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CAUSE OF OCEAN WAVES
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FIGURE 1. Wave energy spectra. Red text indicates wave peneration mechanisms and blue

text indicates damping /restoring forces.
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The highest waves generally occur in the Southern
Ocean, where waves over six meters in height
(shown as red in images) are found. The strongest
winds are also generally found in this region. The
lowest waves (shown as purple in images) are found
primarily in the tropical and subtropical oceans
where the wind speed is also the lowest.

In general, there is a high degree of
correlation between wind speed and
wave height.
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The highest winds generally occur in the Southern Ocean,
where winds over 15 meters per second (represented by
red in images) are found. The strongest waves are also
generally found in this region. The lowest winds
(indicated by the purple in the images) are found
primarily in the tropical and subtropical oceans where the
wave height is also the lowest.
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World Meteorological Org.
Sea State Codes

Sea State | Significant Wave Height | Description
Code Range Mean
0 0 (meters)| O (meters) | Calm (glassy)
1 0-0.1 0.05 Calm (rippled)
2 0.1-0.5 0.3 Smooth (mini-waves)
3 0.5-1.25 0.875 Slight
4 1.25-2.5 1.875 Moderate
5 2.5-4.0 3.25 Rough
6 4.0-6.0 5.0 Very Rough
7 6.0-9.0 7.5 High
8 9.0-14.0 11.5 Very High
9 > 14.0 > 14.0 Huge




General Wave Problem
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Unknowns

* Velocity Field

V(x,y, z,)=Vo(x,y,z,t)
* Free Surface Elevation

z(x, y,t) =n(x, y,t)

* Pressure Field

p('xb Vs 2, t) = pdynamic + phydrostatic



Governing Equations & Conditions

« Continuity (Conservation of Mass):

‘ V¢=0forz<n I

» Bernoulli's Equation (given ¢):

o4 1
o 2

* No disturbance exists far away:

‘V¢‘ + PP +gz=0forz<pg
Yo,

%,W—W andp = p, — pgz



Boundary Conditions

 |In order to solve the boundary value problem for
free surface waves we need to understand the
boundary conditions on the free surface, any
bodies under the waves, and on the sea floor:
— Pressure is constant across the interface

— Once a particle on the free surface, it remains there
always.

— No flow through an impervious boundary or body.



Pressure Across the FS Interface

p:patm OnZ:n

o¢
Bernoulli’s Eqn. > + + — V2+ z r=c(t
at the free surface P ,0{ ot 2 s } )
o¢
=—pd—L+—V’+gzr+clt
p p{(,% 5 g} (1) = Pum

Since c(t) 1s arbitrary we can choose a suitable constant that

fits our needs:
C(t) — patm

Thus our pressure boundary condition on z = 77 becomes:




Once a Particle on the FS...

The normal velocity of a particle on the FS follows the normal
velocity of the surface itself:

z,= n(xp, t) z-position of the particle

Look at small motion 52 :

N s,

z,+0z,=n(x,+ox,,t+ot)=n(x, t)+a—§x +—
Ox ot

On the surface, where z , =7, this reduces to:
ox, =u ot

8t 8t 5Zp =W ot




No flow through an impervious boundary

Velocity of the fluid normal to the body must be equal to
the body velocity in that direction:

On the Body: B(x, y,z,t)=0

—_— —_— —

V-ﬁ=v¢-ﬁ=2—¢=U(x,r)-ﬁ(§c,t)=Un on B=0
n

Alternately a particle P on B remains on B always; 1.e. B 1s a material surface.

For example: if P 1s on B at some time ¢ = ¢, such that B(x,7 ) = 0 and we were to
follow P then B will be always zero:

If B(x,t)=0, then B(x,r)=0 for all ¢,

D5 = aB—I—(V¢-V)B:O on B=0
Dt ot

Take for example a flat bottom at z = —H then 0@/0z =0



Linear Plane Progressive Waves

Linear free-surface gravity waves can be characterized by
their amplitude, a, wavelength, A =2k, and frequency, w.

11(x,t) = acos(kx— wt)
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Linear Waves

h=2g hiA<1/7

el N T N
~_ | _~

- =

A = 2m/k

 alis wave amplitude, h = 2a
« Ais wavelength, A = 2rn/k where Kk is wave number

« Waves will start to be non-linear (and then break)
when h/A > 1/7



Linearization of Equations &
Boundary Conditions

Non-dimensional variables :

*

n=an u=aou  ot=t
d=acl¢d w=aow  X=AX
dt=Vwd dp=acldp dc=Adx




FS Boundary Conditions

1. Dynamic FS BC: ¢
(Pressure at the FS) { T 9 V T gn} 0
Compare op and V' (a¢j

ot Ox

(%)2_61 ( ) a( )

L aw’l 5¢* A %

ot ot"
If h/A <<1/7 then a/A << 1/14 since h = 2a.
Py <22
Ox ot

{¢+2V + gn} =0 becomes %?—Fgﬂ O| onz=rn



FS Boundary Conditions

2. Kinematic FS BC: on 0n
(Motion at the Surface) W = U P T ot

Non-dimensionalize:

wow = atsu L i O

77*
A Ox ot

If W/A<<1/7T = u8_77<<6_77 anduﬁ—n<<w
Ox ot Ox

Therefore:
w:uanJranbecomes 8¢:877 on z=n
ox Ot Oz Ot




FSBC about z=0

Since wave elevation, 1, is proportional to wave amplitude, a, and a is small
compared to the wavelength, A, we can simplify our boundary conditions one
step further to show that they can be taken at z = 0 versus z = 7.

First take the Taylor’s series expansion of @(x, z=n, t) about z=0:

¢(x,z=mn,t) =¢(x,0,t)+g—fn+...

It can be shown that the second order term and all subsequent HOT's are
very small and can be neglected. Thus we can substitute ¢g(x, z=0, ¢) for
@(x, z=n, t) everywhere:

¢ _

6t+g77_0 —
op 0On
o =




Linear Wave
Boundary Value Problem

2 2
V¢—a¢ a¢=Of0rz<0

ox® 0z’
1. Sea Floor Boundary Condition (flat bottom)

Gqﬁ =0onz=—-H

oz

2. Dynamic FSBC (Pressure at the FS)
1 0¢

n=—-——=onz=0
g Ot

3. Kinematic FSBC (Motion at the Surface)



Solution to Laplace’s Equation

By Separation of Variables we can get a solution for linear FS waves:

n(x,t) = a cos(kx — ot + )

§x.z.0) == == (=) sinChe— a1 +)
u(x,z,t) = aw f(z) cos(kx — ot +y)
w(x,z,1) = —aw f (z) sin(kx — ot +y)

o = gk tanh(kH ) = dispersion relation
Where:

cosh[k(z+ H)] £(2)= sinh[k(z+ H)]

T = GanGD sinh(kH)



Dispersion Relationship

The dispersion relationship uniquely relates the wave frequency
and wave number given the depth of the water.

@ = gk tanh(kH)

The solution f must satisfy all boundary conditions.
Plugging f into the KBC yields the dispersion relationship

e Approximations kH
_ As kH —0 tanh(kH) > kH A
: dee
S0 =gk’H (shallow) @eﬁﬁi‘%e— - - -

— As kH — oo tanh(kH ) —1 /hall{m

2 <

Lo =gk (deep)

o?/gk



Pressure Under Waves

Unsteady Bernoulli’s Equation:

op 1 2
p=—p—= ——pV~— pgz
— ——  hydrostatic
unsteady 2nd Order ~ pressure
fuctuation ..

~
DynamicPressure

Since we are dealing with a linearized problem we can neglect the
2 order term. Thus dynamic pressure is simply:

pd(xazat) — _pé;_?
=== [ (@) cos(@t ~ k=)= p=— () n(x.)
 pgn(et) cosh [k(z + H)]

cosh (kH )



Motion of a Fluid Particle

np d
yodee o dnp
; dt dt
SP

Ep(x,z,t) = a f(z) sin(wt-kx+y)
ne(x,z,1) = a f1(z) sin(ot-kx+y)

- =B 3
Elliptical 5P npe
. + — aE
Orbit Path f(2) f,(2)
L
acoshkiz«H) | | asnhk@z+H) =1
| smhkd  J L sinhkH




Particle Orbits

Under the waves particles follow distinct orbits depending on whether the
water is shallow, intermediate or deep. Water is considered deep when
water depth is greater than one-half the wavelength of the wave.

shallow water intermediate depth deep water
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Particle Orbits in Deep Water

deep water

H—>o (kH>1)
f \ o’ = gk <> dispersion relationship

)

\\J/ f(Z)EfI(Z);ekZ
( -! 2 2 kz \?
K M2 S, +1, =(ae )

o

9 Circular orbits with

‘.l.’ exponentially
H/A> 1/2 decreasing radius

Particle motion extinct at z = -A/2



at the free surface...

The intersection between the circle on which ¢,
and 1, lie and the elevation profile 1(x,t) define
the location of the particle.

This applies at all depths, z:
Up(X,Z,f) = a e¥ cos(wt-kx+y) = n(x,t) €<



Particle acceleration and
velocity

-VI\/
1 lerati
acceleration 5
velocity
2
3/\i/
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Phase Velocity

speed of the
wave crest

A
V = T % = \/ <tanh kH{ Phase Velocity=

p

n(x,t) = a cos(kx-mt+y) fory =0

kx-ot = 0 Motion of crest
1{ 3 / in space and time
S LI
X ()
— — C
t k"

Phase Speed



Group Velocity

Simple Harmonic Wave: n(x,t) = a cos(wt-kx)

n(x,t)= lim { cos([@w— o]t —[k — Sk]x)+4 cos([w+ Sw]t — [k + 5k]x)}

ok, 00—0

= lim {a cos(wt —kx)cos(dw t— Sk x)}

ok, 00—0

o5

N

-0.8

=0)

n(t, x




speed of the
wave energy

Group Velocity

ow dw
V,=—=— o =gktanh(kH)
ok dk
d( , d ]
—{w*} == {kg tanh(kH
g\ = g the tanh(kED)] I kH
SCo==C q14+—
£ 207 sinh kH cosh kH
2022 _ o tanh(kH) + kng
dk cosh”(kH) / \\
Shallow water H —0
do 1g kH
== =~ 2 tanh(kH) {1 _
dk 2w anh( ){ +sinh(kH)cosh(kH)} w=ygHk C,=C,
%=Vp Deep water H — ©

\ o’ = kg Cg :%CPK




