
HAL Id: hal-02092942
https://hal.archives-ouvertes.fr/hal-02092942

Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frequency Selection Approach for Energy Aware Cloud
Database

Chaopeng Guo, Jean-Marc Pierson, Liu Hui, Jie Song

To cite this version:
Chaopeng Guo, Jean-Marc Pierson, Liu Hui, Jie Song. Frequency Selection Approach for En-
ergy Aware Cloud Database. IEEE Access, IEEE, 2018, 7 (1), pp.1927-1942. �10.1109/AC-
CESS.2018.2885765�. �hal-02092942�

https://hal.archives-ouvertes.fr/hal-02092942
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22650

To cite this version: Guo, Chaopeng and Pierson, Jean-Marc and
Hui, Liu and Song, Jie Frequency Selection Approach for Energy
Aware Cloud Database. (2018) IEEE Access, 7 (1). 1927-1942.
ISSN 2169-3536

Official URL

DOI : https://doi.org/10.1109/ACCESS.2018.2885765

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Digital Object Identifier 10.1109/ACCESS.2018.2885765

Frequency Selection Approach for Energy
Aware Cloud Database

CHAOPENG GUO 1, JEAN-MARC PIERSON1, HUI LIU2, AND JIE SONG 3

1Institut de Recherche en Informatique de Toulouse, University of Toulouse, Toulouse 31062, France
2School of Metallurgy, Northeastern University, Shenyang 110819, China
3Software College, Northeastern University, Shenyang 110819, China

Corresponding author: Jie Song (songjie@mail.neu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672143, Grant 61662057 and Grant
51606031, in part by the Fundamental Research Funds for the Central Universities under Grant N161602003, and in part by the scholarship
from the China Scholarship Council under Grant CSC N201506080029.

ABSTRACT A lot of cloud systems are adopted in industry and academia to face the explosion of the data
volume and the arrival of the big data era. Meanwhile, energy efficiency and energy saving become major
concerns for data centers where massive cloud systems are deployed. However, energy waste is quite
common due to resource provisioning. In this paper, using dynamic voltage and frequency scaling (DVFS),
a frequency selection approach is introduced to improve the energy efficiency of the cloud systems in terms
of resource provisioning. In the approach, two algorithms, genetic algorithm (GA) and Monte Carlo tree
search algorithm (MCTS), are proposed. A cloud database system is taken as an example to evaluate the
approach. The results of the experiments show that both algorithms have its advantages. The algorithms
have great scalability, in which the GA can be applied to thousands of nodes and the MCTS can be applied
to hundreds of nodes. Both algorithms have high accuracy compared with optimal solutions (up to 99.9%
and 99.6% for GA and MCTS, respectively). According to an optimality bound analysis, 26% of energy can
be saved at most using our frequency selection approach.

INDEX TERMS Cloud database system, dynamic voltage and frequency scaling, energy efficiency,
frequency selection, optimization.

I. INTRODUCTION

To cope with challenges of Big Data, an increasing number
of data centers are constructed. Cloud systems are developed
to meet users’ rapidly growing data processing needs. With
the explosive growth of the construction of data centers,
the problem of energy waste becomes more serious. The
energy bills for major cloud service providers are typically
the second largest item in their budgets due to the increased
number of computational resources. [1].
Cloud database system is one of the typical cloud systems.

To cope with the huge data storage and query needs, massive
cloud databases are established, such as, HBase [2], Hive [3]
and Cassandra [4]. To build energy efficiency cloud database
systems, a lot of researches have been done. For example,
to achieve green computing, the measurement model and
approach of the energy efficiency of cloud database sys-
tems were defined by Song et al. [5], and the EE char-
acteristics of cloud database were investigated. Similarly,
Lang et al. [6] studied the tradeoff between performance
and energy efficiency for parallel DBMS to give principles

of designing an energy efficiency database system. Typical
cloud databases are wasting energy. Since users’ activities
are dynamic, the workloads of the system vary with time:
users’ activities are more intense in daytime, whereas they
do little at night. In this case, part of the energy is wasted if
the system’s configuration at night remains the same as the
one during daytime. The energy waste comes from resource
provisioning.
To cope with resource provisioning in cloud systems, some

self adjusting systems emerged, i.e. Ursa [7] andWattDB [8].
WattDB is a self adjusting distributed database management
system, in which it tries to switch nodes on and off according
to current workload. Ursa is a self adjusting cloud storage
system, in which it tries to migrate data from the hotspot
node to underutilized nodes with minimizing latency and
bandwidth manner, and it tries to turn off the underutilized
node to save energy if possible. However, these strategies
might not suitable for cloud database systems since switching
nodes on and off would cause an unacceptable migration
cost and damage system availability. In WattDB, Schall and

Härder took advantages of SDD to reduce the IO cost dur-
ing the migration process. In Ursa, You et al. tried to turn
off the underutilized nodes which do not contain primary
replicas. Since there are different consistence policies in
cloud database systems, the approach is not suitable either.
Chihoub et al. [9] introduced another idea to improve the
energy efficiency of cloud database systems, in which they
analyzed the tradeoff between energy and consistency of the
system by means of Dynamic Voltage and Frequency Scaling
(DVFS). DVFS [10] is an efficient technology to control
power consumption of processors. Power control policies can
be made with DVFS technique. In modern Linux operating
systems, five different power schemes (governors) are avail-
able to dynamically scale CPU frequency according to CPU
utilization. The dynamic tuning strategies use CPU’s running
information to adjust its frequency, which does not reflect
the state of cloud databases’ workload lifecycle including
memory and disk transfers. The current power schemes do
not exactly match their design goal and may even become
ineffective in improving energy efficiency of cloud database
systems [11]. Therefore, it makes sense to control frequency
in a fine-grained way. In [9], Chihoub et al. proposed a
property approach. They assigned highest frequency to half
of the nodes and lowest frequency to another half, and they
achieved 23% of energy saving. However, this approach is
a static method for assignment frequencies, and the usage
scenario is limited.
To extend Houssem-Eddine’s work, a frequency selection

approach is introduced in this work to cope with the resource
provisioning for cloud systems especially for cloud database
systems. Instead switching nodes on and off, we try to assign
the frequencies which are chosen according to the workload
predictions of the system. Meanwhile, if there are underuti-
lized nodes and overloaded nodes, a migration approach is
introduced to avoid violation of Service-Level Agreement
(SLA). Energy wasted by idle machines and SLA violation
due to overloaded machines are reduced, which together
improve the energy efficiency of the system.
The main challenge of the approach is its scalability. In a

small case with 30 nodes and 8 available frequency options,
there are 830 frequency combinations in total. In our environ-
ment, the optimal solution of above case can be found by the
entire searching within 5 hours. However, a common case has
hundred nodes within a cluster. For example, the technical
group from instagram claimed that their biggest Cassandra
system contains 1000+ nodes and biggest cluster contains
100+ nodes in Cassandra summit 2016 [12]. Therefore,
searching the optimal solution is unrealistic under this huge
search space. Proposing an approach for searching a subopti-
mal solution with high accuracy and good performance is our
goal. Besides that, when SLA violation occurs, the migration
approach should be introduced which causes more effort to
find the proper solution.
This paper is an expanded version of our previous con-

ference paper [13]. In the previous work, we focus on
the resource provisioning problem within cloud system,

specially for cloud database system, and we made following
contributions:
• By means of the DVFS technology and workload pre-
diction, a general frequency selection model is proposed
in aspect of energy efficiency for cloud system. Then,
the model is specialized for cloud database system.

• Based on the frequency selection model, a genetic based
algorithm and a monte carlo tree search based algorithm
are proposed.

• Corresponding experiments are designed and imple-
mented to verify the model and algorithms.

In this expanded version we add following contents:
• The model is described with more details about its con-
straints and objective.

• In model simplification section (IV-A), proofs of the
upper bounds are given.

• Compared with the short version, we give more details
and new result of the experiments.

• Since the prediction errors are inevitable, the robustness
of proposed algorithms is analyzed in this extension
(see Section VI).

The remainder of the paper is organized as follows:
Section II reviews related works. A generic frequency selec-
tion model and a specialized model for cloud databases are
proposed in Section III. Section IV proposes two algorithms
under the frequency selection model. Section V evaluates
the proposed algorithms, and Section VI analyzes the robust-
ness of the algorithms. Section VII carries out some discus-
sions. Section VIII concludes the paper and points out future
research directions.

II. RELATED WORK

A variety of the past researches have been done to study and
analyze the energy efficiency in cloud systems and cloud
database systems. In general parts, Da Costa et al. [14]
gave a lot of possible techniques of reducing energy con-
sumption in large scale distributed systems. Lang et al. [6]
gave guiding principles for building up the energy-efficient
cloud DBMS with query properties and scalability taken into
account. Subramaniam and Feng [15] measured the power
consumption and the performance of a Cassandra cluster,
and used power and resource provisioning techniques to ana-
lyze the energy proportionality of the cloud database system.
Tsirogiannis et al. [16] analyzed the energy efficiency in dis-
tributed RDBMS systems, and they concluded that the most
energy efficiency configuration is the highest performance
one. In our work, their energy efficiency model is applied for
cloud database system and the resources are provided accord-
ing to the current workload to make sure the system is at its
energy efficiency point. In this work, we focus on the energy
efficiency for cloud systems especially for cloud database
systems. The main idea of the work is to take advantage of
DVFS technique to optimize the resource provisioning.

To improve the energy efficiency of cloud systems and
cloud database systems, a straightforward idea is to switch
underutilized nodes off and switch it on when necessary.

there is not migration cost at all. Comparedwith above related
works, we do not chose to switch the nodes on and off,
but assign a frequency according to the workload amount.
Meanwhile, when SLA violation occurs and there is no
higher frequency can be assigned, a migration approach is
introduced.
In this work, we try to use DVFS technique to improve

the energy efficiency of cloud systems, especially cloud
database systems. There are some researches have been
done where they used Dynamic Voltage and Frequency Scal-
ing (DVFS) or Dynamic Voltage Scaling (DVS) technique.
Yu et al. [22] studied the power efficiency scheduling prob-
lem of real-time tasks in an identical multi-core system,
and presented Node Scaling model to achieve power-aware
scheduling. Liu and Guo [23] studied energy efficient
scheduling of periodic real-time tasks on multi-core pro-
cessors with voltage islands, in which cores are partitioned
into multiple blocks and each block has its own power
source to supply voltage. Above works proposed heuristic
algorithms to cope with voltage scaling problem in power
saving manner. Compared our work, we try to assign the
frequency to each node of cloud database systems accord-
ing to the workload. Thus, we proposed a meta-heuristic
algorithm (Genetic Based Algorithm) and heuristic search
algorithm (Monte Carlo Search Tree Based Algorithm).
In term of the use cases, in our approach, we do not switch
nodes on and off to avoid the unacceptable migration cost
and unavailability of the system, and for each time win-
dow the workloads would not be total reassigned but be
migrated according to the assigned frequencies and previous
workloads.

Chihoub et al. [9] explored the tradeoff between con-
sistency and energy efficiency on the energy consumption
in Cassandra. Meanwhile a prototype model, Hot-N-Cold,
is introduced to reduce energy consumption in Cassandra by
means of setting the frequenciesmanually. In ourwork, we try
to extend this idea. The frequencies are assigned through
frequency selection.

In practice, this work is related to workload prediction
and knapsack problem also. Survey made by Maryam and
Mohammad-Khanli [24] reviewed the state of the art appli-
cation prediction methods in different aspects. Through a
meticulous literature review of the state of the art appli-
cation prediction schemes, a taxonomy for the applica-
tion prediction models is presented that investigates main
characteristics and challenges of the different models.
Martello and Toth [25] introduce the knapsack approaches
and multi-capacity bin-packing problem. Multi-capacity bin-
packing is a generalization of the classical one-dimensional
bin-packing problem and the approach is used to solve multi-
resource allocation and scheduling solutions. In our work,
the frequency selection approach is based on the work-
load prediction approach. According to workload predictions,
the corresponding algorithms chose the frequencies for the
system.Multi-capacity bin-packing technique is used to solve
the migration problem.

Based on this idea, there are lots of research have been done
in cloud systems. Schall and Härder [8], [17], [18] designed
and implemented WattDB, which is a distributed DBMS
that dynamically adjusts itself switching nodes on and off
according to the present workload, and reconfigures itself
to satisfy the performance demands. You et al. [7] proposes
system Ursa which scales to a large number of storage nodes
and objects and aims to minimize latency and bandwidth costs
during system reconfiguration. At first, Ursa tries to detect
the hot spots in the system and re-balance these data with
minimized transformation cost. Based on the data migration
approach, Ursa implement power management approach in
which they use a threshold strategy to maintain the amount
of nodes to save energy.

Similarly machine virtualization-based technology that
consolidating VMs dynamically and turning off idle
servers has been proved effective also within its domain.
Han et al. [19] proposed a remaining utilization-aware (RUA)
algorithm for virtual machine placement, and a power-aware
algorithm to find proper hosts to shut down for energy saving.
Savinov and Daudjee et al. [20] proposed virtualization-
driven database provisioning system, Dolly. Dolly took
advantage of a new database replica spawning technique
that leverages virtual machine cloning in which Dolly makes
more replicas when the system is overloaded, and reduces
the amount of replicas otherwise. Chen et al. [21] proposed
scheduling approach for real time tasks within virtualization
environment based on interval number theory, in which they
also proposed scale functions to switch nodes on and off
according to the workload.

Above works achieved energy efficiency in their domains.
However, such approaches naturally require to migrate a
large number of data from one node to another in order
to switch off underutilized nodes or switch on more nodes.
In WattDB [8], Schall and Härder took advantage of SDD to
reduce the migration cost. In Usra [7], Gae-Won You et al.
took advantage of replica strategy to shutdown nodes which
do not contains any primary replicas. However, in cloud
database systems, this technique might not suitable since with
different implement of system, they have different consis-
tency strategy. For example, Cassandra provides 5 consis-
tency levels, and HBase provides strong consistency only.
In Guangjie Han et al.’s work [19], their virtual machine
consolidation policy aims to improve resource utilization and
reduce the number of active physical servers, therefore they
did not consider the migration cost. In Dolly [20], Emmanuel
Cecchet et al. only considered the down time of the database
but not the migration cost. Meanwhile, they only applied the
technique for a web application’s database layer in which
12 GB amount of data was used in the extreme case of
the experiments. In Huangke Chen et al.’s work [21], they
scheduled real-time tasks to the virtual machines. When there
are overloaded nodes, they scale up the computing resource,
namely turn up more virtual machines, and otherwise they
reduce the amount of virtual machines. In their work, virtual
machines are computing resources to execute tasks, therefore

III. FREQUENCY SELECTION MODEL

In this section, a generic model is introduced to abstract
frequency selection model within cloud systems. Then,
the generic model is specialized to cloud database systems
by redefining the key concept. In the end, the objective and
frequency selection related constraints are concluded.

A. GENERIC MODEL

A cluster C consists of n nodes. To simplify the descrip-
tion, the nodes are considered homogeneous. The exten-
sion of the model to heterogeneous nodes is discussed
in Section VII.

The total running time of a system is made up of time
windows. The length of a time window 1t is denoted
as |1t|. In 1t , the state of the system, s1t (F1t , W1t), is the
state where the nodes are assigned to a frequency vector F1t
and a workload vector W1t . Since the following discussion
is focusing on one time window, the notation 1t is omitted to
simplify the description. A frequency fi, (fi ∈ F), is assigned
to a node ci. Similarly, a workload wi, (wi ∈ W), is assigned
to ci. The amount of wi is denoted as |wi|. It should be noticed
that W is a prediction value. The influence of prediction
errors is analyzed in section VI. The maximum amount of
workload that can be handled by a node under a frequency is
defined as its capacity. Let the capacity measurement function
be z(ci, fi). When the current workload exceeds the node’s
capacity, the workload cannot be completed, which causes
SLA violation. In this paper, we consider that SLA violation
is not allowed, namely all requests of a workload must be
completed during the time window.
In order to avoid SLA violation, a migration process is

introduced. Let the workload migration function be m. The
migration process is considered as a state transformation pro-
cess, namely s(F,W)

m
−→ s∗(F,W∗). The process is denoted

as s̃. The workload for ci after the migration is denoted as w∗i .
Energy used by the migration process is defined as migra-
tion cost. The migration cost estimation function is denoted
mc(̃s) and the system power consumption estimation function
is p(s). The energy consumption e of the system in 1t is:

e = p(s∗)× |1t| + mc(̃s). (1)

Energy efficiency of a system is defined in Equation (2)
in which the energy efficiency in 1t is a ratio between the
amount of workload processed and the energy consumption
in1t . Since the amount of workload is constant during a time
window, the objective is to minimize e to improve the energy
efficiency of the system.

ee =

n∑

i

|wi|/e. (2)

For a given frequency vector, the power consumption and
the migration cost can be estimated by p(s) and mc(̃s) respec-
tively. Finding the most energy efficient configuration is then
to find the best frequency for each node: It is a search problem
within the frequency combinations space.

The conditions for applying the model are:
1) The running time of a system can be divided into time

windows. In a time window, the workload should be
stable hence the power consumption can be estimated.

2) The node’s capacity can be measured and part of the
workload can be migrated when the current workload
exceeds its capacity.

3) The workload of the next time window can be predicted
according to previous running information.

4) The power consumption and the migration cost can
be estimated according to the frequencies and the
workloads.

B. SPECIALIZED MODEL FOR ENERGY AWARE

CLOUD DATABASE

In this section, the generic model is specialized for cloud
database systems. The workload wi, the capacity measure-
ment function z(ci, fi), the migration function m, the power
consumption estimation function p(s) and the migration cost
estimation function mc(̃s) must therefore be identified.
In a cloud database system, the datasetD consists of h data

blocks, in which the size of block bg is denoted as
∣∣bg

∣∣, and the
blocks are distributed within the cluster. In order to meet data
integrity and fault-tolerance requirements, cloud databases
use a replication factor to control the number of replicas of the
data blocks. The dataset with a replication factor r is denoted
asDr = {b11, b12 . . . , b1r . . . bh1, bh2 . . . bhr }, in which bgk ∈
Dr , k ≤ r is the k th replica of bg. The workload wi of a
cloud database system is defined as data query throughput.
The probability of bgk being accessed is denoted as ϕgk , and
the total throughput of the system is denoted as l. For all
the blocks

∑h
g

∑r
k ϕgk = 1. ϕgk and l are prediction values,

which can be given by data mining techniques and machine
learning techniques, such as time series data mining and
linear regression. For the corresponding techniques, we refer
readers to the literature [24]. Let the block set assigned
to ci be Dr

i = {bgk | bgk ∈ Drand bgk is assigned to ci}. The
workload wi is defined by:

wi =
∑

bgk∈D
r
i

l × ϕgk . (3)

The capacity measurement function z(ci, fi) is a discrete
function. Using benchmarks, the maximum throughput of
a cloud database under each frequency can be obtained
(see Section V-A1).
The frequency option set is denoted as η. A frequency f

is one of the available frequency options. Let the idle power
consumption and themaximum power consumption of a node
under a frequency f be cidlef and cmaxf respectively. If ∀fp,
fq ∈ η and fp > fq, cidlefp

> cidlefq
and cmaxfp

> cmaxfq
. With

a higher frequency, the system provides more resources to
support workloads, but consumes more energy. If a fraction
ψ of CPU is used under the frequency f , the power consump-
tion estimation function is defined by Equation (4). In cloud
database systems, ψi is defined by Equation (5), in which

w∗i is the workload after the migration, hence ψi 6 1.

p(s∗) =
n∑

i

(
cidlefi

+ ψi ×
(
cmaxfi

− cidlefi

))
, (4)

ψi =
w∗i

z(ci, fi)
. (5)

The migration process refers to the migration of data
blocks. According to the network topology, there are 3 types
of migration: 1) Migration within a rack; 2) Migration
between racks; 3) Migration between data centers. This paper
only focuses on the first two types. Since the migration
function m is not a focus of this paper, it is described briefly:
m consists of two phases, block selection and blockmigration.
• Block selection can be treated as a single knapsack prob-
lem. Considering a node ci where the workload exceeds
its capability, the problem is to find which blocks should
be kept in order to maximize the total size of the kept
blocks. In the single knapsack problem, the capability
of the knapsack is the capability of the node z(ci, fi). The
items are the blocks assigned to the node. The values of
the items are the block sizes. The weights of the items
are the throughputs of the blocks l × ϕgk .

• Block migration can be considered as a 0-1 multiple
knapsack problem. Let the rack set be {γ1, . . . , γu}
u ≪ n. Considering a rack γp in which the selected
blocks set is Mp, the problem is to find which blocks
should be kept within the rack in order to maximize the
total size of kept blocks. The knapsacks are the nodes
with extra capabilities, namely {ci|ci ∈ γp, z(ci, fi) >
wi}, and the sizes of knapsacks are z(ci, fi) − wi. The
items are the selected blocks, Mp. The weights and
values of items are throughputs and size of the blocks,
respectively.

Due to the potentially huge amount of blocks, exact
algorithms cannot be applied. A greedy algorithm is used
to cope with the knapsack problem, and an approxima-
tion algorithm, MTHM algorithm [25], is used to solve the
0-1 multiple knapsack problem. Let MIn and MOut denote
the block sets migrated within a rack and between racks,
respectively. Let eIn and eOut denote the energy costs permega
byte of migration within a rack and between racks respec-
tively, which are obtained through the benchmark experiment
(see Section V-A2). The migration cost estimation function
mc(̃s) is defined by:

mc(̃s) = eIn ×
∑

bgk∈MIn

∣∣bgk
∣∣+ eOut ×

∑

bgk∈MOut

∣∣bgk
∣∣ . (6)

minimized according to Equation (2). In could database
systems, energy consumption is estimated according to
Equation (1) in which the power consumption and the migra-
tion cost are given by Equation (4) and Equation (6) respec-
tively. Thus, energy consumption of each time window comes
from two parts: energy for running the workload and energy
for performingmigration. According to the previous sections,
the model of frequency selection approach for cloud database
systems is shown as follow:

minimize

n∑

i=1

(
cidlefi

+
w∗i

z(ci, fi)
×

(
cmaxfi

− cidlefi

))

+ eIn×
∑

bgk∈MIn

∣∣bgk
∣∣+eOut×

∑

bgk∈MOut

∣∣bgk
∣∣ . (7)

subject to ∀i ∈ [1, n] w∗i ≤ z(ci, fi), (8)

min(η) ≥ f ∗, (9)

∀i ∈ [1, n] fi ∈ η, (10)

If ∀fp, fq ∈ η, fp > fq,

then cidlefp
> cidlefq

, cmaxfp
> cmaxfq

. (11)

Equation (7) gives the objective of the approach where the
energy consumption of each time window should be mini-
mized. Equation (8) to Equation (11) show the constraints
that are related to frequency selection process. Constraint (8)
indicate that the SLA cannot be violated within each time
window, namely the migrated workloads cannot exceed the
capacity of each node. In Constraint (9), f ∗ is the critical
speed of the CPU [22], [26]. Constraint (9) shows all the
available frequency options are bigger than the critical speed.
Constraint (10) shows that every node within the system is
assigned with a frequency. Combining Constraint (9) and
Constraint (10), nodes are always active within the frequency
selection process to avoid unacceptable migration cost and
unavailability of the system. Constraint (11) shows that the
idle power consumption and maximum power consumption
of the node have positive relationship with its assigned
frequency.

IV. FREQUENCY SELECTION ALGORITHM

Two algorithms for frequency selection are introduced in this
section: Genetic Algorithm (GA) and Monte Carlo Tree
Search Algorithm (MCTS). Both algorithms have their
advantages and disadvantages which are discussed in Section
VII. Before introducing the algorithms, a model
simplification is proposed.

A. MODEL SIMPLIFICATION

The power consumption and the migration cost can be esti-
mated by Equation (4) and (6). However, both values are
obtained after the migration process. Using the greedy algo-
rithm and MTHM algorithm, a migration plan can be obtained
within polynomial time. However, when the total amount
of possible frequency vectors increases, the evaluation time
becomes unacceptable. The model simplification obtains
upper bounds of the power consumption and the migration

By means of redefining the key conceptions and key func-
tions of the generic model, the model is specialized for cloud
database systems to cope with the resource provisioning
problem. This subsection is an example to extend the generic
model to fit to a cloud system.

C. CONCLUSION

To improve the energy efficiency of cloud database sys-
tems, energy consumption of each time window should be

cost, which are used to evaluate the frequency vectors. When
several candidates are obtained, m is applied and the vector
with the minimum energy consumption is chosen. The idea
of the model simplification is to reduce costs for computing
migration cost values given by the migration cost estimation
function mc using a relaxation approach.

1) POWER CONSUMPTION

According to Equation (4), power consumption is related to
node’s frequency and CPU usage. Considering a block bgk is
assigned to ci, the power consumption of ci increases because
of it, i.e. it increases with the probability access ϕgk due

to that block. The increment is
ϕgk

z(ci,fi)
×

(
cmaxfi

− cidlefi

)
in

which the constant factor

(
cmaxfi

−cidlefi

)

z(ci,fi)
is defined as the power

consumption contribution factor of ci. In order to achieve the
maximum power consumption, the blocks are assigned to the
nodes with the highest power consumption contribution as
much as possible.
In order to simplify the assignment, a relaxation is intro-

duced, in which the blocks are continuous. By means of the
relaxation, one block can be split and put to multiple nodes.
Let the total ordered node set be C̃ = (C,≤), in which if
∀i, j

(
cmaxfi

− cidlefi

)
/z (ci, fi) >

(
cmaxfj

− cidlefj

)
/z

(
cj, fj

)
, then

ci 6 cj. If an index ĩ of C̃ satisfies
∑̃i

i=0 z(ci, fi) 6 l 6∑̃i+1
j=0 z(cj, fj), then index ĩ is a pivot node: the blocks are

assigned to the nodes ci with i 6 ĩ + 1. pmax is shown by
Equation (12). The nodes ci with i 6 ĩ reach their maximum
power consumption, and the nodes ci with i > ĩ+2 reach their
idle power consumption because there is no assigned block.
The power consumption of c̃i+1 is computed by Equation (4).

pmax =

z

(
c̃i+1, f̃i+1

)
−

ĩ+1∑

i

z (ci, fi)−

n∑

i

wi

×
cmaxf̃i+1

− cidlef̃i+1

z
(
c̃i+1, f̃i+1

) + cidlef̃i+1
+

ĩ∑

i=0

cmaxfi
+

n∑

i=̃i+2

cidlefi
.

(12)

Proposition 1: For a given frequency vector F, the power

consumption achieved by Equation (12) is the maximum

power consumption.

Proof: For a given frequency vector F, pmax is obtained
by Equation (12). Assume that p∗ exists, and p∗ > pmax .
Consider the following situations:
1) When ĩ+ 1 = n, then ∃bgk is assigned to ci (i ∈ [1,̃ i])

in pmax , while it is assigned to c̃i+1 in p
∗. In this case,

ci (i ∈ [1,̃ i]) is denoted as ci1 and c̃i+1 is denoted as
ci2 .

2) When ĩ+1 < n, then ∃bgk is assigned to ci1 , i1 ∈ [1,̃ i+
1] in pmax , while it is assigned to ci2 , i2 ∈ [̃i+ 1, n] in
p∗, and i1 6= i2.

In above situations, i1 < i2.
ϕgk

z(ci1 ,fi1)
×

(
cmaxfi1

− cidlefi1

)
>

ϕgk
z(ci2 ,fi2)

×
(
cmaxfi2

− cidlefi2

)
can be concluded since the nodes

are sorted by descending their power contribution factors.
So, pmax > p∗ which is a contradiction. Therefore, pmax is
the maximum power consumption under the given frequency
vector.

2) MIGRATION COST

To obtain the migration cost by means of Equation (6),
migrated blocks and migration destinations are required. The
upper bound of migration cost can be obtained by a relax-
ation approach, in which the nodes with free capacity in the
same rack are combined to form a big knapsack with larger
free capacity. To compute the maximum migration cost, two
conditions are introduced:

1) For a rack γp, the selected block set is denoted as
Mp. The total ordered set of Mp is denoted as M̃p =

(Mp,6) = {b1, b2, . . .} in which the blocks are
sorted by the ratio between their throughputs and sizes,
namely ∀bi, bj ∈ M̃p, if

l×ϕi
|bi|

>
l×ϕj
|bj|

, then bi 6 bj.
2) The blocks with higher ratio values are kept within

racks and the other blocks are migrated to other racks.
M̃In

p and M̃Out
p are partitions of M̃p. M̃In

p and M̃Out
p

satisfy the following conditions:
• M̃In

p = {b1, . . . , bq}, M̃
Out
p = {bq+1, bq+2, . . .}.

• Let the set of partial nodes in γp that have extra
capacity be Cin

p =
{
ci|ci ∈ γp and wi < z(ci, fi)

}
.

Then, the index q of M̃p satisfies
∑q

j=1 l × ϕj 6∑
ci∈Cinp

(z(ci, fi)− wi) <
∑q+1

j=1 l × ϕj.
With above conditions, the maximum migration cost can

be obtained by Equation (13), in which u is the amount of
racks. Since the blocks with lower throughputs but larger
sizes are migrated to other racks, the migration cost is the
highest among all migration plans.

mcmax = eIn ×
∑

bIn∈
U⋃
p=1

M̃In
p

|bIn| + eOut ×
∑

bOut∈
U⋃
p=1

M̃Out
p

|bOut| .

(13)

Proposition 2: For a given migrated block set M,

the migration cost achieved by Equation 13 is the maximum

migration cost.

Proof: Consider two migration cases: 1, the migration
process achieved by MTHM algorithm (or other 0-1 multiple
knapsack algorithms); 2, the migration process achieved by
the model simplification approach. The migration cost for
case 1 is denoted as mc obtained according to Equation (6),
and the migration cost for case 2 is denoted asmcmax obtained
according to Equation (13).
The amount of rank(s) is denoted as U . When U = 1, then

the migration cost is constant for the given migrated blockM,
which is eIn ×

∑
b∈M |b|. Therefore mc

max = mc.
When U > 1, we have following discussion. To simply

the description, the following discussion is carried out within
a rank γp, and the migration cost because of γp is denoted
as mcp and mcmaxp respectively for both cases. For a rank γp,
the migrated block sets are denoted as MIn

1 and MOut
1 for

TABLE 1. Evaluation of model simplification.

case 1, and the migrated block sets are denoted as MIn
2 and

MOut
2 for case 2. Without loss of generality, we assume all

sets are not empty.
The set of partial nodes that have extra capacity is Cin

p ={
ci|ci ∈ γp and wi < z(ci, fi)

}
. The total capacity which can

handleworkloads is
∑

ci∈C inp
(z(ci, fi)−wi). Consider the block

assignment process,

∑
bj∈M

In
1
l×ϕj

∑
bj∈M

In
1
|bj|

≤

∑
bj∈M

In
2
l×ϕj

∑
bj∈M

In
2
|bj|

, because

MIn
2 contains the first q blocks from the total ordered set of

M, in which the blocks are sorted by the descending ratios
between its throughput and size. Therefore,

∑
bj∈M

In
1
|bj| ≥∑

bj∈M
In
2
|bj|. Since MIn

1 ∪ MOut
1 = MIn

2 ∪ MOut
2 = M,∑

bj∈M
Out
1
|bj| ≤

∑
bj∈M

Out
2
|bj|. According to Equation (6),

mcmaxp ≥ mcp. Therefore, mcmax ≥ mc, and mcmax is the

Algorithm 1 Fitness Function of Genetic Algorithm
Require: chromosome encoded frequencies
Ensure: score fitness value
1: function evaluate(chromosome)
2: F← DECODE(chromosome)
3: pmax ←MAXPOWERCONSUMPTION(F)
4: mcmax ← 0
5: for p← [1, . . . , u] do
6: MIn

p ,M
Out
p ← SELECTMIGRATIONBLOCKS(γp)

7: mcmax ← mcmax+MIGRATIONCOST(MIn
p ,M

Out
p)

8: end for

9: return pmax × |1t| + mcmax

10: end function

set be η and function Iη(fi) gives the corresponding index
of the frequency option fi. The chromosome is represented
by < Iη(f1), Iη(f2), . . . , Iη(fn) >.
In the evaluation phase, a fitness function is required

to qualify chromosomes. The power consumption and the
migration cost are estimated according to chromosomes.
However, as discussed above, the fitness function may
become a bottleneck and the model simplification approach
is applied. The pseudocode of the fitness function is shown
in Algorithm 1.

The function gives a score for each chromosome. Firstly,
the chromosome is decoded (line 2). Secondly, the maximum
power consumption is obtained by Equation (12) (line 3).
Thirdly, the maximum migration cost is calculated within
the loop (line 4 to line 8). There are u racks, and the
migration blocks are selected for each rack (line 6), and the
migration cost for each rack is obtained by Equation (13).
Finally, the maximum energy consumption is returned as the
score.

Since the power consumption and the migration cost
are replaced by their upper bound values, the solution of
GA may not be optimal. In order to improve the accuracy
of the algorithm, GA is applied multiple times to generate
several candidates. Afterwards, m is applied to all candidates
and the solution with the minimum energy consumption is
chosen.

C. MONTE CARLO TREE SEARCH ALGORITHM

Monte Carlo Tree Search Algorithm (MCTS) is a method
for finding the suboptimal decision in a given domain by
taking random samples in the decision space and building a
search tree according to the results. Over the last few years,
MCTS has achieved great success withmany games, complex
real-world planning, optimization and control problems [28].

MCTS is based onMonte-Carlo process model. The model
consists of a set of states, a set of actions, a transition model,
and a reward function. The decision is presented as a pair
of a state and an action, and the next state is chosen by a
probability distribution built up by the current state and avail-
able actions. The link between state and actions is defined as

maximum migration cost for the given migrated block.
Using the model simplification, the performance for

evaluating frequency vectors is improved. To verify the
improvement, a frequency evaluation process with model
simplification and a frequency evaluation process with migra-
tion process are applied to evaluate 1000 frequency vectors
for dataset d10, d20 and d30 (see Section V-B) respectively
and the execution time for each case is shown in Table (1).
The execution time of evaluating frequency vectors for d10,
d20 and d30 are reduced 97.7%, 98.4% and 99.1% respec-
tively. In order to avoid the impact of this simplification on
the frequency selection algorithms, the corresponding algo-
rithms are executed multiple times to obtain several frequency
vector candidates, and the one with the minimum energy
consumption is chosen as the final solution. An experiment
is made to evaluate the influence of number of candidates
(see Section V-B3).

B. GENETIC ALGORITHM

Genetic Algorithm (GA) is a type of algorithms for randomly
searching suboptimal solutions, which is guided by evalua-
tion and natural genetics [27]. Generally, GA includes several
phases in each iteration : 1, encoding; 2, generation of initial
population; 3, evaluation; 4 selection; 5 crossover; 6 mutation
and 7 stopping criteria. In this section, the essential parts of
GA—encoding and evaluation—are introduced. The influ-
ence of parameters of GA is discussed in Section V.
The objective of frequency selection is to generate the

frequency vector F for the cloud system, which minimizes
energy consumption within each time window. An encoded
frequency vector F is regarded as a chromosome. In the
encoding process, frequency fi ∈ F is replaced by its index
within the frequency option set. Let the frequency option

FIGURE 1. Frequency selection tree.

FIGURE 2. One iteration of the general MCTS approach.

policy and the aim is to find the special policy∗ generating
highest reward.
Under the frequency selection approach, the set of states

are the frequency options. The action refers to choosing
a frequency option for the next node. Figure (1) shows a
structure of the frequency selection tree under a small case
with 3 nodes and 2 available frequency options. In each layer,
the frequency for the node is chosen. At beginning, f1 has two
options. When f1 is set to frequency 1, there are 2 actions:
set frequency 1 to f2 and set frequency 2 to f2. Therefore
there are 4 states in second layer. Since the frequency option
for the next node is not related to the current state, the fre-
quency selection tree is a complete |η|-ary tree. When the
searching process arrives at leaf nodes, the terminal condition
is reached. A path of the tree is denoted as a frequency
vector. For example, in Figure (1), < 1, 2, 2 > is one of the
frequency vectors. The task of MCTS is to find the frequency
vector which produces the minimum energy consumption.
Figure (2) from the survey [28] explains the general pro-

cess in MCTS including 4 phases in each iteration: selection,
expansion, simulation, and back propagation.
1) Selection: Starting at the root node, a child selection

policy is recursively applied to descend through the
tree until the most urgent expandable node is reached.
A node is expandable if it represents a non-terminal
state and has unvisited (i.e. unexpanded) children.

2) Expansion: One (or more) child nodes are added to
expand the tree, according to the available actions.

3) Simulation: A simulation is run from the new node(s)
according to the default policy to produce an outcome.

4) Back-propagation: The simulation result is backed up
through the selected nodes to update their statistics.

Basically, the process is controlled by two functions, a tree
policy and a default policy. A node on the search tree is
denoted as v and a child node of v is denoted as v′. Let
function N show how many times the node has been visited.
Let functionQ give the score of v. The tree policy chooses the
node with maximumUCT value. TheUCT function is shown
by Equation (14), in which C is a constant factor. In UCT
function, the exploitation (visiting the expanded nodes) and
the exploration (visiting the unexpended nodes) are balanced.
If a node is not visited before, the tree policy chooses a
node randomly. In the default policy, one of the paths is
evaluated by a reward function R. Based on all nodes on the
path, an evaluation score is required and the score is back
propagated to all nodes on the path.

UCT =
Q(v′)

N (v′)
+ C

√
2lnN (v)

N (v′)
. (14)

The base idea of the default policy in this work is the
same with the fitness function of GA that evaluates a current
solution and gives a score. Therefore, Algorithm (1) is used as
the reward function of the default policy. However, the input
parameter chromosome is replaced by the paths of the tree.
In the tree policy, a dedicated UCT function, shown in Equa-
tion (15), is adopted. The difference between Equation (14)
and (15) is the method for calculating scores. In MCTS,
the value of the node’s score is between 0 and 1, and the
node with highest UCT value is selected. In the default
policy of this paper, the maximum energy consumption is
returned as score of a node. By means of 1 −

(
Q(v′)/emax

)
,

the value is converted within 0 and 1. The highest value of
1−

(
Q(v′)/emax

)
indicates the path with the minimum energy

consumption.

UCT =
1−

(
Q(v′)/emax

)

N (v′)
+ C

√
2lnN (v)

N (v′)
. (15)

In Equation (15), the value of emax is required. Equation (1)
shows that the energy consumption consist of two parts,
namely the energy consumption of the running system and
the energy consumption of workload migration. In most of
the cases, the energy consumption of the running system is the
dominant part. In this case, the maximum energy consump-
tion scenario is that each node is assigned with its highest
frequency. By means of Equation (4) and (6), the maximum
energy consumption emax can be obtained. In contrast, when
migration cost is the dominant part, the frequency vector for
achieving emax cannot be constructed directly. In this case,
GA is applied to find emax , which makes it meaningless
to apply MCTS since the frequency vector for achieving
emin can be found by GA also. Therefore, MCTS may be
inapplicable for the cases in which the energy consumption
of the workload migration is the dominant part. Like the
GA approach, it should be noticed that the final solution of
MCTS may not be optimal. MCTS is applied multiple times

to obtain several solutions, and the solution with the minimum
energy consumption is chosen.

V. EXPERIMENT

In this section, a series test cases are designed and executed
to verify the model and the corresponding algorithms. There
are 5 objectives for the experiment:
1) Verify the exist of maximum throughout in cloud

database system and obtain the corresponding static
parameters;

2) Analyze the accuracy and performance of the
algorithms;

3) Analyze the scalability of the algorithms;
4) Analyze the optimization bound of the approach;
5) Compare our approach with the exist approach.
Therefore the experiments consist of 5 parts: setup bench-

TABLE 2. Core properties of Cassandra.

TABLE 3. Core properties of YCBS workload.

Figure (3a) shows the trends of throughput along with the
increasing requests for the system under frequency 2.53GHz,
2.00GHz, 1.60GHz and 1.33GHz. The trends has a same
pattern. Along with the increasing requests, the throughputs
are increasing at first and then decline. During the fluctua-
tion, the throughputs under different frequencies reach the
highest point. At beginning, the throughput is lower than the
node’s capability. Therefore, the throughput increases as well.
However, after the highest point of each line, the through-
put tries to exceed the node’s capability, but some requests
cannot be finished because of the resource competition. The
result is that the throughput declines. For all the frequencies,
the capabilities are different. When the frequency is higher,
the capability is larger. The capabilities for all frequency
options are listed in Figure (3d). Note that, the capability
is related to the hardware and software configuration of the
system. When the configuration changes, the capability need
to be reevaluated.
Figure (3b) shows the relationship between the energy

efficiency and the throughputs under different frequencies.
Along with the increasing of the throughputs, the energy
efficiency increases as well. To be noticed that each line
has a few coincident parts because when the throughput
tries to exceeds the capability, the throughput declines. Each
frequency has its maximum energy efficiency value and the
energy efficiency value reaches its maximum value at its
maximum throughput. To be noticed that each line has a few
coincident parts because when the throughput tries to exceeds
the capability, the throughput declines. Each frequency has its
maximum energy efficiency value and the energy efficiency
value reaches its maximum value at its maximum throughput.

Figure (3c) shows the energy consumption for each work-
loads. Along with the increasing of the requests, the energy
consumption increases as well for each frequency configu-
ration. However with the same requests amount, the energy
consumptions under different frequency option do not have
big diffidence. Since the maximum throughput of the sys-
tem are tested, a lot of requests are loaded into the system.

mark, parameter influence, scalability analysis, optimiza-
tion boundary analysis and comparison with Hot-N-Cold
approach.

A. SETUP BENCHMARK

In this experiment, two benchmarks are executed to obtain the
capacity measurement function z(ci, fi), and the energy costs
per mega byte of migration within a rack and between racks,
namely eIn and eOut.

1) CAPACITY BENCHMARK

This benchmark is executed on Grid5000 [29] testbed.
Grid5000 is designed to provide a scientific tool for com-
puter scientists similar to the large-scale instruments used
by physicists, astronomers and biologists. In the benchmark,
a database system Cassandra [4] with 10 nodes belonging to
the Nancy site graphene cluster is deployed. The core prop-
erties used in YCSB workload profile are shown in Table (2).
To be noticed that, the cache related parameters are set to 0 to
avoid the influence of cache mechanism to the experiment
results.
The nodes are equipped with a 4 cores Intel Xeon

X3440 and 16 GB of RAM. The energy consumption values
are collected by Power Distribution Units (PDU). There are
8 available frequency options: 2.53GHz, 2.40GHz, 2.13GHz,
2.00GHz, 1.73GHz, 1.60GHz, 1.33GHz, 1.20GHz. In this
benchmark, the maximum throughputs under each available
frequency option are obtained.

To simulate the real workloads, Yahoo! Cloud Serving
Benchmark(YCSB) framework [30] is selected as benchmark
framework. YCSB is an open-source specification and pro-
gram suite for evaluating retrieval and maintenance capabili-
ties of computer programs. The core properties used in YCSB
workload profile are shown in Table (3).
To obtain the maximum throughput of the system, more

and more requests are loaded into the system. There are
12 workloads in total for each frequency option. The work-
load is denoted as Qi i ∈ [1, 12]. For workload Qi, the total
amount of requests is 4000 × 2i−1. The result is shown
by Figure(3).

FIGURE 3. Capability benchmark result of Cassandra system. (a) Relationship between request amount and throughput. (b) Relationship between
throughput and energy efficiency. (c) Energy consumption for workloads. (d) Node’s capability under each frequency option.

TABLE 4. The energy cost per mega byte of the migration.

With different frequency configuration, the throughput of the
system is different. For example with 2.53GHz, the average
throughput is 5590 Opt/Sec and with 1.33 GHz, the average
throughput is 3822 Opt/Sec. Therefore with the same request
amount, the execution time under two frequency option
is quite different. For example, with Q12, t(2.53GHz) =
1778 sec and t(1.33GHz) = 2837 sec. As a consequence,
the energy consumptions do not have big difference for both
cases.

2) MIGRATION COST BENCHMARK

In Equation (6), the migration cost is obtained by means
of two static parameters, the energy costs per mega byte of
migration within a rack and between racks, namely eIn and
eOut. To obtain these values, a benchmark is executed.
This benchmark is executed in Grid5000 platform at Nancy

site graphene cluster as well. However, the system is deployed
on 2 nodes. After the loading process, the system is waiting
for a few minuets (5 mins in the experiment) to obtain the
energy consumption in the idle status which is denoted as
eIdle. Then, a decommission process is executed on one of the
nodes, which causes all the blocks in the node is migrated to
another one. The energy consumption within the decommis-
sion process is denoted as eMigration. By means of choosing
different node combinations, eIn and eOut can be obtained.

eIn|Out =
eMigration − eIdle ×

tMigration
tIdle∑

bgk∈Mx|y
|bgk |

. (16)

eIn and eOut are calculated by Equation (16), in which
tMigration and tIdle indicate the execution time of the idle
status and the execution time of the decommission process
respectively. The results are shown in Table (4).

B. PARAMETER INFLUENCE

In this section, the influence of parameters on the algorithms
is examined. The datasets are denoted as d{NodeAmount}.

For example, d10 represents a dataset consisting of 10 nodes.
As the number of blocks on each node does not impact the
performance of the frequency selection algorithm, the num-
ber of blocks is set to 64 for each node, and the access
probabilities are generated by Zipf’s law (distribution factor
is set to 2.5).
A test case is a combination of a dataset(d), a workload(l)

and an algorithm(a). For example (d10, 5000,GA) indicates
a test case, in which GA is applied to dataset d10 and the
workload is set to 5000 opt/sec for each node. The value
of throughput per node is a standard to simulate the total
workload for the cases, and the throughput for each node
is decided by ϕgk . The value of throughput per node is set
to 5000 opt/sec by default if not otherwise specified, for
example case (d10, 5000,GA) is denoted as (d10,GA)
In order to evaluate the accuracy of the algorithms,

the solutions for the cases (d10,Optimal), (d20,Optimal)
and (d30,Optimal) are obtained, in which Optimal indi-
cates the complete search where all possible frequency vec-
tors are evaluated. The energy consumption for a case is
denoted as E(case) and the corresponding execution time is
denoted as T (case). The accuracy of a case A(case) is defined
by Equation (17) in which d ∈ [d10, d20, d30] and
a ∈ [GA,MCTS].

A(d, a) = 1−
E(d, a)− E(d,Optimal)

E(d,Optimal)
. (17)

1) THE INFLUENCE OF GENERATION SIZE ON GA

The result is shown in Figure (4). In each case, the population
size is set to 100 and the amount of candidates is set to
10. In Figure (4), T (d,GA) increases with the increment of
generation size for the reason that more generations lead
to more iterations. With the same population size, ∀i > j

T (di,GA) > T (dj,GA). More nodes lead to longer chro-
mosome in GA, because the length of a chromosome is the
number of nodes. In terms of accuracy, the range of A(d,GA)
is [0.994, 0.999]. As shown in Figure (4), A(d,GA) increases
at beginning with the increment of generation size. However,
when generation size exceeds some points (100 for d10, d20
and 150 for d30), A(d,GA) does not increase significantly
and sometimes A(d,GA) even decreases a little. More gener-
ations lead to more iterations of GA. At beginning, it leads to

FIGURE 4. The influence of generation size on accuracy. FIGURE 6. The influence of amount of candidates on accuracy.

FIGURE 7. Scalability of the frequency selection algorithm.

and there is no tendency among all the solutions. Considering
Figure (1) and the maximum power consumption of terminal
nodes, we have pmax(< 1, 2, 2 >) > pmax(< 2, 1, 1 >)
and pmax(< 1, 2, 2 >) = pmax(< 2, 1, 2 >). Therefore,
the random sampling method doesn’t perform well in this
scenario, which impacts negatively the overall accuracy. The
maximum accuracy of MCTS is 99.6%.

C. SCALABILITY ANALYSIS

In this section, there are 12 datasets (d10 to d120) involved
at first. Only one candidate is required in each case. For GA,
generation size is set to 150 and population size is set to 100.
The result is shown in Figure (7). Generally, T (d,GA) >
T (d,MCTS). When the dataset is smaller, the difference is
more dramatic. For example, T (d10,GA) is nearly 19 times
T (d10,MCTS). However, the growth rate of the execution
time of GA is lower than MCTS. For example, T (d120,GA)
is 6 times T (d10,GA) while T (d120,MCTS) is 103 times
T (d10,MCTS). In GA, the increasing amount of nodes leads
to the longer length of chromosome. When generation size
and population size are constant, the length of chromosome
only influences the performance in each evaluation. It leads
to linear increment. However, in MCTS, when the amount
of node is increased by 1, the height of the tree is increased
by 1 which leads to exponential growth of the leaf nodes. The
search of solutions is an exponential function, which makes
the execution time grows exponentially.
In order to examine the scalability of our algorithms,

an extreme scalability analysis is done. In this expeimrent,
10 huge datasets, (d100 to d1000) is used. Only one candi-
date is required in each case, and the configuration of the
algorithms keeps same. The result is shown in Figure (8).
At beginning, GA solve d100 around 7.05s, while MCTS
find a solution around 5.15s. With the increment of the prob-
lem, both algorithms needs more time for finding a solution.

FIGURE 5. The influence of population size on accuracy.

more evolutions, which improves A(d, GA). However after-
wards the search process is close enough to an optimal point
and the iterations keep the solution around the optimal point.

2) THE INFLUENCE OF POPULATION SIZE ON GA

The result is shown in Figure (5). In each case, generation
size is set to 150 and the amount of candidates is set to 10.
In Figure (5), with the same population size, ∀i > j,
T (di, GA) > T (dj, GA), because more chromosomes
are evaluated in one iteration. Increasing population size
improves A(d, GA) at the beginning. However, at some points
(80 for d10, 160 for d20 and 320 for d30), the increment of
population size does not improve the accuracy any more.

3) THE INFLUENCE OF NUMBER OF CANDIDATES

GA and MCTS cannot find the optimal solution because
of the model simplification approach. Therefore, both
algorithms are executed multiple times to find several can-
didates, and the solution with the minimum energy con-
sumption is chosen. For GA, generation size is set to
150 and population size is set to 100. The result is shown
in Figure (6). In Figure (6), T (d, GA) and T (d, MCTS)
increase with the amount of candidates. With the same
amount of candidates, T (d, GA) > T (d, MCTS). The reason
is that GA is based on the evolutions while MCTS is based on
the tree searching technique. The computation cost is higher
for GA (see Section V-C). In term of accuracy, the incre-
ment of the amount of candidates improves A(d10, GA) and
A(d10, MCTS) significantly at beginning. A(d10, GA) goes
up and down when more candidates are involved because in
some cases, a close to optimal solution is found occasionally.
In other cases, the accuracy of both algorithms increases
slightly in general when more candidates are involved. Gen-
erally, A(d, GA) > A(d, MCTS). In MCTS, the search space
is organized by a tree structure. The leaf nodes are not ordered

FIGURE 8. Extreme scalability examine.

FIGURE 9. Optimization bound of the frequency selection algorithm.

For d1000, GA consumes 73.97s, while MCTS consumes
600.90s. The execution time of GA is acceptable considering
the length of time window. As the conclusion from Figure (7)
and Figure (8), GA is more suitable with huge datasets, since
the execution time increment of GA is liner relationship with
the amount of nodes, while it is exponential for MCTS.

D. OPTIMIZATION BOUNDARY ANALYSIS

In this section, optimization ratio is introduced to evaluate
how much energy can be saved using the frequency selection
approach. The optimization ratio is defined by Equation (18)
in which Performance refers to the approach that all nodes are
set to the performance mode (i.e., the maximum frequency).
The optimization ratio indicates the ratio between the saved
energy by frequency selection approach and the energy con-
sumption under performance mode. In this section, each
case is solved by GA. In GA, generation size is set to 150,
population size is set to 100, and the amount of candidates
is set to 10. There are 12 datasets involves (d10 to d120),
and the cases are divided into 4 categories based on their
throughputs per each node. The throughputs for each node are
3500 opt/sec, 4000 opt/sec, 3500 opt/sec and 5000 opt/sec.

O(d, l, a) =
E(d, l,Performance)− E(d, l, a)

E(d, l,Performance)
. (18)

The result is shown in Figure (9). The optimization
ratio depends on the value of throughput per node. For
∀l1, l2 ∈ {3500, 4000, 45000, 5000} l1 > l2, O(d, l1) <
O(d, l2). With the same value of throughput per node,
the optimization ratios are concentrated. With the incre-
ment of value of throughput per node, the optimization ratio
increases. The maximum of optimization ratio is 26.2% for
the case (d10, 3500,GA), and the minimum of optimization
ratio is 16% for the case (d110, 5000,GA). If the power

consumption is the only concern of the system’s adminis-
tration, the maximum optimization ratio can be constructed
as follows. The node’s throughput is set to 3520 opt/sec
and the node is set to the performance mode. According to
equation (18), the maximum optimization ratio is calculated
as equation (19). 26.43% is the optimization bound of the
model theoretically. The higher optimization ratio bound
could be obtained by means of decreasing workload. How-
ever when the workload is too low, the value is meaningless,
because the cluster is fully under-utilized. In the real cases,
the optimization ratio might be lower than 26.43% because
of the existence of the migration cost.

O(d1, 3520)

=
P(< 2.53Ghz, 3520 >)− P(< 1.20Ghz, 3520 >)

P(< 2.53Ghz, 3520 >)

=
cidle2.53Ghz +

3520
5690 × (cmax2.53Ghz − cidle2.53Ghz)− cmax1.20Ghz

cidle2.53Ghz +
3520
5690 × (cmax2.53Ghz − cidle2.53Ghz)

= 26.43%. (19)

E. COMPARISON WITH HOT-N-COLD

Chihoub et al. [9] proposed a reconfiguration approach called
Hot-N-Cold for Cassandra System to demonstrate the impact
on energy consumption with strong and eventual consistency,
in which half of the nodes are set to highest frequency and
another half of nodes are set to lowest frequency. The com-
parison between Hot-N-Cold, GA and MCTS is made. The
dataset used in this section is d20. For the cases, the through-
put per node is set to 3500 opt/sec, 4000 opt/sec, 4500 opt/sec
and 5000 opt/sec respectively.
The results are shown as Figure (10). The results given by

GA and MCTS are better than the corresponding results given
by Hot-N-Cold. The average improvement of GA compared
with Hot-N-Cold is 12.65%, and the average improvement of
MCTS is 11.44%. When the value of the throughput on each
node is set to 5000 opt/sec, Hot-N-Cold approach cannot pro-
duce a valid result. Theoretically, when Hot-N-Cold approach
applied, the system with 20 nodes can support any workloads
with throughput under 92100 opt/sec, however with the set-
ting 5000 opt/sec for each node, the system does not have
enough resources to support it. Therefore the corresponding
energy consumption is recorded as 0. The main drawback of
Hot-N-Cold is its flexibility. GA and MCTS choose the fre-
quency vector according to the workload predictions, while
Hot-N-Cold sets the frequencies statically.

VI. ALGORITHM ROBUSTNESS ANALYSIS

In previous sections, the frequency selection model and corre-
sponding algorithms are based on the predictions of the work-
load. Because the prediction errors are inevitable, the robust-
ness of the algorithms are analyzed in this section.
To analyze the robustness of algorithms, datasets d10,

d20 and d30 (Section V-B) are used in this section. In the
specialized model, the block access possibility ϕgk is the key
to define the workload for cloud database systems.

FIGURE 10. Comparison with Hot-N-cold.

FIGURE 11. Relationship between φ and root-mean-square deviation.

At first the prediction errors extracted from the normalize
distribution N (µ, σ 2). In each case, µ is set to 0 to make sure
half of errors are negative and other half of errors are positive.
The range of values extracted from the normalize distribution
is within [µ + 3σ,µ − 3σ]. To make sure the ranges of
errors are the same with corresponding case, and the σ is set
to ϕφ in which φ is the value from [0, 0.2, 0.4, 0.6, 0.8, 1]
and ϕ is average value of ϕgk . φ controls the total errors.
Specially, φ = 0 indicates that there is no error introduced.
Secondly, the errors are added to the corresponding ϕgk
to simulate the cases with prediction errors, and the cases
are denoted as (d{NodeAmount}, φ). The root-mean-square
deviation (RMSD) values are calculated for each case, and
the result is shown by Figure (11). With the same node
amount, the increment of φ leads to the increment of RMSD,
because larger φ value increases the possibility of generating
larger error values. With the same φ value, when i > j

RMSD(di, φ) < RMSD(dj, φ). This scenario is caused by
corresponding ϕ. For each case, every node is assigned with
64 blocks (see Section V-B) and ϕ = 1

64×NodeAmount . When ϕ
increases, the RMSB increases.
When GA and MCTS are applied to cases with predic-

tion errors, corresponding selected frequencies and migration
plans are collected. Because of the prediction errors, there are
two scenarios arise.
1) The real workload of a node exceeds its capacity;
2) Some of the resources of a node are wasted since the

FIGURE 12. The scenarios with error prediction. (a) Based on error
predictions. (b) Based on real workload.

present the node’s capabilities which are selected by GA.
In Figure (12a), the prediction errors are pretended unknown,
which makes w∗i < z(ci, fi) and a few resources are wasted,
for example node 15. In contrary, in Figure (12b), the result
is calculated based on the workload without prediction errors.
In Figure (12b), some workloads exceed its capability which
are the scenario 1, for example node 1, node 2 and so on.
Some nodes are wasting their resources which belong to the
scenario 2, for example node 0, node 6 and so on.

According to the experiment V-A, when request through-
put (workload) try to exceed the node’s capacity, the sys-
tem throughput declines due to the resource limitation and
the operation failure. To make sure the node can reach
its capability, if the workload exceeds the node capability,
part of the requests are refused. The ratio between refused
requests and succeeded requests is defined as error ratio for
the node. To describe the error ratio for the whole system,
maximum error ratio (MER) is introducedwhich is defined by
Equation (20).MER is used to describe scenario 1.

MER = max

∑

bgk∈D
r
i

l × ϕgk − z(ci, fi)

z(ci, fi)
, i ∈ [1, n]

. (20)

The ratio between wasted resource with the node’s capa-
bility is defined as waste ratio. Same with the MER, MWR,

assigned workloads are too low.
To describe these scenarios, the execution result of GA

for case (d30, 1) is shown as Figure (12). In Figure (12),
the bars present the workloads for each node, and the lines

FIGURE 13. The influence of prediction errors.

defined by equation (21), indicates the maximum percentage
of resources are wasted amongst all nodes, which is used to
describe scenario 2.

MWR = max

z(ci, fi)−
∑

bgk∈D
r
i

l × ϕgk

z(ci, fi)
, i ∈ [1, n]

. (21)

The results of the influence of prediction errors are shown
in Figure (13). By means of GA and MCTS, the frequencies
are selected, and the indicators, MER and MWR, are calcu-
lated by Equation (20) and Equation (21). With the same
node amount d , if φ1 > φ2, then MER(d, φ1) > MER(d, φ2)
and MWR(d, φ1) > MWR(d, φ2). For cases with same node
amount, the increment of φ leads to increment of RMDS
which indicates more errors are introduced, and more errors
lead to higherMER andMWR. Specifically, when there is no
error (φ = 0) for ∀d ∈ [d10, d20, d30], MER(d, 0) = 0 and
MWR(d, 0) > 0. In perspective of frequency selection model,
SLA cannot be violated, therefore no request is refused when
no prediction errors are introduced. However, since the blocks
are not continues, there are some energy is wasted when the
migration process generates migration plan. But the algo-
rithms try to minimize the energy consumption. In our cases,
MWR is around 0.04 for cases with φ = 0.
According to Figure (13), when prediction error exists,

it results in higher MER and MWR. In order to decrease
them, the capability tolerance factor is introduced, which is
denoted as C . With the capability tolerance factor, the new
capability z∗(ci, fi) of node ci with frequency fi is shown by
Equation (22). When C < 0, the capacity of the nodes is
regarded lower than its original capacity. When the amount of
workloads is constant, the higher frequencies will be selected
to make sure enough resources to execute the workloads.
In contrast when C > 0, the capacity of the nodes is regarded
higher than its original capacity and the lower frequencies are

likely to be selected to avoid energy wasting.

z∗(ci, fi) = z(ci, fi)× (1+ C). (22)

The values of C ∈ [−0.1, −0.05, 0, 0.05, 0.1] are adopted
to evaluate the influence of the capability tolerance factor.
Since the conclusions are quite similar, part of the results,
cases with φ 0.2 and 1, are shown in Figure (14). Generally,
for each case, MER increases with the increment of C , while
MWR is decreasing. The reason for this scenario is that when
C < 0, the higher frequencies are selected which leads lower
MER. Correspondingly, more resources are wasted which
leads to higher MWR. When C > 0, the lower frequen-
cies are selected which avoid resource wasting. However,
it causes higher MER. According to the experiment result,
there is a trade off between MER and MWR by means of
tuning the capability tolerance factor. With the increment of
capability tolerance factor (from negative to positive), MER
increases which indicates the increment of SLA violation, and
meanwhile MWR deceases which indicates the debasement of
energy wasting. By means of comparison of results from GA
and MCTS, with the same φ and C , there are no big difference
between them in terms of MER and MWR. For example,
in Figure (14) φ(0.2) − Genetic, the range of MER is from
0% to 14% which is the same with φ(0.2) − MCTS. In term
of MWR, there is the same result. The influence of capacity
factor decreases with more prediction errors, because more
prediction errors lead to higher MER and MWR. For example,
with C = −0.01 and GA, MER(d30, 0.2) < MER(d30, 1).

In this section, the robustness of corresponding algorithms
is analyzed. Prediction errors cause the SLA violation and
energy wasting. In order to eliminate the influence of the
prediction errors, the capability tolerance factor is introduced.
By means of tuning the capability tolerance factor, the trade
off between MER and MWR can be found. However, when
the case has higher MER, it leads to more requests failure.
Therefore, in practice, the MER should be kept lower value.

VII. DISCUSSION

GA and MCTS have their advantages and disadvantages and
should be chosen according to the case.

1) With respect to accuracy, GA has higher accuracy up to
99.9% (only 99.6% for MCTS).

2) In term of scalability, both algorithm can be applied
to medium size cluster (120 nodes). The performance
of MCTS is better than GA, especially for the small
cases. For example, in the case with 10 nodes, MCTS
is 19 times faster than GA. However, in face of large
cluster (1000 nodes), the performance of GA is more
competitive. Since the execution time of GA is linear
with the amount of nodes, but it is exponential for
MCTS. In our experiment, GA solved the case with
1000 nodes for 74s.

3) The usage scenario ofMCTS is limited under the condi-
tion that the energy consumption of the running system
is the dominant part.

4) GA needs to be tuned with the parameters.

FIGURE 14. The influence of capability tolerance factor.

In Section (III-A), the nodes are considered homogeneous.
With the following extensions, the model can be applied to
heterogeneous cluster.
1) The nodes in a heterogeneous cluster can be cate-

gorized according to their architectures. Otherwise,
the efforts for obtaining static parameters are
unacceptable.

2) The capacity measurement function z(ci, fi) should be
specialized for different categories of nodes since the
frequency options may not be the same.

3) In the specialized model, the power consumption esti-
mation function should be specialized for different cat-
egories of nodes.

corresponding model and algorithms based on the work-
load predictions and DVFS technique to cope with resource
provisioning problem. The proposed algorithms include a
genetic based algorithm and a monte carlo tree search based
algorithm. Both algorithms have its advantages and disadvan-
tages. The results of the experiment show that both algorithms
have great scalability with reasonable accuracy (up to 99.9%
and 99.6% for two algorithms respectively).

Since the prediction errors are inevitable, the robustness of
the algorithms is analyzed. The prediction errors might cause
SLA violation and energy wasting. By means of tuning the
capability tolerance factor, the trade off between SLA viola-
tion and energy wasting can be found. In practice, the error
ratio should be kept in a lower range.
In this work, we only considered the frequency selection

and the workload migration for one time window. However,
we did not consider the effect for multiple time windows.
The optimization within multiple time windows is one of
our future research direction. Meanwhile, we only considered
using DVFS to solve the resource provisioning for energy
aware cloud database systems. In the future work, the other
resources can be considered, for example I/O resource can
be introduced to further improve the energy efficiency of the
system

ACKNOWLEDGMENT

Experiments presented in this paper were carried out with the
Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://
www.grid5000.fr).

REFERENCES

[1] M. Zakarya and L. Gillam, ‘‘Energy efficient computing, clusters, grids
and clouds: A taxonomy and survey,’’ Sustain. Comput., Informat. Syst.,
vol. 14, pp. 13–33, Jun. 2017.

In general, the model’s static parameters which are related
to the node’s architecture should be obtained according to the
different architectures.
Workload prediction errors could cause SLA violation

and energy wasting for both algorithms. In order to reduce
impact of prediction errors, the capability tolerance factor
is introduced to tune the node capability. According to the
experiments, the maximum error ratio can be reduced by
means of a negative capability tolerance factor for both algo-
rithms, and the maximum waste ratio can be reduced by
means of a positive capability tolerance factor. The capability
tolerance factor should be tuned according to the user cases
and prediction errors. In practice, the maximum error ratio
should be kept lower value avoid the SLA violation.

VIII. CONCLUSION AND FUTURE WORK

At first, the energy efficiency problem in cloud systems,
specially for cloud database systems, is discussed in this
work. The conclusion is that the key to improve the energy
efficiency of the system is to maintain the system at its
maximum throughput under a given frequency.

In order to improve the energy efficiency of the system,
this paper proposes a frequency selection approach with the

[2] M. N. Vora, ‘‘Hadoop-HBase for large-scale data,’’ in Proc. Int. Conf.

Comput. Netw. Technol., Harbin, China, vol. 1, Dec. 2011, pp. 601–605.
[3] A. Thusoo et al., ‘‘Hive—A petabyte scale data warehouse using hadoop,’’

in Proc. IEEE 26th Int. Conf. Data Eng. (ICDE), Long Beach, CA, USA,
Mar. 2010, pp. 996–1005.

[4] J. Han, H. E, G. Le, and J. Du, ‘‘Survey on NoSQL database,’’ in Proc.
6th Int. Conf. Pervasive Comput. Appl., Port Elizabeth, South Africa,
Oct. 2011, pp. 363–366.

[5] J. Song, T. Li, X. Liu, and Z. Zhu, ‘‘Comparing and analyzing the energy
efficiency of cloud database and parallel database,’’ in Proc. 2nd Int. Conf.
Comput. Sci., Eng. Appl. (ICCSEA), New Delhi, India, vol. 2, May 2012,
D. C. Wyld, J. Zizka, and D. Nagamalai, Eds. Berlin, Germany: Springer,
2012, pp. 989–997.

[6] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah, and D. Tsirogiannis,
‘‘Towards energy-efficient database cluster design,’’ Proc. VLDB Endow-
ment, vol. 5, no. 11, pp. 1684–1695, Jul. 2012.

[7] G.-W. You, S.-W. Hwang, and N. Jain, ‘‘Ursa: Scalable load and power
management in cloud storage systems,’’ ACM Trans. Storage, vol. 9, no. 1,
pp. 1–29, Mar. 2013.

[8] D. Schall and T. Härder, ‘‘WattDB—A journey towards energy efficiency,’’
Datenbank-Spektrum, vol. 14, no. 3, pp. 183–198, Sep. 2014.

[9] H.-E. Chihoub, S. Ibrahim, Y. Li, G. Antoniu, M. Pérez, and L. Bouge,
‘‘Exploring energy-consistency trade-offs in cassandra cloud storage
system,’’ in Proc. SBAC-PAD, Florianópolis-SC, Brazil, Nov. 2015,
pp. 146–153.

[10] A. P. Florence, V. Shanthi, and C. B. S. Simon, ‘‘Energy conservation
using dynamic voltage frequency scaling for computational cloud,’’ Sci.
World J., vol. 2016, p. 13, 2016, Art. no. 9328070. [Online]. Available:
https://www.hindawi.com/journals/tswj/2016/9328070/

[11] S. Ibrahim, T.-D. Phan, A. Carpen-Amarie, H.-E. Chihoub, D. Moise, and
G. Antoniu, ‘‘Governing energy consumption in Hadoop through CPU
frequency scaling: An analysis,’’ Future Gener. Comput. Syst., vol. 54,
pp. 219–232, Jan. 2016.

[12] D. Gu. (2016). Cassandra at Instagram. [Online]. Available:
https://www.slideshare.net/DataStax/cassandra-at-instagram-2016

[13] C. Guo and J.-M. Pierson, ‘‘Frequency selection approach for energy aware
cloud database,’’ in Proc. 30th Int. Symp. Comput. Archit. High Perform.
Comput., Lyon, France, Sep. 2018, pp. 1–8.

[14] G. Da Costa, D. Careglio, R. I. Kat, A. Mendelson, J.-M. Pierson, and
Y. Sazeides, ‘‘Hardware leverages for energy reduction in large scale dis-
tributed systems,’’ Inst. Recherche Inform. Toulouse, Tech. Rep. IRIT/RT–
2010-2–FR, 2010.

[15] B. Subramaniam and W. Feng, On the Energy Proportionality of Dis-

tributed NoSQL Data Stores, vol. 8966. New Orleans, LA, USA: Springer,
Nov. 2014, pp. 264–274, DOI: 10.1007/978-3-319-17248-4_14.

[16] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, ‘‘Analyzing the
energy efficiency of a database server,’’ in Proc. ACM SIGMOD

Int. Conf. Manage. Data (SIGMOD), Indianapolis, IN, USA, 2010,
pp. 231–242.

[17] D. Schall and T. Härder, ‘‘Approximating an energy-proportional DBMS
by a dynamic cluster of nodes,’’ in Database Systems for Advanced

Applications, S. S. Bhowmick, C. E. Dyreson, C. S. Jensen, M. L. Lee,
A. Muliantara, and B. Thalheim, Eds. Cham, Switzerland: Springer, 2014,
pp. 297–311.

[18] D. Schall and T. Härder, ‘‘Energy-proportional query execution using a
cluster of wimpy nodes,’’ in Proc. 9th Int. Workshop Data Manage. New
Hardw. (DaMoN), New York, NY, USA, 2013, pp. 1–6.

[19] G. Han, W. Que, G. Jia, L. Shu, and A. Jara, ‘‘An efficient virtual machine
consolidation scheme for multimedia cloud computing,’’ Sensors, vol. 16,
no. 2, p. 246, 2016.

[20] S. Savinov and K. Daudjee, ‘‘Dynamic database replica provisioning
through virtualization,’’ in Proc. 2nd Int. Workshop Cloud Data Manage.
(CloudDB), Toronto, ON, Canada, 2010, pp. 41–46.

[21] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, and J. Wu, ‘‘Towards energy-
efficient scheduling for real-time tasks under uncertain cloud computing
environment,’’ J. Syst. Softw., vol. 99, pp. 20–35, Jan. 2015.

[22] L. Yu, F. Teng, and F. Magoulès, ‘‘Node scaling analysis for power-
aware real-time tasks scheduling,’’ IEEE Trans. Comput., vol. 65, no. 8,
pp. 2510–2521, Aug. 2016.

[23] J. Liu and J. Guo, ‘‘Energy efficient scheduling of real-time tasks on multi-
core processors with voltage islands,’’FutureGener. Comput. Syst., vol. 56,
pp. 202–210, Mar. 2016.

[24] M. Amiri and L. Mohammad-Khanli, ‘‘Survey on prediction models of
applications for resources provisioning in cloud,’’ J. Netw. Comput. Appl.,
vol. 82, pp. 93–113, Mar. 2017.

[25] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. Hoboken, NJ, USA: Wiley, 1990.

[26] J.-J. Chen and L. Thiele, ‘‘Energy-efficient scheduling on homogeneous
multiprocessor platforms,’’ in Proc. ACM Symp. Appl. Comput., Sierre,
Switzerland, 2010, pp. 542–549.

[27] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. New York, NY, USA: Addison-Wesley, 1989.

[28] C. B. Browne et al., ‘‘A survey of Monte Carlo tree search methods,’’ IEEE
Trans. Comput. Intell. AI in Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[29] F. Cappello et al., ‘‘Grid’5000: A large scale and highly reconfigurable
grid experimental testbed,’’ in Proc. 6th IEEE/ACM Int. Workshop Grid

Comput., Nov. 2005, p. 8.
[30] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

‘‘Benchmarking cloud serving systems with YCSB,’’ in Proc. 1st ACM
Symp. Cloud Comput. (SoCC), Indianapolis, IN, USA, 2010, pp. 143–154.

CHAOPENG GUO received the B.S. degree in
software engineering from Northeastern Univer-
sity, China, in 2013. He is currently pursuing the
Ph.D. degree with University of Toulouse. His
current research focuses on energy efficiency and
energy aware cloud database.

JEAN-MARC PIERSON received the Ph.D.
degree in computer science from the LIP Labora-
tory, École Normale Supérieure de Lyon. He has
been a Full Professor with University of Toulouse,
since 2006. His research interesting includes dis-
tributed systems and high-performance comput-
ing, distributed data management, security grid,
cloud computing, and energy-aware distributed
computing.

HUI LIU received the Ph.D. degree from North-
eastern University, Shenyang, China, in 2010.
She is currently a Lecture with the School of
Metallurgy, Northeastern University. Her cur-
rent research interests include green computing,
sustainable computing, and computational fluids
dynamics.

JIE SONG received the Ph.D. degree in computer
science from Northeastern University, in 2008.
He is currently an Associate Professor with the
Software College, Northeastern University, China.
His main research interests include big data,
data intensive computing, and energy-efficient
computing.

