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CAUSE OF OCEAN WAVES



The highest winds generally occur in the Southern Ocean, 
where winds over 15 meters per second (represented by 
red in images) are found. The strongest waves are also 
generally found in this region. The lowest winds
(indicated by the purple in the images) are found 
primarily in the tropical and subtropical oceans where the 
wave height is also the lowest. 

The highest waves generally occur in the Southern 
Ocean, where waves over six meters in height 
(shown as red in images) are found. The strongest 
winds are also generally found in this region. The 
lowest waves (shown as purple in images) are found 
primarily in the tropical and subtropical oceans 
where the wind speed is also the lowest. 

In general, there is a high degree of 
correlation between wind speed and 
wave height.
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Very High
Huge

Sea State 
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DescriptionSignificant Wave Height



General Wave Problem



Unknowns

• Velocity Field

• Free Surface Elevation

• Pressure Field

( , , , ) ( , , , )V x y z t x y z tφ= ∇

( , , ) ( , , )z x y t x y tη=

( , , , ) dynamic hydrostaticp x y z t p p= +



• Continuity (Conservation of Mass):

• Bernoulli’s Equation (given φ):

• No disturbance exists far away:

Governing Equations & Conditions
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21 0 for 
2

ap p gz z
t
φ φ η

ρ
−∂

+ ∇ + + = <
∂

, 0 and ap p gzt
φ φ ρ∂ ∇ → = −

∂



Boundary Conditions

• In order to solve the boundary value problem for 
free surface waves we need to understand the 
boundary conditions on the free surface, any 
bodies under the waves, and on the sea floor:
– Pressure is constant across the interface

– Once a particle on the free surface, it remains there 
always.

– No flow through an impervious boundary or body.



Pressure Across the FS Interface
 on atmp p z η= =

21 ( )
2 atmp V gz c t p

t
φρ ∂ = − + + + = ∂ 

Since c(t) is arbitrary we can choose a suitable constant that 
fits our needs: ( ) atmc t p=
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t
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+ + =
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Thus our pressure boundary condition on z = η becomes:
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p V gz c t
t
φρ ∂ + + + = ∂ 

Bernoulli’s Eqn. 
at the free surface



Once a Particle on the FS…
The normal velocity of a particle on the FS follows the normal 
velocity of the surface itself:

( )p pz x tη= ,

( ) ( )p p p p p pz z x x t t x t x t
x t
η ηδ η δ δ η δ δ∂ ∂

+ = + , + = , + +
∂ ∂

On the surface, where ,  this reduces to:pz η=

pz u t t
t t
η ηδ δ δ∂ ∂

= +
∂ ∂ pz w tδ δ=

px u tδ δ=

  on w u z
x t
η η η∂ ∂

∴ = + =
∂ ∂

z-position of the particle

Look at small motion :pzδ



No flow through an impervious boundary

On the Body: ( ) 0B x y z t, , , =

Velocity of the fluid normal to the body must be equal to 
the body velocity in that direction: 

ˆ ˆ ˆ( ) ( ) 0nV n n U x t n x t U on B
n
φφ ∂

⋅ = ∇ ⋅ = = , ⋅ , = =
∂

Alternately a particle P on B remains on B always; i.e. B is a material surface.

For example: if P is on B at some time t = to such that B(x,to) = 0 and we were to 
follow P then B will be always zero:

If  ( ) 0 then ( ) 0 for alloB x t B x t t, = , , = ,

( ) 0 0DB B B on B
Dt t

φ∂
∴ = + ∇ ⋅∇ = =

∂

Take for example a flat bottom at  then 0z H zφ= − ∂ /∂ =



Linear Plane Progressive Waves
Linear free-surface gravity waves can be characterized by 
their amplitude, a, wavelength, λ = 2π/k, and frequency, ω. 

( , ) cos( )x t a kx tη ω= −



Linear Waves

• a is wave amplitude, h = 2a
• λ is wavelength, λ = 2π/k where k is wave number
• Waves will start to be non-linear (and then break) 

when h/λ > 1/7

/ 1/ 7h λ <



Linearization of Equations & 
Boundary Conditions

Non-dimensional variables :

aη η∗= ttω ∗=u uaω ∗=
x xλ ∗=w waω ∗=aφ φωλ ∗=

d a dφ ωλ φ∗=1 dt td ω ∗= / dx dxλ ∗=



FS Boundary Conditions
1. Dynamic FS BC:
(Pressure at the FS)
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FS Boundary Conditions

If  1 7 h λ/ << /
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2. Kinematic FS BC:
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Non-dimensionalize:

Therefore:



FSBC about z=0
Since wave elevation, η, is proportional to wave amplitude, a, and a is small 
compared to the wavelength, λ,  we can simplify our boundary conditions one 
step further to show that they can be taken at z = 0 versus z = η.

First take the Taylor’s series expansion of φ(x, z=η, t) about z=0:

( ) ( 0 )x z t x t
z
φφ η φ η∂

, = , = , , + + ...
∂

It can be shown that the second order term and all subsequent HOTs are 
very small and can be neglected. Thus we can substitute φ(x, z=0, t) for  
φ(x, z=η, t) everywhere:
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Linear Wave 
Boundary Value Problem
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3. Kinematic FSBC (Motion at the Surface)

1. Sea Floor Boundary Condition (flat bottom)

2. Dynamic FSBC  (Pressure at the FS)
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Solution to Laplace’s Equation

( ) cos( )x t a kx tη ω ψ, = − +

( ) ( ) sin( )ax z t f z kx t
k
ωφ ω ψ, , = − − +

( ) ( ) cos( )u x z t a f z kx tω ω ψ, , = − +

1( ) ( ) sin( )w x z t a f z kx tω ω ψ, , = − − +

cosh[ ( )]( )
sinh( )

k z Hf z
kH

+
= 1

sinh[ ( )]( )
sinh( )

k z Hf z
kH
+

=

2 tanh( ) dispersion regk kH lationω ⇒=

By Separation of Variables we can get a solution for linear FS waves: 

Where: 



Dispersion Relationship

2 tanh( )gk kHω =

• Approximations
– As 

– As

0kH → tanh( )kH kH→

2 2gk Hω∴ ≅

kH → ∞ tanh( ) 1kH →
2 gkω∴ ≅

The dispersion relationship uniquely relates the wave frequency 
and wave number given the depth of the water.

(deep)

(shallow)

The solution f must satisfy all boundary conditions. 
Plugging f into the KBC yields the dispersion relationship



Pressure Under Waves

1 2
2 hydrostatic

unsteady pressure2nd Orderfluctuation term

DynamicPressure

p V gzt
φρ ρ ρ∂= − − −

∂

Unsteady Bernoulli’s Equation:

Since we are dealing with a linearized problem we can neglect the 
2nd order term. Thus dynamic pressure is simply:

( )
( )

2 2

( )

( ) cos( ) ( ) ( )

cosh
( )

cosh

dp x z t
t

a f z t kx f z x t
k k

k z H
g x t

kH

φρ

ω ωρ ω ψ ρ η

ρ η

∂
, , = −

∂

= − − = ,

+  = ,



Motion of a Fluid Particle



Particle Orbits
Under the waves particles follow distinct orbits depending on whether the 
water is shallow, intermediate or deep.  Water is considered deep when 
water depth is greater than one-half the wavelength of the wave. 



Particle Orbits in Deep Water

Circular orbits with 
exponentially

decreasing radius

Particle motion extinct at z ≅ -λ/2

( )1H kH→ ∞
2 dispersion relationshipgkω ⇔=

1( ) ( ) kzf z f z e≅ ≅

( )22 2 kz
p p a eξ η+ =



at the free surface…
The intersection between the circle on which ξp
and ηp lie and the elevation profile η(x,t) define 
the location of the particle.

This applies at all depths, z: 
ηp(x,z,t) = a ekz cos(ωt-kx+ψ) = η(x,t) ekz



Particle acceleration and 
velocity



Phase Velocity

tanhg
p kV kH

T k
λ ω

= = = Phase Velocity= speed of the 
wave crest

Motion of crest 
in space and time



Group Velocity

( ) ( ){ }2 20
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Simple Harmonic Wave: η(x,t) = a cos(ωt-kx)



Group Velocity

g
dV
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δω ω
δ

= =

speed of the 
wave energy

Shallow water

Deep water
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