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ABSTRACT 
This paper presents Frog Pond, an interactive code-first 
learning environment about biological evolution. We 
deployed Frog Pond as part of a six-day curricular unit on 
natural selection implemented in six 7th grade science 
classes. Here we describe a case study of two students, 
Charlie and Aaron who participated in the unit. Comparing 
pre- and post- interviews in which they were asked to 
design a program for a hypothetical simulation of evolution, 
we found that both students shifted from an event-based 
programming approach to a rule-based approach. Both 
students also drew upon their experience with Frog Pond to 
explain an evolutionary phenomenon. However, the level of 
sophistication of the two students’ explanations varied 
along with the aspects of Frog Pond they drew upon. These 
findings have implications for design improvement to better 
support students’ understanding of evolution.   
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INTRODUCTION 
Evolutionary change and its underlying mechanisms are 
core disciplinary ideas in the life sciences [3, 11]. 
Understanding mechanisms of biological evolution has 
been shown to be notoriously difficult for students [10, 18]. 
This is in part because changes that emerge in a population 
of organisms over time unfold without a plan and without 
the knowledge or intentionality of individuals in that 
population. This can be counter-intuitive to learners 

inclined to think in terms of centralized and deterministic 
processes [16, 17]. In other words, it is tempting to think of 
individual organisms as wanting to change (e.g., cheetahs 
want to become faster) and to think of evolution as 
following a master plan in which organisms become 
progressively come to approximate a “more evolved” goal 
state over time. This is in stark contrast to a world in which 
random events (e.g., genetic mutations), occurring without 
a master plan, generate trait variations that result in 
differential survival and that, over time, produce 
remarkable species-level adaptations. 

Computational modeling environments are increasingly 
used to facilitate learning about complex scientific 
phenomena such as evolutionary change [12, 13, 18]. 
Enabling students to program such models has shown 
promise for improving understanding of both the scientific 
phenomena and of programming [19, 20]. However, in 
many real-world classrooms, there is not enough time for 
students to delve into programming activities at a sufficient 
level of sophistication. Thus, students often explore pre-
built models by adjusting parameters and observing 
outcomes in simulations’ behavior, without an opportunity 
to crack open the black box. 

In this paper, we investigate how student programming in a 
code-first modeling environment [5] supports learning 
about evolutionary processes. Our data was collected in the 
context of a six-day curricular unit implemented in 7th grade 
science classrooms. We draw on pre- and post-interviews in 
which students were asked to design a program for a 
hypothetical simulation of evolution.  

BACKGROUND 

Object-to-think-with 
Whether something is easy or difficult to learn depends, in 
part, on the ability of learners to assimilate new knowledge 
into a collection of existing mental models [9]. Papert 
referred to seminal models, both external and internal, that 
learners draw upon when encountering new situations as 
“object[s]-to-think-with” [9, pg. 11]. 

Much work has been done on using computational models 
to facilitate learning about evolutionary change (e.g. [13, 
20]). Evolutionary changes can be seen as a type of 
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emergent phenomena, in which the overall trends at the 
population level emerge from interactions among individual 
organisms. One of the sources of students’ difficulties with 
such phenomena lies in a “level slippage”—the tendency to 
attribute population level changes to individual level 
behavior or vice versa [17]. For instance, students might 
attribute a population’s changing over time to its constituent 
individuals changing over their lifetime. In fact, several 
interactions and mechanisms at the micro level are at play, 
including sexual reproduction, inheritance, death, and 
random variation in inherited traits as well as the changing 
environment. 

Across both in research and education contexts, emergent 
phenomena are increasingly simulated using computational 
agent-based models (ABMs). In such models, individual 
computational agents have properties and can enact 
behavioral rules as the simulation runs. For example, the 
NetLogo modeling environment [14] is widely used in both 
schools and research labs. By emphasizing the behavior of 
individual actors in a system, ABMs can help students draw 
on their own bodily and sensory experiences in the world 
[16-19].  

Due to the many constraints faced by classroom teachers in 
schools, work with agent-based modeling in schools often 
involves students manipulating pre-built simulations of 
evolutionary processes without a chance to tinker with the 
underlying computer code. However, research has found 
that having students build models facilitates learning about 
deeper mechanisms of change [12, 19]. Prior work has 
found that programming toolkits for evolutionary change 
such as EvoBuild [12] can facilitate more rule-based 
explanations both in-situ and in post-tests. As such, we 
designed a blocks-based programming environment called 
NetTango [8] that provides easy entry to NetLogo 
modeling. 

Frog Pond expands on work with EvoBuild by providing a 
code-first environment to foreground sense making of 
evolutionary change as a computational phenomenon. In 
addition, the flexibility of the environment enables students 
to rapidly and effortlessly move back and forth between the 
code and enacted behaviors, across multiple time scales, 
and across varying environmental pressures. 

Two rounds of Frog Pond studies 
Prior work with Frog Pond in a museum showed that it 
provided a low threshold for users to create simulations by 
assembling code blocks. Although interactions typically 
lasted for only 15-20 minutes, users were able to understand 
that they could program the behaviors of simulated frogs in 
a lily pond using blocks such as “hop”, “hunt”, and “hatch”. 
Most middle-school aged users were also able to reason 
with their encoded blocks about at least one target 
evolutionary trend, such as the advantages a small-sized 
frog might have over a larger-sized frog in a particular 
scenario [5]. Next, to promote more extended modeling 
sequences than were possible in a museum setting, we 

developed a unit for classroom implementations based on 
our findings about interaction design from these museum 
studies. We deployed this Frog Pond curriculum as a six-
day unit on natural selection and adaptation in middle 
school science classes.  

The goal of this paper is to examine whether, and how, a 
code-first environment supported learning about 
evolutionary mechanisms. Specifically, we investigate two 
issues: First, does programming simulations of adaptation 
in a code-first environment impact how students represent a 
different evolutionary scenario in the form of code? 
Second, does programming in a code-first environment 
impact how students account for and explain a different 
evolutionary scenario? 

To do this, we present a case study using pre- and post- 
interviews of two students, Charlie and Aaron 
(pseudonyms), who worked as a pair throughout the unit. 
We examine their responses to a question about co-
evolutionary trends in the speeds of cheetahs and gazelles. 
We analyze their explanations for this co-evolutionary trend 
as well as the computer “pseudocode” they constructed on 
paper to represent the scenario in the form of a simulation. 
We found changes between their pre- and post-interview 
responses. In representing the scenario in the form of code, 
both students shifted from an event-based programming 
approach to a rule-based approach. In addition, both 
students drew upon their experience with Frog Pond to 
explain the evolutionary scenario, albeit in different ways. 
However, depending on which elements of Frog Pond they 
drew upon, the level of sophistication of their explanations 
varied. We describe these shifts in the students’ approach 
and how they used Frog Pond as an object-to-think-with. 
These findings have implications for design improvement 
to better support the design of code-first environments as 
well as students’ understanding of evolution.  

THE DESIGN OF FROG POND 
We designed Frog Pond as a code-first learning 
environment [5] (Figure 1). 

 
Figure 1. Frog Pond simulation. 



A code-first environment has three important features. First, 
the primary mode of interaction is through programming. 
For example, in Frog Pond, nothing interesting will happen 
until students program their frogs to do something like hop 
forward, eat flies, change direction, or reproduce. Second, it 
should extremely easy for novice users to create working 
programs within the first few minutes or even seconds of 
playing around with the system. This doesn’t mean that the 
programming language has to be visual, but blocks-based 
languages such as Scratch [7], Blockly [4], DeltaTick [20, 
21] and StarLogo TNG [6] are based on principles of direct 
manipulation, which can make them less intimidating to 
new users and facilitate a faster learning curve. Finally, 
code-first environments should be expressive. Even though 
learner programs are relatively simple, they should 
nonetheless result in diverse and complex outcomes.  

In the Frog Pond environment, learners program 
instructions for a group of frogs in an ecosystem using 
domain-specific, blocks-based primitives. On running the 
program, each frog repeatedly enacts the encoded 
instructions to interact with other frogs and the simulated 
environment. These enactments can produce many different 
outcomes that highlight concepts of stabilizing, directional, 
and disruptive selection pressures. In other words, the 
simulation can result in changes in the frog population: 1) 
growing bigger or smaller (directional pressure), 2) staying 
around the same size (stabilizing pressure), or 3) separating 
into two distinct sub-populations, consisting of larger and 
smaller individuals (disruptive pressure). 

To create Frog Pond, we designed a blocks-based 
programming environment called NetTango [8] that 
provides easy entry to NetLogo [14] modeling. We added 
several features to NetTango that optimize it for use on 
touchscreen devices and that make it extremely easy to 
construct and run working programs even in their early 
exploration of the environment. The goal was to simplify 
the language as much as possible to get students up to speed 
quickly without sacrificing too much of the language’s 
expressivity of NetLogo and ABMs. 

We invested substantial effort making the link between the 
programming blocks and the effects on individual frog 
behaviors as clear as possible. This included overlaying the 
programming blocks directly on top of the simulation 
window so that both are visible at the same time. A new 
round of simulation starts with a very small number of frogs 
that slowly act out the student-authored programs in a step-
by-step fashion. At each step, the corresponding code 
blocks are highlighted to provide visual cues for students to 
know which command has just been executed. Students can 
speed up the simulation to 16 times faster than the normal 
speed to observe changes across multiple generations. Even 
when the screen fills up with potentially hundreds of frogs, 
it is still possible for students to zoom in and track the 
movements of an individual frog by clicking on it. When a 
frog is highlighted, students can see its energy level, its 

size, and the command it is currently executing. Finally, we 
added a shareboard feature that allows students to easily 
share their programs and the current state of the simulation 
environment with other students in the class. On the 
interface, we also display population-level graphs that are 
dynamically linked to the simulation state. These include a 
histogram of frog sizes and a plot of frog count to show two 
important macro level measures: the distribution of 
different sized frogs in the population and the variation in 
population size over time. 

The goal of this paper is to describe how interacting with a 
code-first environment like Frog Pond can support students’ 
learning about evolutionary mechanisms. Below we 
describe our Frog Pond curricular unit and focus on how 
two students explained and accounted for an evolutionary 
phenomenon after interacting with Frog Pond. We describe 
the study and data analysis and present findings related to 
learning outcomes. 

THE FROG POND CURRICULAR UNIT 
Our curricular unit design is driven by an overarching 
question: Why are there so many different kinds of living 
things on earth? To answer this question, we ask students to 
explore the mechanisms of natural selection by 
programming virtual frogs in a simulated ecosystem—a 
frog pond. Students can drag and drop ten different types of 
programming blocks to control the frogs’ behavior. When 
dropped on a certain area of the screen, the blocks snap 
together to form a program. There are eight behavioral 
blocks (“hop”, “chirp”, “left”, “right”, “spin”, “hunt”, 
“hatch” and “die”), and two logic blocks (“if” and “if-
else”). A simple program a student may create is “left 
(random), hop (1), hatch (size-variation), chirp”. When the 
simulation starts, this simple program will be executed line 
by line and repeatedly. As a result, the single initial frog at 
the center of the lily pads turns left with random degrees, 
hops forward 1 body-length unit, hatches another frog, 
which may be a little bigger or smaller than itself, and then 
chirps. Then, the two frogs on the screen execute the 
program over again, move about and hatch their offspring, 
so on and so forth. The variations in frog size have multiple 
implications: big frogs hop farther than little frogs, which 
means they are more likely to fall into the water (and die). 
Big frogs also have longer tongues than little frogs, which 
means they are more likely to catch flies when they hunt. 
However, little frogs use less energy than frogs, which 
means they do not need to eat as much to survive. When a 
simulation is running, the environment (for example, the 
arrangement of lily pads, the number of flies over the pond, 
and the energy each fly can provide) interacts with frogs’ 
behaviors on one hand and traits on the other, leading to 
advantages or disadvantages for different sized frogs. 

In the unit, students explore natural selection by engaging 
with five increasingly sophisticated challenges to guide 
students to explore natural selection. 



 
Figure 2. Challenge 1 in the Frog Pond curricular unit. 

In Challenge 1 (Figure 2, above), students are asked to 
create a stable population of around 50 frogs. This 
challenge foregrounds the concepts of reproduction and 
death, guiding students to an understanding that a stable 
population is in fact the result of multiple dynamic 
processes across generations: a dynamic equilibrium as 
opposed to a static state. In Challenge 2, students are asked 
to create a stable population consisting almost entirely of 
little frogs. The goal of this challenge is to experiment with 
directional selection pressure—one that drives organisms’ 
traits in one direction over successive generations. In 
Challenge 3, students are asked to create a population that 
has almost all big frogs. The target concepts in this 
challenge are similar to those in Challenge 2, though it is 
more difficult to program behaviors that favor larger frogs 
because there are multiple competing selection factors that 
must be balanced. In Challenge 4, students are asked to 
create a stable population consisting of medium-sized frogs. 
To do this, students have to take into account selection 
pressures from both directions and program their frogs 
accordingly. In Challenge 5—the hardest challenge—
students are asked to simulate disruptive selection pressure, 
in which it is advantageous to be either really small or 
really big, but not to be medium-sized. This challenge helps 
students understand diversification and eventually 
speciation—how animals with a common ancestor can 
become vastly different over time. For this challenge, 
beetles are added into the ecosystem as a new food source, 
which is extremely nutritious but hard for little frogs to 
catch. We also introduced a few very small lily pads. 
Students can remove one small lily pad that connects to the 
bigger pads to create two segregated environments, 
allowing them to see that isolation can expedite the 
diversification of frogs’ traits.  

RESEARCH QUESTIONS 
With the above design and deployment, we asked two 
research questions: 

1. In what ways, if any, does programming in a code-first 
environment support learning about evolutionary 
mechanisms? 

2. Does learning about evolutionary shifts by programming 
in a code-first environment impact how students reason 
about evolutionary scenarios outside the code-first 
environment?  

METHOD 

Implementation 
The Frog Pond environment was used to create the five 
challenges described above, each of which involved 
programming a simulation. Each challenge formed an 
activity. The five activities were implemented in a middle 
school in an ethnically diverse suburb of a large 
Midwestern city. One science teacher led the Frog Pond 
activities in six 7th grade science classes over a period of 6 
days. Students worked in pairs in each class. Students were 
encouraged to talk to their partners, participate in whole 
class discussions, and share successful code in a gallery, 
which the teacher and other students could see. 

Participants 
A total of 124 students from six classrooms took part in the 
study with informed consent. Those who did not consent to 
participate in the study still used Frog Pond in their regular 
class activities, but the research team did not collect any 
data from these students. Of these, 71 students took a 
written pre- and post-assessment on topics of evolution and 
computational thinking. This included 41 girls and 30 boys 
between 12 and 13 years old. The students were asked to 
self-report their race / ethnicity at the end of the pre-
assessment and were allowed to select multiple categories. 
The students reported that they were 38% White, 29.6% 
Asian American / Pacific Islander, 28.2% “Other”, and 
8.5% Latino. One student selected African American and 
one student Native American. Close to 60% (42 students) 
reported speaking language(s) other than English at home. 
The most common languages were Urdu (8 students), 
Spanish (6), Vietnamese (4), Romanian (3), and Arabic (3). 
Other languages included Albanian, Assyrian, Bengali, 
Greek, German, Gujarati, Hindi, Korean, Malayalam, 
Malaysian, Mandarin, Montenegrin, and Serbian. We also 
asked students if they had ever coded a computer program 
before. Only 18 students (25.4%) indicated yes in response 
to this question.  

During the unit, students worked in pairs on the activities. 
In consultation with the teacher, we selected 12 pairs as 
focal groups to represent a range of interest and prior 
academic performance in science class. We interviewed 
these focal group students before and after the unit to elicit 
their understandings of evolutionary mechanisms. We also 
video recorded their interactions with Frog Pond software 
during class. In this paper, we present an analysis of pre- 
and post- interviews of one focal pair, Charlie and Aaron.  
We selected these two students for analysis for three 



reasons: 1) Data integrity: Charlie and Aaron participated in 
all 5 Frog Pond activities as a pair, which was not always 
the case with our other focal dyads. 2) Contrasting cases: 
Although they worked together, their interview responses 
indicated stark differences in the sophistication of their 
reasoning. 3) Representativeness. Taken together, their 
responses were representative of other focal students.  

Written Pre- and Post-Assessments 
In addition to our focal interviews, 71 participants took a 
written assessment before and after the unit that included 
questions on evolution and computational thinking. The two 
assessments were identical except for a demographic 
questionnaire at the end of the pre-assessment. The 
assessments included nine Likert scale questions on a five-
point scale about students’ evolution attitudes and beliefs 
(e.g. I know a lot about evolution. Evolution explains the 
origin of insects. Evolution is not happening today). We 
constructed a measure, Evolution Attitude, as the average of 
seven of these items (Cronbach’s alpha = 0.70). Students’ 
average pre-assessment score was 3.49 (SD=0.71) 
compared to a post-assessment score of 3.75 (SD=0.76). 
This difference was significant: t(70) = -3.97, p < 0.001.  

The assessments also included a scenario describing the 
predator—prey relationship of cheetahs and gazelles as a 
way to elicit student reasoning around concepts of natural 
selection and co-evolution. The short scenario was followed 
by a series of six open-ended questions. To evaluate student 
responses on these questions, we developed a coding 
scheme based on prior research on evolution concepts (e.g. 
inheritance, differential survival, and variation). We blinded 
students’ written assessments so that the researchers could 
not see age, sex, race/ethnicity, or other background 
information. The assessments were then randomized so that 
researchers could not tell whether they were evaluating a 
pre- or post-assessment. Two researchers independently 
coded a set of 40 random student assessments. For this set, 
they achieved a 94.25% agreement rate (Cohen’s kappa = 
0.68). After establishing inter-rater reliability, the 
researchers divided up and coded the remaining 
assessments. Individual codes were assigned only once 
across all six open-ended prompts, even if a student 
mentioned the idea more than once. From this, we 
constructed a composite score. Students scored an average 
of 2.62 (SD=2.02) on the pre-assessment questions 
compared to an average of 3.56 (SD=2.53) on the post-
assessment questions. This difference was significant t(70) 
= -3.00, p < 0.002. The coding suggests that student 
answers were more elaborate in the post-assessment.  

With these results as a backdrop, we turn to the main focus 
of this paper, which is a qualitative analysis of our clinical 
interview data.  

Interview Question 
In both pre- and post- interviews, we gave students a 
modified version of a scenario that was commonly used in 
the literature [1]: “Cheetahs are able to run on average 

about 60 miles per hour when chasing prey. Their main 
source of food, gazelles, can also run on average about 60 
miles per hour. Cheetahs and gazelles typically live for 
around 10 to 20 years. Many thousands of years ago, the 
ancestors of both cheetahs and gazelles could run only 
about 20 miles per hour.” Students were then asked to 
elaborate on “how a scientist would explain how the ability 
to run fast evolved in cheetahs and the gazelles?” 

After students provided initial explanations, we asked them 
to create a hypothetical computational model of the 
scenario by writing down instructions that specify the 
interactions of agents in the scenario. Specifically, the 
question stated: “Let’s say that you are creating a computer 
model of the cheetahs and gazelles, and how they interact 
and change over long periods of time. What kinds of 
instructions would you use in your model?” Students were 
provided with paper and pen to draw their program, and 
explain how it would run over time. 

ANALYSES AND FINDINGS 
We used a bottom-up approach [2] to analyze two 
complementary sources of data: transcripts of students’ pre- 
and post- interviews, and the code they had produced on 
paper. We analyzed the code to investigate the extent to 
which it would account for evolutionary change. This 
involved examining whether students provided an 
explanation for differential survival and/or reproduction, 
whether the code involved an individual changing within its 
lifetime, and whether they took genetic and trait variations 
into account. This analysis led to the identification of a 
salient shift in the nature of students’ code that we describe 
in the Findings section below. 

In addition, through iterative rounds of analysis, we also 
observed that in the course of the post-interview, students 
repeatedly referred to different aspects of Frog Pond to 
explain a distinct scenario about cheetah-gazelle co-
evolution.. This became another point of analysis, in which 
we focused on how students drew on their experience with 
Frog Pond, both explicitly and implicitly, to explain the 
new scenario.  

Finding 1. Shift from event-based to rule-based coding 
Analysis of pre- and post-programs revealed that both 
students shifted from an event-based coding approach to a 
rule-based approach. 

In the pre-interviews, when asked to create a program of the 
cheetah-gazelle interaction, both students described 
predation scenarios, in which cheetahs chase gazelles using 
some hunting strategies. Their descriptions resembled 
predation scenes that are usually seen in wild life 
documentaries such as Animal Planet. For example, in the 
pre-interview, Charlie’s approach to a simulation is event-
based. It involves events such as gazelles learning that 
cheetahs are dangerous if they see cheetahs killed other 
gazelles. It also shows that if cheetahs’ attacks are not 



successful, gazelles run away and cheetahs then know to 
use a different approach to hunt next time (Figure 3).  

Aaron did not write down complete simulation rules in the 
questionnaire (Figure 4.), but in the interview he explained 
how the simulation should work. Like Charlie, his 
explanation was also event-based. For instance, he says, “a 
hungry cheetah stays on the site and go after a gazelle with 
a comfortable distance”. The cheetah is “being quiet and 
staying under the grass, try to be less visible”. When being 
chased, the gazelle, “get hide, stand in the grass, try to 
make it difficult [for the cheetah to catch it]”. In this way, 
both Charlie and Aaron focused on specific events related 
to predation. However, they did not account for underlying 
mechanisms that caused changes in speed in both species. 
Their account did not include rules related to reproduction, 
death, and chance that result in these changes. Students’ 
program code in the post interview was strikingly different 
from that in the pre-interview. (See Table 1 and Table 2. 
Here, to save space, we have typed out their post-programs 
verbatim instead of providing scans of their hand written 
code.) 

 
Figure 3. Charlie’s pre-program. 

 
Figure 4. Aaron’s pre-program. 

 

Cheetah& & Gazelle&

Cheetah&chases&
gazelle&

If&cheetah&is&slow,&
and&doesn't&get&food,&
it&dies&

[if&full]&Chance&41%&
reproduce&
Offspring&speed&can&
vary&
If&cheetah&doesn't&
get&food,&it&finds&a&
different&way&to&
attack&gazelle&
If&cheetah&attacks&
gazelle,&(one&dies&
but)&other&gazelles&
learn&a&different&way&
to&run&

& If&gazelles&is&
slow,&it&dies&

If&gazelle&is&
fast,&it&
survives&and&..&

[if&full]&
Chance&41%&
reproduce&
offspring&speed&
vary&

Table 1. Charlie’s post-program. 

Cheetah& & Gazelle&

Move&left&75&
degrees&
Hunt&8&seconds&
[chance&50%&of&
getting&food]&
If&full,&hatch&

If&starving,&die&
Right&60&degrees&

& Right&65&degrees&
Run&away&50%&of&
death&

Eat&grass&
If&full,&hatch&

If&starving&or&
hurt,&die&

Left&70&degrees&

Table 2. Aaron ’s post-program. 

First, both students wrote specific rules for individual 
cheetahs and gazelles. The rules prescribed a set of 
behaviors that each individual animal would do over and 
over again throughout the simulation. For example, the rule 

if&full&P>&hatch&[with&41%&chance]&&&& (1) 

means that at each tick of the clock in the model, each 
animal checks its own internal state. If it is full, it 
reproduces with a 41% chance. Compared with the event-
based approach found in the pre-test, this rule-based 
approach shows that students focused more on the detailed 
mechanisms of the animal’s behavior than describing 
specific predation scenes. From a computational modeling 
perspective, the rules that students came up with in the 
post-test are plausibly executable by computational agents. 
These rules are more like lines of code that can actually be 
found in real scientific modeling programs. Representing 



evolutionary phenomena with rules is helpful to students in 
understanding evolutionary processes because it 
demystifies the changes that take place over long periods of 
time. Students can see that through each individual’s 
repeated executions of simple rules with some randomness, 
changes at the population level emerge as the result of the 
interaction between the species and the environment. It is 
not because of animals’ desires to change or due to some 
magic power that is driving the changes. This first finding 
may match expectations, given that students had just spent 
more than a week working with an agent-based modeling 
environment in which they were developing the code that 
governed agents actions. This becomes important as we 
look closer at how this shift also affected students’ 
reasoning about the evolutionary scenarios.  

Finding 2. Using Frog Pond as an object-to-think-with 
Students’ experiences with Frog Pond provided them with a 
resource to think through and reason about the coevolution 
of cheetahs and gazelles’ speeds, a distinct evolutionary 
scenario from that experienced with Frog Pond. At first 
glance, this might not seem particularly surprising. Students 
had spent 6 class periods using the Frog Pond environment. 
Hence, one would expect that they would refer to the 
environment when responding to questions in the post 
interview. However, the difference in the ways in which the 
two students referred to code from Frog Pond sheds light on 
why this is interesting. 

At the start of the post interview, neither student seemed to 
have a readymade explanation for the co-evolutionary 
scenario. Both students were constructing their explanations 
on the spot. This was seen in how both students drew upon 
their different parts of Frog Pond to explain the cheetah-
gazelle scenario. Below is an excerpt from Charlie’s 
interview. Charlie’s initial explanation was that animals 
keep running, so they get faster. While elaborating on this 
explanation, he started to generate another explanation by 
drawing on his experience with Frog Pond. 

Charlie: “Let's say now it's another gazelle or gazelles are 
together, the cheetah goes at it. All the gazelles will know to 
run quicker, but because they'll keep getting used to 
running and running, maybe they'll get faster from that…” 

Interviewer: “Okay.” 

C: “because they'll be able to run, like, right away quicker 
because what would usually happen was the gazelle's dead, 
and it's all over, but now the gazelles are running. Now, the 
cheetah comes, they run, run, run, they're getting faster.” 

I: “Okay. So, by getting faster, do you mean like they get 
more practice and so they grow stronger?” 

C: “Yeah...” 

C: “Or the only, or maybe what happened was, they might 
get a little faster, but what's more likely to happen is that 
the slower cheetahs, the slower gazelles, would die off.” 

C: “And there will only be faster gazelles, and then as time 
goes by, and the gazelles get a little faster by, you know, 
chance because when you… like with the frogs. There's a 
chance of the frog, when they are born, being big or small, 
but like, let's say the program was fitting for the big frogs to 
live, then the small ones would die. So, it's not like they're 
getting any bigger, it's just that the small ones are dying." 

At this point, a new explanation that is qualitatively 
different from his old idea came to Charlie for the first time. 
Prompted by his experience with Frog Pond, Charlie 
explained that it was more likely that slower animals would 
die off and only the fast ones survive. This explanation 
became more convincing to him over his old idea of 
animals getting more practices to become faster. What we 
would like to highlight here is that Charlie for the first time 
attributed the change of running speed to the population 
level, instead of to the individual level. The new 
explanation includes two important mechanisms of 
evolution: differential survival and chance of inheritance, 
which he had encountered in the Frog Pond environment.  

A little later, as Charlie was constructing code, he included 
several rules that reflected Frog Pond code (Table 1). For 
instance, one of the rules he included was: 

offspring&speed&can&vary       (2) 

This rule was intended to account for variation at birth—an 
offspring’s traits can be different from partners in random 
ways, which is the source of difference in a population. Not 
only did Charlie include a micro-level rule that produces 
variations, but he also described macro level consequences 
of agents enacting such rules—differential survival. In other 
words, he connected the levels. 

Similarly, Aaron’s constructed code also included elements 
of rules in Frog Pond (Table 2). In addition, he explicitly 
referred to his experience with Frog Pond when asked to 
explain this code. 

Aaron: “It's a lot slower [in the real world] than it is in the 
program, and then as soon… like, I'm going to actually add 
like, a chance of it [the cheetah] eating him [the gazelle]. 
Like, 50 percent because they're both the same speed. It's 
even. And if full then they hatch, but if they're starving, 
and they haven't eat, like real life, they'll die. And then I just 
put like, moving right, because they don't normally move 
left. And then for gazelles… 

I: “So, why did you need to write there if they were moving 
left? Why was that… a problem?” 

A: “In the one that we did in the class, if they don’t move, 
they couldn’t get the flies. But you had to move them to get 
closer to the flies and beetles to eat them. And in real life, 
cheetahs have to… they have to move left and right to find 
gazelles and hunt, and that's how they… that's why they 
have to move. 



A little later, when asked why he included instructions to 
move “left” and “right”, he answered: 

A: “Because if they only go left, like, I'll use the frog 
again, the model… like, if the frogs only went left, they'd 
eventually fall off the pad. But if they went left and then 
like, spun… or, if they went left and then went right they 
might avoid the water and avoid death and live longer.” 

I: “So, how are you thinking it's important here, with the 
cheetahs and the gazelles?” 

A: “Since they don't have water around them, like the water 
in the model, the gazelle, if it goes only… if goes only left, it 
could end up… it could end up without any like, longer 
grass, it could end up in another… like a desert or 
something and not have the food, like, enough food.” 

This excerpt revealed that Aaron drew on his programming 
experience in Frog Pond to explain his code for the cheetah-
gazelle scenario. Like Charlie, Aaron was also able to draw 
on Frog Pond code to reason through some parts of the 
gazelle-cheetahs scenario. However, Aaron only drew on 
Frog Pond when asked to directly program the cheetah-
gazelle scenario. He also used his Frog Pond experience in 
a more literal way: He thought that because in Frog Pond, if 
frogs move too far away from the center of the screen, they 
would fall off the lily pads into the water and die, so it 
would also be dangerous for cheetahs and gazelles to move 
too far off the center, because they would fall into some 
death zone, which is analogous to the water in the Frog 
Pond scenario. 

Unlike Charlie, who fiddled with changes at both individual 
and population levels, Aaron singularly drew on the frogs’ 
behavioral rules at the individual level and their immediate 
consequences. For instance, in the interview, he reasoned 
that he included the rule “move” because he had noticed 
that “if they [frogs] don’t move, they couldn’t get the flies”. 
However he did not explicitly trace how these rules result in 
population level changes when applied over multiple 
generations. Moreover, he did not include some rules 
important for differential survival such as the birth variation 
rule that Charlie had included. In this way, both Charlie and 
Aaron drew on Frog Pond to reason through a co-
evolutionary scenario in their post interview, albeit in 
different ways. While Charlie made connections between 
the micro and the macro levels, Aaron did not. 

The finding that students using Frog Pond to think through 
this co-evolutionary phenomenon also found support in the 
existence of salient “traces” from Frog Pond that were seen 
in students’ code. For instance, Charlie specified “41%” 
chance of reproduction as a rule in his hypothetical model. 
He said: 

C: I'll put has 41% reproduce, on the offspring speed can 
vary, like be any speed, and same thing with the gazelle. 
And then there's the chance, 41%, that it'd reproduce. 

I: Why 41? That's just a… [random percentage?] 

C: I put that because on the frog pond simulator thingy, me 
and my friend who had a really stable [population]. 

Charlie used the exact percentage from Frog Pond, which is 
not the intended takeaway from the unit, but this trace 
shows that he knew that a stable population is an important 
factor of an ecosystem, and the stability can be achieved by 
manipulating randomness in the system. Because the paper-
based code was not executable, he could not “tune” this 
number as he did with Frog Pond, but we interpret his use 
of this rule with the same probability value in the cheetah-
gazelle scenario as marking an analogous approach and 
perspective. Similarly, Aaron also used code blocks from 
Frog Pond, such as “left”, “right”, and “hatch” (Table 1). 
He thought being able to move around and reproduce are 
important for the animals to survive. However, he did not 
attempt to align these rules with the specific scenario of 
cheetahs and gazelles. Further, he had not discovered the 
underlying connections between the animals’ behavior and 
the distribution of various traits at the population level.  

The above examples reveal that Frog Pond became a 
resource for students to draw upon when reasoning through 
evolutionary phenomena. Though there was variation in the 
sophistication of their explanations, both students 
transposed elements from Frog Pond into their explanations 
and accompanying code in the cheetah-gazelle scenario.  

CONCLUSION 
This case study provides promising evidence that the code-
first Frog Pond environment facilitated learning about 
evolutionary mechanisms. After using Frog Pond, students 
shifted from adopting an event-based programming 
approach to a rule-based one. This shift is important 
because it suggests that students not only abstracted some 
regularities from their interactions with the code-first 
environment, but were able to modify and apply them to a 
different scenario with distinct evolutionary patterns. It also 
finds support in the literature that programming facilitates 
abstraction of rule-governed regularities [12, 16].  Such a 
shift is likely to pave the way for students to further engage 
in agent-based modeling and to understand other complex 
phenomena. In addition, Frog Pond was taken up as an 
object-to-think-with about evolutionary change as students 
drew on different aspects of the environment to explain a 
co- evolutionary scenario. These trends further open 
directions for future design and research. In addition, 
students’ explanations about evolution have design 
implications. For example, in future iterations of the Frog 
Pond software and curriculum, we need to add features that 
help students make connections between micro-level rules 
and the macro level consequences in order to better support 
students’ understanding about evolution. 
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SELECTION AND PARTICIPATION OF CHILDREN 
We recruited a teacher who teaches six (6) seventh-grade 
science classes at a public middle school in an ethnically 
diverse suburb of a large Midwestern city. The teacher 
adopted the Frog Pond activities as a six-day curricular unit 
in her regular teaching, so all her 130 students were invited 
to participate in the study. The teacher explained the study 
to the students before the unit began and handed out both 
parental consent forms and student assent forms. About 100 
students consented with the permission of their parents, and 
participated in the study.  
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