 / 2[\sin (x+y)+\sin (x-y)]\)
\(* \cos (x) x \sin (y)=1 / 2[\sin (x+y)-\sin (x-y)]\)
```


Quantitative Aptitude Formulas: Trigonometry

Important Trigonometric Values:

	0	$30^{\circ}=\frac{\pi}{6}$	$45^{\circ}=\frac{\pi}{4}$	$60^{\circ}=\frac{\pi}{3}$	$90^{\circ}=\frac{\pi}{2}$
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
\tan	0	$\frac{1}{\sqrt{3}}$	1	$\frac{\sqrt{3}}{\sqrt{3}}$	undefined
\csc	undefined	2	$\sqrt{2}$	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$
\sec	1	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	
\cot	undefined				0

Four Quadrant Rule -: All - Sine - Tan - Cosine. (Also known as All Students
Take Calculus Rule) to find the values of any trigonometric angle.

Stay tuned for more such resources on our blog:

https://www.oliveboard.in/blog

Click on any of the below given exams to take a FREE mock test:

Banking

SBI PO | IBPS PO| RBI GRADE B |IBPS CLERK | IBPS SO | NABARD |SBI CLERK | SIDBI RBI ASSISTANT | IPPB OFFICER |IBPS RRB OFFICER | IBPS RRB ASSISTANT |LAKSHMI VILAS BANK DENA BANK PO|BOB MANIPALI BOM MANIPALI SYNDICATE BANK PO I IDBI BANK PO

MBA

CAT | CMAT \| XAT \| MHCET \| NMAT |SNAP | IIFT

Government and Insurance

UPSC|SSC CGLI IIC AAO | UIIC AO |RAILWAYS RRB |LIC HFL |UIIC Assistant| NICL Assistant OICL AO | NICL AO| NIACL AO | IRDA|| IB ACIO|NIACL Assistant

About Oliveboard:

Oliveboard is a leading preparation portal for MBA, Banking and Government exams. We provide free mock tests, comprehensive study material that includes lessons \& video lectures, and various other features such as analytics, group study and study planner.Ace your exams by preparing on PC or Mobile with study synchronized across devices.

Download our Android App

