Operating Instructions

Gobal Drive

Frequency inverters 8200 series

These Operating Instructions are valid for the 82 XX controllers of the versions:

$33.820 \mathrm{X}-$	$\mathrm{E}-$	1 x.	1 x		$(8201-8204)$
$33.8202-$	E	1 x.	1 x	-V 002	reduced assembly depth (8202)

Type _

Design:
B = Module
C = Cold Plate
E= Enclosure IP20

Hardware level and index

Software level and index

Variant

Explanation

Corresponds to the German edition of 16/06/1997
Edition of: $\quad 02 / 10 / 1997$
1 Preface and general information $1-1$
1.1 About these Operating Instructions 1-1
1.1.1 Terminology used $1-1$
1.1.2 What is new? 1-2
1.2 Scope of delivery 1-2
1.3 Legal regulations 1-3
2 Safety information 2-1
2.1 General safety information 2-1
2.2 Layout of the safety information 2-3
2.3 Residual hazards 2-4
3 Technical data 3-1
3.1 General data/application conditions. 3-1
3.2 Rated data (Operation with 150 \% overload) 3-2
3.2.1 Types 8201 to 8204 3-2
3.3 Fuses and cable cross-sections 3-4
3.3.1 Single drives with 150 \% overload 3-4
3.4 Dimensions 3-4
4 Installation 4-1
4.1 Mechanical installation 4-1
4.1.1 Important notes 4-1
4.1.2 Standard assembly with fixing rails or fixing angles 4-3
4.1.2.1 Types 8201 to 8204 4-3
4.1.2.2 Type 8202-V002 (reduced assembly depth) 4-4
4.1.3 DIN-rail assembly 4-5
4.2 Electrical installation 4-6
4.2.1 Important notes. 4-6
4.2.2 Power connections 4-7
4.2.2.1 Mains connection 4-7
4.2.2.2 Motor connection 4-7
4.2.2.3 Connection diagram 4-9
4.2.3 Control connections 4-10
4.2.3.1 Control cables 4-10
4.2.3.2 Assignment of the control terminals. 4-10
4.2.3.3 Connection diagrams 4-12
4.3 Installation of a CE-typical drive system. 4-13
Lenze
5 Commissioning 5-1
5.1 Before you switch on 5-1
5.2 Short set-up (Factory setting) 5-2
5.2.1 Switch-on sequence 5-2
5.2.2 Factory setting of the most important drive parameters 5-3
5.3 Adapt machine data 5-4
5.3.1 Determine speed range (fdmin, fdmax). 5-4
5.3.2 Adjustment of acceleration and deceleration times (Tir , T if). 5-6
5.3.3 Setting of the current limit (Imax) 5-7
5.4 Optimisation of the operating characteristic of the drive. 5-8
5.4.1 Select the control mode 5-8 5.4.1.2 Optimisation of V/f-characteristic control. 5-13
5.4.1.1 Optimisation of V/f-characteristic control with auto boost
5.4.1.1 Optimisation of V/f-characteristic control with auto boost
6 During operation 6-1
7 Configuration 7-1
7.1 Basics 7-1
7.2 Code table 7-2
8 Troubleshooting and fault elimination 8-1
8.1 Troubleshooting 8-1
8.1.1 Display at the controller 8-1
8.1.2 Display at the operating module 8-1
8.1.3 Maloperation of the drive 8-2
8.2 Fault analysis using the history buffer 8-2
8.3 Fault indications 8-3
8.4 Reset of fault indications 8-5
9 Accessories (Overview) 9-1
9.1 Accessories for all types 9-1
9.2 Software 9-2
9.3 Type-specific accessories 9-2
10 Index 9-3

1 Preface and general information

1.1 About these Operating Instructions ..

- These Operating Instructions help you to connect and set up the 82XX frequency inverter. They contain safety information which must be observed.
- All persons who work on and with 82XX frequency inverters must have the Operating Instructions available and observe all relevant notes and instructions.
- The Operating Instructions must always be in a complete and perfectly readable state.

1.1.1 Terminology used

Term	In the following text used for
82 XX	Any frequency inverter of the series 8200, 8210, 8220,8240
Controller	82 XX frequency inverter
Drive system	Drive systems with 82XX frequency inverters and other Lenze drive components

Lenze

1.1.2 What is new?

Material no.	Edition of	Important	Content
375134	$05 / 10 / 1994$		$8200 / 8210$ Short Instructions
375190	$13 / 02 / 1995$		$8200 / 8210$ Operating Instructions
398283	$02 / 10 / 1997$	replaces 375134 replaces 375190	\bullet Contents only for 8200 \bullet Complete revision of the contents - Complete editorial revision

1.2 Scope of delivery

Scope of delivery	Important
- 182 XX frequency inverter	After receipt of the delivery, check immediately whether the scope of supply matches with the accompanying - 1 Operating Instructions - 1 accessory kit (components for the mechanical and electric installation)
papers. Lenze does not accept any liability for deficiencies claimed subsequently. Claim - visible transport damage immediately to the forwarder. - visible deficiencies/incompleteness immediately to your Lenze representative.	

1.3 Legal regulations

$\left.\begin{array}{|l|l|l|l|}\hline \text { Labelling } & \text { Nameplate } & \text { CE mark } & \begin{array}{l}\text { Conforms to the EC Low Voltage } \\ \text { Directive }\end{array}\end{array} \begin{array}{l}\text { Lenze GmbH \& Co KG } \\ \text { Postfach 101352 } \\ \text { D-31763 Hameln }\end{array}\right]$

Lenze

Liability	- The information, data and notes in these Operating Instructions met the state of the art at the time of printing. Claims referring to drive systems which have already been supplied cannot be derived from the information, illustrations, and descriptions given in these Operating Instructions. - The specifications, processes, and circuitry described in these Operating Instructions are for guidance only and must be adapted to your own specific application. Lenze does not take responsibility for the suitability of the process and circuit proposals. - The indications given in these Operating Instructions describe the features of the product without warranting them. - Lenze does not accept any liability for damage and operating interference caused by: - disregarding these Instructions - unauthorized modifications to the controller - operating errors - improper working on and with the controller	
Warranty	- Warranty conditions: see Sales and Delivery Conditions of Lenze GmbH \& Co KG. - Warranty claims must be made immediately after detecting defects or faults. - The warranty is void in all cases where liability claims cannot be made.	
Disposal	Material	recycle

2 Safety information

2.1 General safety information

Safety and application notes for controllers
(to: Low-Voltage Directive 73/23/EEC)

1. General

During operation, drive controllers may have, according o their type of protection, live, bare, in some cases also movable or rotating parts as well as hot surfaces.
Non-authorized removal of the required cover, inappropriate use, incorrect installation or operation, creates the risk of severe injury to persons or damage to material assets.
Further information can be obtained from the documentation.
All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel (IEC 364 and CENEEC HD 384 or DIN VDE 0100 and IEC report 664 or DIN VDE 0110 and national regulations for the prevention of accidents must be observed).
According to this basic safety information qualified skilled personnel are persons who are familiar with the erection, assembly, commissioning, and operation of the product and who have the qualifications necessary for their occupation.

2. Application as directed

Drive controllers are components which are designed for installation in electrical systems or machinery.
When installing in machines, commissioning of the drive controllers (i.e. the starting of operation as directed) is prohibited until it is proven that the machine corresponds
to the regulations of the EC Directive 89/392/EEC (Machinery Directive); EN 60204 must be observed. Commissioning (i.e. starting of operation as directed) is only allowed when there is compliance with the EMC Directive (89/336/EEC)
The drive controllers meet the requirements of the Low Voltage Directive $73 / 23 / E E C$. The harmonized standards of the prEN 50178 / DIN VDE 0160 series together with EN 60439-1/DIN VDE 0660 part 500 and EN 60146/DIN VDE 0558 are applicable to drive controllers.
The technical data and information on the connection conditions must be obtained from the nameplate and the documentation and must be observed in all cases.

3. Transport, storage

Notes on transport, storage and appropriate handling must be observed.
Climatic conditions must be observed according to prEN 50178.

4. Erection

The devices must be erected and cooled according to the regulations of the corresponding documentation.
The drive controllers must be protected from
inappropriate loads. Particularly during transport and handling, components must not be bent and/or isolating distances must not be changed. Touching of electronic components and contacts must be avoided. Drive controllers contain electrostatically sensitive components which can easily be damaged by

Safety information

nappropriate handling. Eectrical components must not be damaged or destroyed mechanically (health risks are possible!).

5. Electrical connection

When working on live drive controllers, the valid national regulations for the prevention of accidents (e.g. VBG 4) must be observed.
The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-sections, fuses, PE connection). More detailed information is included in the documentation.
Notes concerning the installation in compliance with EMC - such as screening, grounding, arrangement of filters and laying of cables - are included in the documentation of the drive controllers. These notes must also be observed in all cases for drive controllers with the CE mark. The compliance with the required limit values demanded by the EMC legislation is the responsibility of the manufacturer of the system or machine.

6. Operation

Systems where drive controllers are installed must be equipped, if necessary, with additional monitoring and protective devices according to the valid safety regulations, e.g. law on technical tools, regulations for the prevention of accidents, etc. Modifications of the drive controllers by the operating software are allowed After disconnecting the drive controllers from the supply voltage, live parts of the controller and power connections must not be touched immediately, because of possibly charged capacitors. For this, observe the corresponding labels on the drive controllers. During operation, all covers and doors must be closed.
7. Maintenance and servicing

The manufacturer's documentation must be observed.
This safety information must be kept!
The product-specific safety and application notes in these Operating Instructions must also be observed!

2.2 Layout of the safety information

- All safety notes have a uniform layout:
- The icon characterizes the type of danger.
- The signal word characterizes the severity of danger.
- The note describes the danger and suggests how to avoid the danger.

Signal word
Note

	Icons used		Signal words	
Warning of danger to persons			Warning of hazardous electrical voltage	Danger!

Lenze 820xBA1097

Safety information

2.3 Residual hazards

Operator's safety	After mains disconnections, the power terminals U, V, W and $+U_{G}$, U_{G} remain live for at least three minutes. \bullet Before working on the controller, check that no voltage is applied to the power terminals.
Protection of devices	Cyclic connection and disconnection of the controller supply voltage at $L 1, L 2, L 3$ or $+U_{G}$ -U may overload the internal input current load: \bullet Allow at least 3 minutes between disconnection and reconnection.
Overspeeds	Drive systems can reach dangerous overspeeds (e. g. setting of inappropriately high field frequencies): \bullet The controllers do not offer any protection against these operating conditions. Use additional components for this.

3 Technical data

3.1 General data/application conditions

Field	Values	
Vibration resistance	Germanischer Lloyd, general conditions	
Humidity class	Humidity class F without condensation (average relative humidity 85%)	
Permissible temperature ranges	during transport of the controller: $-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	
	during storage of the controller: $-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$	
	during operation of the controller: $\quad 0^{\circ} \mathrm{C} \ldots+40^{\circ} \mathrm{C}$ without power derating $+40^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$ with power derating	
Permissible installation height h	$\mathrm{h} \leq 1000 \mathrm{~m}$. a.m.s.l without power derating 1000 m a.m.s.l $<\mathrm{h} \leq 4000 \mathrm{~m}$ a.m.s.l with power derating	
Degree of pollution	VDE0110 part 2 pollution degree 2	
Noise emission	Requirements acc. to EN 50081-2, EN 50082-1, IEC 22G-WG4 (CV) 21Limit value class A to EN 55011 (industrial area) with mains filterLimit value class B to EN 55022 (residential area) with mains filter and installation intocontrol cabinet	
Noise immunity	Limit values maintained usig mains filter Requirements according to EN 50082-2, IEC 22G-WGA (OV) 21	
	Requirements Standard	Severities
	ESD EN61000-4-2	3, i.e. 8 kV with air discharge 6 kV with contact discharge
	RF interference(enclosure) EN61000-4-3	3, i.e. $10 \mathrm{~V} / \mathrm{m} ; 27 . . .1000 \mathrm{MHz}$
	Burst EN61000-4-4	3/4, i.e. $2 \mathrm{kV} / 5 \mathrm{kHz}$
	Surge (Surge on mains cable) EN61000-4-5	3, i.e. $1.2 / 50 \mu \mathrm{~s}$, 1 kV phase-phase, 2 kV phase-PE
Insulation strength	Overvoltage category III according to VDE 0110	
Packaging (DIN 4180)	Dust packaging	
Type of protection	IP20 NEMA 1: Protection against contact	
Approvals	CE:	Low Voltage Directive Eectromagnetic compatibility

3.2 Rated data (Operation with 150% overload)

3.2.1 Types 8201 to 8204

150% overload Variant "reduced assembly depth"	Type	8201	8202	8203	8204
	Order no.	EVF8201-E	EVF8202-E	EVF8203-E	EVF8204-E
	Type		8202-V002		
	Order no.		EVF8202-E- V002		
Mains voltage	$\mathrm{V}_{\text {rated }}[\mathrm{V}]$	$190 \mathrm{~V} \pm 0 \% \leq \mathrm{V}_{\text {rated }} \leq 260 \mathrm{~V} \pm 0 \% ; 45 \mathrm{~Hz} . . .65 \mathrm{~Hz} \pm 0 \%$			
Alternative DC supply	$\mathrm{V}_{\mathrm{DC}}[\mathrm{V}$]	$270 \mathrm{~V} \pm 0 \% \leq \mathrm{V}_{\mathrm{DC}} \leq 360 \mathrm{~V} \pm 0 \%$			
Mains current 4) with mains filter/mains choke without mains filter/mains choke	$I_{\text {mains }}[\mathrm{A}]$	$\begin{aligned} & 4.2 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.5 \\ 15.0 \\ \hline \end{array}$	17.0
Data for mains operation with $1 \mathrm{AC} / 230 \mathrm{~V} / 50 \mathrm{~Hz} / 60 \mathrm{~Hz} ; 270 \leq \mathrm{V}_{\mathrm{DC}} \leq 275 \mathrm{~V}$					
Motor power (4 pole ASM) at $9.2 \mathrm{kHz}{ }^{*}$	$\mathrm{P}_{\text {rated }}[\mathrm{kW}]$	0.37	0.75	1.5	2.2
	$\mathrm{P}_{\text {rated }}[\mathrm{hp}]$	0.5	1.0	2.0	2.9
Output power U, V, W at $9.2 \mathrm{kHz}^{*}$	$\mathrm{S}_{\text {N9.2 }}$ [kVA]	1.0	1.5	2.7	3.6
Output power $+\mathrm{U}_{\mathrm{G}}, \mathrm{U}_{\mathrm{G}}{ }^{1}$	PDC [kW]	0.0	0.0	0.0	0.0
Output current	$\mathrm{I}_{\text {rated }}[\mathrm{A}]$	2.6	4.0	7.0	9.5
Max. output current for 60s ${ }^{2)}$	$\mathrm{I}_{\max }[\mathrm{A}]$	3.9	6.0	10.5	14.2
Motor voltage ${ }^{3)}$	$V_{M}[\mathrm{~V}]$	$0.3 \times \mathrm{V}_{\text {mains }} / 0 \mathrm{~Hz} \ldots 50 \mathrm{~Hz}$, if required up to 240 Hz			
Power loss (Operation with I_{N})	P_{v} [W]	30	50	70	100

150 \% overload		Type	8201	8202	8203	8204
Variant "reduced assembly depth"		Order no.	EVF8201-E	EVF8202-E	EVF8203-E	EVF8204-E
		Type		8202-V002		
		Order no.		EVF8202-E- V002		
Power derating		[\%/K] [\%/m]	$\begin{gathered} 40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{amb}}<50^{\circ} \mathrm{C}: 2,5 \% / \mathrm{K} \\ 1000 \mathrm{~m} \text { a.m.s.l. }<\mathrm{h} \leq 4000 \mathrm{~m} \text { a.m.s.l.: } 5 \% / 1000 \mathrm{~m} \end{gathered}$			
Field frequency	Resolution	Absolute	0.05 Hz			
	Digital setpoint selection	Accuracy	$\pm 0.05 \mathrm{~Hz}$			
	Analog setpoint	Linearity	$\pm 0.5 \%$ (max. selected signal level, 5 V or 10V)			
		Temperature sensitivity	$0 \ldots 40^{\circ} \mathrm{C}:+0.4 \%$			
		Offset	± 0.3 \%			
Weight		m [kg]	1.0	1.3 Variant 1.0	2.2	2.2

1) This power can be additionally obtained when operating a matching motor
2) The currents apply to a periodical load cycle with 1 minute overcurrent with the current mentioned here and 2 minutes base load with $75 \% I_{\text {Nrated }}$.
3) With mains choke/mains filter: max. output voltage = approx. 96% of the mains voltage
4) Observe the N -conduction load when having a symmetrical mains distribution
(See electrical installation)
Chopper frequency of the inverter

3.3 Fuses and cable cross-sections

3.3.1 Single drives with 150% overload

The table values are valid for the operation of $82 \times X$ controllers as single drives with a matching motor and 150% overload.

Type	Mains input L1, N, PE / motor connection U, V, W, PE									
	Operation without mains filter/mains choke					Operation with mains filter/mains choke				
	FuseF1, F2, F3		$\begin{aligned} & \text { El.c.b. } \\ & \text { VDE } \end{aligned}$	Cable cross-section ${ }^{1)}$		$\begin{aligned} & \text { Fuse } \\ & \text { F1, F2, F3 } \end{aligned}$		$\begin{aligned} & \text { El.c.b. } \\ & \text { VDE } \end{aligned}$	Cable cross-section ${ }^{1)}$	
	VDE	UL		mm ${ }^{2}$	AWG	VDE	UL		mm ${ }^{2}$	AWG
8201	M 10A	-	C 10A	1.5	15	M 10A	-	C 10A	1.5	15
8202	M 15A	-	C 16A	2.5	13	M 15A	-	C 16A	$\begin{array}{\|l\|} \hline 2.5 \\ {[1.5]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ \text { [15] } \\ \hline \end{array}$
8203	M 20A	-	C20A	4	11	M 15A	-	C 16A	$\begin{array}{\|l\|} \hline 2.5 \\ {[1.5]} \\ \hline \end{array}$	$\begin{aligned} & \hline 13 \\ & \text { [15] } \end{aligned}$
8204	-	-	-	-	-	M 20A	-	C 20A	$\begin{array}{\|l\|} \hline 4 \\ {[2.5]} \\ \hline \end{array}$	$\begin{aligned} & \hline 11 \\ & {[13]} \\ & \hline \end{aligned}$

Values in square brackets are valid for motor connection
Observe national and regional regulations (e. g. VDE/EVU)!

3.4 Dimensions

The controller dimensions depend on the mechanical installation (see chapter 4.1).

4 Installation

4.1 Mechanical installation

4.1.1 Important notes

- Use the controllers only as built-in devices!
- If the cooling air contains pollutants (dust, fluff, grease, aggressive gases):
- take suitable preventive measures, e.g. separate air duct, installation of filters, regular cleaning, etc.
- Observe free space!
- You can install several controllers next to each other without free space in a control cabinet.
- Ensure unimpeded ventilation of cooling air and outlet of exhaust air!
- Allow a free space of 100 mm at the top and at the bottom.
- Do not exceed the ambient temperature permissible during operation (see chapter. 3.1)
- With continous oscillations or vibrations:
- Check whether shock absorbers are necessary.

Installation

Possible mounting positions

- In vertical position at the back of the control cabinet, terminals point to the front:
- With attached fixing rails.
- With special fixing unit on one or two DIN rails.
- Turned by 90° (flat assembly on the backside of the control cabinet):
- Insert the attached fixing rail into the guides at the heat sink.
- Horizontally with an additional fan.
- On a pivoting frame for assembly depths < 198 mm :
- Therefore easy handling and installation of the front interfaces possible.
4.1.2 Standard assembly with fixing rails or fixing angles
4.1.2.1 Types 8201 to 8204

FIG 4-1 Dimensions 8201-8204: Standard assembly

1) Fixing rail for side assembly
2) Observe the free space required for the connection cables

With attachable fieldbus or I/O module:
Observe assembly depth and assembly space required for connection cables

$[\mathrm{mm}]$	a	b	c	d	e $^{3)}$	\mathbf{g}	k
8201	64	210	29	190	158	6.5	30
8202	64	210	29	190	198	6.5	30
$8202-$ V002	64	210	29	190	158	6.5	30
$8203 / 8204$	83	283	38	263	211	6.5	30

Lenze 820XBA1097
4-3

Installation

4.1.2.2 Type 8202-V002 (reduced assembly depth)

This variant is equipped with a heat sink with a smaller surface.
Observe the following points to comply with the technical data:

- Assembly on an unpainted, metallic assembly board.
- Area>0.15 m².
- Sheet thickness at least 2 mm .

4.1.3 DIN-rail assembly

FIG 4-2

1) 8201/8202: Assembly on a DIN rail (middle) or on two DIN rails (top and bottom) possible 8203-8204: Assembly on two DIN rails
2) Observe the free space required for the connection cables

With attachable fieldbus or I/O module:
Observe assembly depth and assembly space required for connection cables

[mm]	a	b	c1	c2	c3	e $^{3)}$
8201	64	188	16	98	149	173
8202	64	188	16	98	149	213
$8203 / 8204$	83	258	16	-	149	237

4.2 Electrical installation

4.2.1 Important notes

- Ensure appropriate activation when using current-operated e.l.c.b.s.
- For information on the installation according to EMC see chapter 4.3
- Prior to assembly and service operations, the personnel must be free of electrostatic charge.
- Unused control inputs and outputs should be covered with plugs.
- In case of condensation, connect the controller to the mains voltage only after the visible humidity has evaporated.
- Please observe the restricitons of each mains type!

Mains	Operation of the controller	Notes
With grounded neutral	No restrictions	Observe controller ratings
	Operation of several 820X controllers connected to a mains 3AC / N / PE and symmetrical distribution to the three outer conductors excepted	\bullet Observe the load of the shared N -conductor. - r.m.s. current, see chapter 3.2 • Possibly enlarge the cross-section of the N-conductor.
With isolated neutral (IT mains)	Operation with recommended mains filters is not possible	• Mains filter will be destroyed if "earth fault" occurs. - Contact Lenze.
With grounded phase	Operation only possible with one variant	Contact Lenze
DC supply via + UG/-UG	DC voltage must be symmetrical to PE	Controller will be destroyed when grounding + UG-Leiter or -UG-Leiter

4.2.2 Power connections

4.2.2.1 Mains connection

- Connect the mains cables with the screw terminals L1, L2, L3.
- Tightening torques

	Terminals	
Type	L1, L2, L3, +UG, -UG	PE connection
$8201-8204$	$0.5 \ldots 0.6 \mathrm{Nm}(4.4 \ldots 5.3 \mathrm{lbin})$	$3.4 \mathrm{Nm}(30 \mathrm{lbin})$

4.2.2.2 Motor connection

Because of the EMC safety we recommend the use of screened motor cables only.
Screen connection

- 820X: On the front FAST-ON connector.
- Connect the motor cables to the screw terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$ anschließen.
- Observe correct pole connection.
- Tightening torques

	Terminals			
Type	U, V, W	PE connection	Screen/ strain relief	T1, T2
$8201-$	$0.5 \ldots 0.6 \mathrm{Nm}$ $(4.4 \ldots 5.3 \mathrm{lbin})$	3.4 Nm $(30 \mathrm{lbin})$	-	-
8204				

- Switching on the motor side of the controller is permitted
- for safety switch off (emergency switch off).
- during operation under load.

Installation

- The motor cable should be as short as possible because of the positive effect on the drive characteristic.
- FIG 4-3 shows the relation between motor-cable length and the possible required output filters.
- For group drives (several motors connected to one controller) it is necessary to calculate the resulting cable length $I_{\text {res }}$:
Ires $=$ Sum of all motor cable lengths $\cdot \sqrt{\text { No. of motor cables }}$
- When using unscreened motor cables, the data indicated in FIG 4-3 are valid for the double motor-cable length.
- Please contact Lenze when the absolute or resulting motor-cable lengths are > 200 m .

Motor-cable length (resulting), screened in m
FIG 4-3 Output filters additionally required in the motor cable

4.2.2.3 Connection diagram

FIG 4-4
820X power connections
Lenze

Installation

4.2.3 Control connections

4.2.3.1 Control cables

- We recommend the unilateral screening of all cables for analog signals to avoid signal distortion.
- Connect the screens of the control cables as follows:
- 820X:

On the front FAST-ON connector.

- If the control cables are interrupted (terminal strips, relays), the screens must be reconnected over the shortest possible distance.
- Connnect the fixing screw of the setpoint potentiometer to PE.
4.2.3.2 Assignment of the control terminals

FIG 4-5 Position of the control terminals

	Terminal	Use (Factory setting is printed in bold)		Level	Data
Analog inputs	7	GND 1			
	8	Setpoint input, reference: Terminal 7 (0 to 10V)		$\begin{aligned} & 0 \text { to } 20 \mathrm{~mA} \\ & 4 \text { to } 20 \mathrm{~mA} \\ & 0 \text { to } 5 \mathrm{~V} \\ & 0 \text { to } 10 \mathrm{~V} \end{aligned}$	Resolution: 9 bit Linearity fault: ± 0.5 \% Temperature fault: 0.3 \% ($0 . . .+40$ ${ }^{\circ} \mathrm{C}$) Input resistance Voltage signal: > $100 \mathrm{k} \Omega$ Current signal: 250Ω
	9	Supply for setp	int potentiometer	$5.2 \mathrm{~V} / 6 \mathrm{~mA}$	
Analog output	62	Analog output, (Field frequen	erence: terminal 7)	$\begin{aligned} & 0 . . .6 \mathrm{~V} / 2 \\ & \mathrm{~mA} \end{aligned}$	Resolution: 8 bit
$\begin{array}{\|l\|l\|} \hline \text { Digital } \\ \text { inputs } \end{array}$	20	Voltage supply $12 \mathrm{~V} / 20 \mathrm{~mA}$	digital inputs		
	28	Controller enab		HIGH	HGH: 12 V ... 30 V
	E4	CW rotation/ CCW rotation	CW/CCW)	CW: LOW CCW: HIGH	LOW: 0 V ... 3 V
	E3	DC-injection	rake	HIGH	
	E2	JOG frequenc		Binary code	
	E1	$20 \mathrm{~Hz}, 30 \mathrm{~Hz}$, 4			
	39	GND 2 (referen	for external voltages)		

	Terminal	Use (Factory setting is printed in bold)	Relay position (switched)	Data
Relay output K1	K11	Relay output normally-closed contact (TRIP)	opened	$24 \mathrm{~V} \mathrm{AC} / 3,0 \mathrm{~A}$ or $60 \mathrm{~V} \mathrm{DC} / 0.5 \mathrm{~A}$
	K22	Relay mid-position contact		
	K24	Relay output normally-open contact (TRIP)	closed	

Lenze

Installation

4.2.3.3 Connection diagrams

FIG 4-6 Control connections: Supply with internal control voltage

FIG 4-7 Control connections: External voltage supply (+12 V ... +30 V)
GND1 Reference for internal voltages
GND2
Reference for external voltages
GND1 and GND2 have a potential isolation inside the unit.

4.3 Installation of a CE-typical drive system

| General |
| :--- | :--- |
| notes | | | - The user is responsible for the compliance of his application with the EC directives.
 - If you observe the following measure you can be sure that the drive system will not cause any
 EMC problems, i.e. comply with the EMC Directive when running the machine.
 - If devices which do not comply with the CE requirement concerning noise immunity EN 50082-2
 are operated close to the controller, these devices may be interfered electromagnetically by the
 controllers. |
| :--- | :--- |
| Assembly | - Connect controller, mains choke, and mains filter to the grounded mounting plate with a wire of
 large a cross-section as possible:
 - Mounting plates with conductive surfaces (zinc-coated, stainless steel) allow permanent contact.
 - Varnished boards should not be used for installation in accordance with EMC
 - If you use several mounting plates:
 - Connect as much surface as possible of the mounting plates (e.g. with copper bands).
 - Ensure the separation of motor cable and signal or mains cable.
 - Do not use the same terminal strip for mains input and motor output.
 - Cable guides as close as possible to the reference potential. Unguided cables have the same effect
 as aerials. |
| - Use mains filters or RFI filters and mains chokes which are assigned to the controller:
 - RFI filters reduce impermissible high-frequency interference to a permissible value.
 - Mains chokes reduce low-frequency interferences which depend on the motor cable and its
 length.
 - Mains filters combine the functions of mains choke and RFI filter. | |

Lenze

Screening	- Connect the screen of the motor cable with the controller - to the screen connection of the controller. - additionally to the mounting plate with a surface as large as possible. - Recommendation: For the connection, use ground clamps on bare metal mounting surfaces. - If contactors, motor-protecting switches or terminals are located in the motor cable: - Connect the screens of the connected cables also to the mounting plate, with a surface as large as possible. - Connect the screen to PE, with a surface as large as possible. - Metal glands at the motor terminal box ensure a connection of the screen and the motor housing. - If the mains cable between mains filter and controller is longer than 300 mm : - Screen mains cables. - Connect the screen of the mains cable directly to the inverter and to the mains filter and connect it to the mounting plate with as large a surface as possible. - Use of a brake chopper: - Connect the screen of the brake resistor cable directly to the mounting plate, at the brake chopper and the brake resistor with as large a surface as possible. - Connect the screen of the cable between controller and brake chopper directly to the mounting plate, at the inverter and the brake chopper with a surface as large as possible. - Screen the control cables: - Connect both screen ends of the digital control cables. - Connect one screen end of the analog control cables. - Always connect the screens to the screen connection at the controller over the shortest possible distance. - Application of the controllers 821 X 822 X 824 X in residential areas: - Use an additional screen damping $\geq 10 \mathrm{~dB}$ to limit the radio interference. This is usually achieved by installation in enclosed and grounded control cabinets made of metal.
Groun	- Ground all conductive metal components (controller, mains filter, motor filter, mains choke) using suitable cables connected to a central point (PE bar). - Maintain the minimum cross-sections prescribed in the safety regulations: - For EMC, not the cable cross-section is important, but the surface and the contact with a cross-section as large as possible, i.e. large surface.

FIG 4-8 Example for an installation in accordance with the EMC regulations:

F1	Fuse
K10	Mains contactor
Z1	Mains fitter "/" or"B", see Accessories
Z2	Motor filter/sine filter, see Accessories
Z3	Brake modulel/brake chopper, see Accessories
-X1	Terminal strip in control cabinet
RB	Brake resistor PES
HF screen because of a PE connection with a surface as large as possible (see "Screening" in this chapter)	
n	Number of phases

5 Commissioning

The controllers are factory-set to drive a corresponding four-pole standard motor with $230 / 400 \mathrm{~V}, 50 \mathrm{~Hz}$. Further settings are not necessary.
Only a few settings via the 8201 BB operating module or a fieldbus module are necessary to adapt your drive to your application. The steps required are summarized in chapter 5.3 and in chapter 5.4.

5.1 Before you switch on

Prior to initial switch-on of the controller, check the wiring for completeness, short-circuit, and earth fault:

- Power connection:
- Via terminals L1/N - 820X.
- Alternatively via terminals +UG, -UG (DC-group drive)
- Control terminals:
- Reference potential for the control terminals is terminal 39.
- Controller enable: terminal 28
- Selection of direction of rotation: terminal E3 or E4
- External setpoint selection: terminals 8,9
- Check jumper position! Factpr settomg: 0-10 V (see page 4-10).
- During operation with an internal voltage supply via terminal 20 , bride the terminals 7 and 39 .
Lenze

Commissioning

- In case of condensation connect the controller to mains voltage only after the visible humidity has evaporated.
- The plug-in power terminals of the 820X controller must only be connected or disconnected when no voltage is applied.
Maintain the switch-on sequence!

5.2 Short set-up (Factory setting)

5.2.1 Switch-on sequence

Step	
1. Switch on mains voltage	\bullet CW rotation: - Apply a LOW signal to terminal E4 $(0 \ldots+3 \mathrm{~V})$. - CCW rotation: - Apply a HIGH signal to terminal E4 $(+12 \ldots+30 \mathrm{~V})$.
2. Select the direction of rotation.	Apply a voltage $0 \ldots+10 \mathrm{~V}$ to terminal 8.
3. Select the setpoint.	Apply a HIGH signal $(+12 \ldots+30 \mathrm{~V})$ to terminal 28.
4. Enable the controller.	
5. The drive is now operating according to factory setting.	

5.2.2 Factory setting of the most important drive parameters

Setting		Code	Factory se		Adaption to the application
Operating mode		C001	-0-	Setpoint selection via terminal 8 Control via terminals Parameter setting via 8201 BB	See code table, chapter 7.2
Terminal configuration		C007	-0-	$\begin{array}{cccc}\text { E4 } & \text { E3 } & \text { E2 } & \text { E1 } \\ \text { CW/CCWDC } & \text { injection } & \\ & & & \\ & & \end{array}$	See code table, chapter 7.2
Machine data					Chapter 5.3 ff .
Speed range	Min. field frequency	C010	0.0 Hz		Chapter 5.3.1
	Max. field frequency	C011	50.0 Hz		
Acceleration and deceleration times	Acceleration time	C012	5.0 s		Chapter 5.3.2
	Deceleration time	0013	5.0 s		
Current limit values	Motor mode	C022	150 \%		Chapter 5.3.3
	Generator mode	C023	80 \%		
Drive performance					Chapter 5.4 ff .
Current, torque, power characteristic	Operating mode	C014	-0-	Linear characteristic $V \sim f_{d}$ with auto boost	V/f characteristic control - with auto boost, see chapter 5.4.1.1 - with $\mathrm{V}_{\text {min }}$ boost, see chapter 5.4.1.2
	V/f rated frequency	C015	50.0 Hz		
	$\mathrm{V}_{\text {min }}$ Setting	C016	$\begin{gathered} \text { type } \\ \text { dependent } \end{gathered}$		
	Slip compensation	C021	0 \%		

Lenze 820×BA1097
5-3

5.3 Adapt machine data

5.3.1 Determine speed range ($\mathrm{f}_{\mathrm{dmin}}, \mathrm{f}_{\mathrm{dmax}}$)

Code	Name	Possible settings				IMPORTANT	
		Lenze	Selection		Info		
C010	Minimum field frequency	0.0	0.0	$\{0.1 \mathrm{~Hz}\}$	480.0		
C0111	Maximum field frequency	50.0	30.0	$\{0.1 \mathrm{~Hz}\}$	480.0		

Function

Adjustment

The speed range required for the application can be selected here by determing the field frequencies $f_{d m i n}$ and $f_{d m a x}$:

- $\mathrm{f}_{\mathrm{d} \text { min }}$ corresponds to the speed at 0% speed setpoint selection.
- $\mathrm{f}_{\text {dmax }}$ corresponds to the speed at 100% speed setpoint selection.

Relation between field frequency and synchronous motor speed:
$n_{\text {rsyn }}=\frac{f_{\text {dmax }} \cdot 60}{p} \quad \begin{aligned} & n_{\text {rsyn }} \begin{array}{l}\text { synchronous motor speed }[\mathrm{min}-1] \\ f_{\text {dmax }} \text { max. field frequency }[\mathrm{Hz}] \\ \mathrm{p} \quad \text { number of pole pairs }\end{array}\end{aligned}$
Example: 4 pole asynchronous
motor
$\mathrm{p}=2, \mathrm{f}_{\mathrm{dmax}}=50 \mathrm{~Hz}$
$n_{\text {rsyn }}=\frac{50 \cdot 60}{2}=1500 \mathrm{~min}^{-1}$

Important	- With the setting of $f_{d m i n}>f_{\text {dmax }}$ the field frequency is limited to $f_{\text {dmax }}$. - When selecting the setpoint by means of JOG values, $\mathrm{f}_{\mathrm{d} m a x}$ acts as limitation. - $f_{d m a x}$ is an internal standardization variable: - Use the LECOM interface only for important modifications, when the controller is inhibited. - Observe the maximum motor speed! - $f_{\text {dmin }}$ is only effective under the following conditions: - With analog setpoint selection. - With the motor potentiometer function "DOWN".
Special features	- With field frequencies $f_{d}>240 \mathrm{~Hz}$: - The overcurrent switch-off can be activated.

Lenze $\quad 820 \times B A 1097 \quad 5-5$

5.3.2 Adjustment of acceleration and deceleration times ($\mathrm{T}_{\mathrm{ir}}, \mathrm{T}_{\text {if }}$)

Code	Name	Possible settings			IMPORTANT		
		Lenze	Selection				
C012		5.0	0.0	$\{0.1 \mathrm{~s}\}$	999.0	$\mathrm{~T}_{\text {ir }}$	
C013	Deceleration time	5.0	0.0	$\{0.1 \mathrm{~s}\}$	999.0	$\mathrm{~T}_{\text {if }}$	

Function

Adjustment - The acceleration and deceleration times refer to a change of the field frequency from 0 Hz to the max. field frequency set under C011.

- Calculate the times T_{ir} and T_{if}, which must be set under C 012 and C 013 .
- $t_{i r}$ and $t_{i f}$ are the times required for the change between $f_{d 1}$ and $f_{d 2}$:

$$
T_{\text {ir }}=t_{\text {ir }} \cdot \frac{f_{d m a x}}{f_{d 2}-f_{d 1}} \quad T_{\text {if }}=t_{i f} \cdot \frac{f_{d m a x}}{f_{d 2}-f_{d 1}}
$$

Important Under unfavourable operating conditions, too short acceleration and deceleration times can lead to the deactivation of the controller under overload with the indication of TRIP OC5. In these events, the acceleration and deceleration times should be set short enough so that the drive can follow the speed profile without reaching $\mathrm{I}_{\max }$ of the controller.
Special features
The slope can be set between $0.095 \mathrm{~Hz} / \mathrm{s}$ and $780 \mathrm{~Hz} / \mathrm{s}$.

5.3.3 Setting of the current limit ($I_{\text {max }}$)

Code	Name	Possible settings			IMPORTANT	
		Selection	Info			
C022		150	30	$\{1 \%\}$	150	
C023	Imax limit generator mode	80	30	$\{1 \%\}$	110	

Function The controllers are equipped with a current-limit control which determines the dynamic response under load. The measured load is compared with the limit values set under C022 for motor load and under C023 for generator load. If the current-limit values are exceeded, the controller will change its dynamic response.

Adjustment The acceleration and decleration time should be set short enough so that the drive can follow the speed profile without reaching $I_{\max }$ of the controller.

Drive characteristic
when reaching the limit value

- During acceleration:
- Expansion of the acceleration ramp.
- During deceleration:

Expansion of the deceleration ramp.

- When the load increases at constant speed:
- When the motor-current limit value is reached: Reduction of the field frequency to 10 Hz
When the generator-current limit value is reached: Increase the field frequency to the maximum frequency (C011).
- Stop the field-frequency change if the load falls below the limit value.

5.4 Optimisation of the operating characteristic of the drive

By means of the following settings you can influence the current, torque and power characteristic or the connected motor.
You can choose between the control modes "V/f-characteristic control with auto boost" and "V/f-characteristic control with constant $\mathrm{V}_{\text {min }}$ boost". In chapter 5.4.1 you will find some more information to help you with the selection.

5.4.1 Select the control mode

Code	Name	Possible settings			IMPORTANT
		Lenze	Selection	Info	
C014	Operating mode	-0-		Control modes of the voltage characteristic	
Function		- Under C014 you can set the control mode and the voltage characteristic. - The V/f-characteristic control with auto boost enables a low-loss operation of single drives with standard three-phase AC motors with load-dependent $\mathrm{V}_{\text {min }}$ boost.			

- The V / f-characteristic control with auto boost enables a low-loss operation of single drives with standard three-phase $A C$ motors with load-dependent $V_{\text {min }}$ boost.

C014 $=-0$ -
Linear characteristic
C014 = - 1 -
Square-law characteristic (e. g. for pumps, fans)

Lenze
820XBA1097
5-9

5.4.1.1 Optimisation of V / f-characteristic control with auto boost

Codes required

Code	Name	Possible settings					IMPORTANT
		Lenze	Selection			Info	
C015	V/f-rated frequency	50.0	30.0	$\{0.1 \mathrm{~Hz}\}$	960.0		
C016	$\mathrm{V}_{\text {min }}$ setting	*	0	\{1 \% \}	40		* type dependent
C021	Slip compensation	0	0	\{1 \%\}	12		

Setting sequence

1. If necessary, select V/t characteristic (C014).
2. Select V/f-rated frequency (C015).

- The V / f-rated frequency determines the slope of the V / f characteristic and has considerable influence on the current, torque and power performance of the motor.
- An internal mains voltage compensation compensates deviations in the mains during operation. They therefore do not have to be considered for the setting of C015.
Adjustment
Calculate the frequency to be set under C015
$\mathrm{C} 015[\mathrm{~Hz}]=\frac{230 \mathrm{~V}}{\mathrm{~V}_{\text {rated motor }}[\mathrm{V}]} \cdot$ rated motor frequency $[\mathrm{Hz}]$
C014 $=-0$ -
Linear characteristic
C014 = - 1 -
Square-law characteristic (e. g. for pumps, fans)

5-11
3. Set the Vmin boost (C016).

Load-dependentboost of the motor voltage in the field-frequency range below the
V/f-rated frequency. C016 acts as gain factor of the auto-boost function.
Adjustment
In general, an adjustment is not necessary. An optimisation can be advantageous:
For drives with very high starting torques:
A Operate the motor under load.
B Select the frequency setpoint.
C Increase $\mathrm{V}_{\text {min }}$ until the required motor current (torque) occurs.
Too high settings of $V_{\text {min }}$ can lead to a positive-feedback effect which activates the TRIP "Overcurrent" (OCx).
For drives with square load torques (fans, pumps):
A Operate the motor under load.
B Select the frequency setpoint.
C Adapt $\mathrm{V}_{\min }$ until the motor is running steadily and smoothly over the whole frequency range.
Too high settings of $\mathrm{V}_{\min }$ can activate the TRIP "Overcurrent" (OCx) and lead to an extensive motor temperature.
For drives with special motors:
A Operate the motor under load.
B Select the frequency setpoint.
C Increase $\mathrm{V}_{\min }$ until the required motor current (torque) occurs.
Too high settings of $\mathrm{V}_{\text {min }}$ can lead to a positive-feedback effect which activates the
TRIP "Overcurrent" (OCX).
D Check the current consumption during idle-running when no load is applied
4. Set slip compensation
(C021).
Rough setting by means of the motor data:
s Slip constant (C021)
$s=\frac{n_{\text {rsyn }}-n_{r}}{n_{r s y n}} \cdot 100 \%$
$\mathrm{n}_{\mathrm{rsyn}}$ synchronous motor speed [min-1]
$n_{r} \quad$ rated speed to motor nameplate $\left[\mathrm{min}^{-1}\right.$]
$n_{\text {rsyn }}=\frac{f_{d r} \cdot 60}{p} \quad \begin{array}{ll}f_{d r} & \begin{array}{l}\text { rated frequency to motor nameplate }[\mathrm{Hz}] \\ \text { Number of pole pairs }\end{array}\end{array}$
Precise setting:
Change CO21 under constant load until the speed is near the synchronous speed. If C021 is set to too high values, the drive may become instable (overcompensation).

5.4.1.2 Optimisation of V / f-characteristic control

Codes required

Code	Name	Possible settings					IMPORTANT
		Lenze	Selection			Info	
C015	V/f-rated frequency	50.0	30.0	\{0.1Hz\}	960.0		
C016	$\mathrm{V}_{\text {min }}$ setting	*	0	\{1 \% \}	40		* type dependent
C021	Slip compensation	0	0	$\{1 \%\}$	12		

Setting sequence

1. If necessary, select V / f
characteristic (C014).
2. Select V/f-rated frequency (C015).

- The V / f-rated frequency determines the slope of the V / f characteristic and has considerable influence on the current, torque and power performance of the motor.
- An internal mains voltage compensation compensates deviations in the mains during operation. They therefore do not have to be considered for the setting of C015.

Adjustment

Calculate the frequency to be set under C 015
$\mathrm{C} 015[\mathrm{~Hz}]=\frac{230 \mathrm{~V}}{\mathrm{~V}_{\text {rated motor }}[\mathrm{V}]} \cdot$ rated motor frequency $[\mathrm{Hz}]$

C014 $=-2-$
Linear characteristic

C014 = -3-
Square-law characteristic (e. g. for pumps, fans)

Lenze

3. Set the Vmin boost (C016)

- Load-independentboost of the motor voltage for field frequencies below the U/f-rated frequency. You can thus optimize the torque performance of the inverter drive.
- It is absolutely necessary to adapt the asynchronous motor used, since otherwise, the motor can be destroyed by overtemperatue:

Adjustment

Please note the thermal characteristic of the connected motor under small field frequencies:

- Usually, standard asynchronous motors with insulation class B can be operated for a short time with rated current and frequencies between $0 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{d}} \leq 25 \mathrm{~Hz}$.
- Please ask the motor manufacturer for the exact setting values for the motor current.
A Operate the motor in idle running with a slip frequency of $f_{d} \approx$:
- $\mathrm{P}_{\text {mot }} \leq 7.5 \mathrm{~kW}: \mathrm{f}_{\mathrm{d}} \approx 5 \mathrm{~Hz}$
- $\mathrm{P}_{\text {mot }}>7.5 \mathrm{~kW}: \mathrm{f}_{\mathrm{d}} \approx 2 \mathrm{~Hz}$
B Increase $\mathrm{V}_{\text {min }}$ until you reach the following motor current:
- Motor in short-term operation at $0 \mathrm{~Hz} \leq f_{d} \leq 25 \mathrm{~Hz}$

with self-ventilated motors:	$I_{\text {motor }} \leq I_{N \text { motor }}$
with forced-ventilated motors:	$I_{\text {motor }} \leq I_{N \text { motor }}$

with forced-ventilated motors: $\quad I_{\text {motor }} \leq 1_{N \text { motor }}$

- Motor in permanent operation at $0 \mathrm{~Hz} \leq \mathrm{f}_{\mathrm{d}} \leq 25 \mathrm{~Hz}$: with self-ventilated motors $\quad I_{\text {motor }} \leq 0.8 \cdot I_{\mathrm{N} \text { motor }}$ with forced-ventilated motors: $\quad I_{\text {motor }} \leq I_{\mathrm{N} \text { motor }}$

Rough setting by means of the motor data:
$s=\frac{n_{\text {rsyn }}-n_{r}}{n_{\text {rsyn }}} \cdot 100 \%$
s Slip constant (C021)
$\mathrm{n}_{\text {rsyn }}$ synchronous motor speed [min^{-1}]
$\mathrm{n}_{\mathrm{r}} \quad$ rated speed to motor nameplate $\left[\mathrm{min}^{-1}\right]$
$n_{\text {Isyn }}=\frac{f_{d r} \cdot 60}{f_{d r}} \quad$ rated frequency to motor nameplate $[H z]$
p
p Number of pole pairs
Precise setting:
Change C021 under constant load until the speed is near the synchronous speed. If CO 21 is set to too high values, the drive may become instable (overcompensation).
4. Set slip compensation (CO21).

6 During operation

- Replace defective fuses with the prescribed type only when no voltage is applied.
There are no fuses in the controller.
- Cyclic mains switching:
- Do not switch on the controller more than every 3 minutes, otherwise the internal initial-current limitation can be overloaded.
- Switching on the motor side:
- Permissible for emergency switch-off.
- Monitoring messages can be activated when switching the motor when the controller is enabled.
- The plug-in connection terminals of the 820X controllers must only be connected or disconnected when no voltage is applied.
- Depending on the controller settings, the connected motor can be overheated:
- For instance, longer DC-braking operations.
- Longer operation of self-ventilated motors at low speed.
- The controllers generate an output frequency of up to 480 Hz when setting it correspondingly:
- If an inappropriate motor is connected, a hazardous overspeed may occur.
- With frequencies >240 Hz, 820X controllers can activate the over-current switch-off.

Lenze $\quad 820 \times B A 1097$
6-1

During operation

- If you use the function CW/CCW (selection of the direction of rotation) with the configuration $\mathrm{C} 007=-0-$ to -13-:
- The drive can reverse the direction of rotation in the event of a control-voltage failure or a cable break.
- If you use the function "Flying-restart circuit" (C142 = -2-, -3-) with machines with low inertia torque and friction:
- The motor can start for a short time or reverse the direction of rotation for a short time after enabling the controller when the motor is in standstill.

7 Configuration

7.1 Basics

- The configuration of the controller is used to adapt the drive to your applications.
- For this, you have the following functions available:
- Operating functions
- Control function
- Display functions
- Monitoring functions
- The possible function settings are organized in codes:
- Codes are numerically sorted, starting from the code with the smallest number to the one with the highest number. All codes start with a "C".
- They are listed in the code table.
- Each code provides parameters which can be used to adjust and optimize your drive.
- The configuration of the controller can be entered by means of the keypad of the 8201 BB operating module or by means of a fieldbus via the serial interface.
- The operating module and fieldbus modules are available as accessories.
- The changing of parameters by means of the operating module or fieldbus modules is described
- in the Operating Instructions of the modules.
- in the Manual.
- All functions of the controller are described shortly in the code table. A detailed description can be obtained from the Manual.

Lenze 820xBA1097
7-1

Configuration

7.2 Code table

How to read the code table:

Column	Abbreviation		Meaning
Code	C013		Code C013 - The parameter of the code can be different in PAR1 and PAR2. - The parameter value is accepted immediately (ONLINE).
	C009*		- The parameter value of the code is always the same in PAR1 and PAR2, but is always displayed in PAR1.
	C001」		- The parameter value of the code will be accepted after pressing SH+PRG.
	[C002]		- The parameter value of the code will be accepted after pressing SH+PRG but only if the controller is inhibited.
Name		820X	Name of the code. Unit-specific setting possibilites (here for 820X). Without unit designation the code is valid for all unit types.
Lenze			Factory setting of the code
	*		The column "Important" contains further information
Selection	$1 \quad\{1 \%\}$	99	Minimum value \{smallest step/unit\} maximum value
Info	-		Meaning of the code
IMPORTANT	-		Additional, important explanations of the code

Code	Name	Possible settings			IMPORTANT
		Lenze	Selection	Info	
$\begin{array}{r} \mathrm{COO1} \\ \end{array}$	Operating mode	-0-	$-0-$ Setpoint selection via term. 8 Control via terminals Parameter setting via 8201 BB $-1-$ Setpoint selection via 8201 BB or via LECOM Control via terminals Parameter setting via 8201 BB $-2-$ Setpoint selection via term. 8 Control via terminals Parameter setting via LECOM $-3-$ Setpoint selection via LECOM Control via LECOM Parameter setting via LECOM		
$\begin{array}{\|c} {[\mathrm{COO2}} \\]^{*} \end{array}$	Parameter set		-0- Function executed -1- Overwrite PAR1 with factory setting -2- Overwrite PAR2 with factory setting -3- Overwrite PAR1 and PAR2 with the data of the operating module -4- Overwrite PAR1 with the data of the operating module -5- Overwrite PAR2 with the data of the operating module -6- Transmit PAR1 and PAR2 to the operating module		
$\begin{array}{r} \hline \mathrm{COO4} \\ \end{array}$	Switch-on display	-0-	-0- Field frequency f_{d} -1. Controller load -2- Motor current		

Code	Name	Possible settings			IMPORTANT
		Lenze	Selection	Info	
$\begin{gathered} {[\mathrm{COOT}} \\]^{*} \end{gathered}$	Terminal configuration	-0-			- CW = CW rotation - $C C W=$ CCW rotation - DC brake = DC injection brake - $\mathrm{PAR}=$ Change of parameter sets - $J O G=J O G$ frequency - QSP = Quick stop - Trip-Set = External fault - UP/DOWN = Motor potentiomet er functions
$\begin{array}{r} \mathrm{COO} \\ \\ \hline \end{array}$	$\begin{aligned} & \text { Function relay } \\ & \text { K1 } \end{aligned}$	-1-	-0- Ready for operation -1- TRIP fault message -2- Motor is running -3- Motor is running / CW rotation -4- Motor is running / CCW rotation -5- Field frequency $f_{d}=0$ -6- $f_{\text {dset }}$ reached -7- $Q_{\text {min }}$ reached -8- I max reached -9- Overtemperature $\left(\vartheta_{\max }-10^{\circ} \mathrm{C}\right)$ -10- TRIP or $Q_{\min }$ or IMP		

Code	Name	Possible settings				IMPORTANT
		Lenze	Selection		Info	
C016	$\mathrm{V}_{\text {min }}$ setting					
	820X	*	$\{1 \%\}$	40		* depends on the unit
	$\begin{array}{\|r\|} \hline 821 \mathrm{X} 822 \mathrm{X} \\ 1824 \mathrm{X} \\ \hline \end{array}$	0	$\{1 \%\}$	40		
C017	Threshold $\mathrm{Q}_{\text {min }}$	0.0	$0.0 \quad\{0.1 \mathrm{~Hz}\}$	480.0		
C018	$\begin{array}{r} 821 \text { XI822X } 824 \\ X \end{array}$	-1.	-0- $\quad 4 \mathrm{kHz}$ -1- 8 kHz -2- $\quad 12 \mathrm{kHz}$ -3- 16 kHz -4- $\quad 12 \mathrm{kHz}$ noise optimized -5- 16 kHz noise optimized			
C019	Threshold auto DC brake	0.1	0.1 \{0.1Hz $\}$	5.0		
C021	Slip compensation					
	820X	0	$0 \quad\{1 \%\}$	12		
	821X	0	0 $\{1 \%\}$ 0 $\{1 \%\}$	$\begin{aligned} & 20 \\ & 12 \end{aligned}$	(Software 2x) (Software 1x)	
	822XV824X	0	$0 \quad\{1 \%\}$	20		
C022	$I_{\text {max }}$ limit motor mode	150	$30 \quad\{1 \%\}$	150		
C023	$I_{\text {max }}$ limit generator mode	80	$30 \quad\{1 \%\}$	110		
$\begin{array}{r} \mathrm{CO} 34 \\ \quad \\ \hline \end{array}$	Master current	-0-	$\begin{array}{ll} -0- & 0 \text { to } 20 \mathrm{~mA} / \\ & 0 \text { to } 5 \mathrm{~V} / 0 \text { to } 10 \mathrm{~V} \\ -1- & 4 \text { to } 20 \mathrm{~mA} \end{array}$			
C036	Voltage for DC brake	*	$0 \quad\{1 \%\}$	40		* depends on the unit
C037	JOG value 1	20	$0 \quad\{1 \mathrm{~Hz}\}$	480		

Code	Name	Possible settings					IMPORTANT
		Lenze	Select			Info	
C038	JOG value 2	30	0	\{1Hz\}	480		
C039	JOG value 3	40	0	\{1Hz\}	480		
C050*	Output frequency						Only display
C052*	Motor voltage						Only display
C054*	Motor current						Only display
C056*	Controller load						Only display
C061*	Heat sink temperature						Only display
C079	Oscillation damping 822X/824X	5		\{1\}	80		Is not transferred when transferring parameters via the operating module.
C088	Rated motor current 821X/822X/824	*	0.0 ... 1.2 - rated output current				* depends on the unit
C091	$\begin{aligned} & \hline \text { Motor } \cos \varphi \\ & 821 \text { X822X824 } \\ & X \end{aligned}$	*	0.4	\{0.1\}	1.0		* depends on the unit
C093*	Type820 X 821 X 822 X 824 X						Only display
			820X				
			821X				
			822X				

\square
 Configuration
 $\stackrel{\square--}{ }$

Code	Name	Possible settings				IMPORTANT
		Lenze	Selection		Info	
C099*	Software version					Only display
	820X		$821 \times($ Software 1x)			
	821X		82 2x(Software 2x) 82 1x (Software 1x)			
	822X1824X		82 1x(Software 1x)			
C105	Deceleration time quick stop 821X/822X/824 X	5.00	$0.00 \quad\{0.01 \mathrm{~s}\}$	999.00		
C106	Holding time for autom. DC injection brake					
	820X	0.00	$0.00 \quad\{0.01 s\}$	50.00		
	$\begin{array}{r} 821 \mathrm{X} / 822 \mathrm{X} \\ 824 \mathrm{X} \end{array}$	0.02	$0.00 \quad\{0.01 \mathrm{~s}\}$	999.00		
C108*	Gain (C111)					
	820X	220	$0 \quad\{1\}$	255		
	821X	128	$0 \quad\{1\}$	255		
	822X/824X	128	0 \{1\}	255		
$\begin{array}{r} \mathrm{C} 111 \\ \mathrm{f} \end{array}$	Monitor signal	-0-	-0- Field frequency -1- Controller load -2- Motor current -3- DC-bus voltage			

Code	Name	Possible settings			IMPORTANT
		Lenze	Selection	Info	
$\begin{array}{r} \mathrm{C} 117 \\ \quad \downarrow \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Function relay } \\ \text { K2 } \\ 822 \mathrm{X} 824 \mathrm{X} \end{array} \end{array}$	-0-	-0- Ready for operation -1- TRIP fault message -2- Motor is running -3- Motor is running / CW rotation -4- Motor is running / CCW rotation $-5-\quad$ Field frequency $f_{d}=0$ -6- $\quad f_{d S e t}$ reached -7- $Q_{\text {min }}$ reached -8- I $I_{\text {max }}$ reached -9- Overtemperature $\left(\vartheta_{\max }-10^{\circ} \mathrm{C}\right)$ -10- TRIP or $Q_{\text {min }}$ or IMP -11- PTC warning		
$\begin{array}{r} \hline \mathrm{C} 119 \\ \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Function PTC } \\ 822 \text { X/824X } \\ \hline \end{array}$	-0-	-0- PTC input inactive -1- PTC input active, TRIP and IMP (pulse inhibit) are set -2- PTC input active, warning		
C120	$\begin{aligned} & \mathrm{I}^{2} \cdot \mathrm{t} \text { switch off } \\ & 822 \times \mathrm{X} 824 \mathrm{X} \end{aligned}$	0	$0 \quad\{1 \%\}$		
$\begin{array}{r} \mathrm{C} 125 \\ 山^{*} \end{array}$	$\begin{aligned} & \text { LECOM baud } \\ & \text { rate } \end{aligned}$	-0-	$-0-$ 9600 baud $-1-$ 4800 baud $-2-$ 2400 baud $-3-$ 1200 baud $-4-$ 19200 baud		Only for LECOM applications
$\begin{array}{r} \hline \mathrm{C} 142 \\ \mathrm{f} \end{array}$	Start condition	-1-	-0- Automatic start inhibited, flying-restart circuit inactive -1- Automatic start, if term. 28 HIGH , flying-restart circuit not active -2- Automatic start inhibited, flying-restart circuit active -3- Automatic start, if term. 28 HIGH, flying-restart circuit active		

Lenze
820 XBA1097
7-9

\square
 $\stackrel{\square--}{ }$
 Configuration

Code	Name	Possible settings					IMPORTANT
		Lenze	Selection			Info	
C144	Chopper-frequency reduction 821X/822X/824 X	-1.	$\begin{array}{ll} -0- & \text { No chi } \\ -1- & \text { Autom } \\ & \text { when } \end{array}$	r-frequ choppe $a x-10^{\circ}$	vering		
C161*	Current fault						Only display
C162*	Last fault						Only display
C163*	Last but one fault						Only display
C164*	Last but two fault						Only display
$\begin{array}{r} \mathrm{C} 170 \\ \quad \end{array}$	TRIP-reset selection		$\begin{array}{\|cc\|} \hline-0- & \text { TRIP-r } \\ & \text { LOW } \\ -1- & \text { Auto- } \end{array}$	by pres al at ctrl Reset	key or		
C171	Delay for Auto-TRIP-Reset	0	0	\{1s\}	60		
C178*	Operating time						Only display
C179*	Mains switch-on time						Only display
C377	Gain Zk -voltage detection 822X824X						Should only be changed by the Lenze Service!
C500*	Display factor application datum numerator 821X8222X824 X	2000	1	\{1\}	25000		
C501*	Display factor for process variable denominator 821X/822X/824 X	10	1	\{1\}	25000		

8 Troubleshooting and fault elimination

- Faults are immediately indicated via the display or status information (chapter 8.1).
- The fault can be analysed by using the history buffer (chapter 8.2) and the list in chapter 8.3. The list helps you with the elimination of faults.

8.1 Troubleshooting

8.1.1 Display at the controller

During operation without an operating module, the operating state of the controller is displayed on two LEDs at the front of the unit.

LED green on	red	Operating status
on	on	Controller enabled
blinking	off	Mains switched on and automatic start inhibited (AS_LC)
off	blinking every second	Controller inhibited
off	blinking every 0.4 seconds	Undervoltage switch-off
off	off	Programming mode

8.1.2 Display at the operating module

Status indications in the display indicate the controller status.

Display	Meaning
OV	Overvoltage
UV	Undervoltage
IMAX	Set current limit exceeded
TEMP	Heat sink temperature near switch-off

Lenze 820xBA1097
8-1

8.1.3 Maloperation of the drive

Maloperation	Possible causes
Motor does not rotate	- DC-bus voltage too low (red LED is blinking every 0.4 s ; message LU is displayed) - Controller inhibited (green LED is blinking, display of the operating module: OFF, STOP or AS_LC) - Setpoint = 0 - DC braking active - Quick-stop function active - JOG setpoint activated and JOG frequency $=0$ - Fault is indicated (see chapter 8.3) - Mechanical motor brake is not released
Motor does not rotate smoothly	- Defective motor cable - Maximum current CO22 and CO23 too low - Motor underexcited or overexcited (check parameter setting)
Current consumption of motor too high	- Setting of C016 too high - Setting of C015 too low - C088 and C091 are not adapted to the motor data.

8.2 Fault analysis using the history buffer

The history buffer is used to trace faults. The fault messages are stored in the history buffer in the order of their occurrence. The history buffer has 4 memory locations which can be addressed via codes.

Structure of the history buffer

Code	C0168	Entry	Note
C161	Memory locations 1	Active fault	If the fault is no longer active or has been acknowledged: - The contents of the memory locations 1-3 will be saved in a "higher" location. - The contents of the memory location 4 will be eliminated from the history buffer and cannot be read any longer. C162
Memory location 2	Last fault	Memory location 1 will be deleted (= no active fault).	

8.3 Fault indications

Display	Fault	Cause	Remedy
---	No fault	-	-
EEr	External fault (TRIP-Set)	A digital input assigned to the TRIP-Set function has been activated	Check external encoder
H05	Internal fault		Contact Lenze
LU	Undervoltage	DC-bus voltage too low	- Check mains voltage - Check supply module
0 Cl	Short circuit	Short circuit	Find out cause of short circuit; check cable
		Excessive capacitive charging current of the motor cable	Use motor cable which is shorter or of lower capacitance
OC2	Earth fault	Grounded motor phase	Check motor; check cable
		Excessive capacitive charging current of the motor cable	Use motor cable which is shorter or of lower capacitance
OC3	Overload inverter during acceleration or short circuit	Acceleration time too short (C012)	- Increase acceleration time - Check drive selection
		Defective motor cable	Check wiring
		Interturn fault in the motor	Check motor
OCA	Overload controller during deceleration	Deceleration time too short (C013)	- Increase deceleration time - Check the selection of the brake resistor or connect the brake chopper
OC5	Ixt overload	Frequent and too long acceleration processes with overcurrent	Check drive dimensioning
		Permanent overload with $I_{\text {motor }}>1.05 \times \mathrm{I}_{\mathrm{Nx}}$	
006	Overload motor	Motor is thermally overloaded, for instance, because of - impermissible continuous current - frequent or too long acceleration processes	- Check drive selection - Check the setting under C120

Lenze 820XBA1097
8-3

Display	Fault	Cause	Remedy
OH	Heat sink temperature is higher than the value set in the controller	Ambient temperature $\mathrm{T}_{\text {amb }}>+40^{\circ} \mathrm{C} \text { or }+50^{\circ} \mathrm{C}$	- Allow controller to cool and ensure ventilation - Check the ambient temperature in the control cabinet
		Heat sink very dirty	Clean heat sink
		Incorrect mounting position	Change mounting position
OH 3	PTC monitoring	Motor too hot because of excessive current or frequent and too long acceleration	Check drive dimensioning
		PTC not connected	Connect PTC or switch off monitoring (C0585=3)
OH 4	Overtemperature unit	Inside unit too hot	- Reduce controller load - Improve cooling - Check fan in the controller
OU	Overvoltage	Mains voltage too high	Check voltage supply
		Feedback operation Braking operation	- Increase deceleration times. - For operation with brake choppers: - Check the selection and connection of the brake resistor - Increase the deceleration times
		Earth leakage on the motor side	Check motor cable and motor for earth fault (disconnect motor from inverter)
OUE	Overvoltage	Mains overvoltage longer than 5 s	Check mains voltage
rSt	Faulty auto-TRIP reset	More than 8 fault messages in 10 minutes	Depends on the fault message
Pr	Faulty parameter transfer via the operating module	PAR1 and PAR2 are defective.	It is absolutely necessary to repeat the data transfer or load the factory
Pr1	Faulty PAR1 transfer via the operating module	PAR1 is defective.	setting before enabling the controller.
Pr2	Faulty PAR2 transfer via the operating module	PAR2 is defective.	

8.4 Reset of fault indications

TRIP
After eliminating the fault, the pulse inhibit will only be reset after the acknowledgement of TRIP.

Note!

If the TRIP source is still active, the TRIP cannot be reset.

Code	Name	Possible settings			IMPORTANT
		Lenze	Selection	Info	
C170\&	TRIP-reset selection		-0- TRIP-reset by pressing the STP key or a LOW signal at ctrl. enable -1- Auto-TRIP reset		
C171	Deceleration for Auto-TRIP reset	0	$\begin{array}{lll} \hline 0 & \{1 \mathrm{~s}\} & 60 \end{array}$		

Lenze

Function	You can select whether the active fault is to be reset automatically or manually. Auto-Trip reset does not reset all faults automatically.
Activation	C170 $=-0-$:
	- Manual TRIP-reset
	- STP key
	- LOW signal at terminal 28

C170 = -1-:
Auto-Trip reset resets the following fault messages after the time set under C171:

- OC3 (overload during acceleration)
- OCA (overload during deceleration)
- OC5 (overload)
- OC6 (I - t switch-off)
- OH (overtemperature)
- OUE (overvoltage in DC bus)

Important
Mains switching always resets TRIP.
With more than 8 auto-trip resets within 10 minutes, the controller sets TRIP and indicates IST (numerator exceeded).

9 Accessories (Overview)

9.1 Accessories for all types

Name	Order number
8201BB operating module	EMZ8201BB
Diagnosis terminal (2.5 m cable)	EMZ8272BB-V001
Diagnosis terminal (5.0 m cable)	EMZ8272BB-V002
Diagnosis terminal (10 m cable)	EMZ8272BB-V003
Digital display	EPD203
Setpoint potentiometer	ERPD0001k0001W
Rotary button for potentiometer	ERZ0001
Scale for potentiometer	ERZ0002
RS232/485 fieldbus module	EMF2102IB-V001
RS485 fieldbus module	EMF2102IB-V002
Level converter for RS485	EMF21011B
PC system cable RS232/485	EWL0020
Optical fibre fieldbus module	EMF2102IB-V003
Optical fibre adaptor for PLC $0 . . .40 \mathrm{~m}$	EMF2125IB
Supply unit for optical fibre adaptor 2125	EJ0013
InterBus-S module	EMF21111B
PROFIBUS module	EMF21311B
System bus module (CAN)	EMF21711B
System bus module (CAN) with addressing	EMF21721B
PTC module	EMZ8274IB
//O module	EMZ82751B
Monitor module	EMZ82761B
Bipolar setpoint module	EMZ82781B

Lenze $\quad 820 \times B A 1097$
9-1

Accessories

9.2 Software

Name	Order number
PC program for Global Drive controllers	ESP-GDC 1

9.3 Type-specific accessories

Name	Order number			
	8201	8202	8203	8204
El.c.b.	EFA1C10A	EFA1C16A	EFA1C20A	EFA1C20A
Fuse	EFSM-0100ASB	EFSM-0150ASB	EFSM-0200ASC	EFSM-0200ASC
Fuse holder	EFH30001	EFH30001	EFH30001	EFH30001
Mains filter type "A"	EZN2-004A001	EZN2-008A001	EZN2-013A001	EZN2-017A001
Mains choke	ELN1-0900H005	ELN1-0500H009	ELN1-0350H014	ELN1-0160H017
RFl filter for operation: With mains choke Without mains choke	EZF1-006A002	EZF1-009A002	EZF1-018A002	EZF1-018A002
Motor filter	EZF1-006A002	EZF1-009A002	EZF1-018A002	inadmissible
Sine filter	EZS3-030H003	ELM3-003A000004	ELM3-010H010	ELM3-014H010
Brake module	EMB8251-E	EMB8251-E	EMB8251-E	EMB8251-E
Swivel wall assembly	EJ0001	EJ0001	EJ0001	EJ0001
DIN-rail assembly	EJ0002	EJ0002	EJ0002	EJ0002
Fan for flat assembly	EJ0003	EJ0003	EJ0003	EJ0003
Current-limiting module	EMZ8201AB	EMZ8201AB	EMZ8203AB	EMZ8203AB
DC-bus fuse	EFSM-0060AWE	EFSM-0060AWE	EFSM-0100AWE	EFSM-0160AWE
Fuse holder	EFH10001	EFH10001	EFH10001	EFH10001

10 Index

A

Acceleration times, 5-6
Adapt the motor, 5-8
Application, as directed, 1-3
Application conditions, 2-1
Applications as directed, 1-3
Approvals, 2-1
Assembly
Variant reduced assembly depth, Type 8202-V002, 4-4
With fixing rail, Types 820X, 4-3
Auto-TRIP reset, 8-5

C

Cable cross-sections, Single drives, 3-4 150 \% overload, 3-4
Code table, 7-2
Information on the, 7-2
Commissioning, 5-1
Configuration, 7-1
Acceleration and deceleration times, 5-6
Basic information, 7-1
Code table, 7-2
Current limit value, 5-7
Maximum field frequency, 5-4
Minimum field frequency, 5-4

Connection

Control, Connection diagram, 4-12
Control cables, 4-10
Mains, 4-7
Motor, 4-7
Power, Circuit diagram, 4-9
Connection diagram
Control connections, 4-12
Power connection, 4-9
Connections, Power, 4-7
Control cables, 4-10
Control connections, 4-10
Control mode, permissible, 4-8, 5-8
Control terminals, 4-10
Overview, 4-10
Terminal assignment, 4-10
Controller, 1-1
Application as directed, 1-3 Labelling, 1-3
Current limit, 5-7

Lenze

D

Deceleration times, 5-6
Definitions of terminology used, 1-1
Degree of pollution, 2-1
Dimensions
8202-V002 reduced assembly depth, 4-4 820 X with fixing rail, 4-3 Controller, 3-4
Display
LED-, 8-1
Operating status, 8-1
Disposal, 1-4
Drive parameters, Factory setting, 5-3
Drive system, 1-1

E

Electrical installation, 4-6
Important notes, 4-6
EMC
Assembly, 4-13
CE-typical drive system, Installation, 4-13
Filters, 4-13
Grounding, 4-14
Installation, 4-13
Screening, 4-14
Enclosure, 2-1

F

Factory setting
Important drive parameters, 5-3
Short set-up, 5-2
Switch-on sequence, 5-2

Fault analysis, 8-2
Fault messages, 8-3
Reset, 8-5
Field frequency Maximum, 5-4 Minimum, 5-4
Frequency inverter. Siehe Controller
Fuses, Single drives, 3-4 150 \% overload, 3-4

G

General data, 2-1

H

History buffer, 8-2 Structure, 8-2
Humidity class, 2-1

I

Initial switch-on, 5-1
Inputs
Analog, 4-11
Digital, 4-11
Installation, 4-1
CE-typical drive system, 4-13
Assembly, 4-13
Filters, 4-13
Grounding, 4-14
Screening, 4-14
Electrical, 4-6
Mechanische, 4-1
Installation height, 2-1
Insulation strength, 2-1

J

Jumper, Analog setpoint selection, 4-11
L
Labelling, Controller, 1-3
LED, 8-1
Legal regulations, 1-3
Liability, 1-4

M

Mains connection, 4-7
Mains-voltage compensation, 5-11, 5-13
Maloperation of the drive, 8-2
Manufacturer, 1-3
Mechanical installation, 4-1
Messages, Fault, 8-3
Monitor output, 4-11
Motor, Adapt, 5-8
Motor cable, Screening, 4-7
Motor connection, 4-7
Mounting positions, Types 820X, 4-2

N

Noise emmission, 2-1
Noise immunity, 2-1
0
Operating module, Fault display, 8-1
Operating status, Display, 8-1

Operation, Status display, 8-1
Operator's safety, 2-4
Outputs, Analog, 4-11
Overspeeds, 2-4

P

Packaging, 2-1
Power connections, 4-7

R

Rated data, Types 8201-8204, 150 \% overload, 3-2
Relay output, 4-11
Reset, Fault message, 8-5
Residual hazards, 2-4

S

Safety information, 2-1 for controllers to Low-Voltage Directive, 2-1 Layout, 2-3
Safety notes, Layout
Other notes, 2-3
Warning of damage to material, 2-3
Warning of danger to persons, 2-3
Scope of delivery, 1-2
Screening
EMC, 4-14
Motor cable, 4-7
Short set-up, 5-2
Switch-on, Initial, 5-1
Switch-on sequence, Factory setting, 5-2
Lenze

Index

T

Technical data, 2-1
General data/application conditions, 2-1
Temperature ranges, 2-1
Transport, storage, 2-1
TRIP, 8-5
Troubleshooting, 8-1
Display at the operating module , 8-1
Fault analysis using the history buffer, 8-2
Fault indication, 8-3
LED, 8-1
Maloperation of the drive, 8-2
Reset of fault indications, $8-5$
TRIP, 8-5

u

Unit protection, 2-4

V

Variant, V002, 4-4
Vibration resistance, 2-1
Vmin setting, Drives with special motors,
5-12
W
Warranty, 1-4

