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From a dynamic process to a terminal distribution

If we specify a dynamic process for X and its initial conditions, we can
compute the distribution of X over a certain time horizon, [t,T ].

The reverse is not true.

Given a conditional distribution for X over [t,T ], there can be many
processes that can generate this distribution.
Knowing the dynamic process is important for hedging practices —
Dynamic hedging is more likely to work if the underlying process is
continuous instead of discontinuous.

The objective of this note: Given a dynamic process for X , derive the
probability density (PDF) of X and price options based on integration of
terminal payoffs over the probability densities (instead of based on dynamic
hedging arguments and PDEs).
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Formalizing the idea

Assume X is a Markov process: Any information about X up to time t is
summarized by Xt . Let f (XT |Xt) denote the conditional distribution of XT

conditional on time-t information (filtration Ft) under the risk-neutral
measure Q.

Let Π(XT ) denote the payoff of a contingent claim (derivative), which we
assume is a function of XT . Then, its time-t value is

pt = EQ
t

[
e−

∫ T
t

rsdsΠ(XT )
]

=

∫
X

e−
∫ T
t

rsdsΠ(XT )f (XT |Xt)dXT

Instead of solving PDEs, binomial trees, or simulating the process, we focus
on doing the integration based on the risk-neutral densities.

In most of the examples, I assume deterministic interest rates:

pt = e−rτ
∫
X

Π(XT )f (XT |Xt)dXT

where r now is the time-t continuously compounded spot rate of maturity
T − t.

Liuren Wu (Baruch) Fourier Transforms Option Pricing 3 / 22



The road map

For most models (processes) discussed in this class on security prices St , we
can derive the characteristic function or Fourier transform of the log security
return (ln ST/St) (semi-)analytically.

Given the characteristic function (CF), we just need one numerical
integration to obtain the probability density function (PDF) or cumulative
density function (CDF).

Given the Fourier transforms (FT), we just need one numerical integration
to obtain the value of vanilla options.

The integration is one-dimensional in both cases no matter how many
dimensions/factors the security price St is composed of.

We can apply fast Fourier inversion (FFT or some other methods) to make
the numerical integration (for both PDF and option prices) very fast.

Solving PDEs becomes difficult as the dimension increases.

Simulation works (slowly) for high-dimensional cases and is reserved for
pricing exotics.
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Characteristic function: definition

In probability theory, the characteristic function (CF) of any random variable
X completely defines its probability distribution. On the real line it is given
by the following formula:

φX (u) ≡ E
[
e iuX

]
=

∫ ∞
−∞

e iux fX (x)dx =

∫
Ω

e iuxdFX (x), u ∈ R

where u is a real number, i is the imaginary unit, and E denotes the
expected value, fX (x) denotes the probability density function (PDF), and
FX (x) denotes the cumulative density function (CDF).

CF is well defined on the whole real line (u).

For option pricing, we extend the definition to the complex plane,
u ∈ D ⊆ C, where D denotes the subset of the complex plane on which the
expectation is well defined. φX (u) under this extended definition is called
the generalized Fourier transform.

The generalized Fourier transform includes as special cases the Laplace
transform (when im(u) > 0) and cumulant generating function (when
im(u) < 0) as special cases (when they are well defined).
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Example: The Black-Scholes model

Under BSM, the log security return follows,

st ≡ lnSt/S0 =

(
µ− 1

2
σ2

)
t + σWt

The return is normally distributed with mean
(
µ− 1

2σ
2
)
t and variance σ2t.

The PDF is fs(x) = 1√
2πσ2t

exp

(
− (x−(µ− 1

2 σ
2)t)2

2σ2t

)
.

The CF is:

φs(u) = E
[
e iust

]
= e iumean− 1

2 u
2variance = e(iuµt−iu 1

2 σ
2t− 1

2 u
2σ2t)

= e(iuµt− 1
2 σ

2(iu+u2)t)

Under Q, µ = r − q.
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The inversion: From CF to PDF and CDF

There is a bijection between CDF and CFs: Two distinct probability
distributions never share the same CF.

Given a CF φ, it is possible to reconstruct the corresponding CDF:

FX (y)− FX (x) = lim
τ→∞

1

2π

∫ +τ

−τ

e−iux − e−iuy

iu
φX (u)du

In general this is an improper integral ...

Another form of the inversion

FX (x) =
1

2
+

1

2π

∫ ∞
0

e iuxφX (−u)− e−iuxφX (u)

iu
du.

The inversion formula for PDF:

fX (x) =
1

2π

∫ +∞

−∞
e−iuxφX (u)du =

1

π

∫ ∞
0

e−iuxφX (u)du.

All the integrals here should be understood as a principal value if there is no
separate convergence at the limits.
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Proofs

Preliminary results:

e iux = cos ux + i sin ux,

1
π

∫∞
−∞

eiuζ

iu
du = 1

π

∫∞
−∞

sin uζ
u

du = sgn(ζ),
2
π

∫∞
0

sin uζ
u

du = sgn(ζ),
For fixed x,

∫∞
−∞ sgn(y − x)dF (y) = −

∫ x
−∞ dF (y) +

∫∞
x dF (y) = 1− 2F (x),

φ(u)&φ(−u) are complex conjugates.

CDF inversion:

I =

∫ ∞
0

e iuxφX (−u)− e−iuxφX (u)

iu
du

=

∫ ∞
0

∫ ∞
−∞

e iux e−iuz − e−iux e iuz

iu
dF (z)du

=

∫ ∞
0

∫ ∞
−∞

2 sin u(x − z)

u
dF (z)du

=

∫ ∞
−∞

∫ ∞
0

2 sin u(x − z)

u
dudF (z) =

∫ ∞
−∞

πsgn(x − z)dF (z)

= π(2F (x)− 1)

Hence, F (x) = 1
2

+ 1
2π

I .

PDF inversion:

f (x) = F ′(x) =
1

2π

∫ ∞
0

(
e iuxφ (−u) + e−iux

φ (u)
)
du =

1

π

∫ ∞
0

e−iux
φ (u) du

Reference: Kendall’s Advanced Theory of Statistics, Volume I, chapter 4

Liuren Wu (Baruch) Fourier Transforms Option Pricing 8 / 22



Fourier transforms and inversions of European options

Take a European call option as an example. We perform the following
rescaling and change of variables:

c(k) = ertc(K , t)/F0 = EQ
0

[
(est − ek)1st≥k

]
,

with st = lnFt/F0 and k = lnK/F0.

c(k): the option forward price in percentage of the underlying forward
as a function of moneyness defined as the log strike over forward, k (at
a fixed time to maturity).

We can derive the Fourier transform of the call option in terms of the
Fourier transform (CF) of the log return lnFt/F0.

Hence, if we know the CF of the return, we would know the transform of the
option.

Then, we can use numerical inversion to obtain option prices directly.

There are many ways of doing this inversion.
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I. The CDF analog

Treat c (k) = EQ
0

[(
est − ek

)
1st≥k

]
=
∫∞
−∞

(
est − ek

)
1st≥xdF (s) as a CDF.

The option transform:

χI
c(u) ≡

∫ ∞
−∞

e iukdc(k) = −φs (u − i)

iu + 1
, u ∈ R.

Thus, if we know the CF of the return, φs(u), we know the transform
of the option, χI

c(u).
The inversion formula is analogous to the inversion of a CDF:

c (x) =
1

2
+

1

2π

∫ ∞
0

e iuxχI
c (−u)− e−iuxχI

c (u)

iu
du.

Use quadrature methods for the numerical integration.
It can work well if done right.
The literature often writes: c (x) = e−qtQ1 (x)− e−rt e−xQ2 (x) . Then, we must invert twice.

References: Duffie, Pan, Singleton, 2000, Transform Analysis and Asset Pricing for Affine Jump
Diffusions, Econometrica, 68(6), 1343–1376.

Singleton, 2001, Estimation of Affine Asset Pricing Models Using the Empirical Characteristic Function,”

Journal of Econometrics, 102, 111-141.
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Proofs: The option transform

χ
I
c (u) ≡

∫ ∞
−∞

e iukdc (k) = e iuk c (k)
∣∣∣∞
−∞
−
∫ ∞
−∞

c (k) iue iukdk

Checking the boundary conditions, we have c (∞) = 0 (when strike is infinity) and c (−∞) = (Ft − 0)/F0 = 1 when the

strike is zero. Hence, e iu∞c (∞) = 0 and we will carry the other non-convergent limit e−iu∞.

χ
I
c (u) = −e−iu∞ −

∫ ∞
−∞

c (k) iue iukdk

= −e−iu∞ − iu

∫ ∞
−∞

[∫ ∞
−∞

(
est − ek

)
1st≥kdF (s)

]
e iukdk

= −e−iu∞ − iu

∫ ∞
−∞

[∫ ∞
−∞

(
est − ek

)
1st≥k e

iukdk

]
dF (s)

= −e−iu∞ − iu

∫ ∞
−∞

[∫ st

−∞

(
e iuk+st − e(iu+1)k

)
dk

]
dF (s)

= −e−iu∞ − iu

∫ ∞
−∞

 est
e iuk

iu
−

e(iu+1)k

iu + 1

∣∣∣∣∣
st

−∞

 dF (s) .

We need to check the boundary again. limk→−∞ e(iu+1)k = 0 given the real component e−∞. The other boundary is

non-convergent est e−iu∞ , which we pull out and take the expectation to have

iu

∫ ∞
−∞

est e−iu∞

iu
dF (s) = e−iu∞

,

which cancels out the other nonconvergent term.

χ
I
c (u) = −iu

∫ ∞
−∞

[
e(iu+1)st

iu
−

e(iu+1)st

iu + 1

]
dF (s) = −

∫ ∞
−∞

e(iu+1)st

iu + 1
dF (s) = −

φ (u − i)

iu + 1
.
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Proofs: The option transform inversion

The proof for the option transform inversion is similar to that for the CDF. In particular, our scaled option value c(k) behaves
just like a CDF: c (∞) = 0 (when strike is infinity), and c (−∞) = 1 (when strike is zero). Hence, the inversion formula is

I ≡
∫ ∞

0

e iuxχ (−u)− e−iuxχ (u)

iu
du

= · · · (as before) =

∫ ∞
−∞

πsgn (x − z) dF (z) = −π (1− 2c (x)) .

Thus,

c (x) =
1

2
+

1

2π
I .
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II. The PDF analog

Treat c(k) analogous to a PDF.

The option transform:

χII
c (z) ≡

∫ ∞
−∞

e izkc(k)dk =
φs (z − i)

(iz) (iz + 1)

with z = u − iα, α ∈ D ⊆ R+ for the option transform to be well
defined.

The range of α depends on payoff structure and model.
The exact value choice of α is a numerical issue.
Carr and Madan (1999, Journal of Computational Finance) refer to α as the
dampening coefficient.
Given the transform on return φs(u), we know the transform on call.

The inversion is analogous to that for a PDF:

c(k) =
1

2π

∫ −iα+∞

−iα−∞
e−izkχII

c (z)dz =
e−αk

π

∫ ∞
0

e−iukχII
c (u − iα)du.

References: Carr&Wu, Time-Changed Levy Processes and Option Pricing, JFE, 2004, 17(1), 113–141.
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Proofs

χ
II (z) ≡

∫ ∞
−∞

e izk c (k) dk

=

∫ ∞
−∞

[∫ ∞
−∞

(
est − ek

)
1st≥kdF (s)

]
e izkdk

=

∫ ∞
−∞

[∫ ∞
−∞

(
est − ek

)
1st≥k e

izkdk

]
dF (s)

=

∫ ∞
−∞

[∫ st

−∞

(
e izk+st − e(iz+1)k

)
dk

]
dF (s)

=

∫ ∞
−∞

 est
e izk

iz
−

e(iz+1)k

iz + 1

∣∣∣∣∣
st

−∞

 dF (s)

We need to consider the boundary conditions at k = −∞. limk→−∞ e(iz+1)k = 0 as long as the real component of iz is

greater than −1. limk→−∞ e izk = 0 as long as the real component of iz is greater than 0. Hence, taken together, we need
the real component of iz to be greater than zero. If we write z = u − iα, with both u and α real, we have iz = iu + α. Hence,
we need α > 0 for the above boundary condition to converge. Given that ui > 0, we have

χ
II (z) =

∫ ∞
−∞

[
e(iz+1)st

iz
−

e(iz+1)st

iz + 1

]
dF (s)

=

∫ ∞
−∞

e(iz+1)st

iz (iz + 1)
dF (s) =

φ (z − i)

iz (iz + 1)
.
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Fast Fourier Transform (FFT)

FFT is an efficient algorithm for computing discrete Fourier coefficients.

The discrete Fourier transform is a mapping of f = (f0, · · · , fN−1)> on the
vector of Fourier coefficients d = (d0, · · · , dN−1)>, such that

dj =
1

N

N−1∑
m=0

fme
−jm 2π

N i , j = 0, 1, · · · ,N − 1.

FFT allows the efficient calculation of d if N is an even number, say
N = 2n, n ∈ N. The algorithm reduces the number of multiplications in the
required N summations from an order of 22n to that of n2n−1, a very
considerable reduction.

By a suitable discretization, we can approximate the inversion of a PDF
(also option price) in the above form to take advantage of the
computational efficiency of FFT.
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Return PDF inversion

Compare the PDF inversion with the FFT form:

fX (x) =
1

π

∫ ∞
0

e−iuxφX (u)du. dj =
1

N

N−1∑
m=0

fme
−jm 2π

N i

Discretize the integral using the trapezoid rule:
fX (x) ≈ 1

π

∑N−1
m=0 δme

−iumxφX (um)∆u, δm = 1
2 when m = 0 and 1 otherwise.

(trapezoid rule:
∫ b

a
h(x)dx =

(
h(a)+h(b)

2 +
∑N−1

k=1 h(a + k∆x)
)

∆x .)

Set η = ∆u, um = ηm.

Set xj = −b + λj with λ = 2π/(ηN) being the return grid and b being a
parameter that controls the return range.

To center return around zero, set b = λN/2.

The PDF becomes

fX (xj) ≈
1

N

N−1∑
m=0

fme
−jm 2π

N i , fm = δm
N

π
e iumbφX (um)η. (1)

with j = 0, 1, · · · ,N − 1. The summation has the FFT form and can hence
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Call value inversion

Compare the call inversion (method II) with the FFT form:

c(k) =
e−αk

π

∫ ∞
0

e−iukχII
c (u − iα)du. dj =

1

N

N−1∑
m=0

fme
−jm 2π

N i

Discretize the integral using the trapezoid rule:

c(k) ≈ e−αk

π

∑N
m=0 δme

−iumkχII
c (um − iα)∆u

Set η = ∆u, um = ηm.

Set kj = −b + λj with λ = 2π/(ηN) being the return grid and b being a
parameter that controls the return range.

To center return around zero, set b = λN/2.

The call value becomes

c(kj) ≈
1

N

N−1∑
m=0

fme
−jm 2π

N i , fm = δm
N

π
e−αkj+iumbχII

c (um − iα)η.

with j = 0, 1, · · · ,N − 1. The summation has the FFT form and can hence
be computed efficiently.
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FFT implementation

To implement the FFT, we need to fix the following parameters

N = 2n: The number of summation grids. Setting it to be the power of 2
can speed up the FFT calculation.

η = ∆u: The discrete summation grid width. The smaller the grid, the
better the approximation.

However, given N, η also determines the strike grid λ = 2π/(ηN). The finer the
summation grid η, the coarser the strike spacing returned from the FFT
calculation. There is a trade off: If we want to have more option value calculated
at a finer grid of strikes, we would need to use a coarser summation grid and
hence less accuracy.
The lower and upper bound truncation b = λN/2 is also determined by the
summation grid choice.
FFT generates option values at N strikes simultaneously. However, if the strike
grid is larger, many of the returned strikes are out of the interesting region.
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III. Fractional FFT

Fractional FFT (FRFT) separates the integration grid choice from the strike
grids. With appropriate control, it can generate more accurate option values
given the same amount of calculation.

The method can efficiently compute,

dj =
N−1∑
m=0

fme
−jmζi , j = 0, 1, ...,N − 1,

for any value of the parameter ζ.

The standard FFT can be seen as a special case for ζ = 2π/N. Therefore,
we can use the FRFT method to compute,

c(kj) ≈
1

N

N−1∑
m=0

fme
−jmηλi , fm = δm

N

π
e−νkj+iumbχII

c (um)η.

without the trade-off between the summation grid η and the strike spacing λ.

We require ηλ = 2π/N under standard FFT.
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Fractional FFT implementation

Let d = D(f, ζ) denote the FRFT operation, with D(f) = D(f, 2π/N) being
the standard FFT as a special case.

An N-point FRFT can be implemented by invoking three 2N-point FFT
procedures.

Define the following 2N-point vectors:

y =

((
fne

iπn2ζ
)N−1

n=0
, (0)N−1

n=0

)
, (2)

z =

((
e iπn

2ζ
)N−1

n=0
,
(
e iπ(N−n)2α

)N−1

n=0

)
. (3)

The FRFT is given by,

Dk(h, ζ) =
(
e iπk

2ζ
)N−1

k=0
� D−1

k (Dj(y)� Dj(z)) , (4)

where D−1
k (·) denotes the inverse FFT operation and � denotes

element-by-element vector multiplication.
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Fractional FFT implementation

Due to the multiple application of the FFT operations, an N-point FRFT
procedure demands a similar number of elementary operations as a 4N-point
FFT procedure.

Given the free choices on λ and η, FRFT can be applied more efficiently.
Using a smaller N with FRFT can achieve the same option pricing accuracy
as using a much larger N with FFT.

The accuracy improvement is larger when we have a better understanding of
the model and model parameters so that we can set the boundaries more
tightly.

Caveat: The more freedom also asks for more discretion and caution in
applying this method to generate robust results in all situations. This
concern becomes especially important for model estimation, during which
the trial model parameters can vary greatly.

Reference: Chourdakis, 2005, Option pricing using fractional FFT, JCF, 8(2).
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IV. Fourier-cosine series expansions
Fang & Oosterlee, A novel pricing method for European options based on Fourier-cosine series expansions, 2008.

Given a characteristic function φ(u), the density function can be numerically obtained via the Fourier-cosine series
expansion,

f (x) =
1

2π

∫
R
e−iux

φ(u)du ≈
N−1∑
j=0

δj cos
(

(x − a)uj
)
Vj

where uj = jπ
b−a

, Vj = 2
b−a

Re
[
φ(uj )e

iuj a
]
, and [a, b] denotes a truncation of the return range. Choosing the range

to be ±10 standard deviation away from the mean seems to work well: b, a = µ± 10σ.

Applying the expansion to the option valuation, we have

C(K , t) ≈ Ke−rt
N−1∑
j=0

δjRe
[
φs
(
uj
)
e
−iuj (k+a)

Uj

]

where Uj = 2
b−a

(
χj (0, b)− ψj (0, b)

)
with

χj (c, d) =
1

1 + u2
j

[
cos((d − a)uj )e

d − cos((c − a)uj )e
c + uj sin((d − a)uj )e

d − uj sin((c − a)uj )e
c
]
,

ψj (c, d) =

{ [
sin((d − a)uj )− sin((c − a)uj )

]
/uj j 6= 0

(d − c) j = 0

Works well. Some constraints on how [a, b] are chosen.
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