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Abstract 

 

Since the advent of structural health monitoring (SHM), vibration analysis has been one of the most 

popular strategies for yielding modal information of structures, such as eigenfrequencies and mode 

shapes. As a result of the relatively high sampling rates adopted in vibration analysis, obtaining 

accurate modal information requires absolute synchronization of structural response data. Despite 

the advances in sensing technologies and synchronization protocols, synchronization discrepancies 

in structural response data may occur due to drifting in internal clocks of independent data 

acquisition units. Particularly in wireless SHM, in which each wireless sensor node essentially 

operates as an independent data acquisition unit, mitigating clock drifting has been an area of 

intensive research. This paper addresses the issue of data synchronization from a physics-based 

perspective, aiming to add an additional synchronization check at the post-sampling stage. 

Specifically, a frequency-domain synchronization approach is reported, which builds upon the 

relationship between time lags in structural response data and the cross spectral density phase 

angles. Validation tests are conducted using simulations of a multi-degree-of-freedom oscillator 

and data collected from a full-scale road bridge, demonstrating the capability of the approach to 

estimate time lags between SHM data even in the presence of non-proportional damping, thus 

overcoming a common limitation of other synchronization methods. The frequency-domain 

synchronization approach is intended to complement synchronization protocols in extracting 

accurate modal information. 

Keywords: Synchronization, structural health monitoring, cross spectral density, frequency-

domain analysis. 

 

1. Introduction 

 

The crucial cornerstone of most structural health monitoring (SHM) strategies is the reliability of 

information extracted from structural response data [1]. The information is usually the outcome of 
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system identification methods, which provide practitioners with insights into the structural 

properties of civil infrastructure. Particularly in vibration-based SHM, structural dynamic 

properties, such as eigenfrequencies and mode shapes, may severely be affected by inaccuracies in 

the structural response data, which, in turn, could lead to misjudgments of structural condition [2]. 

Therefore, maintaining high levels of reliability in structural response data is of paramount 

importance in SHM [3]. 

While inaccuracies in structural response data could stem from various sources, a frequent 

challenge in modern vibration-based SHM is to ensure absolute synchronization in the data (“data 

synchronization”). Considering the tethered, centralized setup of traditional SHM systems, data 

synchronization seems, at a first glance, for granted; nonetheless, synchronization discrepancies 

have been increasingly affecting modern SHM systems. On the one hand, rapidly evolving trends 

in SHM have been fostering the transition from cable-based SHM to wireless SHM, which is 

implemented via wireless sensor nodes that lack inherent global clock management [4]. On the 

other hand, malfunctions, e.g., of analog-to-digital converters or the use of multiple parallel data 

acquisition units could cause synchronization discrepancies even in cable-based SHM systems [5]. 

Especially wireless sensor networks and wireless SHM systems are being increasingly considered 

integral parts of Internet-of-Things applications, developed within emerging technological 

paradigms such as smart cities and Industry 4.0, in which the importance of data synchronization 

is emphasized [6-7]. In vibration-based SHM, which usually involves high sampling frequencies, 

synchronization discrepancies may compromise the accuracy of experimentally identified mode 

shapes and result in erroneous system identification [8]. 

An apparent solution to synchronization discrepancies is to implement protocols for ensuring 

global clock management among wireless sensor nodes or data acquisition units [9-10]. Global 

clock management is usually assigned to middleware-driven network-wide communication 

protocols, thus averting synchronization discrepancies already at the commencement stage of 

network operation. A large body of research can be found in literature, proposing synchronization 

protocols mainly for wireless sensor networks. Seminal works include the reference-based 

synchronization protocol introduced by Elson et al. [11], the timing-sync protocol for sensor 

networks proposed by Ganeriwal et al. [12], and the flooding time synchronization protocol 

presented by Maróti et al. [13]. From a broad wireless sensor network synchronization perspective, 

most research works focus on improving the aforementioned protocols by reducing the wireless 

communication overhead required to synchronize wireless sensor nodes. Examples include the 

adaptive time synchronization protocol reported by Chauhan and Awasthi [14], the gradient time 

synchronization protocol introduced by Sommer and Wattenhofer [15], and the adaptive value 

tracking protocol suggested by Yildirim and Gürcan [16]. 

The concept of assigning synchronization tasks to network-wide communication via middleware 

services of wireless sensor nodes has been extended to wireless SHM [17]. For example, the 

prototype implementations presented by Rice and Spencer [18] and Nagayama et al. [19] utilize 

synchronization middleware services of the Imote2 wireless sensor node, and the prototype sensor 

node presented by Wang et al. [20] implements point-to-multipoint communication for 

synchronization. Other synchronization approaches related to wireless SHM include the μ-sync 

protocol introduced by Bocca et al. [21], which has been proven to keep the synchronization error 
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under 10 μs, and the autoregressive models proposed by Lei et al. [22] for estimating time delays 

between input loads and output structural response data or between output structural response data 

from different locations. In synchronizing wireless sensor nodes for SHM, a major challenge 

emphasized by several researchers is to keep algorithms and protocols relatively “lightweight” so 

as to preserve the limited resources of the sensor nodes. In this direction, Sazonov et al. [23] have 

suggested a two-tier synchronization scheme, in which low-level sensor nodes are organized in 

clusters synchronized by so-called “coordinator” nodes, while coordinator nodes themselves 

synchronize their internal clocks using global positioning system technologies. Moreover, 

Chintalapudi et al. [24], have proposed synchronizing structural response data by timestamping the 

data after being collected at a “gateway” sensor node, instead of conducting network-wide 

synchronization. The aforementioned approaches have been implemented in practical applications, 

involving wireless SHM of masonry structures [25], heritage structures [26], and bridges [27]. 

Furthermore, notable practical approaches on synchronization may also be found in SHM 

application areas beyond structural engineering, such as vehicular monitoring [28], aircraft 

monitoring [29], and railway monitoring [30]. 

Despite the effectiveness of clock synchronization approaches, the consensus of SHM researchers 

suggest that clock synchronization can hardly guarantee synchronized sensing in vibration-based 

SHM [31-32]. Acceleration response data from structural vibrations is usually collected at 

relatively high sampling frequencies and for long sampling periods, e.g. as compared to 

environmental data. As a result, vibration-based SHM is prone to random delays caused by 

microcontrollers of wireless sensor nodes or data acquisition units, to fluctuations in the sampling 

frequency, and to clock drifting over time. Therefore, synchronization discrepancies may still 

infiltrate the structural response data and can only be addressed through post-processing. For 

example, estimating synchronization discrepancies based on correlations in structural response data 

has been proposed by Brincker and Brandt [33]. Furthermore, using phase differences at modal 

frequency components of structural response data to estimate synchronization discrepancies has 

been the focus of works conducted by Maes et al. [34], Dragos et al. [35-36], and Bernal [37]. 

However, the previously mentioned “phase-based” approaches are limited to individual modal 

frequency components.  

This paper aims at generalizing the phase-based estimation of synchronization discrepancies by 

leveraging a large part of the “bandwidth of interest”, i.e. the number of frequency components 

practically constituting the frequency content of the structural response. In essence, the frequency-

domain synchronization (“FD-Sync”) approach discussed herein extends the concept presented in 

[35] by integrating and mathematically formalizing the relationship between a synchronization 

discrepancy (“time lag”) and the slope of the cross spectral density phase spectrum of two SHM 

data records, containing acceleration response data, which has been described by Diord et al. [38]. 

The purpose of the FD-Sync approach is to increase the accuracy of estimates of vibration-based 

SHM information, such as mode shapes, relying exclusively on frequency-domain analysis of 

structural response data. It should be noted that in practical applications, frequency-domain 

analysis is inherently approximative, and its results, e.g. spectral density functions, are usually 

affected by ambient noise and quantization errors. By extension, the FD-Sync approach is also 

approximative and is intended to complement existing synchronization approaches, rather than 

estimate time delays to the order of microseconds. As a result, the approximative character of the 
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FD-Sync approach is also investigated in this paper, along with the applicability limits in terms of 

time lag detection, through simulations on a simple numerical model. Finally, validation tests are 

conducted on structural response data collected from a long-term SHM system installed on a road 

bridge. 

The remainder of the paper is organized as follows: In Section 2, the mathematical formulation of 

the relationship between synchronization discrepancies and cross spectral density phase spectra is 

illuminated. Section 3 covers the simulations performed to investigate the applicability limits of 

the FD-Sync approach, and Section 4 presents the validation tests. Finally, the main points of this 

study are summarized, the conclusions are highlighted, and a brief outlook on future research is 

provided.  

 

2. Relationship between synchronization discrepancies and cross spectral density phase 

 

The FD-Sync approach builds upon the relationship between phase angles of structural response 

data records collected from different locations of a structure being monitored. In this section, the 

mathematical background of the proposed approach is illuminated using a simple example of two 

SHM data records. 

SHM data records containing acceleration response data are collected in the form of digitized 

signals that can be treated as superpositions of several harmonic sinusoidal functions. The number 

of harmonic sinusoidal functions contained in each signal is theoretically governed by the 

frequency bandwidth of data collection, which, in turn, is associated with the sampling frequency. 

Nevertheless, in civil engineering structures, only a few harmonic sinusoidal functions, 

corresponding to vibration modes (“vibration mode components”), exhibit non-negligible 

contributions to structural responses, while the rest are considered noise components. Considering 

the disaggregation of SHM data records into vibration mode components, time lags between two 

records are reflected in phase angle relationships between individual vibration mode components. 

Specifically, in conventional lightly-damped civil engineering structures, phase angle differences 

between vibration mode components are either close to zero or close to π, depending on the 

vibration mode topology, which determines whether vibration mode components from different 

records are positively or negatively correlated [39]. Figure 1 shows how a time lag τ between two 

signals g1 and g2 affects the phase angle differences Δθi of individual vibration mode components 

h1i and h2i (i = 1,2,…,m). In the example of Figure 1, the expected phase differences for vibration 

mode components 1, 2, and m are Δθ1 = 0, Δθ2 = π, Δθm = 0. 

Considering signals g1 and g2 as superpositions of m vibration mode components, the following 

expressions are obtained: 

( ) ( )
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In Equation 1, fq is the frequency, Rq is the amplitude and θq is the arbitrary phase angle, 

respectively, of the qth vibration mode component contributing to the structural response, and t is 

the time. Signals are usually discretized into N-sized time series at constant time intervals Δt and 

analyzed in the frequency domain, using the fast Fourier transform (FFT). Furthermore, the 

relationship between two signals in the frequency domain is usually investigated by means of the 

cross spectral density function between the signals. It is therefore expected that phase differences 

occurring as a result of synchronization discrepancies between two signals are reflected in the phase 

angles of the spectral density function. 

 

 

 

Figure 1: Time lag between signals g1 and g2. 

 

In what follows, the connection between synchronization discrepancies and spectral density phase 

angles will be mathematically described. First, the N-sized signals g1 and g2 are transformed into 

the frequency domain using the FFT, the kth harmonic sinusoidal function Gk of which is obtained 

from: 
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Using Euler’s identity, the expressions in Equation 2 are modified as follows: 
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which is further transformed to: 
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To simplify the exponential summations, the geometric sum formula is used: 
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which, using Euler’s identity again, is further simplified as: 
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Plugging Equation 6 into Equation 4, the FFT expressions are modified into: 
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To simplify notation, the following equalities are defined: 
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With the equalities specified above, the FFT expressions of the two signals are: 
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The cross spectral density function between signals g1 and g2 is given in Equation 10. 

12 1 2k k kS G G=  , (10) 

where (*) denotes complex conjugate. Further analysis of Equation 10 results in: 
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From Equation 11, it is evident that the exact computation of the cross spectral density function 

requires knowledge of the exact frequencies of all vibration mode components 

(“eigenfrequencies”) contributing to the structural response so as to obtain values of Ak, Bk, ak, and 

bk. However, in practical applications, the eigenfrequencies of structures are generally unknown. 

Rather, SHM practitioners estimate the natural frequencies of structures directly from the FFT 

expressions of structural response data. Moreover, since the FD-Sync approach presented herein is 

intended for practical SHM applications, it is reasonable to consider frequencies matching the 

frequency “bins” (each bin denoted by index k, with frequency fk = k/(NΔt)) of the FFT. As a result, 

assuming a vibration component frequency fo = ko/(NΔt), the expressions for Ak, Bk, ak and bk, are: 
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It should be noted that obtaining the value for Ak from Equation 15 is possible only for the 

frequency components closest to frequency bin k, i.e. for kx ≠ k, the nominator in Equation 12 

becomes a sine of an integer multiple of 2π, resulting in Aqkx = Ajkx = 0. Therefore, Equation 11 is 

computed only for k = q = j, which, using Equations 12-15, is reduced to: 
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The phase angle of the spectral density function is computed as follows: 
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The time lag τ can be expressed as a phase angle θ added to the arbitrary phase angle θ̂2 of signal 

g2: 
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Plugging Equation 18 into Equation 17 eventually results in: 
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In theory, civil engineering structures are usually analyzed under the assumption that damping is 

proportional to mass and stiffness, which would entail arbitrary phase differences being equal to 

either zero or π depending on the correlation between vibration mode components, as shown in 

Figure 1. In practice, damping in structural responses is far too complicated to be described 

explicitly as proportional [40]. Nonetheless, the deviation of actual damping from proportional 

damping is usually low for operational conditions investigated in SHM, therefore, the arbitrary 

phase differences for frequency bin k, may be approximated as: 

( ) ( )1 2 1 2
ˆ ˆcos 1 sin 0k k k kθ θ θ θ−   −   (21) 

Using Equations 21 and 24, the expression linking the phase angle of the spectral density function 

(φk) to the time lag τ between signals g1 and g2 is obtained: 

tan tan
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k k
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 −   − +

+
  − 
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In the following section, the time lag estimation expression of Equation 22 is used as a basis for 

developing the FD-Sync approach presented in this paper. 
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3. Frequency-domain synchronization based on cross spectral density phase spectra 

 

In this section, the practical aspects of the FD-Sync approach are explained through simulations of 

a simple 5-degree-of-freedom (DOF) oscillator, shown in Figure 2. First, the oscillator properties 

are described, followed by the techniques used to counteract inaccuracies stemming from the 

approximative character of Equation 22 and of the FFT. Next, the applicability limits of the FD-

Sync approach, in terms of time lag estimation, are investigated by simulating time lags in the 

structural response data of the oscillator. 

 

3.1. Simulation of a 5-DOF oscillator 

 

The oscillator used for the simulations comprises 5 masses lumped at discrete points that are 

connected with beam elements. Modeling follows the “stick model” paradigm, i.e. only one-

direction translational degrees of freedom (xi, i = 1…5) are considered for each mass, as shown in 

Figure 2a. The oscillator is subjected to forced vibration with a triangular load profile and Gaussian 

white noise functions as “load histories”. To avoid correlation among the load histories, a different 

random Gaussian function is generated for each load history and each simulation. The simulations 

are performed by solving the equation of motion: 

+ + =Mx Cx Kx P , (23) 

where M is the mass matrix of the oscillator, C is the damping matrix, K is the stiffness matrix, 

and ẍ, ẋ, x, P are the acceleration vector, the velocity vector, the displacement vector and the load 

vector, respectively. Since the proportional damping assumption in real-world structures is an 

approximation that could compromise the accuracy of Equations 21 and 22, two sets of trial 

simulations are conducted, TS1 and TS2, considering both proportional damping and non-

proportional damping. Specifically, the proportional damping matrix Cpr is first estimated using 

the Rayleigh coefficients a1, a2 for a constant damping ratio of ζ = 2‰ at the first two 

eigenfrequencies (f1, f2) of the oscillator:  

( )
1 2

1 2 1 2

1 2 1 2

, 4pr

f f ζ
a a a πζ a

f f π f f
= + = =

+ +
C M K . (24) 

Subsequently, a tuned mass damper (TMD) is added to the top mass of the oscillator to counteract 

the fundamental vibration mode (Figure 2b). Drawing from TMD theory, the TMD reduces 

oscillation amplitudes by responding in an out-of-phase manner with respect to the structure, thus 

introducing a phase shift between the response of the top mass (DOF x5) and of the TMD. For the 

sake of simplicity, the TMD parameters md, cd, and kd are computed according to Den Hartog [41], 

resulting in a constant phase shift between the TMD and the structure at the tuning frequency. The 

addition of the TMD damping parameter cd to the damping matrix Cpr results in non-proportional 

damping matrix Cnp. 
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The value of the load profile at DOF r (r = 1…5) is defined as: Pr(t) = zr·P·wr(t), where P = 100 kN, 

zr is a load factor, and wr is the load history with wr ~ N(0,1). The mass and stiffness parameters of 

the oscillator, as well as the load factors and the five eigenfrequencies are summarized in Table 1. 

 

 

Figure 2: Stick model 5-DOF oscillator used for simulations. 

 

Table 1: Mass, stiffness parameters, load factors and eigenfrequencies of the oscillator. 

Structural properties Eigenfrequencies 

r mr (t) kr (kN/m) zr (-) Mode  f (Hz) 

1 40 150·103 0.2 1 3.21 

2 30 100·103 0.4 2 8.25 

3 25 100·103 0.6 3 12.38 

4 20 100·103 0.8 4 15.75 

5 20 75·103 1.0 5 19.15 

 

The TMD parameters are computed for suppressing the fundamental eigenfrequency f1 = 3.21 Hz, 

which has a modal mass of m̃1 = 59.15 t. Considering a TMD mass percentage ratio of 4% of the 

modal mass of the fundamental frequency: 

1 1
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 (25) 

Finally, the expansions of the accelerations, velocities and displacements at time point n are 

obtained using the Newmark-β algorithm, for γ = 0.5 and β = 0.25: 
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To verify the effect of the TMD on the complexity of mode shapes as a result of non-proportional 

damping, preliminary simulations are conducted. In particular, two acceleration response data sets 

are obtained using Equations 23 and 26, one by setting C = Cpr and one by setting C = Cnp. Upon 

obtaining the acceleration response data sets, two sets of mode shapes, ψpr = {ψpr,j} and 

ψnp = {ψnp,j} (j = 2…5), respectively, are extracted using the frequency domain decomposition 

method [42]. The first mode shape is omitted, since the respective eigenfrequency is suppressed by 

the TMD. The purpose of the preliminary simulations is to show the effect of non-proportional 

damping on the imaginary parts of mode shapes. Moreover, the reason for extracting mode shapes 

from acceleration response data instead of using modal analysis methods is to account for 

approximation errors introduced by the FFT, which may result in non-zero – yet negligible – 

imaginary parts of mode shapes even in the case of proportional damping. The mode shapes 

extracted from the preliminary simulations are plotted in the complex plane, as shown in Figure 3, 

clearly showing that the addition of the TMD to the oscillator results in non-proportional damping, 

represented by a significant deviation from zero of the imaginary parts of mode shapes ψnp. 

 

 

Figure 3: Representation of mode shapes in the complex plane. 

 

3.2. Noise reduction 

 

Signals in SHM are usually contaminated with noise, which is depicted in the frequency-domain 

representations of the signals through non-smooth FFT and cross spectral density amplitude plots. 

Sources of noise include external interference, input loads with rich frequency content (quasi-

white-noise input), and quantization errors, which are collectively (and approximately) treated as 

zero-mean random Gaussian processes. To obtain smooth cross spectral density representations, 
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common SHM practice adopts signal processing techniques, such as windowing and spectral 

averaging [43]. In general, windowing involves segmenting signals into time series of short lengths, 

and spectral averaging consists in computing averages of cross spectral density representations of 

all segments. Witte [43] reports on two spectral averaging methods, (i) “root-mean-square (RMS) 

averaging”, and (ii) “vector averaging”. In RMS averaging, the kth component of the average cross 

spectrum S̃k is computed by averaging scalar cross spectral density outputs (amplitudes |Sk| and 

phase angles ∠Sk) of Ns segments, as shown in Equation 27. Vector averaging consists in averaging 

real parts and imaginary parts of complex cross spectral density values separately for deriving the 

average cross spectrum, as shown in Equation 28. 

2
2

1 1

1 1s sN N

k kj k kj

j js s

S S S S
N N= =

=  =    (27) 

( ) ( ) ( ) ( )
1 1

1 1
Re Re Im Im

s sN N

k kj k kj

j js s

S S S S
N N= =

= =   (28) 

RMS averaging reduces the variability of amplitudes and phases, but does not reduce noise levels 

of signals. By contrast, vector averaging cancels out noise components, but effects poorer 

smoothing compared to RMS averaging. Figure 4 exemplarily shows the effect of both spectral 

averaging methods on the cross spectra density phase functions between two signals, representing 

structural response data from degrees of freedom x1, x2 of the oscillator, computed at a sampling 

frequency of 100 Hz. Phase angles in Figure 4 are plotted against the angular frequency ωk, since 

the time lag τ is essentially associated with 2πfk in Equation 22. The effect of the time lag τ on the 

phase angle plot is depicted as a linear “trend”, with angle y essentially representing the time lag. 

Finally, the limitation of phase angles being bounded within [-π, π] is evidenced by the replication 

of the linear trend once the upper bound of the phase angle value is reached, which results in the 

requirement to add an integer multiple of π, as shown in Equation 22. The same replication applies 

for negative time lags, where the lower bound of the phase angle is reached. Both spectral averaging 

methods successfully reduce noise levels, while retaining the “meaningful” portions of the signals, 

i.e. the phase angles within the bandwidth of interest 0-125 rad/s (0-20 Hz) corresponding to the 

eigenfrequencies of the oscillator. Nonetheless, the vector averaging method exhibits higher noise 

reduction, which is crucial for accurate time lag detection, and will be used in the remainder of the 

paper. 
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Figure 4: Effect of averaging on the spectral density phase angles. 

 

3.3. Applicability limits of time lag detection 

 

Due to the approximative nature of the FD-Sync approach, the limitations in terms of time lag 

detection are investigated through the simulations TS1 and TS2. The simulations address all 

possible sources of inaccuracies, including noise, FFT approximations, and non-proportional 

damping. Furthermore, since time lag detection relies on the cross spectral density phase angle φk, 

and, by extension, to the resolution of frequency bins, it is expected that the lowest detectable time 

lag cannot be lower than the time interval Δt = 1/fs, where fs is the sampling frequency. Finally, 

even after applying the noise reduction method described in Section 3.2, residual noise levels could 

still offset cross spectral density phase angles from their actual values. Since Equation 22 

essentially relates time lag τ with the slope of the cross spectral density phase spectrum, relatively 

large offsets of φk might compromise the accuracy of time lag detection. To avoid offset-induced 

inaccuracies, instead of applying Equation 22 directly, the linear trend (slope) of the cross spectral 

density phase spectrum, shown in Figure 4, is estimated using linear regression, and the slope of 

the linear regression curve is considered to be equal to time lag τ. 

Since the purpose of the FD-Sync approach is to enable obtaining correct modal information from 

structural response data, the effect of time lags on the mode shapes of the 5-DOF oscillator needs 

to be investigated. According to Krishnamurthy et al. [8], the extraction of experimental mode 

shapes could be affected by time lags as short as 10 μs; however, it is argued that the effect of 
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synchronization discrepancies should case-specifically be estimated according to the bandwidth of 

interest. In this study, to showcase this effect, preliminary simulations of the oscillator are 

conducted, by injecting random time lags of increasing length (ranging from 0.001 s to 0.1 s) into 

the signals representing the structural response data. As a metric to quantify the effect, mode shapes 

ψu are extracted from the unsynchronized signals and are compared to the original mode shapes ψo, 

using the modal assurance criterion (MAC) [44]: 

 
( ) ( )

2

MAC ,

T

u o

u o T T

u u o o

ψ ψ
ψ ψ

ψ ψ ψ ψ


=

  
. (29) 

Similarity between ψu and ψo is indicated by MAC values close to 1, while loss of similarity occurs 

for values below 0.9 [45]. Figure 5 summarizes the MAC values for different ranges of time lags 

and for all 5 vibration modes of the oscillator. 

 

 

Figure 5: Effect of time lags of vibration modes of the 5-DOF oscillator. 

 

As can be seen in Figure 5, the 4th and 5th vibration modes are more sensitive to short time lags, 

which is expected since high-order vibration modes have shorter periods. Nevertheless, time lags 

shorter than 5 ms seem to have a negligible effect on all vibration modes. By contrast, time lags 

longer than 10 ms result in MAC values lower than 0.9 in most cases. As a result, the lowest time 

lag to be considered for the simulations TS1 and TS2 is set to 1 ms, which is expected to adequately 

illustrate the efficacy of the FD-Sync approach.  

In both sets of the simulations TS1 and TS2, upon computing the structural responses of the 

oscillator for each simulation, a series of time lags, ranging between -500 ms and 500 ms with a 

1 ms step, are artificially inserted into the signals corresponding to the structural response data of 

degrees of freedom x2, x3, x4, and x5. Subsequently, the time lag detection is performed by 
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x2, x1-x3, x1-x4, x1-x5. To investigate the effects of the time interval Δt and of noise reduction, 5 

sampling frequencies are considered, and 3 analysis lengths. For each sampling frequency, a 

different window size is selected for windowing with an overlap of 50%. The simulation 

parameters for both sets of simulations are summarized in Table 2. 

 

Table 2: Simulation parameters. 

Sampling frequency 

fs (Hz) 

Analysis length (number of points) Window size 

(number of points) 10 min 1 h 24 h 

12.5 7,500 45,000 1,080,000 1,024 

25 15,000 90,000 2,160,000 2,048 

50 30,000 180,000 4,320,000 4,096 

100 60,000 360,000 8,640,000 8,192 

512 307,200 1,843,200 44,236,800 32,768 

 

The results from the simulations TS1 and TS2 are summarized in the following figures. As a metric 

of efficacy, each time lag detected, τd, is plotted against the corresponding time lag inserted, τi. The 

proximity between τd and τi is demonstrated through the distance of τd from an idealized curve, 

corresponding to τd = τi, represented in the figures as a dashed line. 

Figure 6 illustrates the effect of the sampling frequency on time lag detection both for proportional 

damping (TS1) and non-proportional damping (TS2) for an analysis length of 1 h. The results are 

shown for time lags inserted in the signal of DOF x2 and for the FD-Sync being applied on the cross 

spectral density phase spectrum between signals from DOF x1 and DOF x2. 

 

 

Figure 6: Effect of the sampling frequency on the time lag detection between DOF pairs x1-x2 for analysis length of 

1 h :TS1 – proportional damping (left) and TS2 – non-proportional damping (right). 

 

In Figure 7, the effect of the analysis length is shown for the same pairs of degrees of freedom as 

in Figure 6, and for fs = 100 Hz, and Figure 8 depicts the performance of the FD-Sync approach 

when applied to all DOF pairs analyzed, i.e. x1-x2, x1-x3, x1-x4, x1-x5. 
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Figure 7: Effect of the analysis length on the time lag detection between DOF pairs x1-x2 for a sampling frequency of 

100 Hz: TS1 – proportional damping (left) and TS2 – non-proportional damping (right). 

 

 

Figure 8: Time lag detection between all DOF pairs analyzed for a sampling frequency of 100 Hz and an analysis 

length of 1 h: TS1 – proportional damping (left) and TS2 – non-proportional damping (right). 

 

The results of the simulations TS1 and TS2 showcase the capability of the FD-Sync approach to 

detect time lags within a range of ±300 ms with low errors, regardless of sampling frequency, 

analysis length, and the existence of random phase shifts. For time lags longer than 300 ms, the 

time lag detection quality deteriorates; however, the error remains relatively low in almost all cases. 

Therefore, in case time lags detected with the FD-Sync approach exceed 300 ms, it is recommended 

that the approach is repeated more than once to obtain optimal results. Furthermore, in Figure 6, 

large errors are observed for low sampling frequencies and time lags close to zero. These errors are 

attributed to time lags being shorter than the time step of the respective signals and are detected as 

zero time lags, i.e. the corresponding cross spectral density phase function is relatively “flat” 

similar to Figure 4 for τ = 0.00 s. Taking the aforementioned limitations into consideration, the 

validation tests of the FD-Sync approach are presented in the next section. 
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4. Validation tests on a road bridge 

 

The proposed FD-Sync approach is validated using SHM data from field tests on a road bridge 

equipped with a SHM system. First, the road bridge and the SHM system are briefly described. 

Next, the validation tests are presented and the results are discussed. 

 

4.1. Description of the road bridge and the SHM system 

 

The road bridge selected for the validation tests is the Infante Dom Henrique Bridge spanning River 

Douro and connecting the cities of Porto and Gaia in Portugal, shown in Figure 9. The bridge has 

a total length of 371 m and consists of a prestressed concrete deck resting on a reinforced concrete 

arch of length 280 m and height 25 m. The deck features a box girder cross section with a depth of 

4.50 m, and the arch has a rectangular cross section with constant 1.50 m thickness and width that 

varies linearly from 20 m at the arch ends to 10 m at the midspan. At the central part of the bridge, 

the deck is adjoined to the arch for a length of 70 m about the midspan, essentially forming a 6.00 m 

deep box girder. Across the rest of the bridge length, the arch is connected to the deck via 

equidistant piers at 35 m up to the abutments. The headroom of the bridge is 75 m. 

 

 

Figure 9: Infante Dom Henrique Bridge in Portugal. 

 

The SHM system installed on the bridge comprises 4 groups of accelerometers attached at 

4 locations across the bridge deck [46], as shown in Figure 10. Each group of accelerometers 

consists of 2 accelerometers measuring at the vertical (z) direction, symmetrically positioned with 

respect to the longitudinal axis of the deck, and one accelerometer measuring at the transversal (y) 

direction. The acceleration response data is collected over a period of one year at a sampling 
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frequency of 50 Hz. As discussed in [46], the most significant vibration modes of the bridge lie 

within the range of 0-5 Hz; therefore, the acceleration response data is downsampled to 12.5 Hz. 

 

 

Figure 10: SHM system installed at the Infante Dom Henrique Bridge. 

 

The validation tests are designed with a similar concept as simulations TS1 and TS2. Since the FD-

Sync approach relies on the cross spectral density phase, it follows that the SHM data records, 

containing acceleration response data, need to exhibit similar frequency content, which may not 

always apply if the records are from different measuring directions. Hence, in this study, only the 

8 SHM data records in the z direction are considered, corresponding to the positions Li,o and Li,u 

(i = 1…4) with “o” and “u” depicting the locations over and under the longitudinal axis of the deck. 

The length of the SHM data records used in the validation tests is one day (24 h). In each analysis, 

the SHM data record x1,u from location L1,u serves as reference and is kept in its original form. 

Artificial time lags (τi), ranging from -560 ms to 560 ms, are sequentially inserted into the rest of 

the SHM data records xj,u from locations Lj,u (j = 2…4) and xi,o from locations Li,o (i = 1…4) and 

detected (τd) through the slope of the cross spectral density phase spectrum with record x1,u. The 

step for inserting the time lags is set to 80 ms, coinciding with the sampling frequency of the SHM 

data. Vector averaging is applied in each analysis with a window size of 1,024 measurements and 

an overlap of 50 %. The results are illustrated in Figure 11, and the root mean square errors (RMSE) 

between τd and τi for all locations are summarized in Table 3. The time lag estimation through the 

slope of the cross spectral density phase spectrum is exemplarily shown in Figure 12 for two time 

lag values. 
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Figure 11: Time lag detection between all measurement locations of the SHM system installed on Infante Dom 

Henrique Bridge for a sampling frequency of 12.5 Hz and an analysis length of 24 h. 

Table 3: Root mean square errors between inserted time lags and detected time lags. 

Location RMSE (s) 

L1,u-L1,o 0.026 

L1,u-L2,u 0.053 

L1,u-L2,o 0.054 

L1,u-L3,u 0.053 

L1,u-L3,o 0.040 

L1,u-L4,u 0.027 

L1,u-L4,o 0.029 

 

 

Figure 12: Exemplary time lag estimation through the slope of the cross spectral density phase function for  

τ = -0.24 s (left) and τ = 0.08 s (right). 

 

The results of the validation tests corroborate the observations from simulations TS1 and TS2 for 

real-world SHM data. Specifically, the FD-Sync approach exhibits high efficacy for time lags up 

to 300 ms, which represent realistic synchronization discrepancies in modern SHM systems, with 

errors generally lower than 10 ms. For time lags longer than 300 ms, the quality of the FD-Sync 

approach deteriorates with errors exceeding 50 ms. Therefore, to increase the accuracy of time lag 

detection, it is recommended to repeat the FD-Sync approach more than once, in case time lags 

longer than 300 ms are detected. Furthermore, as shown in Figure 11, offsets between time lags 

may be observed regardless of the length of the time lags, e.g. between locations L1,u and L2,u. 

These offsets may be attributed to slight differences in the frequency contents of the respective data 
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records due, for example, to frequency components having low amplitudes in some locations. It is 

therefore recommended to apply the FD-Sync approach multiple times with different reference 

data records to enhance the robustness of time lag detection. Finally, the validation tests 

demonstrate that the proposed approach is independent from the type of vibration mode. In other 

words, although the setup of sensors in the SHM system results in frequency contents including 

translational as well as torsional vibration modes, the capability of the FD-Sync approach to 

estimate time lags remains unaffected.  

 

5. Summary and conclusions 

 

In structural health monitoring, vibration-based outcomes may be compromised by synchronization 

discrepancies. Specifically, loss of synchronization affects the phase differences between SHM 

data records, which, in turn, results in poorly estimated mode shapes. Synchronization 

discrepancies predominantly affect wireless SHM systems, in which wireless sensor nodes with no 

centralized clock management are used. In addition, cable-based SHM systems may also exhibit 

synchronization discrepancies in case multiple data acquisition units are used. This paper has 

presented a frequency-domain synchronization approach for vibration-based SHM. The proposed 

approach builds upon the relationship of cross spectral density phases between two SHM data 

records of acceleration response data with time lags between the records. As has been proven in 

this paper, the slope of the cross spectral density phase spectrum may mathematically be related to 

the time lags between the records.  

The frequency-domain synchronization approach has been verified through simulations of a 5-DOF 

oscillator under white noise excitation, in which the capabilities and limitations of the approach 

have been investigated. Specifically, it has been observed that it is capable of yielding reliable 

estimates of time lags up to 300 ms with low errors, regardless of sampling frequency, analysis 

length, and measurement location. Moreover, it has been demonstrated that time lag estimation 

with the proposed approach is not affected by phase shifts between SHM data records, occurring 

as a result of non-proportional damping. Finally, the efficacy of the frequency-domain 

synchronization approach has been validated through tests using data from a real-world SHM 

system installed on a road bridge in Portugal. The results from the validation tests have 

corroborated the observations from the simulations with respect to the limitations of time lag 

estimation and to the capability of the frequency-domain synchronization approach to estimate time 

lags up to 300 ms with low errors. Future work will focus on automating and embedding frequency-

domain synchronization approach in wireless sensor nodes. Furthermore, the favorable effect of 

the approach on correcting mode shapes will be examined in structures with responses in variable 

frequency bandwidths. 
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