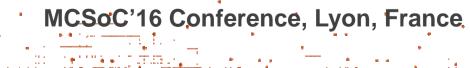
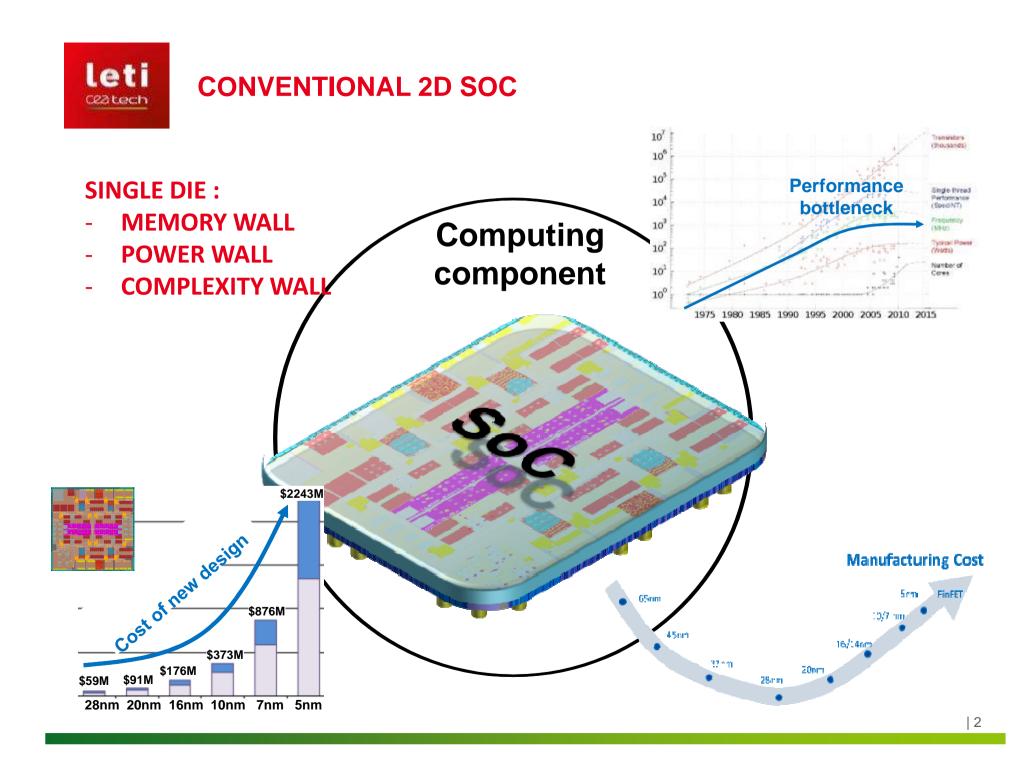


FROM 3D TECHNOLOGY TO 2.5D AND 3D MANY-CORE ARCHITECTURES


Package


Pascal Vivet | Cea-Leti | 21-22 Sept 2016

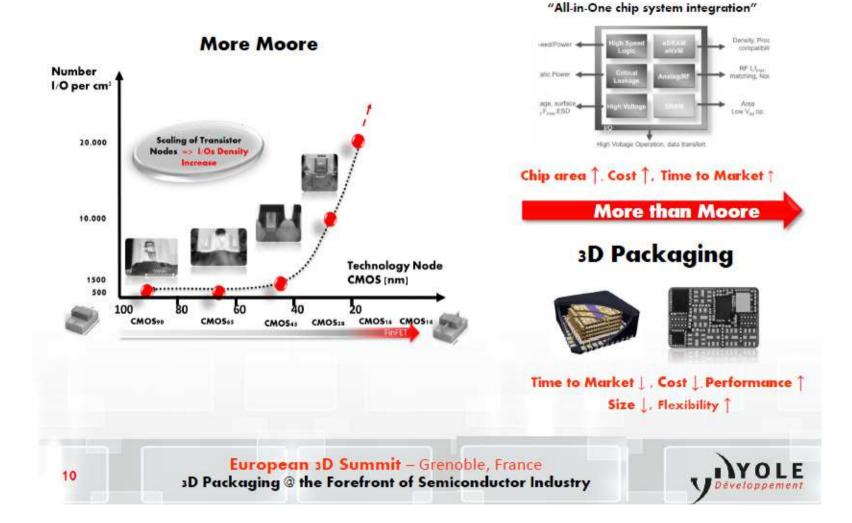
1

CHALLENGES OF HIGH PERFORMANCE COMPUTING

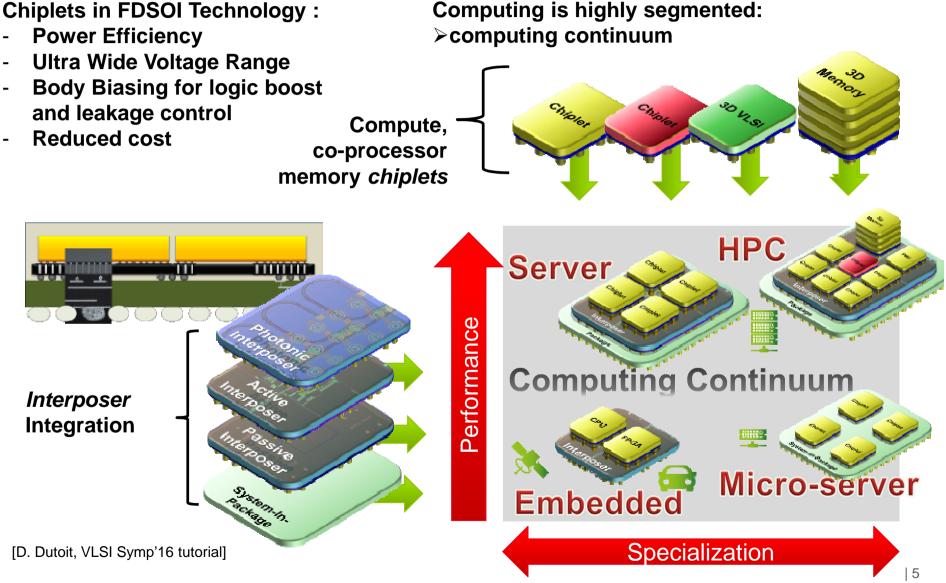
How to fit more ?

- ... More cores
- ... More Memory
- ... Memory closer to core
- ... Computing Model
- ... Power Efficiency
- ... Thermal Dissipation

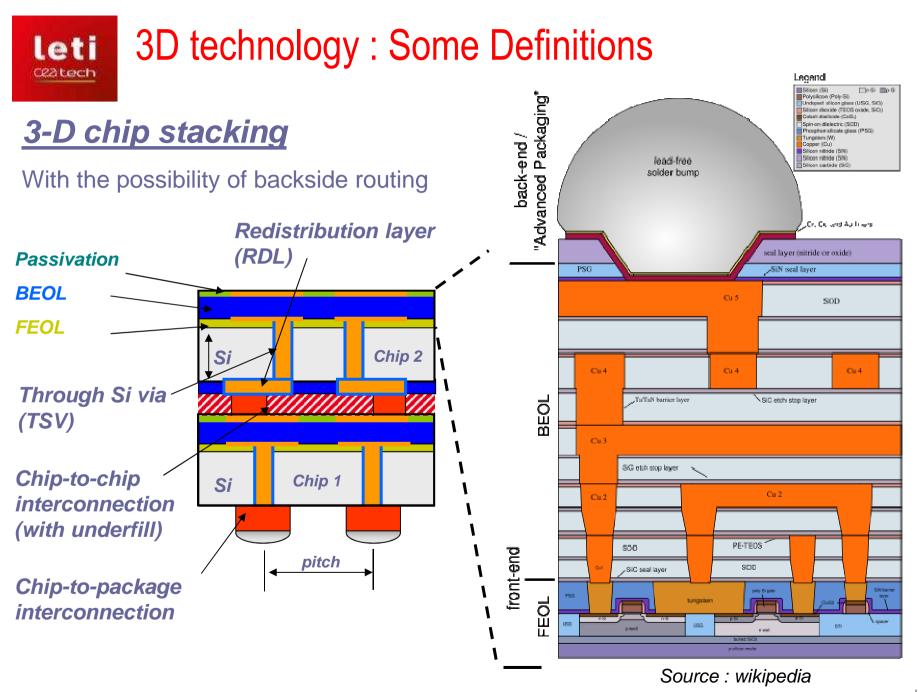
& cost !

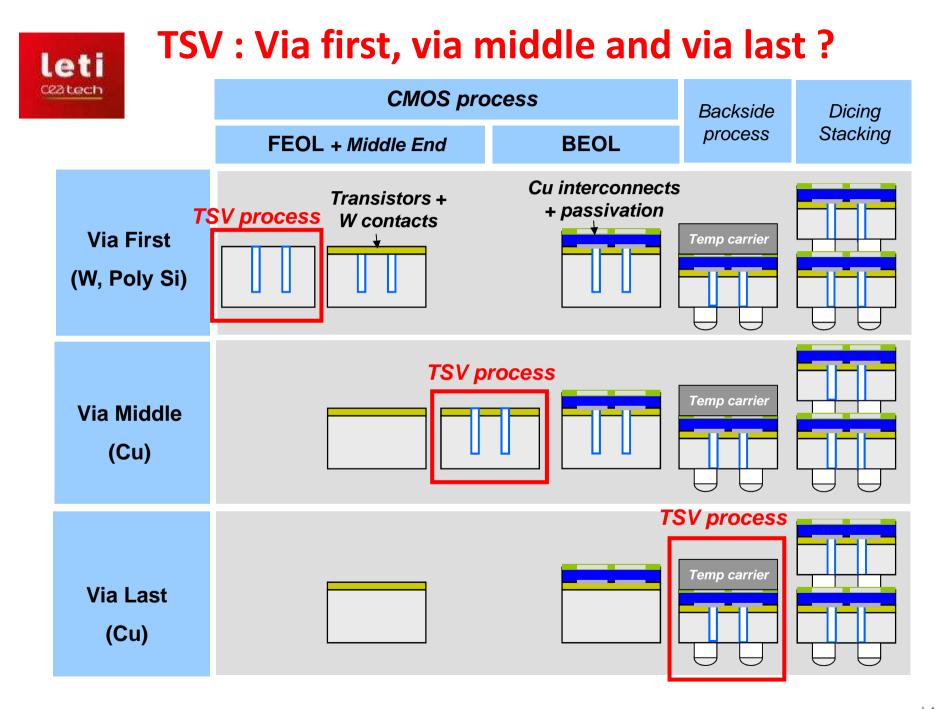


Computing Applications

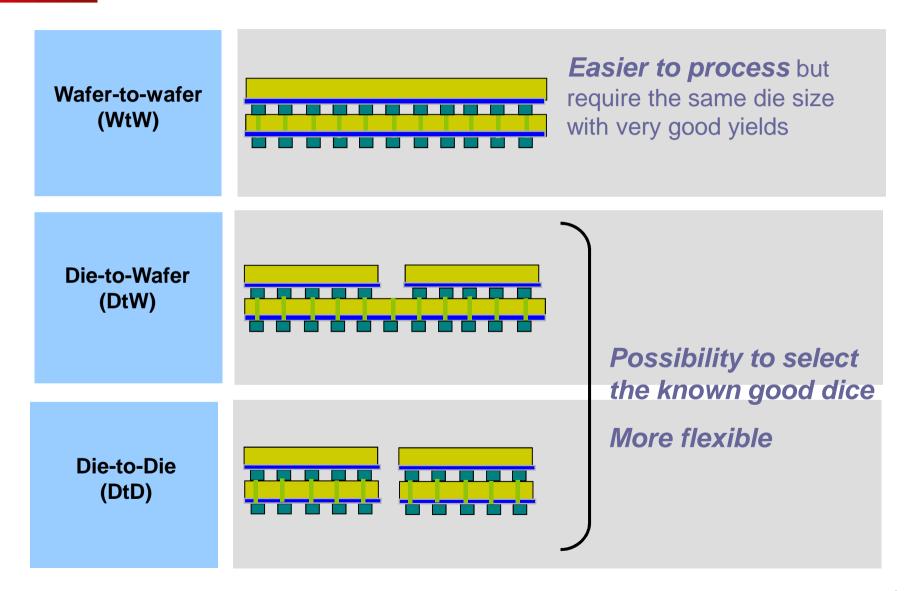


leti



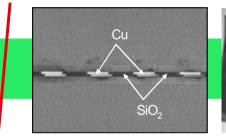


- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives

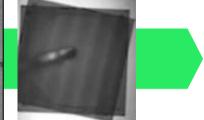

- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives

3D Stacking strategy : Wafer ? Die ?

3D Si technologies – focus on interconnection leti Ceatech


3D SILICON TECHNOLOGY / FINE PITCH CHIP-TO-WAFER ROADMAP

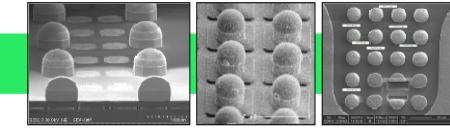
Cu/Sn solder µbumps


with pre-applied underfill

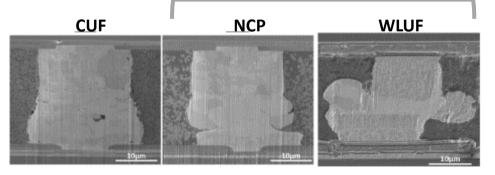
Hybrid Cu-SiO2 bonding

Glue-less and self-alignment

5µm 10 µm pitch



<1 µm alignment accuracy using selfassembling with hybrid bonding



Ø20 μm

40 µm

 $Ø10\mu m$ (in dev.) 20 µm

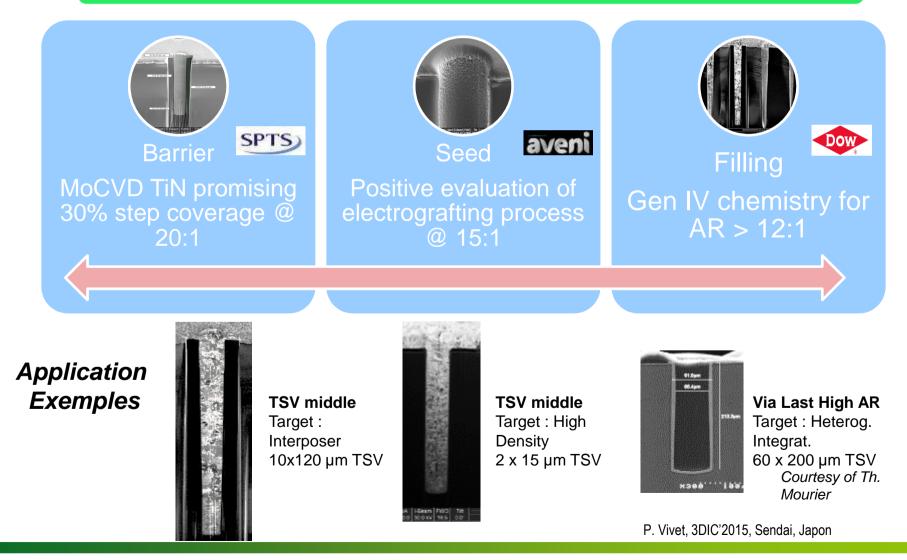
Pre-applied underfill solution

A. Garnier et al., ECTC 2014

Ø 80µm

160 µm

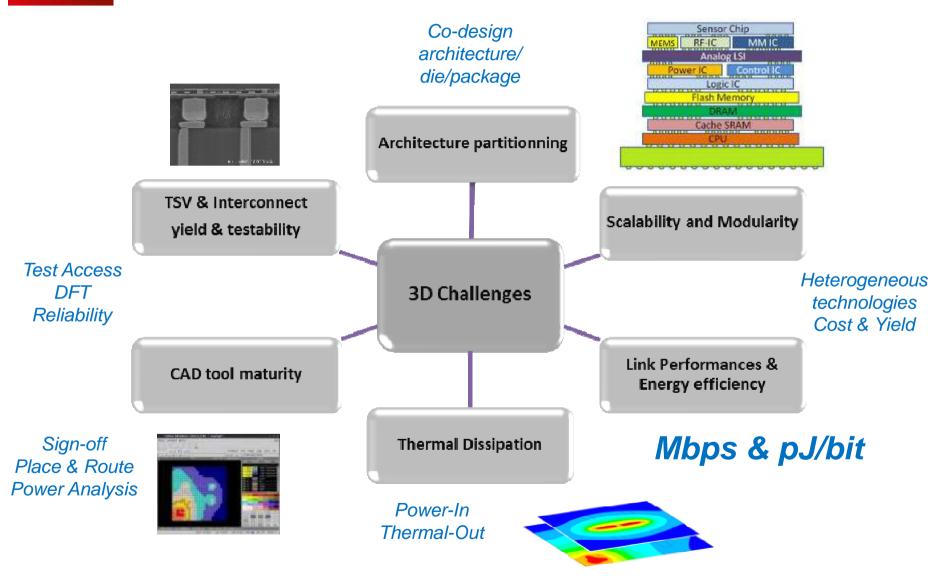
Size


Pitch

TSV High Aspect Ratio, Metallization Challenges

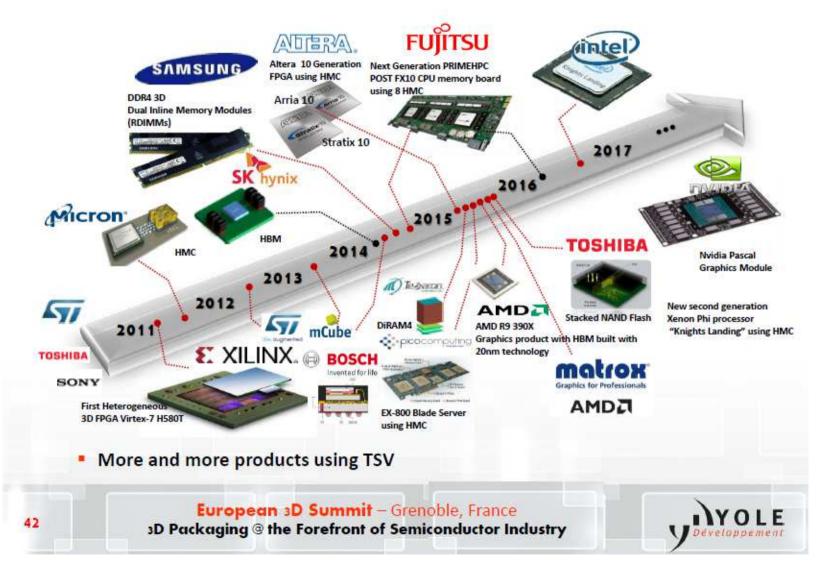
leti

Ceatech

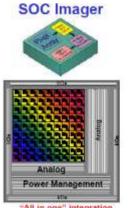

Silicon thickness ? → key contributor for thermal & stress management Need more agressive TSV aspect ratio for trading-off perf & thermal/stress

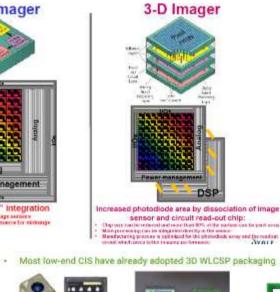
| 20

3D TECHNOLOGY : DESIGN CHALLENGES ?

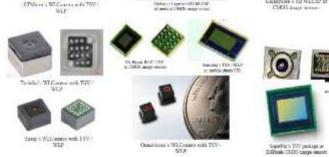


- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives

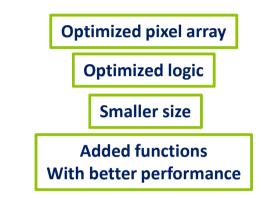

2.5/3DIC Commercial Announcements!

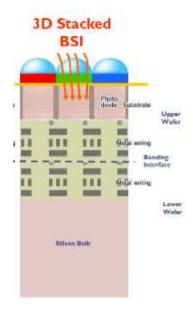


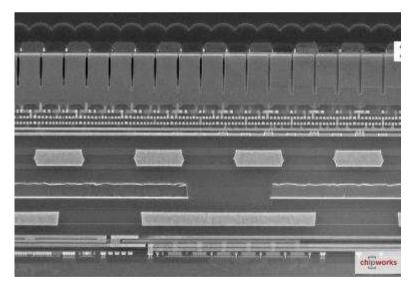
3D STACKED BACKSIDE IMAGERS


Most industrial players have adopted 3D Stacked BSI

"All in one" integration OCost effective for low-end image sensors > Large chip alos & low performance for minimum. to high-and apple stores

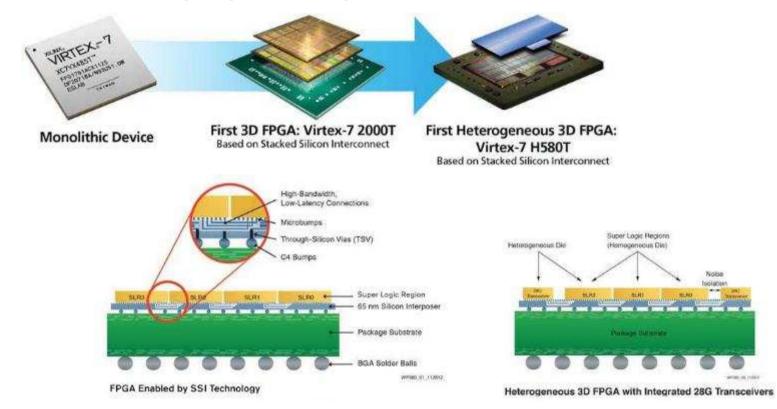


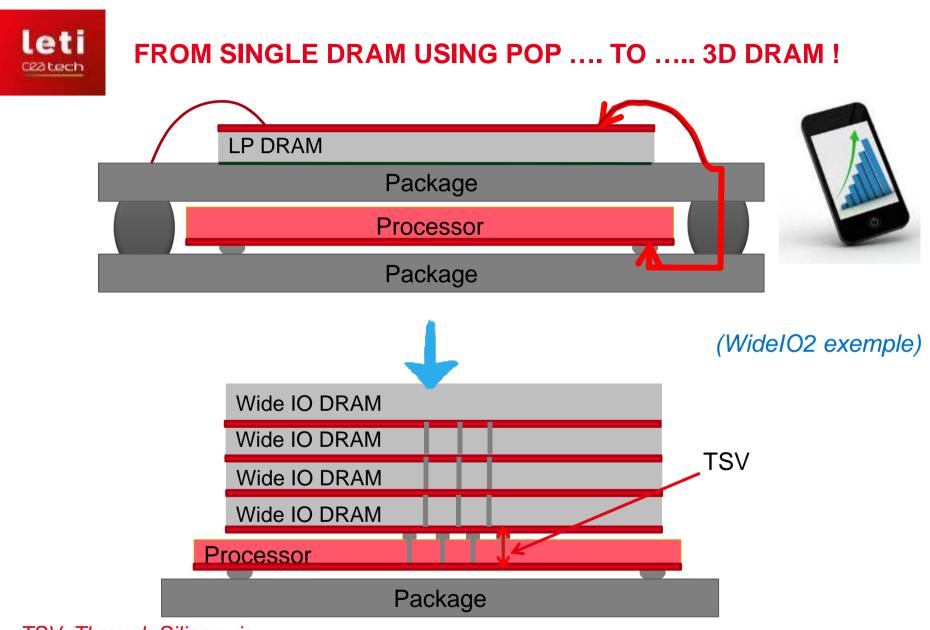




And Address of the Party

Source : JL Jaffard, Imaging Technologies and applications: Pioneers of TSV and 3D technologies, TSV Summit 2016

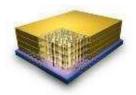




INTERPOSER (OR 2.5D) : XILINX VIRTEX 7 SERIE

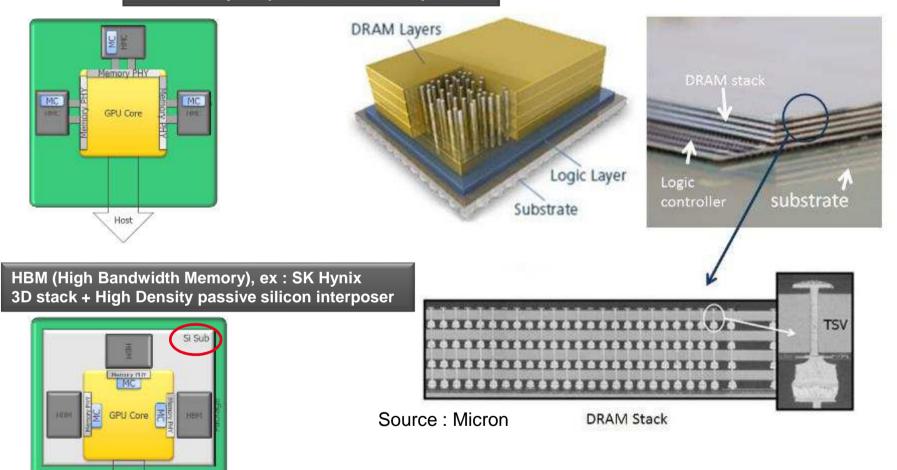
• XILINX: The first 2.5D interposer product

- FPGA is split in slices, stacked onto an interposer
- Main advantages : gain in yield for very large dies
- A full product family & roadmap is available
- Xilinx is now going to heterogeneous dies (for fast IO's)



TSV: Through Silicon via

3D DRAM : COMPARISON

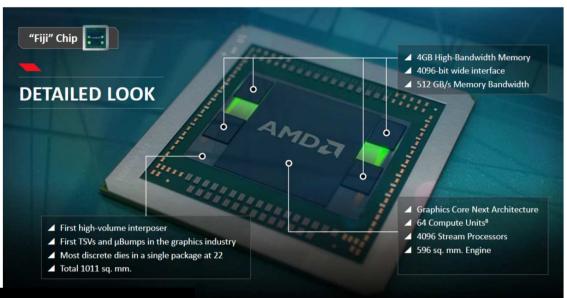

	LPDDR4	WidelO/2	НВМ	НМС	DiRAM4
		JEDEC.	JEDEC.	Hybrid Memory Cube	
			3D Memory Silcon die Base die Substrate		
		SK hynix	SK hynix SAMSUNG	Agicron	
Interface type	parallel	wide data	wide data	serial	wide data or serial
Data bus	16b DDR	64b DDR	128b DDR	16 lanes	64b
Channel	2	4-8	8	4-8	
I/O bandwidth	3.2Gbps @1600MHz	0.8Gbps @400MHz	1-2Gbps @500-1000MHz	10-15Gbps	
Total bandwidth	12.8GBps	25.6-51.2GBps	128-256GBps	160-320GBps	2TBps
Capacity	16GB	16GB	32GB Currently 1GB (Gen1) Next 4-8GB (Gen2)	32GB Currently 2-4GB	8GB
Total I/O	66	776	1616	256-512	
Integration / Packaging	POP, MCP	3D	2.5D	MCP	
Computing-In-Memory		NO	NO	YES	NO

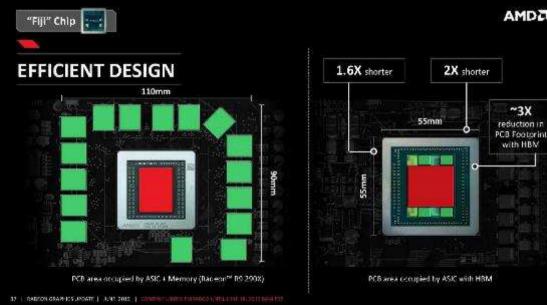
3D DRAM MEMORY STACKING : HMC VS HBM

HMC (Hybrid Memory Cube), ex : Micron 3D stack only, no passive silicon interposer

leti

Host



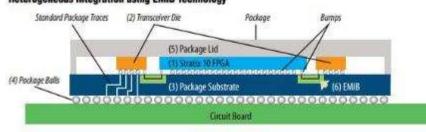


HBM PRODUCT EXAMPLES (1/2)

- AMD has presented in 2015 the first commercial GPU product including HBM Gen1 memories
- "Fiji" chip is part of the Radeon **Fury graphics card series**

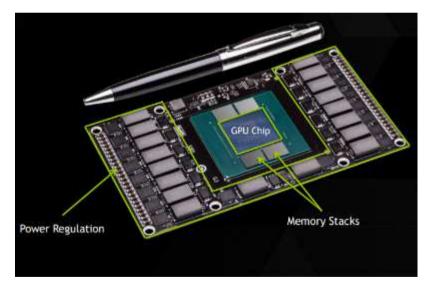
AMDZ ER 2015

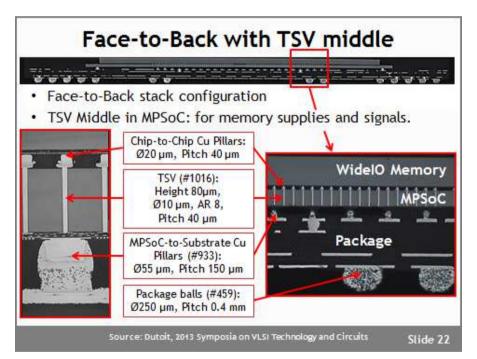
- **Combination of:** - HBM DRAM memory (3D) - Silicon interposer (2.5D)
- x3 Performance per Watt
- 60% gain in Memory BW
- 95% less PCB area versus GDDR5



FPGA

• Altera integrates HBM2 memories from SK hynix in Stratix 10 products


 Integration is performed thanks to the EMIB (Embedded Multidie Interconnect Bridge)
 Heterogeneous Integration using EMIB Technology


GPU

• NVIDIA will integrate HBM2 memory from Samsung in the "Pascal" GPU module expected in 2017.

3D Integration

Source: D. Dutoit, VLSI'13

Comparison with LPDDR3

Comparison with LPDDR3

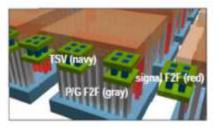
> 4x gain in power efficiency with 3D-TSV interconnect

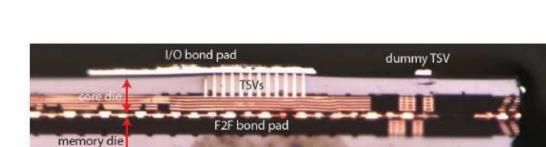
Memory Type		LPDDR3 - [1]	Widel0 - This work	
Package		PoP / Discrete	3D-IC	
BW (Gbyte/s)		6.4 GB/s	12.8 GB/s	
Total power			293 mW*	
VDD-MPSoC	MPSoC power		121 mW*	
VDD-Mem	Memory Power	4x gain	81 mW*	
VDD-I/O	I/O power		91 mW*	
I/O power efficiency		3.7 pJ/bit**	0.9 pJ/bit*	

 Yong-Cheol Bae, et al. "A 1.2V 30nm 1.6Gb/s/pin 4Gb LPDDR3 SDRAM with input skew calibration and enhanced control scheme," ISSCC-2012.

> Measurements conditions: * at speed (200MHz) 13N MBIST, 80°C ** Read, 5pF load without ODT

Source: Dutoit, 2013 Symposia on VLSI Technology and Circuits Slide 24

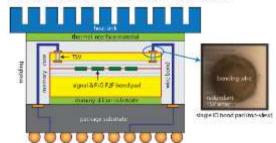



SRAM-ON-LOGIC : 3DMAPS MULTI-CORE

- 3D MAssively Parallel processor with Stacked memory - 130nm GLOBALFOUNDRIES + Tezzaron F2F bonding - 64 cores, 5-stage/2-way VLIW architecture - 256KB SRAM, 1-cycle access - 5mm X 5mm, 230 IO cells - 277MHz Fmax, 1.5V Vdd - 64GB/s memory BW @ 4W

64 Cores, Split in 2 layers CPU ⇔ SRAM, 5 stage VLIW pipeline,

- TSV: 50K used for IO & dummy
 - TSV: 1.2um diameter, 5um pitch
 - F2F: 50K used for memory access
 - F2F: 3.4um diameter, 5um pitch



2 logic tiers, face-to-face bonded

- Top die thinned to 12um, bottom die is 765um

- GLOBALFOUNDRIES 130nm technology + Artisan library/IP

[ISSCC'2012, GeorgiaTech]

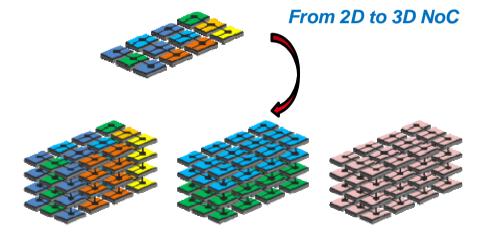
- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives

A 3D ASYNCHRONOUS NOC FOR ENERGY EFFICIENT MULTI-CORE ARCHITECTURES

Energy Efficient Multi-Core

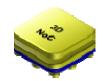
leti

22 tech

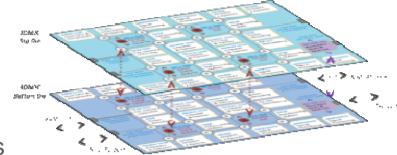

- Performances adaptation wrt. application requirements
- High energy efficiency : cores & system communications
 Design Challenge ?
- high bandwidth & energy efficient communication infrastructure

Use 3D technology for :

- Logic-on-Logic partitioning, to scale delivered performances
- Reduce inter-chip communication
 power consumption


From 2D to 3D Network-on-Chip

- Scalable and modular chip-to-chip communication
- Target both homogeneous & heterogeneous cores & technologies
- Asynchronous logic avoids global clocking, robust to thermal variations



3DNOC CIRCUIT : A LOGIC-ON-LOGIC MULTI-CORE

• 3D Network-on-Chip based multi-core

- Heterogeneous multi-core, MIMO 4G-Telecom application
- Stack 2 similar dies on top of each others
- No global clock, robust asynchronous 3D links
- Serial link for throughput / #TSV trade-off
- 3D-DFT & Fault Tolerance Scheme

	GeorgiaTech ISSCC'2012	Kobe Univ. ISSCC'2013	This Work
Architecture	Cache-on-CPU Manycore	Memory-on-Logic 1 layer DRAM	Logic-on-Logic 2 layers 3DNOC
Process & 3D technology	130nm F2F CuCu	90nm F2B TSV	65nm F2B TSV
3D Bandwidth	277 Mbps	200 Mbps	326 Mbps
3D I/O Power	-	0.56 pJ/bit	0.32 pJ/bit

• 3D Link Performances

@ 1

22 tom

- Fastest link, +20% (326 Mflit/s)
- Best Energy Efficiency, +40% (0.32 pJ/bit)
- Self-Adaptation to Temperature, a strong 3D concern

[P. Vivet et al. ISSCC'16]

An efficient 3DPlug (asynchronous 3DNOC including test & fault tolerance): a first step towards 3D-based computing architectures

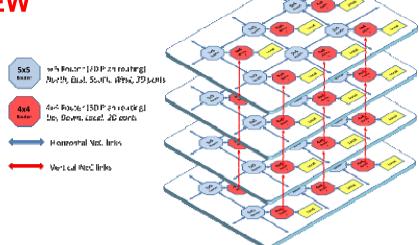
3D NOC & 3D LINK : OVERVIEW

•3DNOC router & topology

•No use of 7x7 ports router : too large & slow !

•Hierarchical router

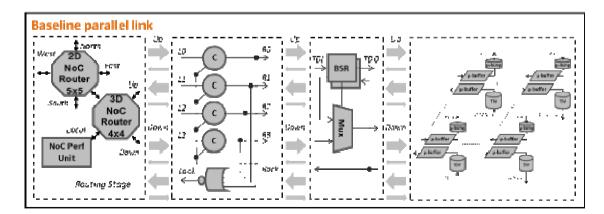
-5x5 routers for intra-die com.


-4x4 router for inter-die com. and cores

•Performances

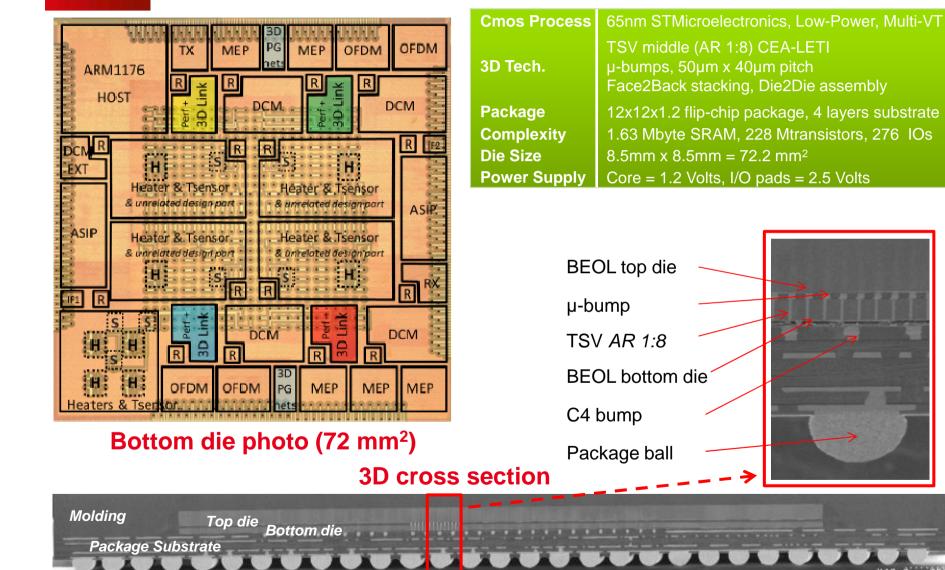
- •One-hop latency for intra-die com.
- •Two-hop latency for inter-die com.

•Preserve throughput


•Better area than 7x7 router

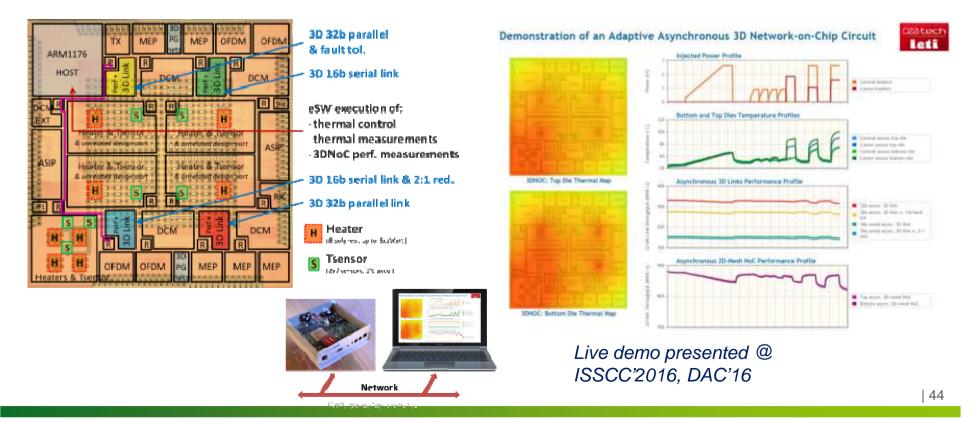
Fully implemented in asynchronous logic Robust 3D interface, no clocking issues

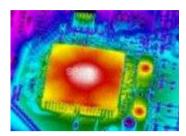
Each bi-directional up/down 3D link composed of:


- 3D Routing stage
- Pipeline stage
- DFT stage
- µbuffer & physical stage

3D TECHNOLOGY & 3DNOC CIRCUIT

[P. Vivet et al. ISSCC'16]

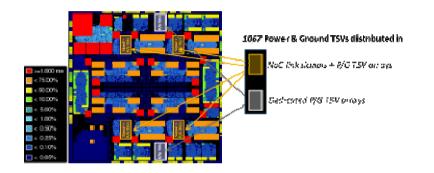

3DNOC CIRCUIT DEMONSTRATION : SELF-ADAPTATION OF ASYNCHRONOUS LINK PERFORMANCES WRT. TEMPERATURE

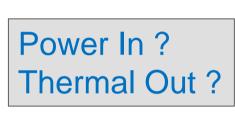

Thermal impacts in 3D?

- Due to 3D, increased power density, use of thin die (TSVs),
- Thermal impact on package, cost, reliability, & circuit performances

Live demo of 3DNOC circuit

- Thermal throttling using active heaters
- On-chip thermal measurements
- 3D NoC asynchronous link performance measurements with traffic generators showing self-adaptation





3DNOC scalability : from 2 layers to 8 layers?

Is 3DNOC circuit scalable up to 8 layers ?

impact of the current hooked up to

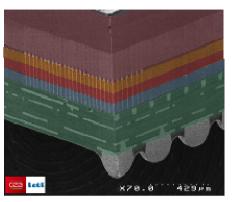
2 die stade

Die stack configuration

the top dies on the IR-drop over

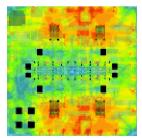
he MG network in bottom die

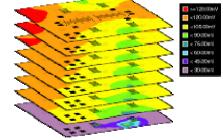
150


100

75

0 1


Single-die


Worst instance IR-drop (mV) 52 0.01 0.01 521

Power Map & Budget ~ 800 mW / layer

Voltage drop within the stack

Conserving of the best must exactly also current density analy around the TBV birdys

Main indexes Poroprinage scombines voltage drog onligi duna pounce)

APACHE/RedHawk 3D simulations

8 layers, Worst IRdrop ~ 125 mV

4-die stack

Impact of TSVs /

and a-burnes

Static IR-drop analysis

[P. Vivet, to appear in JSSC'17-01]

8-die stack

Bottom-die

@ 1.2V

reint (A)

ī

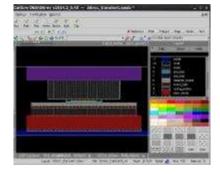
Top-die 1

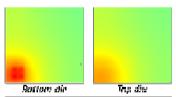
Top-die 2

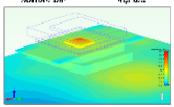
Top-die 3.

Top-die 4

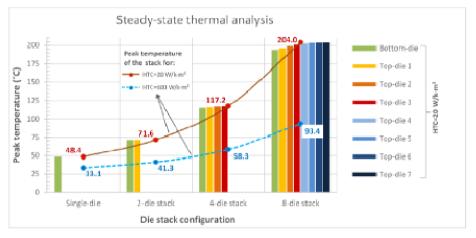
Top-die 5


Too-die 6 Top-die 7 ---- Total current


3DNOC scalability : from 2 layers to 8 layers?


Thermal Model & Study

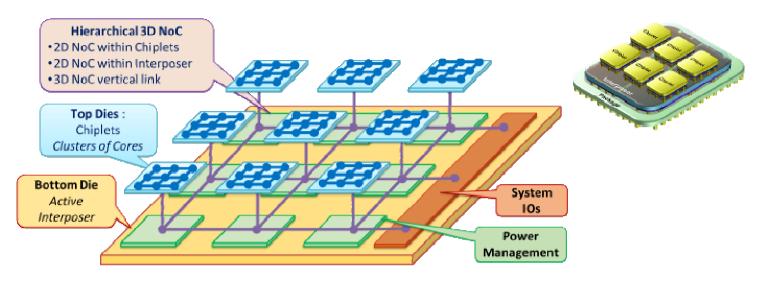
Power Map & Budget ~ 800 mW / layer Thermal model : 3D dies + package + socket + PCB


Thermal model (FinTHEPM93) for the 3D chip + package + boord

Thermal analysis using SAHARA & FIoTHERM

• 3DNOC Thermal Dissipation

Thermal Dissipation with regular packaging (8 layers, Pmax=6 Watts, Tmax=94°)


For limited power budget :

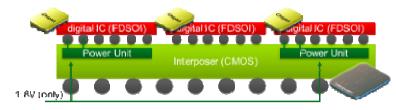
- Power delivery is sufficient (< 10% IRdrop)
- Max temperature < 100°C
- → multilayer 3DNOC is feasible up to 8 layers

- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives

leti **ACTIVE INTERPOSER PARTITIONING FOR MANY-CORE** C22 tech

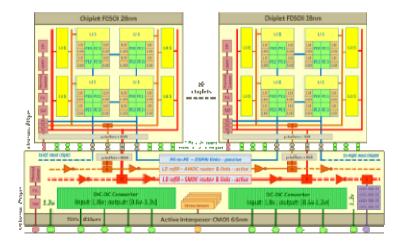
- « Active » Interposer : which added value ?
- Heterogeneous 3D
- System IOs
- Power Management

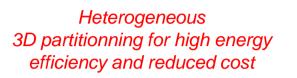
- Advanced tech node for computation within chiplets
- Mature tech node for communication/power/DFT/etc
- Chip-to-Chip Interconnect Hierarchical NoC, for energy efficient communications
 - On Interposer, for off-chip memory accesses
 - Chiplet power supply, without any external passives
- And most of all ... preserve (active) interposer cost !


Target low logic density (eg < 10%) to preserve interposer yield & cost

ACTIVE INTERPOSER FOR COMPUTING : 28FDSOI CHIPLETS 3D-STACKED ON A 65NM ACTIVE INTERPOSER **OFFERING A 96 CORES COMPUTE FABRIC**

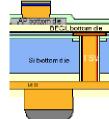
u-bumps Ø 10 µm Pitch 20 µm




28nm FDSOI chiplets (x6)

- Low Power Compute Fabric
- Wide Voltage Range (0.6V 1.2V)
- Body Biasing for logic boost & leakage ctrl

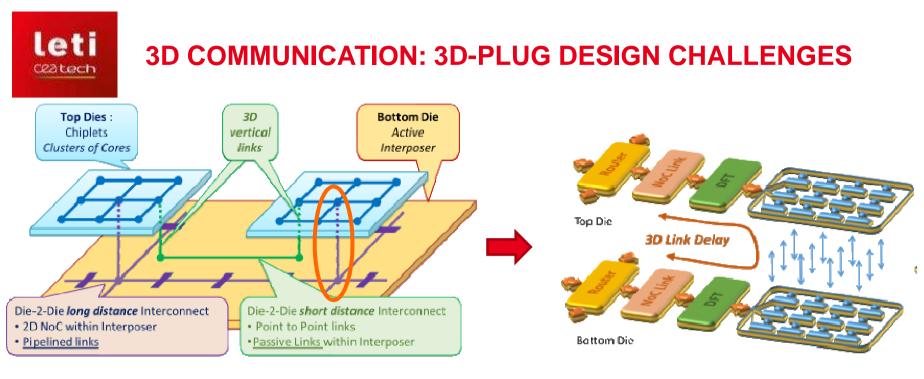
65nm Active Interposer


- Power unit (Switched Cap DC-DC conv.)
- Interconnect (Network-on-Chip)
- Test, clocking, thermal sensors, etc

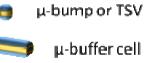
TSV Ø 10µm Height 100µm

DELEC.

Performance Targets ✓ 100 GOPS ✓ 10 GOPS/Watt ✓ 25 Watts total


Application Targets

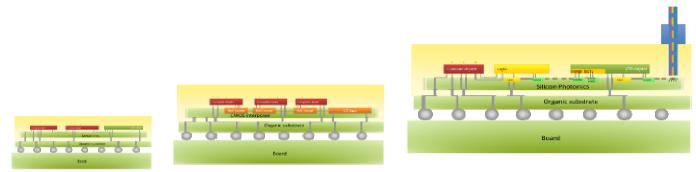
- ✓ Big Data
- ✓ Networking
- ✓ High Performance Computing



Cache Coherent Compute Fabric

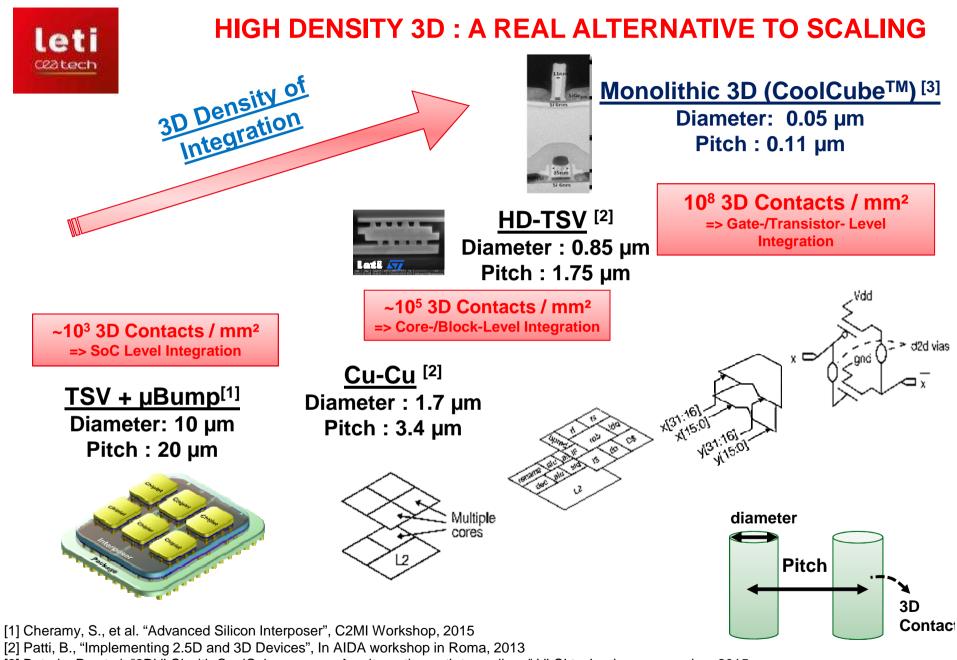
- 96 cores (MIPS-32bit)
- L1/L2/L3 coherent caches
- Implemented with 3D-Plugs -
- Full support of Linux OS
- [D. Dutoit, VLSI-Symposium'2016]
- [P. Vivet, S. Cheramy, 3DIC'2015]
- [P. Vivet, E. Guthmuller, ISVLSI'2015]

• Chip-to-Chip Active or Passive NoC links High throughput, Low latency, robust interface


- 3D-Plug need to cope with :
 - DFT interface : muxes for Boundary Scan cells
 - Electrical Interface : µ-buffer cell design
 - Physical interface : layout constraints of µ-bump/TSV array, PG grid, etc.
 - Logical interface : protocol signalling, timing margins, etc.

- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives

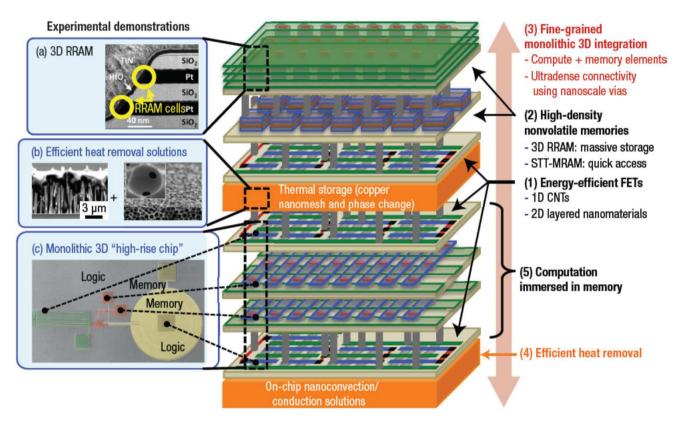
ON-CHIP COMMUNICATION ON INTERPOSER : PASSIVE, ACTIVE OR PHOTONIC ?


Metallic 1-4 chiplets		Active 6 chiplets	Photonic 6-10 chiplets		
2015		2017	2020		
Technology	Metallic	Active	Photonic		
On-chip bandwidth	≤ 250 Gb/s	≤2 Tb/s	>4Tb/s (>2x)		
Number of cores	≤ 16	≤ 36	> 72 (>2x)		
Power for on-chip com	~ 1 W	~ 20 W	~ 20 W (~1x)		

 Photonic : The Scale-up/Scale-out Technology !
 For a given power envelop, it will offer larger traffic bandwidth, & integrate more cores onto a single package

Source: Thonnart, Y., Zid, M. "Technology assessment of silicon interposers for manycore SoCs: Active, passive, or optical?" NoCS 2014

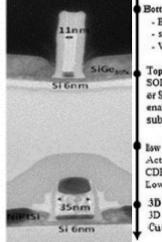
- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives


[3] Batude, P., et al. "3DVLSI with CoolCube process: An alternative path to scaling ." VLSI technology symposium 2015

23/09/2016 | 85

3D TECHNOLOGY AND NEW COMPUTING PARADIGM

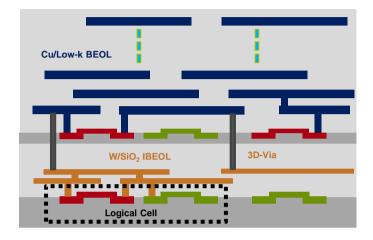
N3XT Architecture


- Monolithic 3D
- 3D RRAM
- CNT FET
- Tight memory-computing integration

Claim a ~ x1000 gain in energy efficiency gain (from technology, architecture)

« Energy-Efficient Abundant-Data Computing: The N3XT 1,000x », M. Sabry & al, Computer, 2015, Volume: 48, Issue: 12

MONOLITHIC 3D : COOLCUBE[™] PROCESS & DESIGN

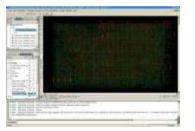


Bottom FET processing - BULK, FINFET, FDSOL. - standard process - W/SiO2 metal lines

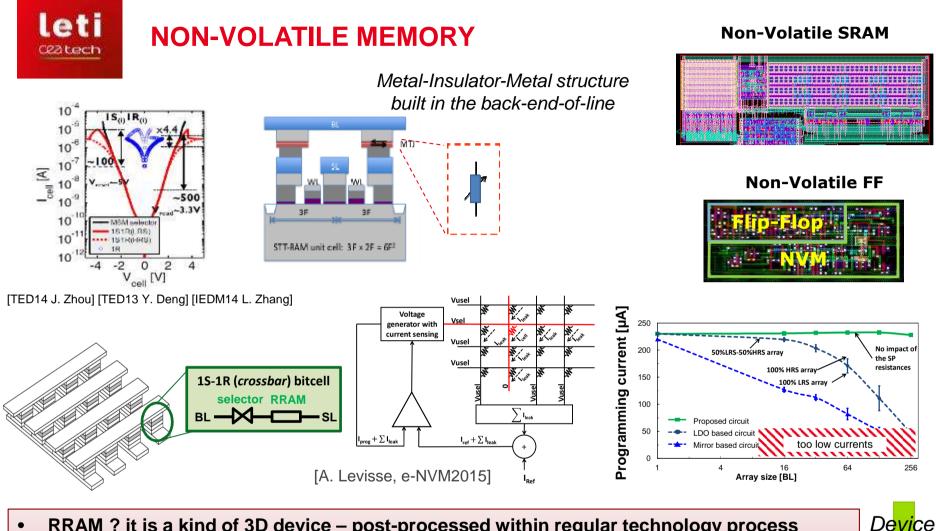
Top active by direct bonding: SOI and etch back or SMART CUT TM process enable to obtain large variety of substrates material and orientations

low Thermal Budget Top FET Activation: SPER. or ns laser anneal CDE Low temperature epitaxy Low TB and k spacers

3D contact realization and BEOL 3D via= standard W plug in oxide Cu/ Low k metal lines


Top layer @ low thermal budget (500/550°C)^[1]
 High alignment precision process
 Up to 10⁸ 3D Vias per mm² => 10⁴ x than Cu-Cu or HD-TSV


EDA collaboration : Architecture level (Atrenta) ; Signoff DRC/LVS (Mentor)
 EDA tools for 3D High Density Place and Route : *required* !


□Up to 60% Area reduction & 25% better perf vs 2D 28 nm @ preliminary result^[2]

→ Objective : 1 node gain without scaling : 28nm / 28 nm ⇔ 14 nm

[1] P. Batude, et al., "3DVLSI with CoolCube process: An alternative path to scaling", VLSI technology symposium 2015.
 [2] H. Sarhan, et al., "An Unbalanced Area Ratio Study for High Performance Monolithic 3D Integrated Circuits", ISVLSI 2015.

- RRAM ? it is a kind of 3D device post-processed within regular technology process ٠
- Co-design between Circuit Architecture & Technology is mandatory ٠
- **Circuit Design : Crossbar exploration & Sneak Path compensation** •
- System Design : non-volatile processor for IoT : fast wake-up, NV-FF, NV-SRAM, NV-REG •
- Going Further ? Advanced research on-going : Logic-in-Memory, Neuromorphic

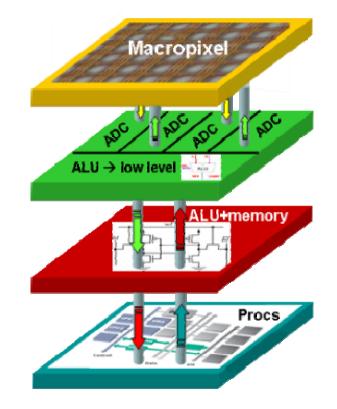
Sy<mark>st</mark>em

4 LAYERS SMART IMAGER

L1 : image capture

• BSI (Back Side Illumination)

L2 : read out circuit

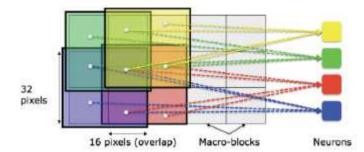

- ADC (analog & digital)
- Analog processing

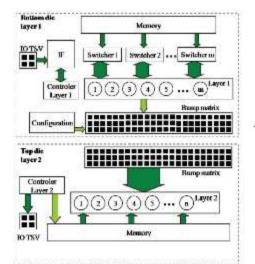
L2 : low level processing

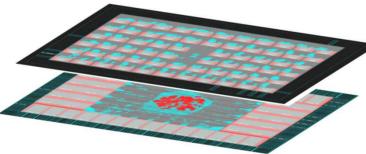
- SIMD digital processing array
- Distributed Memory, 1st level

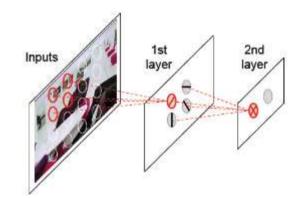
L3 : medium level processing

- Distributed Memory, 2nd level
- Host interface, System Communication
- Image processing




LOGIC-ON-LOGIC : 3D NEURAL NETWORK CIRCUIT


Neural Networks

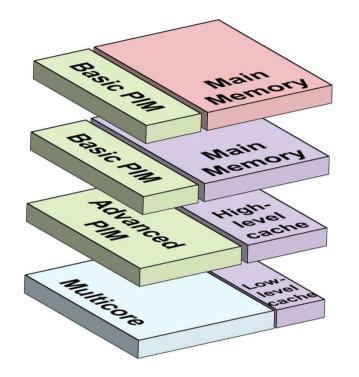

- Classically divided in two layers of computation
- Difficult to implement in 2D, due to high congestions
- Very well adapted to 3D : one neuron layer per die !

Compared to 2D, 3D offers : 2x better total area 25% better in power

Component or Block	Power (mW)	Power (%)	Area (μm^2)	Area (%)	Critical path (ns)
TOTAL	353.90	100.00	3,634,195.44	100.00	6.63
Layer 1	247.62	69.97	911,395,45	25.08	
Decoder	0.35	0.10	5,913.60	0.16	
Configuration	0.03	0.01	2,442.40	0.07	
Synapses (RAM)	208.10	58.80	431,636.64	11.88	
Neuron	39.15	11.06	471,402.80	12.97	
Layer 2	106.28	30.03	2,722,799.99	74.92	
Decoder	0.42	0.12	7,495.99	0.21	
Configuration	0.04	0.01	3,219.20	0.09	
Synapses (RAM)	90.18	25.48	2,544,723.20	70.02	
Neuron	15.64	4.42	167361.60	4.61	

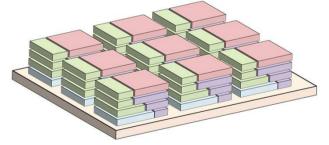
Table 1. Characteristics and breakdown of (two-layer) 3D circuit.

Component or Block	Power (mW)	Power (%)	Area (µm ²)	Area (%)	Critical path (ns)
TOTAL	428.24	100.00	7.974,762.94	100.00	9.00
Decoder	1.05	0.24	13,497.90	0.17	
Configuration	4.32	1.01	4,506,958.60	56.52	
Synapses (RAM)	298.28	69.65	2,976,359.84	37.32	
Neuron	124.60	29.09	477,946.59	5.99	


Table 2. Characteristics and breakdown of (two-layer) 2D circuit.

[B. Belhadj, R. Heliot, P. Vivet, CASSES'2014]

More layers ? Tighter integration of Neuron, Memory, and NVM ?



ARCHITECTURE "DATA CENTRIC": A 3D VISION ?

Re-visit Processing-In-Memory thanks to new technologies ?

> Interposer integration for scaling

Distribute the processing within the memory hierarchy

- Memory hierarchy ? programming model ? some level of coherency ? Heterogeneous 3D integration
- Active Interposer, Non Volatile Memory technology, advanced node for computing **Scalability**
- Vertically : more memory layers
- Horizontally : more chiplets

- Introduction
- 3D Technology : an introduction
- State-of-Art on Circuits & Applications
- 3D Circuit Demonstrators
 - 3DNOC : A logic-on-logic multi-core
 - INTACT : An Active Interposer for computing
 - HUBEO : Photonic Interposer
- New Trends with High Density 3D technologies
- Conclusions & Perspectives

CONCLUSIONS & PERSPECTIVES

3D technology is mature and is already on the market !

• Imagers (Sony), MEMS

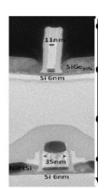
- Memory Cubes (Samsung, Hynix), with HMC, HBM, WidelO
- Xilinx Virtex7 (Passive Interposer)
- AMD & NVIDIA (GPU & HBM cubes on interposer)
- → 3D Technology and Value chain are ready and available
- → 3D CAD tools are getting mature

Logic-on-Logic partitionning

- Many number of demonstrators ...
- 3DNOC : a first large scale 3D Network-on-Chip architecture & circuit
 - Energy efficient 3D communication, 326 Mbit/s, 0.66pJ/bit
 - Demonstrated self-adapation to temperature, can scale up to 8 dies,

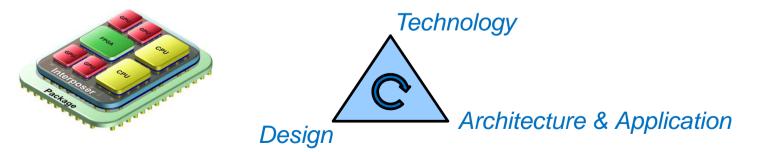
Chiplet partionning for scale-out architectures

- Cost effective, heterogeneous technologies,
- Active Interposer, INTACT, offering 96 cores, target 100 GOPS, 25 Watts
- Photonic Interposer, for future large scale many-core



CONCLUSIONS & PERSPECTIVES

3D technology is continously evolving !


- Smaller pitch, new technologies
- Copper-Copper Hybrid bonding
- Monolithic 3D (CoolCube™)

An architecture **R-evolution**

- Smaller & Denser 3D interconnects will be available soon,
- Many design & CAD challenges
- Need to re-think system and computer architecture
- New opportunites for many applications
 - Imagers, Neuro, Processing-In-Memory, Many other ones

CEA-LETI design & technology teams :

- S. Thuriès, Y. Thonnart, R. Lemaire, C. Santos, B. Giraud, D. Dutoit, F. Clermidy, J. Martin, E. Guthmuller, C. Bernard, I. Miro-Panadès, F. Darve, J. Durupt, G. Pillonnet, J. Pontès, D. Varreau,
- S. Cheramy, D. Lattard, L. Arnaud, F. Bana, A. Garnier, A. Jouve, T.Mourier

IRT-3D project

• Part of this work was funded thanks to the French national program "Programme d'Investissements d'Avenir, IRT Nanoelec" ANR-10-AIRT-05

Our Partners

