

Freeform Architecture and Discrete Differential Geometry

Helmut Pottmann, KAUST

Freeform Architecture

Motivation:

- Large scale architectural projects, involving complex freeform geometry
- Realization challenging and costly; available digital design technology is not adapted to the demands in this area.

Research Goals

- Make geometrically complex architectural structures affordable through novel computational tools by linking design, function and fabrication
- Provide new methodology for computational design, especially through links to discrete & computational differential geometry and optimization
- Develop new tools to explore the variety of feasible / optimized designs through links to the geometry of shape spaces
- Advance the theory (discrete differential geometry, shape spaces, ...)
 through novel concepts motivated by applications
- Contribute to and learn from real-world projects (Evolute GmbH)

Overview

- Planar quad meshes
- Planar quads and beam layouts in real projects
- Single curved panels
- Paneling
- Design of self-supporting surfaces
- Future research

Planar Quad Meshes

quad meshes in architecture

work by Schlaich & Schober

- quad meshes with planar faces (PQ meshes)
- only special shapes; what about freeform shapes?

key insight on PQ meshes

- PQ meshes reflect curvature behavior
- relation to discrete differential geometry: PQ meshes are discrete versions of conjugate curve networks

$$\mathbf{x}(u,v)$$
 with $\det(\mathbf{x}_u,\mathbf{x}_v,\mathbf{x}_{uv})=0$

 any optimization has to be initialized respecting this fact

Computing PQ meshes

- Computation of a PQ mesh is based on numerical optimization:
- Optimization criteria
 - planarity of faces
 - aesthetics (fairness of mesh polygons)
 - proximity to a given reference surface
- Requires *initial mesh*, found via a careful evaluation of the curvature behavior!

subdivision & optimization

- refine a coarse PQ mesh by repeated application of subdivision and PQ optimization
- can be combined with surface fitting

Opus (Zaha Hadid Architects)

OPUS (Zaha Hadid Architects)

Discrete Differential Geometry

- Develops discrete equivalents of notions and methods of classical differential geometry
- The latter appears as limit of the refinement of the discretization
- Basic structures of DDG related to the theory of integrable systems
- A. Bobenko, Y. Suris: Discrete Differential Geometry: Integrable Structure, AMS, 2008

- Discretize the theory, not the equations!
- Several discretizations; which one is the best?

Conical meshes

- panels as rectangular as possible
- a discrete counterpart of network of principal curvature lines
- circular mesh
- for architecture, even better:

conical mesh

 PQ mesh is conical if all vertices of valence 4 are conical: incident oriented face planes are tangent to a right circular cone

normals of a conical mesh

- neighboring cone axes (discrete normals) are coplanar
- conical mesh has precise offsets and a torsion-free support structure

nodes in the support structure

triangle mesh: generically nodes of valence 6; `torsion´: central planes of beams not co-axial

torsion-free node

Conical mesh

 The study of meshes with offsets led to a new curvature theory for discrete surfaces based on parallel meshes (Bobenko, P., Wallner, Math. Annalen, 2010)

 meshes M, M* with planar faces are parallel if they are combinatorially equivalent and corresponding edges are parallel

- Gaussian image mesh S of M is parallel to M and approximates the unit sphere
- Offset mesh at distance d: M+d S

Examples:

conical mesh: faces of the Gaussian image are tangent to the unit sphere

offsets at constant face-face distance

 circular mesh: vertices of Gaussian image lie on unit sphere; corresponding vertices of base mesh and offset at constant distance

• surface area of the offset $M^d=M+dS$ of the mesh M relative to the Gauss image $S=\sigma(M)$

area
$$(M^d) = \sum_{F: \text{face of } M} (1 - 2dH_F + d^2K_F)$$
area (F)

- analogous to Steiner`s formula
- define curvatures in face F

$$K_F = \frac{\operatorname{area}(\sigma(F))}{\operatorname{area}(F)}$$
 F $\sigma(F)$
 $H_F = -\frac{\operatorname{area}(F,\sigma(F))}{\operatorname{area}(F)}$ mixed area

• Discrete minimal surface: $H_F=0\iff {\rm area}(F,\sigma(F))=0$

- valid for polyhedral surfaces (different from triangle meshes)
- extends to relative differential geometry, where Euclidean sphere is replaced by another convex surface

Planar quads and beam layouts in real projects

Museum of Islamic Arts

triangle mesh

planar quad mesh for Louvre

another planar quad mesh

Solution: hybrid mesh from planar quads and triangles

steel beam layout

- Faces non-planar: there is no elegant exact solution
- node axes should be nearly normal to surface
- node axes as solution of an optimization problem

Single Curved Panels

developable surfaces in architecture

(nearly) developable surfaces

F. Gehry, Guggenheim Museum, Bilbao

F. Gehry, Walt Disney Concert Hall, Los Angeles

developable surface strips

Refinement of a PQ strip (iterate between subdivision and PQ optimization)

Limit: developable surface strip

D-strip models

One-directional limit of a PQ mesh:

developable strip model (D-strip model)

semi-discrete surface representation

initiated research on semi-discrete surface representations

Design from single-curved panels based on subdivision modeling

Multi-layer structure

