Today's agenda:

- Frequency and Cumulative Frequency
- Modes
- Symmetry and Skew
- Mean and Median
- Which is best?
- Video: The mean

Frequency and Cumulative Frequency

- A frequency distribution, like a histogram shows the number of observations in a particular \qquad or of a particular \qquad . Frequency means \qquad .
- In this age histogram, about 2.5 million Canadians are between 45 to 54 years old, inclusive. That bump represents \qquad .

Population by sex and age group

Frequency is expressed as a sometimes. This would be useful for predicting something like hospital loads. (Population in thousands)

	2011	
Age group - Persons \% of Tota		
Total	34,482.8	100.0
0 to 4	1,921.2	5.6
5 to 9	1,824.0	5.3
10 to 14	1,899.7	5.5
15 to 19	2,196.4	6.4
20 to 24	2,402.2	7.0
25 to 29	2,419.3	7.0
30 to 34	2,348.1	6.8
35 to 39	2,290.4	6.6
40 to 44	2,396.7	7.0
45 to 49	2,750.7	8.0
50 to 54	2,668.2	7.7
55 to 59	2,354.2	6.8
60 to 64	2,038.3	5.9
65 to 69	1,534.5	4.4
70 to 74	1,142.6	3.3
75 to 79	918.3	2.7
80 to 84	703.0	2.0
85 to 89	439.0	1.3
90 and older	236.0	0.7
Note: Population as of July 1. Source: Statistics Canada, CANSM, table 051-0001. Last modified: 2011-09-28.		

find ratios or to compare two sets of \qquad . Possible uses: International comparison, pension system planning.

	2011	
	Persons	\% of Tota
Age group		
Total	34,482.8	100.0
0 to 4	1,921.2	5.6
5 to 9	1,824.0	5.3
10 to 14	1,899.7	5.5
15 to 19	2,196.4	6.4
20 to 24	2,402.2	7.0
25 to 29	2,419.3	7.0
30 to 34	2,348.1	6.8
35 to 39	2,290.4	6.6
40 to 44	2,396.7	7.0
45 to 49	2,750.7	8.0
50 to 54	2,668.2	7.7
55 to 59	2,354.2	6.8
60 to 64	2,038.3	5.9
65 to 69	1,534.5	4.4
70 to 74	1,142.6	3.3
75 to 79	918.3	2.7
80 to 84	703.0	2.0
85 to 89	439.0	1.3
90 and older	236.0	0.7
Note: Population as of July 1. Source: Statistics Canada, CANSM, table 051-0001. Last modified: 2011-09-28.		

Cumulative Frequency

- A cumulative frequency distribution shows the number or of observations less than a particular interval.
Cumulative means \qquad .
- By this graph, we see that roughly \qquad of Canadians 39 years or younger.

Age Group	F	CF	Age Group	F	CF
0 to 4	5.6	5.6			
5 to 9	5.3	10.9	50 to 54	7.7	72.8
10 to 14	5.5	16.4	55 to 59	6.8	79.7
15 to 19	6.4	22.7	60 to 64	5.9	85.6
20 to 24	7	29.7	65 to 69	4.4	90
25 to 29	7	36.7	70 to 74	3.3	93.3
30 to 34	6.8	43.5	75 to 79	2.7	96
35 to 39	6.6	50.2	80 to 84	2	98
40 to 44	7	57.1	85 to 89	1.3	99.3
45 to 49	8	65.1	90 and older	0.7	100

Modes

- A local high point or \qquad in a distribution is called a mode.
- Distributions with one mode are called \qquad .
- ...with two modes are called \qquad , and more modes are called multimodal (rare).

Modes

- A lot of distributions are naturally unimodal, so seeing a bimodal distribution often implies there are two distinct populations being measured. (Weight of people? Running speeds of novice and pro joggers?)
- Most (not all) of what we deal with will be unimodal graphs.

Symmetry and Skew

- A symmetric distribution means that the frequency is the same on both sides of some point in the distribution.
- If a unimodal distribution is not symmetric, it is skewed.

- A positive skew or right skew means there are more extreme values above the mode, or to the right of it on a graph.
- A negative skew or left skew implies more extreme values in the lower values to the left of the mode.

(-) Negatively Skewed Distribution

The 'skew' is the mass of extreme values.

- A distribution is positively skewed if the mass of observations are at the low end of the scale. Examples: Income, Drug use, word frequency.
- Most of the observations from a negatively skewed distribution are near the top of the distribution with a few low exceptions. Examples: Birth Weight, Olympic Running Speeds.

- When does a bimodal distribution become a skewed one? If there is a notable upturn in the frequency somewhere away from the mean.

Mean

- The mean is generally referred to as the \qquad
- It is calculated by adding up all the values you observe and dividing by how many there are
- (Total of all observed values) / (number of values observed)

- (Note: \sum means 'add up all the...', x refers to the observed value, and n is the number of observations.

Mean

- You can only take the mean of \qquad data. (There's no such thing as the average gender, or the average flavour of ice cream)
- (for interest) If you could make a sculpture of a distribution, you could balance the sculpture on your finger if your finger was at the mean.
- Example: The mean of 4,5,6,7,30 is \qquad .

Median

- The median is the middle value. There are an equal number of observations that are \qquad than the median as there are \qquad than it.
- This does NOT mean that the median is in the middle of the range.
- To find the median, arrange the observations in order and take the middle. (Or halfway between the middle two if there's an even number)

Example - Odd number of values

- Start with 5,30,7,4,6
- Sorted: 4,5,6,7,30
- The median is \qquad . (The $3^{\text {rd }}$ value)

Example - Even number of values

- Start with -3, -1, 0, 4, 10, 20
- There is no need to sort.
- The median is \qquad (The $3.5^{\text {th }}$ value, halfway between the $3^{\text {rd }}$ and $4^{\text {th }}$)

Formal rule for Medians

- Take the $1 / 2 \times(n+1)$ th value
- For 5 data points, we took the $1 / 2 \times(5+1)$ th $=$ $1 / 2 * 6=$
- For 6 data points, we took the $1 / 2 \times(6+1)$ th $=$ $1 / 2 * 7=3.5^{\text {th }}$ value, which is halfway between the ___ and ___ values.
- If you have the cumulative frequency, whichever value includes the \qquad of the data is the median.
- Example: When looking at the \qquad frequency of Canadian ages, we found 50% of Canadians were 39 or younger. Therefore 50% are older than 39 as well, so 39 is the \qquad .
- Note: The range of Canadian ages extends past 80, so we would NOT say the median is the middle of the range 0 to 80 .

Mean vs. Median: Which is better?

- By default the mean is used to tell what a central or typical value is.

Howevah!

- If the data is \qquad , the mean will be or 'pulled' by the extreme values. The median is not pulled like this.

Mean vs. Median - Which is better?

- Because the median only cares about how many values are above or below it, a value \qquad above the median affects it just as much as one \qquad above it.

- We say that the median is \qquad (meaning 'tough', or 'not sensitive') to extreme values.

Mean vs. Median - Which is better?

- For positive/right skew, the mean is \qquad median.
- For negative/left skew, the mean is \qquad than the median.
- If you're interested in a 'typical' or \qquad value of a skewed distribution, the \qquad is the most appropriate.
- If you're interested in the \qquad values, the \qquad is better, even in a skewed situation. This is because the formula for the mean is related to the total.

Mean vs. Median - Which is better?

- Example: The height of women is typically symmetric, so by default we use the mean.
- Example: You find the amount of cocaine people use has a strong positive skew. For the typical amount used, the median is best, which will be at zero (or near zero if only drug users are considered).
- Example: If you're the one SELLING the coke, the mean is more interesting because you'll want to know the total demand, not what the casual user is looking for.

Trimmed Mean (for interest)

- One method to sacrifice some but not all of the sensitivity to extreme values is the trimmed mean, which 'trims' or discards some of the data on either end of a dataset.
- Example: A 10\% trimmed mean is the mean of something that ignores the lowest 10\% and the highest 10\% of the values and THEN takes the mean.
- Not very common because it tosses away potentially good data.

Video - Mean: Joy of Stats $16: 45$ to $20: 15$

Next Lecture

- SPSS Demo: Input data, draw a histogram, get the mean and median

