
Frogs to Think with—Improving Students’ Computational
Thinking and Understanding of Evolution in A Code-First

Learning Environment
Yu Guo1, Aditi Wagh2, Corey Brady1, Sharona T. Levy3, Michael S. Horn1, and Uri Wilensky1
1Computer Science and Learning Sciences

Northwestern University
Evanston, IL USA

yuguo2012@u.northwestern.edu

2Department of Education
Tufts University

Medford, MA USA
aditi.wagh@tufts.edu

3Faculty of Education

University of Haifa
Haifa, Israel

stlevy@edu.haifa.ac.il

ABSTRACT
This paper presents Frog Pond, an interactive code-first
learning environment about biological evolution. We
deployed Frog Pond as part of a six-day curricular unit on
natural selection implemented in six 7th grade science
classes. Here we describe a case study of two students,
Charlie and Aaron who participated in the unit. Comparing
pre- and post- interviews in which they were asked to
design a program for a hypothetical simulation of evolution,
we found that both students shifted from an event-based
programming approach to a rule-based approach. Both
students also drew upon their experience with Frog Pond to
explain an evolutionary phenomenon. However, the level of
sophistication of the two students’ explanations varied
along with the aspects of Frog Pond they drew upon. These
findings have implications for design improvement to better
support students’ understanding of evolution.

AUTHOR KEYWORDS
code-first learning environment; computational thinking;
evolution; agent-based modeling

ACM CLASSIFICATION KEYWORDS
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
Evolutionary change and its underlying mechanisms are
core disciplinary ideas in the life sciences [3, 11].
Understanding mechanisms of biological evolution has
been shown to be notoriously difficult for students [10, 18].
This is in part because changes that emerge in a population
of organisms over time unfold without a plan and without
the knowledge or intentionality of individuals in that
population. This can be counter-intuitive to learners

inclined to think in terms of centralized and deterministic
processes [16, 17]. In other words, it is tempting to think of
individual organisms as wanting to change (e.g., cheetahs
want to become faster) and to think of evolution as
following a master plan in which organisms become
progressively come to approximate a “more evolved” goal
state over time. This is in stark contrast to a world in which
random events (e.g., genetic mutations), occurring without
a master plan, generate trait variations that result in
differential survival and that, over time, produce
remarkable species-level adaptations.

Computational modeling environments are increasingly
used to facilitate learning about complex scientific
phenomena such as evolutionary change [12, 13, 18].
Enabling students to program such models has shown
promise for improving understanding of both the scientific
phenomena and of programming [19, 20]. However, in
many real-world classrooms, there is not enough time for
students to delve into programming activities at a sufficient
level of sophistication. Thus, students often explore pre-
built models by adjusting parameters and observing
outcomes in simulations’ behavior, without an opportunity
to crack open the black box.

In this paper, we investigate how student programming in a
code-first modeling environment [5] supports learning
about evolutionary processes. Our data was collected in the
context of a six-day curricular unit implemented in 7th grade
science classrooms. We draw on pre- and post-interviews in
which students were asked to design a program for a
hypothetical simulation of evolution.

BACKGROUND

Object-to-think-with
Whether something is easy or difficult to learn depends, in
part, on the ability of learners to assimilate new knowledge
into a collection of existing mental models [9]. Papert
referred to seminal models, both external and internal, that
learners draw upon when encountering new situations as
“object[s]-to-think-with” [9, pg. 11].

Much work has been done on using computational models
to facilitate learning about evolutionary change (e.g. [13,
20]). Evolutionary changes can be seen as a type of

Paste the appropriate copyright/license statement here. ACM now supports
three different publication options:
• ACM copyright: ACM holds the copyright on the work. This is the

historical approach.
• License: The author(s) retain copyright, but ACM receives an

exclusive publication license.
• Open Access: The author(s) wish to pay for the work to be open

access. The additional fee must be paid to ACM.
This text field is large enough to hold the appropriate release statement
assuming it is single-spaced in Times New Roman 8-point font. Please do
not change or modify the size of this text box.
Each submission will be assigned a DOI string to be included here.

emergent phenomena, in which the overall trends at the
population level emerge from interactions among individual
organisms. One of the sources of students’ difficulties with
such phenomena lies in a “level slippage”—the tendency to
attribute population level changes to individual level
behavior or vice versa [17]. For instance, students might
attribute a population’s changing over time to its constituent
individuals changing over their lifetime. In fact, several
interactions and mechanisms at the micro level are at play,
including sexual reproduction, inheritance, death, and
random variation in inherited traits as well as the changing
environment.

Across both in research and education contexts, emergent
phenomena are increasingly simulated using computational
agent-based models (ABMs). In such models, individual
computational agents have properties and can enact
behavioral rules as the simulation runs. For example, the
NetLogo modeling environment [14] is widely used in both
schools and research labs. By emphasizing the behavior of
individual actors in a system, ABMs can help students draw
on their own bodily and sensory experiences in the world
[16-19].

Due to the many constraints faced by classroom teachers in
schools, work with agent-based modeling in schools often
involves students manipulating pre-built simulations of
evolutionary processes without a chance to tinker with the
underlying computer code. However, research has found
that having students build models facilitates learning about
deeper mechanisms of change [12, 19]. Prior work has
found that programming toolkits for evolutionary change
such as EvoBuild [12] can facilitate more rule-based
explanations both in-situ and in post-tests. As such, we
designed a blocks-based programming environment called
NetTango [8] that provides easy entry to NetLogo
modeling.

Frog Pond expands on work with EvoBuild by providing a
code-first environment to foreground sense making of
evolutionary change as a computational phenomenon. In
addition, the flexibility of the environment enables students
to rapidly and effortlessly move back and forth between the
code and enacted behaviors, across multiple time scales,
and across varying environmental pressures.

Two rounds of Frog Pond studies
Prior work with Frog Pond in a museum showed that it
provided a low threshold for users to create simulations by
assembling code blocks. Although interactions typically
lasted for only 15-20 minutes, users were able to understand
that they could program the behaviors of simulated frogs in
a lily pond using blocks such as “hop”, “hunt”, and “hatch”.
Most middle-school aged users were also able to reason
with their encoded blocks about at least one target
evolutionary trend, such as the advantages a small-sized
frog might have over a larger-sized frog in a particular
scenario [5]. Next, to promote more extended modeling
sequences than were possible in a museum setting, we

developed a unit for classroom implementations based on
our findings about interaction design from these museum
studies. We deployed this Frog Pond curriculum as a six-
day unit on natural selection and adaptation in middle
school science classes.

The goal of this paper is to examine whether, and how, a
code-first environment supported learning about
evolutionary mechanisms. Specifically, we investigate two
issues: First, does programming simulations of adaptation
in a code-first environment impact how students represent a
different evolutionary scenario in the form of code?
Second, does programming in a code-first environment
impact how students account for and explain a different
evolutionary scenario?

To do this, we present a case study using pre- and post-
interviews of two students, Charlie and Aaron
(pseudonyms), who worked as a pair throughout the unit.
We examine their responses to a question about co-
evolutionary trends in the speeds of cheetahs and gazelles.
We analyze their explanations for this co-evolutionary trend
as well as the computer “pseudocode” they constructed on
paper to represent the scenario in the form of a simulation.
We found changes between their pre- and post-interview
responses. In representing the scenario in the form of code,
both students shifted from an event-based programming
approach to a rule-based approach. In addition, both
students drew upon their experience with Frog Pond to
explain the evolutionary scenario, albeit in different ways.
However, depending on which elements of Frog Pond they
drew upon, the level of sophistication of their explanations
varied. We describe these shifts in the students’ approach
and how they used Frog Pond as an object-to-think-with.
These findings have implications for design improvement
to better support the design of code-first environments as
well as students’ understanding of evolution.

THE DESIGN OF FROG POND
We designed Frog Pond as a code-first learning
environment [5] (Figure 1).

Figure 1. Frog Pond simulation.

A code-first environment has three important features. First,
the primary mode of interaction is through programming.
For example, in Frog Pond, nothing interesting will happen
until students program their frogs to do something like hop
forward, eat flies, change direction, or reproduce. Second, it
should extremely easy for novice users to create working
programs within the first few minutes or even seconds of
playing around with the system. This doesn’t mean that the
programming language has to be visual, but blocks-based
languages such as Scratch [7], Blockly [4], DeltaTick [20,
21] and StarLogo TNG [6] are based on principles of direct
manipulation, which can make them less intimidating to
new users and facilitate a faster learning curve. Finally,
code-first environments should be expressive. Even though
learner programs are relatively simple, they should
nonetheless result in diverse and complex outcomes.

In the Frog Pond environment, learners program
instructions for a group of frogs in an ecosystem using
domain-specific, blocks-based primitives. On running the
program, each frog repeatedly enacts the encoded
instructions to interact with other frogs and the simulated
environment. These enactments can produce many different
outcomes that highlight concepts of stabilizing, directional,
and disruptive selection pressures. In other words, the
simulation can result in changes in the frog population: 1)
growing bigger or smaller (directional pressure), 2) staying
around the same size (stabilizing pressure), or 3) separating
into two distinct sub-populations, consisting of larger and
smaller individuals (disruptive pressure).

To create Frog Pond, we designed a blocks-based
programming environment called NetTango [8] that
provides easy entry to NetLogo [14] modeling. We added
several features to NetTango that optimize it for use on
touchscreen devices and that make it extremely easy to
construct and run working programs even in their early
exploration of the environment. The goal was to simplify
the language as much as possible to get students up to speed
quickly without sacrificing too much of the language’s
expressivity of NetLogo and ABMs.

We invested substantial effort making the link between the
programming blocks and the effects on individual frog
behaviors as clear as possible. This included overlaying the
programming blocks directly on top of the simulation
window so that both are visible at the same time. A new
round of simulation starts with a very small number of frogs
that slowly act out the student-authored programs in a step-
by-step fashion. At each step, the corresponding code
blocks are highlighted to provide visual cues for students to
know which command has just been executed. Students can
speed up the simulation to 16 times faster than the normal
speed to observe changes across multiple generations. Even
when the screen fills up with potentially hundreds of frogs,
it is still possible for students to zoom in and track the
movements of an individual frog by clicking on it. When a
frog is highlighted, students can see its energy level, its

size, and the command it is currently executing. Finally, we
added a shareboard feature that allows students to easily
share their programs and the current state of the simulation
environment with other students in the class. On the
interface, we also display population-level graphs that are
dynamically linked to the simulation state. These include a
histogram of frog sizes and a plot of frog count to show two
important macro level measures: the distribution of
different sized frogs in the population and the variation in
population size over time.

The goal of this paper is to describe how interacting with a
code-first environment like Frog Pond can support students’
learning about evolutionary mechanisms. Below we
describe our Frog Pond curricular unit and focus on how
two students explained and accounted for an evolutionary
phenomenon after interacting with Frog Pond. We describe
the study and data analysis and present findings related to
learning outcomes.

THE FROG POND CURRICULAR UNIT
Our curricular unit design is driven by an overarching
question: Why are there so many different kinds of living
things on earth? To answer this question, we ask students to
explore the mechanisms of natural selection by
programming virtual frogs in a simulated ecosystem—a
frog pond. Students can drag and drop ten different types of
programming blocks to control the frogs’ behavior. When
dropped on a certain area of the screen, the blocks snap
together to form a program. There are eight behavioral
blocks (“hop”, “chirp”, “left”, “right”, “spin”, “hunt”,
“hatch” and “die”), and two logic blocks (“if” and “if-
else”). A simple program a student may create is “left
(random), hop (1), hatch (size-variation), chirp”. When the
simulation starts, this simple program will be executed line
by line and repeatedly. As a result, the single initial frog at
the center of the lily pads turns left with random degrees,
hops forward 1 body-length unit, hatches another frog,
which may be a little bigger or smaller than itself, and then
chirps. Then, the two frogs on the screen execute the
program over again, move about and hatch their offspring,
so on and so forth. The variations in frog size have multiple
implications: big frogs hop farther than little frogs, which
means they are more likely to fall into the water (and die).
Big frogs also have longer tongues than little frogs, which
means they are more likely to catch flies when they hunt.
However, little frogs use less energy than frogs, which
means they do not need to eat as much to survive. When a
simulation is running, the environment (for example, the
arrangement of lily pads, the number of flies over the pond,
and the energy each fly can provide) interacts with frogs’
behaviors on one hand and traits on the other, leading to
advantages or disadvantages for different sized frogs.

In the unit, students explore natural selection by engaging
with five increasingly sophisticated challenges to guide
students to explore natural selection.

Figure 2. Challenge 1 in the Frog Pond curricular unit.

In Challenge 1 (Figure 2, above), students are asked to
create a stable population of around 50 frogs. This
challenge foregrounds the concepts of reproduction and
death, guiding students to an understanding that a stable
population is in fact the result of multiple dynamic
processes across generations: a dynamic equilibrium as
opposed to a static state. In Challenge 2, students are asked
to create a stable population consisting almost entirely of
little frogs. The goal of this challenge is to experiment with
directional selection pressure—one that drives organisms’
traits in one direction over successive generations. In
Challenge 3, students are asked to create a population that
has almost all big frogs. The target concepts in this
challenge are similar to those in Challenge 2, though it is
more difficult to program behaviors that favor larger frogs
because there are multiple competing selection factors that
must be balanced. In Challenge 4, students are asked to
create a stable population consisting of medium-sized frogs.
To do this, students have to take into account selection
pressures from both directions and program their frogs
accordingly. In Challenge 5—the hardest challenge—
students are asked to simulate disruptive selection pressure,
in which it is advantageous to be either really small or
really big, but not to be medium-sized. This challenge helps
students understand diversification and eventually
speciation—how animals with a common ancestor can
become vastly different over time. For this challenge,
beetles are added into the ecosystem as a new food source,
which is extremely nutritious but hard for little frogs to
catch. We also introduced a few very small lily pads.
Students can remove one small lily pad that connects to the
bigger pads to create two segregated environments,
allowing them to see that isolation can expedite the
diversification of frogs’ traits.

RESEARCH QUESTIONS
With the above design and deployment, we asked two
research questions:

1. In what ways, if any, does programming in a code-first
environment support learning about evolutionary
mechanisms?

2. Does learning about evolutionary shifts by programming
in a code-first environment impact how students reason
about evolutionary scenarios outside the code-first
environment?

METHOD

Implementation
The Frog Pond environment was used to create the five
challenges described above, each of which involved
programming a simulation. Each challenge formed an
activity. The five activities were implemented in a middle
school in an ethnically diverse suburb of a large
Midwestern city. One science teacher led the Frog Pond
activities in six 7th grade science classes over a period of 6
days. Students worked in pairs in each class. Students were
encouraged to talk to their partners, participate in whole
class discussions, and share successful code in a gallery,
which the teacher and other students could see.

Participants
A total of 124 students from six classrooms took part in the
study with informed consent. Those who did not consent to
participate in the study still used Frog Pond in their regular
class activities, but the research team did not collect any
data from these students. Of these, 71 students took a
written pre- and post-assessment on topics of evolution and
computational thinking. This included 41 girls and 30 boys
between 12 and 13 years old. The students were asked to
self-report their race / ethnicity at the end of the pre-
assessment and were allowed to select multiple categories.
The students reported that they were 38% White, 29.6%
Asian American / Pacific Islander, 28.2% “Other”, and
8.5% Latino. One student selected African American and
one student Native American. Close to 60% (42 students)
reported speaking language(s) other than English at home.
The most common languages were Urdu (8 students),
Spanish (6), Vietnamese (4), Romanian (3), and Arabic (3).
Other languages included Albanian, Assyrian, Bengali,
Greek, German, Gujarati, Hindi, Korean, Malayalam,
Malaysian, Mandarin, Montenegrin, and Serbian. We also
asked students if they had ever coded a computer program
before. Only 18 students (25.4%) indicated yes in response
to this question.

During the unit, students worked in pairs on the activities.
In consultation with the teacher, we selected 12 pairs as
focal groups to represent a range of interest and prior
academic performance in science class. We interviewed
these focal group students before and after the unit to elicit
their understandings of evolutionary mechanisms. We also
video recorded their interactions with Frog Pond software
during class. In this paper, we present an analysis of pre-
and post- interviews of one focal pair, Charlie and Aaron.
We selected these two students for analysis for three

reasons: 1) Data integrity: Charlie and Aaron participated in
all 5 Frog Pond activities as a pair, which was not always
the case with our other focal dyads. 2) Contrasting cases:
Although they worked together, their interview responses
indicated stark differences in the sophistication of their
reasoning. 3) Representativeness. Taken together, their
responses were representative of other focal students.

Written Pre- and Post-Assessments
In addition to our focal interviews, 71 participants took a
written assessment before and after the unit that included
questions on evolution and computational thinking. The two
assessments were identical except for a demographic
questionnaire at the end of the pre-assessment. The
assessments included nine Likert scale questions on a five-
point scale about students’ evolution attitudes and beliefs
(e.g. I know a lot about evolution. Evolution explains the
origin of insects. Evolution is not happening today). We
constructed a measure, Evolution Attitude, as the average of
seven of these items (Cronbach’s alpha = 0.70). Students’
average pre-assessment score was 3.49 (SD=0.71)
compared to a post-assessment score of 3.75 (SD=0.76).
This difference was significant: t(70) = -3.97, p < 0.001.

The assessments also included a scenario describing the
predator—prey relationship of cheetahs and gazelles as a
way to elicit student reasoning around concepts of natural
selection and co-evolution. The short scenario was followed
by a series of six open-ended questions. To evaluate student
responses on these questions, we developed a coding
scheme based on prior research on evolution concepts (e.g.
inheritance, differential survival, and variation). We blinded
students’ written assessments so that the researchers could
not see age, sex, race/ethnicity, or other background
information. The assessments were then randomized so that
researchers could not tell whether they were evaluating a
pre- or post-assessment. Two researchers independently
coded a set of 40 random student assessments. For this set,
they achieved a 94.25% agreement rate (Cohen’s kappa =
0.68). After establishing inter-rater reliability, the
researchers divided up and coded the remaining
assessments. Individual codes were assigned only once
across all six open-ended prompts, even if a student
mentioned the idea more than once. From this, we
constructed a composite score. Students scored an average
of 2.62 (SD=2.02) on the pre-assessment questions
compared to an average of 3.56 (SD=2.53) on the post-
assessment questions. This difference was significant t(70)
= -3.00, p < 0.002. The coding suggests that student
answers were more elaborate in the post-assessment.

With these results as a backdrop, we turn to the main focus
of this paper, which is a qualitative analysis of our clinical
interview data.

Interview Question
In both pre- and post- interviews, we gave students a
modified version of a scenario that was commonly used in
the literature [1]: “Cheetahs are able to run on average

about 60 miles per hour when chasing prey. Their main
source of food, gazelles, can also run on average about 60
miles per hour. Cheetahs and gazelles typically live for
around 10 to 20 years. Many thousands of years ago, the
ancestors of both cheetahs and gazelles could run only
about 20 miles per hour.” Students were then asked to
elaborate on “how a scientist would explain how the ability
to run fast evolved in cheetahs and the gazelles?”

After students provided initial explanations, we asked them
to create a hypothetical computational model of the
scenario by writing down instructions that specify the
interactions of agents in the scenario. Specifically, the
question stated: “Let’s say that you are creating a computer
model of the cheetahs and gazelles, and how they interact
and change over long periods of time. What kinds of
instructions would you use in your model?” Students were
provided with paper and pen to draw their program, and
explain how it would run over time.

ANALYSES AND FINDINGS
We used a bottom-up approach [2] to analyze two
complementary sources of data: transcripts of students’ pre-
and post- interviews, and the code they had produced on
paper. We analyzed the code to investigate the extent to
which it would account for evolutionary change. This
involved examining whether students provided an
explanation for differential survival and/or reproduction,
whether the code involved an individual changing within its
lifetime, and whether they took genetic and trait variations
into account. This analysis led to the identification of a
salient shift in the nature of students’ code that we describe
in the Findings section below.

In addition, through iterative rounds of analysis, we also
observed that in the course of the post-interview, students
repeatedly referred to different aspects of Frog Pond to
explain a distinct scenario about cheetah-gazelle co-
evolution.. This became another point of analysis, in which
we focused on how students drew on their experience with
Frog Pond, both explicitly and implicitly, to explain the
new scenario.

Finding 1. Shift from event-based to rule-based coding
Analysis of pre- and post-programs revealed that both
students shifted from an event-based coding approach to a
rule-based approach.

In the pre-interviews, when asked to create a program of the
cheetah-gazelle interaction, both students described
predation scenarios, in which cheetahs chase gazelles using
some hunting strategies. Their descriptions resembled
predation scenes that are usually seen in wild life
documentaries such as Animal Planet. For example, in the
pre-interview, Charlie’s approach to a simulation is event-
based. It involves events such as gazelles learning that
cheetahs are dangerous if they see cheetahs killed other
gazelles. It also shows that if cheetahs’ attacks are not

successful, gazelles run away and cheetahs then know to
use a different approach to hunt next time (Figure 3).

Aaron did not write down complete simulation rules in the
questionnaire (Figure 4.), but in the interview he explained
how the simulation should work. Like Charlie, his
explanation was also event-based. For instance, he says, “a
hungry cheetah stays on the site and go after a gazelle with
a comfortable distance”. The cheetah is “being quiet and
staying under the grass, try to be less visible”. When being
chased, the gazelle, “get hide, stand in the grass, try to
make it difficult [for the cheetah to catch it]”. In this way,
both Charlie and Aaron focused on specific events related
to predation. However, they did not account for underlying
mechanisms that caused changes in speed in both species.
Their account did not include rules related to reproduction,
death, and chance that result in these changes. Students’
program code in the post interview was strikingly different
from that in the pre-interview. (See Table 1 and Table 2.
Here, to save space, we have typed out their post-programs
verbatim instead of providing scans of their hand written
code.)

Figure 3. Charlie’s pre-program.

Figure 4. Aaron’s pre-program.

Cheetah& & Gazelle&

Cheetah&chases&
gazelle&

If&cheetah&is&slow,&
and&doesn't&get&food,&
it&dies&

[if&full]&Chance&41%&
reproduce&
Offspring&speed&can&
vary&
If&cheetah&doesn't&
get&food,&it&finds&a&
different&way&to&
attack&gazelle&
If&cheetah&attacks&
gazelle,&(one&dies&
but)&other&gazelles&
learn&a&different&way&
to&run&

& If&gazelles&is&
slow,&it&dies&

If&gazelle&is&
fast,&it&
survives&and&..&

[if&full]&
Chance&41%&
reproduce&
offspring&speed&
vary&

Table 1. Charlie’s post-program.

Cheetah& & Gazelle&

Move&left&75&
degrees&
Hunt&8&seconds&
[chance&50%&of&
getting&food]&
If&full,&hatch&

If&starving,&die&
Right&60°rees&

& Right&65°rees&
Run&away&50%&of&
death&

Eat&grass&
If&full,&hatch&

If&starving&or&
hurt,&die&

Left&70°rees&

Table 2. Aaron ’s post-program.

First, both students wrote specific rules for individual
cheetahs and gazelles. The rules prescribed a set of
behaviors that each individual animal would do over and
over again throughout the simulation. For example, the rule

if&full&P>&hatch&[with&41%&chance]&&&& (1)

means that at each tick of the clock in the model, each
animal checks its own internal state. If it is full, it
reproduces with a 41% chance. Compared with the event-
based approach found in the pre-test, this rule-based
approach shows that students focused more on the detailed
mechanisms of the animal’s behavior than describing
specific predation scenes. From a computational modeling
perspective, the rules that students came up with in the
post-test are plausibly executable by computational agents.
These rules are more like lines of code that can actually be
found in real scientific modeling programs. Representing

evolutionary phenomena with rules is helpful to students in
understanding evolutionary processes because it
demystifies the changes that take place over long periods of
time. Students can see that through each individual’s
repeated executions of simple rules with some randomness,
changes at the population level emerge as the result of the
interaction between the species and the environment. It is
not because of animals’ desires to change or due to some
magic power that is driving the changes. This first finding
may match expectations, given that students had just spent
more than a week working with an agent-based modeling
environment in which they were developing the code that
governed agents actions. This becomes important as we
look closer at how this shift also affected students’
reasoning about the evolutionary scenarios.

Finding 2. Using Frog Pond as an object-to-think-with
Students’ experiences with Frog Pond provided them with a
resource to think through and reason about the coevolution
of cheetahs and gazelles’ speeds, a distinct evolutionary
scenario from that experienced with Frog Pond. At first
glance, this might not seem particularly surprising. Students
had spent 6 class periods using the Frog Pond environment.
Hence, one would expect that they would refer to the
environment when responding to questions in the post
interview. However, the difference in the ways in which the
two students referred to code from Frog Pond sheds light on
why this is interesting.

At the start of the post interview, neither student seemed to
have a readymade explanation for the co-evolutionary
scenario. Both students were constructing their explanations
on the spot. This was seen in how both students drew upon
their different parts of Frog Pond to explain the cheetah-
gazelle scenario. Below is an excerpt from Charlie’s
interview. Charlie’s initial explanation was that animals
keep running, so they get faster. While elaborating on this
explanation, he started to generate another explanation by
drawing on his experience with Frog Pond.

Charlie: “Let's say now it's another gazelle or gazelles are
together, the cheetah goes at it. All the gazelles will know to
run quicker, but because they'll keep getting used to
running and running, maybe they'll get faster from that…”

Interviewer: “Okay.”

C: “because they'll be able to run, like, right away quicker
because what would usually happen was the gazelle's dead,
and it's all over, but now the gazelles are running. Now, the
cheetah comes, they run, run, run, they're getting faster.”

I: “Okay. So, by getting faster, do you mean like they get
more practice and so they grow stronger?”

C: “Yeah...”

C: “Or the only, or maybe what happened was, they might
get a little faster, but what's more likely to happen is that
the slower cheetahs, the slower gazelles, would die off.”

C: “And there will only be faster gazelles, and then as time
goes by, and the gazelles get a little faster by, you know,
chance because when you… like with the frogs. There's a
chance of the frog, when they are born, being big or small,
but like, let's say the program was fitting for the big frogs to
live, then the small ones would die. So, it's not like they're
getting any bigger, it's just that the small ones are dying."

At this point, a new explanation that is qualitatively
different from his old idea came to Charlie for the first time.
Prompted by his experience with Frog Pond, Charlie
explained that it was more likely that slower animals would
die off and only the fast ones survive. This explanation
became more convincing to him over his old idea of
animals getting more practices to become faster. What we
would like to highlight here is that Charlie for the first time
attributed the change of running speed to the population
level, instead of to the individual level. The new
explanation includes two important mechanisms of
evolution: differential survival and chance of inheritance,
which he had encountered in the Frog Pond environment.

A little later, as Charlie was constructing code, he included
several rules that reflected Frog Pond code (Table 1). For
instance, one of the rules he included was:

offspring&speed&can&vary (2)

This rule was intended to account for variation at birth—an
offspring’s traits can be different from partners in random
ways, which is the source of difference in a population. Not
only did Charlie include a micro-level rule that produces
variations, but he also described macro level consequences
of agents enacting such rules—differential survival. In other
words, he connected the levels.

Similarly, Aaron’s constructed code also included elements
of rules in Frog Pond (Table 2). In addition, he explicitly
referred to his experience with Frog Pond when asked to
explain this code.

Aaron: “It's a lot slower [in the real world] than it is in the
program, and then as soon… like, I'm going to actually add
like, a chance of it [the cheetah] eating him [the gazelle].
Like, 50 percent because they're both the same speed. It's
even. And if full then they hatch, but if they're starving,
and they haven't eat, like real life, they'll die. And then I just
put like, moving right, because they don't normally move
left. And then for gazelles…

I: “So, why did you need to write there if they were moving
left? Why was that… a problem?”

A: “In the one that we did in the class, if they don’t move,
they couldn’t get the flies. But you had to move them to get
closer to the flies and beetles to eat them. And in real life,
cheetahs have to… they have to move left and right to find
gazelles and hunt, and that's how they… that's why they
have to move.

A little later, when asked why he included instructions to
move “left” and “right”, he answered:

A: “Because if they only go left, like, I'll use the frog
again, the model… like, if the frogs only went left, they'd
eventually fall off the pad. But if they went left and then
like, spun… or, if they went left and then went right they
might avoid the water and avoid death and live longer.”

I: “So, how are you thinking it's important here, with the
cheetahs and the gazelles?”

A: “Since they don't have water around them, like the water
in the model, the gazelle, if it goes only… if goes only left, it
could end up… it could end up without any like, longer
grass, it could end up in another… like a desert or
something and not have the food, like, enough food.”

This excerpt revealed that Aaron drew on his programming
experience in Frog Pond to explain his code for the cheetah-
gazelle scenario. Like Charlie, Aaron was also able to draw
on Frog Pond code to reason through some parts of the
gazelle-cheetahs scenario. However, Aaron only drew on
Frog Pond when asked to directly program the cheetah-
gazelle scenario. He also used his Frog Pond experience in
a more literal way: He thought that because in Frog Pond, if
frogs move too far away from the center of the screen, they
would fall off the lily pads into the water and die, so it
would also be dangerous for cheetahs and gazelles to move
too far off the center, because they would fall into some
death zone, which is analogous to the water in the Frog
Pond scenario.

Unlike Charlie, who fiddled with changes at both individual
and population levels, Aaron singularly drew on the frogs’
behavioral rules at the individual level and their immediate
consequences. For instance, in the interview, he reasoned
that he included the rule “move” because he had noticed
that “if they [frogs] don’t move, they couldn’t get the flies”.
However he did not explicitly trace how these rules result in
population level changes when applied over multiple
generations. Moreover, he did not include some rules
important for differential survival such as the birth variation
rule that Charlie had included. In this way, both Charlie and
Aaron drew on Frog Pond to reason through a co-
evolutionary scenario in their post interview, albeit in
different ways. While Charlie made connections between
the micro and the macro levels, Aaron did not.

The finding that students using Frog Pond to think through
this co-evolutionary phenomenon also found support in the
existence of salient “traces” from Frog Pond that were seen
in students’ code. For instance, Charlie specified “41%”
chance of reproduction as a rule in his hypothetical model.
He said:

C: I'll put has 41% reproduce, on the offspring speed can
vary, like be any speed, and same thing with the gazelle.
And then there's the chance, 41%, that it'd reproduce.

I: Why 41? That's just a… [random percentage?]

C: I put that because on the frog pond simulator thingy, me
and my friend who had a really stable [population].

Charlie used the exact percentage from Frog Pond, which is
not the intended takeaway from the unit, but this trace
shows that he knew that a stable population is an important
factor of an ecosystem, and the stability can be achieved by
manipulating randomness in the system. Because the paper-
based code was not executable, he could not “tune” this
number as he did with Frog Pond, but we interpret his use
of this rule with the same probability value in the cheetah-
gazelle scenario as marking an analogous approach and
perspective. Similarly, Aaron also used code blocks from
Frog Pond, such as “left”, “right”, and “hatch” (Table 1).
He thought being able to move around and reproduce are
important for the animals to survive. However, he did not
attempt to align these rules with the specific scenario of
cheetahs and gazelles. Further, he had not discovered the
underlying connections between the animals’ behavior and
the distribution of various traits at the population level.

The above examples reveal that Frog Pond became a
resource for students to draw upon when reasoning through
evolutionary phenomena. Though there was variation in the
sophistication of their explanations, both students
transposed elements from Frog Pond into their explanations
and accompanying code in the cheetah-gazelle scenario.

CONCLUSION
This case study provides promising evidence that the code-
first Frog Pond environment facilitated learning about
evolutionary mechanisms. After using Frog Pond, students
shifted from adopting an event-based programming
approach to a rule-based one. This shift is important
because it suggests that students not only abstracted some
regularities from their interactions with the code-first
environment, but were able to modify and apply them to a
different scenario with distinct evolutionary patterns. It also
finds support in the literature that programming facilitates
abstraction of rule-governed regularities [12, 16]. Such a
shift is likely to pave the way for students to further engage
in agent-based modeling and to understand other complex
phenomena. In addition, Frog Pond was taken up as an
object-to-think-with about evolutionary change as students
drew on different aspects of the environment to explain a
co- evolutionary scenario. These trends further open
directions for future design and research. In addition,
students’ explanations about evolution have design
implications. For example, in future iterations of the Frog
Pond software and curriculum, we need to add features that
help students make connections between micro-level rules
and the macro level consequences in order to better support
students’ understanding about evolution.

ACKNOWLEDGEMENTS
This work was supported by the National Science
Foundation (grant DRL-1109834). Any opinions, findings,
or recommendations are those of the authors and do not
necessarily reflect the views of the NSF. We also thank our

teacher-collaborators, Sharon Churchwell and Adam
Vernola, and our museum collaborators, Matt Matcuk and
Jaap Hoogstraten. We are also indebted to several graduate
and undergraduate students who also contributed
substantially to this research: Amartya Banerjee, Krystal
Villanosa, Arthur Hjorth, Randall Harris, and Austin Ryder.

SELECTION AND PARTICIPATION OF CHILDREN
We recruited a teacher who teaches six (6) seventh-grade
science classes at a public middle school in an ethnically
diverse suburb of a large Midwestern city. The teacher
adopted the Frog Pond activities as a six-day curricular unit
in her regular teaching, so all her 130 students were invited
to participate in the study. The teacher explained the study
to the students before the unit began and handed out both
parental consent forms and student assent forms. About 100
students consented with the permission of their parents, and
participated in the study.

REFERENCES
1. Beth A. Bishop and Charles W. Anderson. 1990.

Student conceptions of natural selection and its role in
evolution. Journal of research in science teaching 27,
5: 415–427.

2. Juliet Corbin and Anselm Strauss. 2008. Basics of
qualitative research: Techniques and procedures for
developing grounded theory. Sage.

3. Theodosius Dobzhansky. 1973. Nothing in biology
makes sense except in the light of evolution.

4. Neil Fraser and others. 2013. Blockly: A visual
programming editor. Google. URL: https://blockly-
games.appspot.com/

5. Michael S. Horn, Corey Brady, Arthur Hjorth, Aditi
Wagh, and Uri Wilensky. 2014. Frog pond: a codefirst
learning environment on evolution and natural
selection. ACM Press, 357–360.
http://doi.org/10.1145/2593968.2610491

6. Eric Klopfer and Hal Scheintaub. 2008. StarLogo
TNG: science in student-programmed simulations.
Proceedings of the 8th international conference on
International conference for the learning sciences-
Volume 3, International Society of the Learning
Sciences, 59–60.

7. John Maloney, Mitchel Resnick, Natalie Rusk, Brian
Silverman, and Evelyn Eastmond. 2010. The Scratch
programming language and environment. ACM
Transactions on Computing Education (TOCE) 10, 4:
16.

8. Michael S. Horn and Uri Wilensky. 2011. NetTango
1.0 [Computer Software]. Evanston, IL: Center for
Connected Learning and Computer Based Modeling,
Northwestern University. Retrieved from
http://tidal.northwestern.edu/nettango/

9. Seymour Papert. 1980. Mindstorms: Children,
computers, and powerful ideas. Basic Books, Inc.

10. Karl S. Rosengren. 2012. Evolution challenges:
Integrating research and practice in teaching and
learning about evolution. Oxford University Press.

11. NGSS Lead States. 2013. Next Generation Science
Standards: For States, By States. National Academies
Press Washington, DC.

12. Aditi Wagh. 2016. Building v/s Exploring Models:
Comparing Learning of Evolutionary Processes
through Agent-based Modeling (A dissertation).
Northwestern University, Evanston, IL.

13. Aditi Wagh and Uri Wilensky. 2014. Seeing patterns of
change: Supporting student noticing in building models
of natural selection. Proceedings of Constructionism
2014, Vienna, Aug 19-23.

14. Uri Wilensky. 1999. NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling,
Northwestern University. Evanston, IL.

15. Uri Wilensky. 2016. Why schools need to introduce
computing in all subjects. Retrieved April 3rd, 2016
from http://theconversation.com/why-schools-need-to-
introduce-computing-in-all-subjects-53793

16. Uri Wilensky and Kenneth Reisman. 2006. Thinking
like a wolf, a sheep, or a firefly: Learning biology
through constructing and testing computational
theories—an embodied modeling approach. Cognition
and Instruction 24, 2: 171–209.

17. Uri Wilensky and Mitchel Resnick. 1999. Thinking in
levels: A dynamic systems approach to making sense
of the world. Journal of Science Education and
Technology 8, 1: 3–19.

18. Uri Wilensky, and Michael Novak. 2010.
Understanding evolution as an emergent process:
learning with agent-based models of evolutionary
dynamics. In Roger.S. Taylor & Michel. Ferrari
(eds.), Epistemology and Science Education:
Understanding the Evolution vs. Intelligent Design
Controversy. New York: Routledge.

19. Uri Wilensky and Damon Centola. 2007. Simulated
evolution: Facilitating students' understanding of the
multiple levels of fitness through multi-agent
modeling. Paper presented at the Evolution Challenges
Conference. Phoenix, AZ. November 3, 2007.

20. Michelle H. Wilkerson-Jerde and Uri Wilensky. 2010.
Restructuring change, interpreting changes: The
DeltaTick modeling and analysis toolkit. Proceedings
of Constructionism 2010. Paris, France, Aug 10-14.

21. Michelle H. Wilkerson-Jerde, Aditi Wagh, and Uri
Wilensky. 2015. Balancing Curricular and Pedagogical
Needs in Computational Construction Kits: Lessons
From the DeltaTick Project. Science Education 99, 3:
465–499.

