

French Modular Impoundment

Precast alternative to reduce time, cost and risk of dam construction and rehabilitation

Bill French Sr., CEO

French Development Enterprises, LLC <u>wlfsr@fdepower.com</u> (617) 293-0153 February 2017

Project Overview

The French Modular Impoundment:

 Applying proven precast technology to hydropower structures to save time, reduce cost, and reduce risk during construction

The Challenge:

- New hydropower development is too expensive
 - High civil costs (40%–80% of Capital Expenditure)
 - Long duration, frequent cost and time overruns
 - Subject to frequent weather delays

Partners:

- -French Development Enterprises (PI)
- -GEI Consultants Engineering (Engineering Lead)
- -Old Castle Precast (Manufacturing Lead)
- -Cleantech Analytics (R&D)
 -Hydropower Consulting Specialists (Testing)
- -Knight Piesold (Independent Validation)

- -Willis Insurance (Consultation)
- -Maine Rock Drilling and Blasting (Foundation specification)

Program Strategic Priorities

Next Generation Hydropower (HydroNEXT)

Optimization

- Optimize technical, environmental, and water-use efficiency of existing fleet
- Collect and disseminate data on new and existing assets
- Facilitate interagency collaboration to increase regulatory process efficiency
- Identify revenue streams for ancillary services

Growth

- Lower costs of hydropower components and civil works
- Increase power train efficiency for low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

Sustainability

- Design new hydropower systems that minimize or avoid environmental impacts
- Support development of new fish passage technologies and approaches
- Develop technologies, tools, and strategies to evaluate and address environmental impacts
- Increase resilience to climate change

Next Generation Hydropower (HydroNEXT)

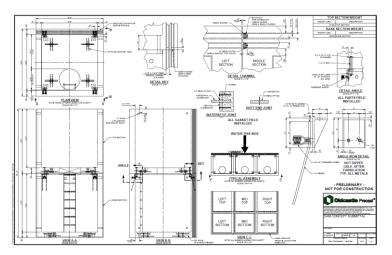
Growth

- Lower costs of hydropower components and civil works
- Increase power train efficiency for low-head, variable flow applications
- Facilitate mechanisms for testing and advancing new hydropower systems and components
- Reduce costs and deployment timelines of new PSH plants
- Prepare the incoming hydropower workforce

The Impact

- 1. Reduce civil costs up to 60%
- 2. Reduce project delivery time by 43%
- 3. Double life expectancy of civil structures (100 years vs. CIP, which is 50 years)

Technical Approach



- (1) Design, manufacture and test a precast modular impoundment (prototype "French Dam")—COMPLETE
- (2) Perform full-scale feasibility analysis for precast vs. cast-in-place for actual dam site in United States—COMPLETE

Key Questions:

- Cost does it save money?
- Assembly Time can it beat conventional methods?
- Permeability does it leak?
- Safety does it meet dam safety regulations?

Technical Approach

1.) Design

3.) Assemble

2.) Manufacture

4.) Test

Accomplishments and Progress

- 1. Successfully built and tested French Dam prototype
 - Assembled 16' x 24' dam in 3.5 hours in driving rainstorm
- 2. Completed precast design of an actual low-head castin-place dam in Rhode Island
- Developed precast dam construction cost model

Original Questions (and answers):

- Cost does it save money? YES
- Assembly Time can it beat conventional methods?
 YES
- Permeability does it leak? NO
- Safety does it meet dam safety regulations? YES

Project Plan & Schedule

• Initiation Date: 12/01/2015

Planned Completion Date: 03/01/2017

Go/No-Go Decision successfully passed in 06/01/2016

Each Task completed ahead of or on schedule:

Task	Task/Subtask Title	Ant. Date (Mo from start)	Actual Completion	Estimate % Complete
1	Site Selection & Criteria	3	3	100%
2	Prototype FEED	8	8	100%
3	Precast Mfg.	9	9	100%
4	Prototype Testing	11	11	100%
4	Prototype Testing	15	12	100%
5	Full-scale FEED	17	15 (est)	90%

Project Budget

Budget History									
FY2014		FY2015		FY2016					
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share				
N/A	N/A	N/A	N/A	\$960K	\$240K				

- Total budget:
 - Federal: \$1,338,552
 - Cost-share: \$348,048
- Project was accelerated to be completed over the calendar 2016 year
- FDE received \$72K in financial assistance from the state of Massachusetts (MassCEC - Leveraging Federal Funding Opportunities)

Research Integration & Collaboration

Partners, Subcontractors, and Collaborators:

GEI Consultants, Inc.
Old Castle Precast
Cleantech Analytics LLC
Hydro Consulting Specialists
Maine Rock Drilling & Blasting
Willis Insurance

Communications and Technology Transfer:

Exhibited at Hydrovision 2016 (Minneapolis, MN)
Hosted Demonstration Day on October 26, 2016

Next Steps and Future Research

FY17/Current research:

Complete Final Report and submit to DOE, which includes:

- Full-scale Front-end Engineering Design (FEED)
- Cost Comparison Model
- Test Results Report

Proposed future research:

Full-Scale Demonstration – French Development Enterprises actively engaged in PPP discussions with municipalities to demonstrate the French Dam at existing poor/unsafe dams in the Northeast