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Introduction

The study of topological spaces through algebraic invariants in algebraic topology introduced
new concepts in mathematics, such as category theory or homological algebraic theory, which are
nowadays autonomous fields of study. Algebraic topologists introduced the notion of homology
and cohomology of groups to describe the behavior of the fundamental group of a topological
spaces. This new concept is standing on its own and has become a new branch of algebra.
Group cohomology is essential in many aspects of algebra, such as representation theory.

This paper covers standard exercises about homological algebra and group cohomology.
Emphasis will be put on concrete computations. We first study basic homological algebra on
which group cohomology is grounded. Then we look at group cohomology itself to finish by
reviewing the low-dimensional interpretation of group cohomology. We will give an insight of
Galois cohomology.
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Chapter 1

Elementary Homological Algebra

The exercises of this chapter are based on the theory presented in Chapters 6 and 7 of the
reference [Rotman, 2009]. It discusses homology of chain complexes, projective resolutions,
and the derived functors Tor and Ext which are crucial for group (co)homology.

1.1 Homology Functors
We first present some exercises that study chain complexes and their homology.

Exercise 1.1.1. For any chain complex C•, the following are equivalent :

(a) C• is exact;

(b) C• is acyclic;

(c) The map f : 0• → C• is a quasi-isomorphism.

Proof. Let us denote d the differentials of C•.

(a)⇒(b) : For any integer n, by definition of exactness, we have im dn+1 = ker dn, and
thus :

Hn(C•) = ker dn
/
im dn+1 = 0.

Therefore C• is acyclic.

(b)⇒(c) : Since for all n we have Hn(C•) = 0, we get that the diagram commutes for all
n :

Hn(0•) Hn(C•)

0 0,

Hn(f)

i.e., f is a quasi-isomorphism.

(c)⇒(a) : Since f is a quasi-isomorphism, we get that Hn(C•) ∼= Hn(0•) = 0 for all n.
Therefore, for any z in ker dn, its homology class cls(z) = 0, i.e., z ∈ im dn+1. We have
just proved that ker dn ⊆ im dn+1, for all n ∈ Z, therefore ker dn = im dn+1 for all n.

Exercise 1.1.2. Let 0 → A• → B• → C• → 0 be a short exact sequence of chain complexes.
Show that if two of the three complexes A•, B•, C• are exact, then so is the third.
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Proof. The short exact sequence induces a long exact sequence in homology (see Theorem 6.10
in [Rotman, 2009]) :

· · · Hn+1(C•) Hn(A•) Hn(B•) Hn(C•) · · · . (?)

Recall that, from the previous exercise, a complex K• is exact if and only if Hn(K•) = 0 for all
n ∈ Z. Since the other cases are similar, let us prove that if A• and B• are exact, then so is
C•. Since A• and B• are exact, we have that Hn(A•) and Hn(B•) are trivial for all n. So by
exactnes of (?), we get that Hn(C•) is trivial for every n, so that C• is exact.

Exercise 1.1.3. Let f : C• → D• be a morphism of chain complexes. Show that if ker(f) and
coker(f) are acyclic, then f is a quasi-isomorphism.

Proof. Let us denote by f |im(f) the corestriction of f onto the subcomplex im(f) of D•. Let
i : im(f) ↪→ D• denote the inclusion. Since f is a morphism of chain complexes, we have the
following short exact sequences :

0 ker(f) C• im(f) 0,f |im(f)

and :
0 im(f) D• coker(f) 0.i

Since ker(f) is acyclic, the long exact exact sequence of homology induced by the first short
exact sequence implies that for every n : Hn(C•) ∼= Hn(im(f)), via Hn(f |im(f)). Similarly, since
coker(f) is acyclic, we get that Hn(im(f)) ∼= Hn(D•) via Hn(i), for every n. Composing the
isomorphisms, we get that Hn(C•) ∼= Hn(D•) via Hn(f |im(f))◦Hn(i) = Hn(f |im(f) ◦ i) = Hn(f),
for every n. Therefore f is a quasi-isomorphism.

Exercise 1.1.4. A chain complex C•, with differential dn : Cn → Cn−1, is called split exact
if it is exact and if moreover every submodule Zn := ker dn is a direct summand of Cn, i.e.,
Cn = Zn ⊕ Un, for some module Un. Show that :

(a) If C• is a split exact complex then Un
∼=→ Zn−1 for all n.

(b) The inverse of the previous isomorphism induces a morphism sn : Cn → Cn+1 such that
ker(sn) = Un and im(sn) = Un+1, for all n ∈ Z.

(c) The following are equivalent :

– C• is split exact;
– idC• and 0 are homotopic;
– C• is exact and there are morphisms sn : Cn → Cn+1 such that dsd = d, where d

denotes the differentials of C•.

Proof. (a) For any n, we have : Cn = Zn ⊕Un. The restriction dn|Un
is an isomorphism onto

its image, as we have ker(dn|Un
) = πUn(ker(dn)) = 0, where πUn : Zn ⊕ Un → Un is the

projection onto the second component. So by exactness :

Un ∼= im dn = ker dn−1 = Zn−1,

for all n ∈ Z, i.e., Un
∼=→ Zn−1 via dn|Un

.
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(b) Let us denote by fn−1 : Zn−1
∼=→ Un the inverse morphism of the previous isomorphism

dn|Un
, for all n. Define for all n ∈ Z :

sn : Cn = Zn ⊕ Un −→ Zn+1 ⊕ Un+1 = Cn+1

zn + un 7−→ 0 + fn(zn).

It is a well-defined morphism, since it is the composite of the projection onto the first
component and the isomorphism fn. From this observation, we get that ker(sn) = Un and
im(sn) = Un+1, as desired.

(c) Suppose first that C• is split exact, let us prove that idC• and 0 are homotopic. We need
to prove that idCn = dn+1sn + sn−1dn, for all n, for some homotopy sn. Choose the
morphism sn defined in question (b), as C• is split exact. Let us regard dn as :

dn : Cn = Zn ⊕ Un −→ Zn−1 ⊕ Un−1 = Cn−1

zn + un 7−→ dn|Un
(un) + 0,

Therefore, for all n and for all zn ∈ Zn, un ∈ Un, we have :

(dn+1sn + sn−1dn)(zn + un) = dn+1(sn(zn + un)) + sn−1(dn(zn + un))
= dn+1(0 + fn(zn)) + sn−1(dn|Un

(un) + 0)

=
(
dn+1|Un+1

(fn(zn)) + 0
)

+
(
0 + fn−1(dn|Un

(un))
)

= (zn + 0) + (0 + un)
= zn + un,

where we used that dn|Un
and fn−1 are mutual inverse, for all n. This proves that

idCn = dn+1sn + sn−1dn, and so idC• and 0 are homotopic.

Now suppose that idC• and 0 are homotopic. Let us prove that C• is exact and there are
morphisms sn : Cn → Cn+1 such that dsd = d. Since idC• and 0 are homotopic, there
exists a morphism sn : Cn → Cn+1 for all n, such that : idCn = dn+1sn + sn−1dn, for all
n in Z. We get :

dn = dnidCn

= dn(dn+1sn + sn−1dn)
= dndn+1︸ ︷︷ ︸

=0

sn + dnsn−1dn

= dnsn−1dn,

and so dsd = d. It remains to prove that C• is exact. But this follows from the fact that
homotopic maps of chain complexes induce the same map in homology (see Theorem 6.14
in [Rotman, 2009]). Therefore Hn(idC•) = idHn(C•) : Hn(C•)→ Hn(C•) is the zero map,
thus C• is acyclic, i.e., C• is exact.

Now let us show that if C• is exact and there are morphisms sn : Cn → Cn+1 such that
dsd = d, then C• is split. The exactness of C• means that im(dn) = ker(dn−1) for every n,
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so we have the following situation, where the diagonals and the row are exact sequences :

0 0 0 0

im(dn+2) = ker dn+1 im(dn) = ker dn−1

· · · Cn+1 Cn Cn−1

im(dn+1) = ker dn

0 0.

dn+2

sn+1

dn+1

sn

dn

sn−1

So we get short exact sequences for every n :

0 im(dn+1) Cn im(dn) 0.
d
|im(dn)
n

sn−1|im(dn)

Each of these sequences split as sn−1|im(dn) is a section. Indeed, any element of im(dn) can
be written as dn(c) for some c in Cn. Since dsd = d, we get that (dn◦sn−1)(dn(c)) = dn(c).
Therefore we get : d|im(dn)

n ◦ sn|im(dn) = idim(dn). Thus C• splits.

The next exercise shows that exact sequences need not to be split exact in general.

Exercise 1.1.5. The complex · · · ·2→ Z/4Z ·2→ Z/4Z ·2→ · · · is acyclic, but not split exact.

Proof. Clearly the morphism Z/4Z ·2→ Z/4Z has kernel and image equal to {0, 2} ∼= Z/2Z.
Therefore its homology at every term is the trivial group, and so the complex is acyclic. However
it is not split exact since if it were, we would have Z/4Z ∼= Z/2Z ⊕ Z/2Z, which is not true
(since Z/4Z contains an element of order 4, whereas Z/2Z does not).

We end this part by presenting concrete computations of homology of abelian groups chain
complexes, through the next two exercises. Subsequently, we will focus on chain complexes of
Z-modules.

Exercise 1.1.6. (a) Let p be a prime number and let :

· · · → 0→ Z ·p→ Z→ 0→ · · · ,

· · · → 0→ Z 0→ Z→ 0→ · · · ,

· · · → 0→ Z/2Z ·2→ Z/4Z→ 0→ · · · ,

· · · → 0→ Z/3Z ·2→ Z/6Z→ 0→ · · · ,

be chain complexes of abelian groups. Compute the homology of each complex.

(b) Let C• and D• be two chain complexes with isomorphic homology groups. Is is true in
general that one can find a morphism of chain complexes f : C• → D• such that the
induced map in homology H•(f) is an isomorphism ?
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Proof. (a) We make the convention that the first non trivial term of the chain complex is the
term zero. We get :

Hn(· · · → 0→ Z ·p→ Z→ 0→ · · · ) =
{

ker(Z→ 0)
/
im(Z ·p→ Z) , if n = 0,

0, otherwise,

=
{

Z/pZ, if n = 0,
0, otherwise,

Hn(· · · → 0→ Z 0→ Z→ 0→ · · · ) =


ker(Z 0→ Z)

/
im(0→ Z) , if n = 1,

ker(Z→ 0)
/
im(Z 0→ Z) , if n = 0,

0, otherwise,

=
{

Z, if n = 0, 1,
0, otherwise.

Similiarly we obtain :

Hn(· · · → 0→ Z/2Z ·2→ Z/4Z→ 0→ · · · ) ∼=
{

Z/2Z, if n = 0,
0, otherwise,

Hn(· · · → 0→ Z/3Z ·2→ Z/6Z→ 0→ · · · ) ∼=
{

Z/2Z, if n = 0,
0, otherwise.

(b) The anwser is no, as we can find a counter-example. Indeed, if we denote by

C• = · · · → 0→ Z/3Z ·2→ Z/6Z→ 0→ · · · ,

and by :
D• = · · · → 0→ Z/2Z ·2→ Z/4Z→ 0→ · · · ,

the previous chain complexes, then we can define a chain map :

· · · 0 Z/3Z Z/6Z 0 · · ·

· · · 0 Z/2Z Z/4Z 0 · · · .

·2

0 0

·2

This chain map is the only possibility between C• and D•. However, clearly the ho-
momorphism H0(Z/6Z 0→ Z/4Z) is not an isomorphism, and so the chain map is not a
quasi-isomorphism.

Exercise 1.1.7. Consider the following morphism of chain complexes of abelian groups :

C• = · · · Z Z Z Z Z Z 0

D• = · · · 0 0 0 0 0 Z/pZ 0.

0 id 0 id 0 ·p

f

Compute the homology of C• and D•, and show that the chain map is a quasi-isomorphism.
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Proof. The homology of C• is given by :

H0(C•) = ker (Z→ 0)
/
im
(
Z ·p→ Z

)
= Z/pZ,

and Hn(C•) = 0 for n 6= 0, and similarly :

H0(D•) = ker (Z/pZ→ 0)
/
im (0→ Z/pZ) = Z/pZ,

and Hn(D•) = 0 for n 6= 0. Therefore the induced homomorphism :

H0(f) : Z/pZ −→ Z/pZ
cls(z) = z + pZ 7−→ cls([z]p) = [z]p,

is clearly an isomorphism : it is actually the identity map.

1.2 Projective Resolutions
The first exercise of this section presents a projective resolution that will be later useful.

Exercise 1.2.1. Let K be a field. Let us define the ring R = K[t]/(t2). Let us denote by t the
class of t in R. The field K can be given a trivial structure of R-module, where t acts by zero
on K. Let us consider the sequence of R-modules :

· · · R R K 0,·t ·t ε

where the morphism ε sends 1 to 1K , and t to 0K . Show that this sequence is a projective
resolution of R-modules of the R-module K.

Proof. Since R is obviously a free R-module, it is projective. It only remains to prove the
exactness of the sequence. The map ε is surjective since the class of any constant polynomial
in R is sent to its representative in K. By construction, its kernel equals to the ideal (t). The
morphism R

·t→ R has kernel and image equal to the ideal (t), as t · t = 0 in R. Therefore the
sequence is exact.

The next two exercises will make use of the comparison theorem (see Theorem 6.16 in
[Rotman, 2009]).

Exercise 1.2.2. Let P• be a positive complex of projective modules. Show that P• is exact if
and only if idP• and the zero chain map 0• : P• → P• are homotopic.

Proof. Suppose that P• is exact. We want to apply the comparison theorem (see Theorem 6.16
in [Rotman, 2009]). We extend by zero our positive complex so that we are in the following
situation :

· · · Pn Pn−1 · · · P2 P1 P0 0 0

· · · Pn Pn−1 · · · P2 P1 P0 0 0.

dn d2 d1

dn d2 d1

Since each non-trivial element in the top row is projective, and the bottom row is exact, the
theorem implies that a chain map P• → P• which makes the above diagram commutes is unique
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up to homotopy. It is straightfoward to see that the identity and zero maps are such maps.
Therefore, they must be homotopic.

Conversly, if idP• and 0• : P• → P• are homotopic, then, by exercise 1.1.4, we get that P• is
split exact, so in particular exact.

Exercise 1.2.3. Let P• = (0 → 0 → Z
·4→ Z) and Q• = (0 → Z/2Z id→ Z/2Z ·0→ Z/2Z). Let

f : H0(P•) = Z/4Z → Z/2Z = H0(Q•) be the unique non-zero Z-morphism. Find all possible
liftings ϕ• : P• → Q• and construct homotopies between the different liftings.

Proof. We want to apply the comparison theorem (Theorem 6.16 in [Rotman, 2009]). Knowing
the homology at zero, we get the following situation :

0 0 Z Z Z/4Z 0

0 Z/2Z Z/2Z Z/2Z Z/2Z 0,
s2

ϕ2

·4

s1
ϕ1s0 f

s−1 s−2

id 0 id

where the top row has each term projective, except Z/4Z and the bottom row is an exact
sequence. Then the comparison theorem states that there exists liftings which are the vertical
dashed arrows in the diagrams. But there are only two possible homomorphisms from Z to
Z/2Z : the zero map, or the natural projection. Since we want a chain map (i.e. a commutative
diagram), ϕ1 cannot be the zero map, so we have two cases :

{ϕ2 = 0, ϕ1 = proj} and {ϕ2 = proj, ϕ1 = proj}.

Let us name the two possible chained maps ϕ0
• and ϕ

proj
• respectively. The comparison theorem

states they are homotopic, so we can find a homotopy sn : Pn → Qn+1 for each n, which is the
diagonal dashed map in the diagram. We proceed as the proof of the theorem. We first set
s−2 = 0 and s−1 = 0 for convenience, as we regard Z/4Z and {0} the 0-th and (−1)-st term
of P• and Z/2Z and {0} the 0-th and (−1)-st term of Q•. Since in both cases we have the
same homomorphism ϕ1, we easely see that s0 = 0. To get a homotopy, we have the equation
s1 = ϕproj

2 − ϕ0
2 = ϕproj

2 = proj. And obviously we have s2 = 0. So the homotopy s is the the
zero map in each term except for s1 which equals the projection proj : Z→ Z/2Z.

1.3 Tor and Ext
We end this chapter by investigating Tor and Ext.

Exercise 1.3.1. Prove that if I is an injective R-module, then ExtnR(M, I) = 0, for any R-
module M , and any n ≥ 1.

Proof. An injective resolution for I can be given by :

E• = 0 I I 0 0 · · · .id

Therefore ExtnR(M, I) = Hn(HomR(A,EI•)) = 0 for all n ≥ 1, as HomR(M, 0) = 0. Notice that
this argument can be given for any right (covariant) derived functor.

Exercise 1.3.2 (Tor and Ext for abelian groups). Let A be a Z-module. Let p be a fixed integer.
Show that :
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(a) TorZ• (A,Z/pZ) is the homology of the complex 0→ A
·p→ A→ 0, so that :

TorZ0 (A,Z/pZ) ∼= A/pA,

TorZ1 (A,Z/pZ) ∼= Ap := {a ∈ A | p · a = 0},
TorZn(A,Z/pZ) = 0, if n ≥ 2;

(b) Ext•Z(Z/pZ, A) is the cohomology of the complex 0→ A
·p→ A→ 0, so that :

Ext0Z(Z/pZ, A) ∼= HomZ(Z/pZ, A) ∼= Ap,

Ext1Z(Z/pZ, A) ∼= A/pA,

ExtnZ(Z/pZ, A) = 0, if n ≥ 2.

Proof. (a) A Z-projective resolution of Z/pZ can be given by :

0 Z Z Z/pZ 0.·p

Apply A⊗Z− to the complex P• obtained by the previous projective resolution where we
replace Z/pZ by 0, we get :

0 A⊗Z Z A⊗Z Z 0

0 A A 0.

·(id⊗ p)

∼= ∼=
·p

From the commutativity of the above diagram, it follows that, for any n :

TorZn(A,Z/pZ) = Hn(A⊗Z P•)
∼= Hn(0→ A

·p→ A→ 0)

=


ker (A→ 0)

/
im
(
A
·p→ A

)
= A/pA, if n = 0,

ker
(
A
·p→ A

)/
im (0→ A) = Ap, if n = 1,

0, if n ≥ 2.

(b) As before, we consider the complex P• obtained from the projective resolution of Z/pZ,
and we apply HomZ(−, A) :

HomZ(0, A) HomZ(Z, A) HomZ(Z, A) HomZ(0, A)

0 A A 0,

∼=

(·p)∗

∼=
·p

where the vertical isomorphism is the evaluation at 1. In details, the isomorphism of
abelian groups is :

HomZ(Z, A) −→ A

f 7−→ f(1).
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It is vacuous to check that it is a homomorphism, and it is bijective since any abelian
group homomorphism f : Z → A is entirely determined by its value in 1, since we have
the equation f(k) = kf(1), for all k ∈ Z. We get that Ext•Z(Z/pZ, A) is the cohomology
of the complex 0→ A

·p→ A→ 0. he computation of the cohomology at each dimension n
is as straightfoward as the previous question (a).

Exercise 1.3.3. Let K be a field and R = K[t]/(t2). As in exercise 1.2.1, K can be regarded
as a trivial R-module.
(a) Show that, for any R-module M :

ExtnR(K,M) ∼=
{
Mt, if n = 0,
Mt/tM if n ≥ 1,

where Mt = {m ∈M | t ·m = 0}, where t is the class of t in R.

(b) Compute ExtnR(K,K) and ExtnR(K,R), for every n ≥ 1.
Proof. (a) In exercise 1.2.1, we have seen that a projective resolution P of R-modules of K

can be given by :
· · · R R K 0,·t ·t ε

where the morphism ε sends 1 to 1K , and t to 0K . We apply HomR(−,M) to the deleted
projective resolution PK , we get :

HomR(0,M) HomR(R,M) HomR(R,M) · · ·

0 M M · · · ,

(·t)∗

∼=

(·t)∗

∼=

·t ·t

where the vertical isomorphism is the evaluation at the class of 1K in R (the same that is
given in exercise 1.3.2). The result follows.

(b) Let n ≥ 1. We apply the previous result. Recall that t acts as zero on K, therefore :

ExtnR(K,K) = Kt/tK = K/{0} ∼= K.

Moreover, one can see that ExtnR(K,R) = 0, as R is free, but also by applying (a) and
using the fact that Rt = tR.

Exercise 1.3.4. Show that if Ext1R(M,N) = 0, then any short exact sequence :

0→ N
i→ X

j→M → 0,

of R-modules, splits.
Proof. We only need to find a retraction r : X → N of the short exact sequence. We regard
the fonctors Ext•R(−, N) as the cohomological extension of the contravariant additive functor
HomR(−, N), so there exists a (natural) connecting homomorphism ∆ such that we have the
following exact sequence (see [Rotman, 2009], Corrolary 6.65) :

0→ HomR(M,N) HomR(X,N) HomR(N,N) Ext1R(M,N) · · ·j∗ i∗ ∆

In particular, since Ext1R(M,N) = 0, we have that i∗ : HomR(X,N)→ HomR(N,N) is surjec-
tive. Therefore, there exists r ∈ HomR(X,N) such that r ◦ i = i∗(r) = idN . So r : X → N is a
retraction.
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Exercise 1.3.5. Show that if R is hereditary (i.e. all submodules of an R-projective module
are projective), then TorRn (A,B) = 0, for all n ≥ 2, for all R-modules A and B.

Proof. Define the free R-module F generated by the elements of A, and let p : F → A be the
natural projection. Since F is projective as it is free, then ker p is also projective, because R is
hereditary. Therefore we have found a projective resolution of A of lenght 2 :

· · · 0 0 ker p F A 0.p

In fact, we have just proved that the global dimension of an hereditary ring is always at most
1. It is then straightfoward that TorRn (A,B) = 0 for all n ≥ 2.

Exercise 1.3.6. Show that if A and B are finite abelian groups, then TorZ1 (A,B) ∼= A⊗Z B.

Proof. We first argue that it suffices to prove for the case A = Z/nZ and B = Z/mZ. Indeed,
suppose we have shown that TorZ1 (Z/nZ,Z/mZ) ∼= Z/nZ⊗ZZ/mZ, for any n and m. From the
classification of finite abelian groups, we can write A =

⊕r
i=1 Z/niZ and B =

⊕s
j=1 Z/mjZ, so

we get, by using the compatibility of ⊕ with ⊗ :

TorZ1 (A,B) ∼= TorZ1

 r⊕
i=1

Z/niZ,
s⊕
j=1

Z/mjZ


∼=

r⊕
i=1

s⊕
j=1

TorZ1 (Z/niZ,Z/mjZ)

∼=
r⊕
i=1

s⊕
j=1

(Z/niZ⊗Z Z/mjZ)

∼=
(

r⊕
i=1

Z/niZ
)
⊗Z

 s⊕
j=1

Z/mjZ


∼= A⊗Z B.

So let us prove TorZ1 (Z/nZ,Z/mZ) ∼= Z/nZ⊗ZZ/mZ. From our work in exercise 1.3.2, we get :

TorZ1 (Z/nZ,Z/mZ) ∼= (Z/mZ)n := {k ∈ Z/mZ | n · k = 0} ∼= Z/gcd(n,m)Z,

Since Z/gcd(n,m)Z ∼= Z/nZ⊗Z Z/mZ, the result follows.

Exercise 1.3.7. Prove that if A is an abelian group with nA = A for some positive integer n,
then every extension 0→ A→ X → Z/nZ→ 0 splits.

Proof. From exercise 1.3.4, we only need to show that Ext1Z(Z/nZ, A) = A/nA = 0. But this
follows directly from exercise 1.3.2, as nA = A.
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Chapter 2

Group Cohomology

The exercises of this chapter are based on the theory of group (co)homology presented in Chapter
9 of [Rotman, 2009] and Chapter IV of [Brown, 1982].

2.1 First Computations
Let us begin by answering what is the cohomology of the trivial group.

Exercise 2.1.1. Compute the cohomology of the trivial group.

Proof. Let G be the trivial group, and let A be any ZG-module. In this case, the action of G
on A is vacuous, so that A can be any abelian group. In order to compute Hn(G,A), since
Hn(G,A) = ExtnZG(Z, A), we need a projective resolution of Z as a ZG-module, i.e., as an
abelian group. Such a resolution can be given by :

0 Z Z 0.idZ

So that ExtnZG(Z, A) is given by the cohomology of the cochain :

. . . 0 0 HomZ(Z, A) 0.

We obtain : H0(G,A) = HomZ(Z, A) ∼= A (the isomorphism was proven in exercise 1.3.2) and
Hn(G,A) = 0, whenever n ≥ 0.

Recall that the n-th cohomology of an ZG-module A is given by ExtnZG(Z, A). But one
can wonder why we are only interested with ZG-modules, and not KG-modules, where K is
a commutative ring. It is actually enough to consider ZG-modules, as shown in the following
exercise.

Exercise 2.1.2. Let K be a commutative ring, let G be a group, and let A be a KG-module.

(a) If F is a free ZG-module with ZG-basis S, prove that HomKG(K⊗ZF,A) ∼= HomZG(F,A).

(b) Prove that ExtnKG(K,A) ∼= ExtnZG(Z, A).

Proof. (a) Since F is a free ZG-module, then K⊗ZF is a free KG-module with basis S̃ given
by {1 ⊗ s | s ∈ S}. Indeed, since F is a free ZG-module, then F ∼=

⊕r
i=1 ZG, for some

integer r > 0. So we get :

K ⊗Z F ∼= K ⊗Z

(
r⊕
i=1

ZG
)
∼=

r⊕
i=1

(K ⊗Z ZG) ∼=
r⊕
i=1

KG,
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where the last isomorphism stems from the following isomorphism :

K ⊗Z ZG −→ KG

λ⊗
∑
g∈G

mgg 7−→
∑
g∈G

λmgg.

So K ⊗Z F is a free KG-module. We define :

Φ : HomKG(K ⊗Z F,A) −→ HomZG(F,A),

as Φ(f)(x) = f(1⊗x), for any x ∈ F , and any KG-morphism f : K⊗ZF → A. Since f is
a KG-morphism, we have that Φ(f)(gx) = f(1⊗ gx) = gf(1⊗ x) for any g ∈ G, so Φ(f)
is indeed a ZG-morphism. Thus Φ is clearly a well-defined abelian group homomorphism.
For any ZG-morphism h : F → A, we define Ψ(h) : K ⊗Z F → A on the basis S̃
as Ψ(h)(1 ⊗ s) = h(s) and extend it KG-linearly, and this defines an abelian group
homomorphism :

Ψ : HomZG(F,A) −→ HomKG(K ⊗Z F,A).

We get directly (Φ◦Ψ)(h)(1⊗s) = h(1⊗s) and (Ψ◦Φ)(f)(s) = f(s), for any s in S. Since
the maps agree on the basis, we get that Φ◦Ψ = idHomZG(F,A) and Ψ◦Φ = idHomKG(K⊗ZF,A),
and so : HomKG(K ⊗Z F,A) ∼= HomZG(F,A).

(b) Let :
· · · F2 F1 F0 Z,d2 d1 d0

be the free standard resolution of Z as a ZG-module (see [Brown, 1982] chapter II). We
apply the functor K ⊗Z − and we obtain a free resolution of K as a KG-module :

· · · K ⊗Z F2 K ⊗Z F1 K ⊗Z F0 K ⊗Z Z ∼= K.
idK ⊗ d2 idK ⊗ d1 idK ⊗ d0

In order to compute ExtnZG(Z, A) and ExtnKG(K,A), we must apply HomZG(−, A) and
HomKG(−, A) respectively on the appropriate free resolutions. The previous isomorphism
in part (a) defines an isomorphism of chain complexes :

0 HomKG(K ⊗Z F0, A) HomKG(K ⊗Z F1, A) · · ·

0 HomZG(F0, A) HomZG(F1, A) · · · .

∼=Φ0 ∼=Φ1

It is straightfoward to check the commutativity of the above diagram. Since the cochains
of complexes are isomorphic, their cohomology are also isomorphic (see Proposition 6.8 in
[Rotman, 2009]), and therefore, for all n ≥ 0 : ExtnKG(K,A) ∼= ExtnZG(Z, A).

Exercise 2.1.3 (The Augmentation Ideal). Let G be any group, we denote its unit 1 = 1G.
Let ε : ZG → Z be the augmentation map : ε(g) = 1 for all g in G. Let IG = ker ε be the
augmentation ideal.

(a) Prove that IG is a free Z-module with basis {g − 1 | g ∈ G \ {1}}.

(b) Prove that if S is a set of generators of G, then IG is generated as a ZG-module by the
set {s− 1 | s ∈ S}.

12



(c) Prove that for every n ≥ 1, Hn(G,A) ∼= Extn−1
ZG (IG,A) and Hn(G,B) ∼= TorZn−1(IG,B).

(d) If A and B are trivial ZG-modules, we get isomorphisms : H1(G,A) ∼= HomZG(IG,A)
and H1(G,B) ∼= IG⊗ZG B.

(e) Set GAb := G/[G,G]. Prove that (IG/(IG)2,+) ∼= (GAb, ·), via the map g − 1 7→ g.

(f) If A and B are trivial ZG-modules, then we get the following sequence of abelian group
isomorphisms :

H1(G,A) ∼= HomZG(IG,A) ∼= HomZG(IG/(IG)2, A) ∼= HomZ(IG/(IG)2, A)
∼= HomZ(GAb, A) ∼= HomG r(G,A),

where HomG r(G,A) is the group of all group homomorphisms G→ A; and :

H1(G,B) ∼= IG⊗ZG B ∼= IG/(IG)2 ⊗ZG B ∼= IG/(IG)2 ⊗Z B ∼= GAb ⊗Z B.

(g) H1(G,Z) ∼= GAb and, if G is finite, H1(G,Z) = 0.

Proof. (a) If x =
∑
g∈G λgg ∈ IG, then

∑
g∈G λg = 0. Therefore :

x = x− (
∑
g∈G

λg)1 =
∑
g∈G

λgg − (
∑
g∈G

λg)1 =
∑

g∈G\{1}
λg(g − 1),

so any x ∈ IG is spanned by {g−1 | g ∈ G\{1}}. Let us prove that the set is independant :∑
g 6=1 λg(g − 1) = 0 implies that

∑
g 6=1 λgg − (

∑
g 6=1 λg) = 0, but ZG is free abelian, so

λg = 0 for all g 6= 1.

(b) We can express any element of the Z-basis {g − 1 | g ∈ G \ {1}} as an element of the
ZG-module generated by the set {s− 1 | s ∈ S}, via the formulas :

gh− 1 = g(h− 1) + (g − 1),

g−1 − 1 = −g−1(g − 1),

for any g ∈ G \ {1}, as any element of G is a product of elements of S and their inverses.

(c) This is straightfoward from the properties of Tor and Ext (see [Rotman, 2009] Corrolary
6.23), take the standard resolution of Z as a ZG-module :

· · · F2 F1 F0 ∼= ZG Z 0.d2 d1 ε

As IG = ker ε = im d1, we obtain a projective resolution of IG as a ZG-module by
corestricting d1 to its image :

· · · F2 F1 IG 0.d2 d1

So when we compute Hn(G,A) = ExtnZG(Z, A) and Hn(G,A) = TorZGn (Z, B), we simply
compute Extn−1

ZG (IG,A) and TorZGn−1(IG,B) respectively, as long as n ≥ 2, for any ZG-
modules A and B.
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(d) In previous question we had the exact sequences :

· · · F2 F1 ZG Z 0

IG

0 0.

d2 d1

d
|IG
1

ε

Therefore, when we apply HomZG(−, A), as it is a left exact contravariant functor, we
get :

0 HomZG(Z, A) HomZG(ZG,A) HomZG(F1, A) · · ·

HomZG(IG,A)

0.

ε∗ d∗1 d∗2

But in this case, as A has a trivial ZG-structure, we get that ε∗ is an isomorphism, as we
can find an inverse :

res : HomZG(ZG,A) −→ HomZG(Z, A)
f 7−→ f|Z ,

where f|Z(k) := f(k·1G), for any k ∈ Z. It is well-defined as f(g) = gf(1G) = f(1G), for all
g ∈ G. It is then straightfoward to see that ε∗◦res = idZG(ZG,A) and res◦ε∗ = idHomZG(Z,A).
Thus by exactness we have :

H1(G,A) = ker d∗2/im d∗1 = HomZG(IG,A)/ ker ε∗ = HomZG(IG,A).

(e) We begin by noticing that we have the following relation in ZG :

(g − 1) · (h− 1)︸ ︷︷ ︸
∈(IG)2

= (gh− 1)− (g − 1)− (h− 1). (?)

Define ϕ′ : IG→ GAb as the composite of :

ϕ : IG −→ G∑
g∈G\{1}

λg(g − 1) 7−→
∏

g∈G\{1}
gλg ,

with the natural projection : G� GAb = G/[G,G]. It is straightfoward that ϕ is a group
homomorphism, and so ϕ′ is also a group homomorphism. Denote by g the class of g in
GAb. We argue that (IG)2 ⊆ kerϕ′. Indeed, let x ∈ (IG)2, so that :

x =

 ∑
g∈G\{1}

λg(g − 1)

 ·
 ∑
h∈G\{1}

µh(h− 1)


=

∑
g,h∈G\{1}

λgµh ((g − 1)(h− 1))

=
∑

g,h∈G\{1}
λgµh ((gh− 1)− (g − 1)− (h− 1)) ,
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by (?). Therefore we get :

ϕ(x) = ϕ

 ∑
g,h∈G\{1}

λgµh ((gh− 1)− (g − 1)− (h− 1))


=

∏
g,h∈G\{1}

ϕ((gh− 1)− (g − 1)− (h− 1))λgµh

=
∏

g,h∈G\{1}
(ghg−1h−1)λgµh ∈ [G,G],

so that (IG)2 ⊆ kerϕ′. By the universal property of the quotient, there is a unique group
homomorphism Φ : IG/(IG)2 → GAb such that the following diagram commutes :

IG G GAb

IG/(IG)2.

ϕ

Φ

In particular Φ(g − 1) = g, where g − 1 denotes the class of g − 1 in IG/(IG)2.
We now define its inverse :

ψ : G −→ IG/(IG)2

g 7−→ g − 1.

We argue that ψ is indeed a group homomorphism. Indeed, from (?), we have :

ψ(gh) = gh− 1
= (g − 1) + (h− 1)
= ψ(g) + ψ(h),

for any g, h ∈ G. Since IG is abelian, then [G,G] ⊆ kerψ, by the universal property of the
abelianization (see [Lang, 1974] Theorem 7.8 of Chapter II). Therefore, by the universal
property of the quotient, there is a unique homomorphism Ψ : GAb → IG/(IG)2 such
that the following diagram commutes :

G IG/(IG)2

GAb.

ψ

Ψ

In particular Ψ(g) = g − 1. It is straightfoward that Φ and Ψ are mutally inverse, using
that IG has the set {g − 1}g 6=1 as a Z-basis.

(f) From (d), we have H1(G,A) ∼= HomZG(IG,A). We show the rest of the abelian group
isomorphisms step by step.

• Let us prove that :

HomZG(IG,A) ∼= HomZG(IG/(IG)2, A).
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Let us name π : IG→ IG/(IG)2 the projection. It induces, for a fixed ZG-module A,
an isomorphism of groups between the group formed by the ZG-morphisms IG→ A
containing (IG)2 in their kernel, and HomZG(IG/(IG)2, A). We have seen in question
(c) that the elements (gh− 1)− (g − 1)− (h− 1) for g, h 6= 1 in G, span (IG)2. For
any ZG-morphism ϕ : IG→ A, we get :

ϕ((gh− 1)− (g − 1)− (h− 1)) = ϕ(gh− 1)− ϕ(g − 1)− ϕ(h− 1)
= ϕ(g(h− 1) + (g − 1))− ϕ(g − 1)− ϕ(h− 1)
= gϕ(h− 1) + ϕ(g − 1)− ϕ(g − 1)− ϕ(h− 1),

as any g acts trivially on ϕ(h−1) since A is a trivial ZG-module. Therefore we obtain
(IG)2 ⊆ kerϕ, for any ZG-morphism ϕ : IG→ A. We obtained the isomorphism of
abelian groups :

HomZG(IG/(IG)2, A) ∼= HomZG(IG,A),

via π∗, by the universal property of the quotient.
• We now claim we have the isomorphism of abelian groups :

HomZG(IG/(IG)2, A) ∼= HomZ(IG/(IG)2, A).

This follows directly from the fact that both IG/(IG)2 and A are trivial ZG-modules.
Indeed, for any h ∈ G \ {1}, and any g ∈ G, from the relation (?), we get :

g · (h− 1) = gh− g
= (gh− 1)− (g − 1)
= (g − 1) · (h− 1) + (h− 1),

and so, in IG/(IG)2, we get g · h− 1 = h− 1. Therefore IG/(IG)2 is a trivial
ZG-module.
• The isomorphism in (e) induces the isomorphism of abelian groups :

HomZ(IG/(IG)2, A) ∼= HomZ(GAb, A).

• Since A is abelian, we have G/(kerϕ) is an abelian group for any group homomor-
phim ϕ : G → A, and so [G,G] ⊆ kerϕ and ϕ defines uniquely an abelian group
homorphism GAb → A. Therefore, the universal property of the quotient implies
that we have the isomorphism of abelian groups :

HomG r(G,A) ∼= HomZ(GAb, A).

And so, this finishes the proof that H1(G,A) ∼= HomG r(G,A).

We now want to prove that, for B a trivial ZG-module :

H1(G,B) ∼= IG⊗ZG B ∼= IG/(IG)2 ⊗ZG B ∼= IG/(IG)2 ⊗Z B ∼= GAb ⊗Z B.

All the isomorphisms are shown similarly, except IG ⊗ZG B ∼= IG/(IG)2 ⊗ZG B. Let us
define µ : IG×B → IG/(IG)2 ⊗ZG B as the composite of :

IG×B IG/(IG)2 ×B IG/(IG)2 ⊗ZG B.
π × idB
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The map µ is ZG-bilinear. Indeed the additivity in the two variable is clear. We now
want to check that µ((h− 1) · g, b) = ψ(h− 1, gb), for all g ∈ G, h ∈ G \ {1}, and b ∈ B.
Since IG/(IG)2 and B are both trivial ZG-modules, we get :

µ((h− 1) · g, b) = (h− 1 · g)⊗ b = h− 1⊗ b = h− 1⊗ gb = µ(h− 1, gb).

So µ is bilinear. From the universal property of the tensor product, we get there exists a
unique abelian group homomorphism µ, such that the diagram commutes :

IG×B IG/(IG)2 ⊗ZG B

IG⊗ZG B.

µ

µ

We now define an inverse of µ. Define the ZG-bilinear map :

ν : IG/(IG)2 ×B −→ IG⊗ZG B

(g − 1, b) 7−→ (g − 1)⊗ b.

We must show it is well defined, i.e., for any g1, g2 6= 1 in G such that g1 − 1 = g2 − 1, we
have ν(g1 − 1, b) = ν(g2 − 1, b), for every b ∈ B. By linearity, as g1 − 1 = g2 − 1, we can
assume without loss of generality that there exist g, h 6= 1 in G such that :

(g1 − 1) = (g2 − 1) + (gh− 1)− (g − 1)− (h− 1).

Then we get :

ν(g1 − 1, b) = ν(g2 − 1, b) + ((gh− 1)− (g − 1)− (h− 1))⊗ b.

But we have :

((gh− 1)− (g − 1)− (h− 1))⊗ b = (gh− 1)⊗ b− (g − 1)⊗ b− (h− 1)⊗ b
= (g(h− 1) + (g − 1))⊗ b− (g − 1)⊗ b− (h− 1)⊗ b
= (g(h− 1))⊗ b− (h− 1)⊗ b
= (h− 1)⊗ (gb)− (h− 1)⊗ b
= (h− 1)⊗ b− (h− 1)⊗ b
= 0.

Therefore ν(g1 − 1, b) = ν(g2 − 1, b). So ν is well-defined. It is straightfoward to see that
ν is indeed ZG-bilinear. Therefore by the universal property of the tensor product, there
exists a unique abelian group homomorphism ν such that the diagram commutes :

IG/(IG)2 ×B IG⊗ZG B

IG/(IG)2 ⊗ZG B,

ν

ν

as B is a trivial ZG-module.
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(g) We apply the previous result :

H1(G,Z) ∼= GAb ⊗Z Z ∼= GAb,

and if G is finite, there is only one homomorphism G → Z, that is the trivial map, since
we must have |G| · f(g) = 0 for any g ∈ G and any group homomorphism f : G → Z,
where |G| denotes the order of G. Therefore H1(G,Z) ∼= HomG r(G,Z) = 0.

We are now interested in the cohomology of the infinite cyclic group. For finite cyclic groups,
we refer the reader to chapter III.1 in [Brown, 1982].

Exercise 2.1.4 (Cohomology of infinite cyclic groups). Let G := 〈g〉 be an infinite cyclic group.

(a) Prove that 0→ ZG
mg−1−→ ZG is a projective resolution of Z, where mg−1 is the multiplica-

tion by g − 1.

(b) Compute Hn(G,A) for all n ≥ 0, and all ZG-module A.

Proof. (a) As ZG is a free ZG-module, we must only prove that the sequence :

0 ZG ZG Z 0,
mg−1 ε

is exact, where ε is the augmentation map. The map ε is obviously surjective. By exercise
2.1.3, the augmentation ideal ker ε =: IG is the ZG-module generated by the element
g − 1, i.e., we get im mg−1 = ker ε. It only remains to prove that mg−1 is injective. For
this matter, take x ∈ ZG : there exists finitely many non-zero integers λi such that :

x =
∑
i∈N

λig
i.

Suppose that x ∈ kermg−1, i.e., mg−1(x) = 0. We get :

0 = (g − 1)
∑
i∈N

λig
i

=
∑
i∈N

λig
i+1 −

∑
i∈N

λig
i,

so that :
∑
i∈N λig

i+1 =
∑
i∈N λig

i, i.e., λi = λi+1, for all i ∈ N. But since λi = 0 for all
i ∈ N except for finitely many, we get that λi = 0 for all i ∈ N, i.e., x = 0. Therefore
mg−1 is injective.

(b) The abelian group Hn(G,A) is given by the cohomology of the cochain complex :

0 HomZG(ZG,A) HomZG(ZG,A) 0 0 · · · ,

0 A A 0 0 · · ·

∼=

(mg−1)∗

∼=
·(g − 1)

and so Hn(G,A) = 0 whenever n ≥ 2, and

H0(G,A) = ker((mg−1)∗) ∼= ker(·(g − 1)) = {a ∈ A | ga = a},

and H1(G,A) ∼= AG = A/〈ga− a〉a∈A.
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2.2 Group Extensions and Low-Dimensional Cohomology
A better understanding of the low-dimensional cohomology will be given by the following exer-
cises. We want prove again the result of exercise 2.1.4.

Exercise 2.2.1. Let G be a group. Let A be a ZG-module. Let A o G be the set A × G with
the group law :

(A×G)× (A×G) −→ A×G
((a, g), (b, h)) 7−→ (a, g) · (b, h) := (a+ gb, gh).

(a) Prove that AoG is indeed a group.

(b) Prove that the set of derivations :

Der(G,A) := {d : G→ A function | d(gh) = d(g) + gd(h), ∀g, h ∈ G} ,

is in bijection with the set Hom′(G,AoG) of sections of the exact sequence of groups :

0 A AoG G 1,i π

where i(a) = (a, 1G) for all a ∈ A, and π(a, g) = g for all (a, g) ∈ AoG.1

Proof. (a) Let us prove that the three axioms hold for (AoG, ·).

Associativity : Let a, b, c be in A and g, h, k in G. We need to prove that :

((a, g) · (b, h)) · (c, k) = (a, g) · ((b, h) · (c, k)) .

We have on the one hand :

((a, g) · (b, h)) · (c, k) = (a+ gb, gh) · (c, k)
= (a+ gb+ (gh)c, g(hk)),

and on the other hand :

(a, g) · ((b, h) · (c, k)) = (a, g) · (b+ hc, hk)
= (a+ g(b+ hc), g(hk))
= (a+ gb+ g(hc), g(hk))
= (a+ gb+ (gh)c, (gh)k),

using the associativity of G, and associativity of the action of G on A. Therefore the
associativity holds.
Neutral element : We claim that 1AoG = (0A, 1G). Indeed, for any (a, g) ∈ A o G,
we have :

(a, g) · (0A, 1G) = (a+ g · 0A, g · 1G) = (a, g),

and :
(0A, 1G) · (a, g) = (0A + 1A · a, 1G · g) = (a, g).

1The maps i and π are indeed group homomorphism.
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Inverse element : For any (a, g) ∈ A o G, we claim that (a, g)−1 = (−g−1a, g−1).
Indeed, we have :

(a, g) · (−g−1a, g−1) = (a− (gg−1)a, gg−1) = (a− a, 1G) = (0A, 1G),

and :
(−g−1a, g−1) · (a, g) = (−g−1a+ g−1a, g−1g) = (0A, 1G).

(b) Let us investigate on what a section means in this situation. If we consider s : G→ AoG
a function (not necessarly a homomorphism) with the condition that π ◦ s = idG, then we
get that s is uniquely determined by some function d : G→ A as follows : s(g) = (d(g), g),
for any g ∈ G, since we have π ◦ s = idG. Let us notice that, for any g, h ∈ G :

s(g) · s(h) = (d(g), g) · (d(h), h) = (d(g) + gd(h), gh).

Thereby, we get :

s is a homomorphism ⇐⇒ s(gh) = s(g) · s(h),∀g, h ∈ G
⇐⇒ d(gh) = d(g) + gd(h), ∀g, h ∈ G
⇐⇒ d is a derivation.

Therefore, we have shown the correspondance between Der(G,A) and Hom′(G,A o G).
In details, if we name p1 : A o G → A the set map defined by p1(a, g) = a, for all
(a, g) ∈ AoG, the bijection is given by :

Hom′(G,AoG) ←→ Der(G,A)
s : G→ AoG 7−→ p∗1(s) = p1 ◦ s : G→ A.

Exercise 2.2.2. Let G be a group and A a ZG-module. Prove that Der(G,A) ∼= HomZG(IG,A)
as abelian groups.

Proof. For the sake of clarity we will simply write 1 for the unit 1G. Recall that IG is a
free Z-module with basis {g − 1 | g ∈ G \ {1}}, by exercise 2.1.3. Let us define the map
Φ : Der(G,A) −→ HomZG(IG,A) as follows. For any derivation d : G→ A, we define :

Φ(d) : IG −→ A∑
g 6=1

λg(g − 1) 7−→
∑
g 6=1

λgd(g).

It is obviously well-defined, meaning that Φ(d) is a ZG-morphism, for all derivation d : G→ A,
as Φ(d) extends linearly the map (g− 1) 7→ d(g). It is straighfoward to see that Φ is an abelian
group homomorphism.
We now define its inverse. Recall that for any derivation d : G → A, we have d(1) = 0, as we
have :

d(1) = d(1 · 1) = d(1) + 1 · d(1) = d(1) + d(1).

Let Ψ : HomZG(IG,A) −→ Der(G,A) be the map defined as follows, for all ZG-morphism
f : IG→ A :

Ψ(f) : G −→ A

g 7−→
{
f(g − 1), if g 6= 1
0, if g = 1.
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We must argue that Ψ(f) is indeed a derivation, for all f ∈ HomZG(IG,A). We must prove
that for all g, h ∈ G, the following equality holds :

Ψ(f)(gh) = Ψ(f)(g) + g(Ψ(f)(h)).

If g = 1, or h = 1, or g = h−1, the equality follows easily. So let us consider the case g 6= 1 6= h
and g 6= h−1. We have :

Ψ(f)(gh) = f(gh− 1)
= f((g − 1) + g(h− 1))
= f(g − 1) + gf(h− 1), since f is a ZG-morphism,
= Ψ(f)(g) + gΨ(f)(h).

Thereby Ψ(f) is a derivation. It is straightfoward to see that Ψ is a homomorphism. Notice
now that for all f ∈ HomZG(IG,A), d ∈ Der(G,A) and g ∈ G \ {1} :

(Φ ◦Ψ)(f)(g − 1) = Ψ(f)(g)
= f(g − 1),

and forall g ∈ G and d ∈ Der(G,A) :

(Ψ ◦ Φ)(d)(g) =
{

Φ(d)(g − 1), if g 6= 1
0, if g = 1.

= d(g).

Therefore Φ◦Ψ = idHomZG(IG,A) and Ψ◦Φ = idDer(G,A). Thus Der(G,A) ∼= HomZG(IG,A).

Exercise 2.2.3. Recall that a group F is said to be free on a set X if X is a subset of F with
the following universal property : for every group G and every set map ϕ : X → G, the map ϕ
extends uniquely to a group homomorphism ϕ̃ : F → G :

X G

F.

ϕ

ϕ̃

(a) Prove that an infinite cyclic group F = 〈f〉 is free on the set {f}.

(b) Prove that if F is a free group on a set X, then the augmentation ideal IF is a free
ZF -module on the set X − 1 := {x− 1 | x ∈ X}.

Proof. (a) A group homomorphism 〈f〉 → G is uniquely determined by its value on the
generator f . Therefore F = 〈f〉 is free on the set {f} : for any associated value ϕ(f) on
G of f , we define the group homomorphism ϕ̃(fn) = ϕ(f)n, for any n ∈ N. The extension
ϕ̃ : F → G is uniquely determined.

(b) Let A be a ZF -module. Given a set map h : X − 1 → A, we must prove there exists a
unique extension h̃ : IF → A that is a ZF -morphism (see Theorem 2.1 of Chapter IV in
[Lang, 1974]). We define the set map :

µ : X −→ Ao F

x 7−→ (h(x− 1), x).
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Since F is a free group on the set X, there exists by the universal property a unique group
homomorphism h1 : F → Ao F , such that the diagram commutes :

X Ao F

F,

µ

h1

i.e., such that h1(x) = (h(x − 1), x) for all x ∈ X. It follows in particular that h1 is in
Hom′(F,AoF ) (see notation in exercise 2.2.1). By exercise 2.2.1, the homomorphism h1
factorizes uniquely a derivation h2 : F → A :

F Ao F

A,

h1

h2
pr

i.e., h2 ∈ Der(F,A) such that h2(x) = h(x− 1) for all x ∈ X. By exercise 2.2.2, it defines
uniquely h̃ := Φ(h2) ∈ HomZF (IF,A). This implies h̃(x − 1) = h2(x) for all x ∈ X, by
definition of the isomorphism Φ given in exercise 2.2.2. Therefore h̃ is uniquely determined
by its restriction on the set map h : X − 1→ A.

Exercise 2.2.4. Let F be a free group on a set X.

(a) Prove that 0→ IF ↪→ ZF is a free resolution of Z as a trivial ZF -module.

(b) Prove that Hn(F,A) = 0 for all n ≥ 2.

(c) Prove that if A is a trivial ZF -module, then H1(F,A) ∼=
∏
x∈X

A.

(d) Solve again exercise 2.1.4 for a trivial module.

Proof. (a) We have the exact sequence of ZF -modules :

0 IF ZF Z 0,ε

where ε : ZF → Z is the augmentation map. From exercise 2.2.3, we have that IF is
a free ZF -module. Since ZF is also free, we have proved that 0 → IF ↪→ ZF is a free
resolution of Z as a trivial ZF -module.

(b) The value of Hn(F,A) is given by the cohomology of the following cochain complex :

0 HomZF (ZF,A) HomZF (IF,A) 0 0 · · · .

We get directly then that Hn(F,A) = 0 for n ≥ 2.

(c) From exercise 2.1.3, as A is trivial, we have the isomorphism of groups :

H1(F,A) ∼= HomG r(F,A).
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But from the universal property of the free groups, the bijection between the set maps
X → A and the extended group homomorphisms F → A induces an isomorphism :

HomG r(F,A) ∼= HomS et(X,A),

where HomS et(X,A) denotes the group formed by the set maps X → A and where the
group law is given by pointwise addition in the abelian group A. This group is isomorphic
to the group product

∏
x∈X

A via :

HomS et(X,A) −→
∏
x∈X

A

(ϕ : X → A) 7−→
(
ϕ(x)

)
x∈X

.

Therefore we get : H1(F,A) ∼=
∏
x∈X

A.

(d) If G = 〈g〉 is an infinite cyclic group, then G is free on the singleton {g} by exercise 2.2.3.
Therefore, by the previous results, we get :

Hn(G,A) = 0,

for n ≥ 2, and since A is trivial, we find that H1(G,A) ∼= A by question (d).

The following exercise shows that in the category of groups, split exact sequences need to
have a retraction.

Exercise 2.2.5. Let 1 → A
i→ E → G → 1 be a short exact sequence of groups, where we

regard i as the inclusion and A is normal in E. Prove that the following are equivalent.

(a) The inclusion i has a retraction, i.e., there exists a group homomorphism r : E → A such
that r ◦ i = idA.

(b) A has a normal complement in E, i.e., there exists a normal subgroup H of E such that
AH = E and A ∩H = 1.

(c) There is a normal subgroup H of E such that E ∼= A×H.

Find an example of an exact sequence of groups that admits a section but not a retraction.

Proof. Let us show that (a) implies (b). Define H := ker r. For any e ∈ E, we have :

e = r(e)r(e)−1e = r(e)(r(e)−1e).

Since r is an homomorphism of groups which is the identity on A, we get :

r(r(e)−1e) = r(r(e)−1︸ ︷︷ ︸
∈A

)r(e) = r(e)−1r(e) = 1,

so r(e)−1e ∈ H = ker r, and r(e) ∈ A, thus e ∈ AH. Therefore E = AH. Now consider
e ∈ A ∩H. We have that e ∈ ker r and since r ◦ i = idA :

1 = r(e) = e,

so A ∩H = 1. Thereby, A has a normal complement H in E.
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Let us show now that (b) implies (c). We first argue that if A has a normal complement H
in E, then each e ∈ E has a unique expression e = ah, where a ∈ A and h ∈ H. Indeed suppose
there exists also b ∈ A and k ∈ H such that e = ah = bk. Then we get :

hk−1 = a−1b ∈ A ∩H = 1,

so a = b and h = k.
We define a map :

Φ : E = AH −→ A×H
e = ah 7−→ (a, h).

We now argue that Φ is a homomorphism. We must check that : Φ((ah)(bk)) = Φ(ah)Φ(bk),
for all a, b ∈ A and h, k ∈ H. We get :

Φ((ah)(bk)) = Φ(ah)Φ(bk) ⇐⇒ ahbk = abhk

⇐⇒ bk = h−1bhk.

Since A is normal in E we get that h−1bh ∈ A, so by uniqueness of expression in AH, we get
that b = h−1bh. So Φ is a homomorphism. It is bijective by uniquess of expressions in AH,
therefore E ∼= A×H via Φ.

Finally, let us show that (c) implies (a). Let Φ : E
∼=→ A × H be an isomorphism. Let

A′ := Φ(A) ∼= A so that it fits into the diagram :

1 A E G 1

1 A′ A×H.

i

Φ|A∼= ∼=Φ (2.1)

Let p1 : A×H → A be the projection on the first variable. It is an homomorphism of groups.
Define r′ : A×H → A′ a group homomorphism as the composite :

A×H A A′.
p1 Φ|A

It is a retraction of the inclusion map i′ : A′ ↪→ A ×H. Now define r : A ×H → A the group
homomorphism defined as the composite :

E A×H A′ A.Φ r′
Φ¯1
|A

From the commutativity of the diagram (2.1), we get that r is a retraction of i.

Let us find an example of an exact sequence of groups that admits a section but not a
retraction. Let us denote S3 = {id, (12), (13), (23), (123), (132)} the symmetric group of degree
3, and A3 = {id, (123), (132)} its alternating group. Recall that A3 is normal in S3 and that
we have the isomorphism : S3/A3 ∼= {±1} = C2 via the signature homomorphism. Therefore,
we get an exact sequence of groups :

1 A3 S3 {±1} 1.sign
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This sequence does not admit a retraction, as if it were, then we would have the isomorphism
S3 ∼= A3 × {±1}, and so S3 would be abelian : which is not the case. But it admits a section,
define :

s : {±1} −→ S3

1 7−→ id
−1 7−→ (12),

It is a well-defined homomorphism and we have sign ◦ s = idC2 . So s is a section.

Exercise 2.2.6. Any group extension 1→ A→ E → F → 1, with F a free group, splits.

Proof. Let us name the right homomorphism p : E → F . Let us assumed that F is free on
a subset X. For any x ∈ X, as p is surjective, we can choose2 an element ex ∈ E such that
p(ex) = x. This defines a set map :

s : X −→ E

x 7−→ ex.

It satisfies the condition p◦ s = idX . So by the universal property of the free group, we get that
there exists a unique group homomorphism s̃ : F → E such that the diagram commutes :

X E

F.

s

s̃

Recall that an element of F can be regarded as a reduced word formed by the elements of X
and their inverse (see Corollary 11.5 in [Rotman, 1995]). So since s̃ is a group homomorphism,
we get p ◦ s̃ = idF . Therefore the extension splits.

Let us investigate on the interpretation of the cohomology in dimension 2. We first do a
more categorical exercise.

Exercise 2.2.7 (Functorial properties of E (G,A)). Let G be a group and A a ZG-module. We
denote by E (G,A) the set of all extensions of G by A, up to equivalence. Given an extension
0 → A → E → G → 1 and a group homomorphism α : G′ → G, where G′ is any group, show
that there is an extension 0 → A → E′ → G′ → 1, characterized up to equivalence by the fact
that it fits into the following commutative diagram :

0 A E G 1

0 A E′ G′ 1.

α (2.2)

Deduce that a homomorphism α : G′ → G induces a mapping E (G,A) → E (G′, A), which
corresponds to H2(α,A) : H2(G,A)→ H2(G′, A).

2For the infinite case, we rely on the Axiom of choice (see [Lang, 1974] Prerequisites, part 7).
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Proof. We denote by p : E → G the given surjective homomorphism, and i : A → E the
injective homomorphism. We define E′ by the following pullback square (see [Borceux, 1994]
point 2.5) :

E′ G′

E G.

prG′

prE α

p

In other words we have : E′ = E ×G G′ = {(e, g′) ∈ E ×G′ | p(e) = α(g′)}. We denote by prE
and prG′ the natural projections. Let us show we have an exact sequence of groups :

0 A E′ G′ 1,i′ prG′

which fits into the diagram (2.2), where i′ : A → E′ is defined as a 7→ (i(a), 1G′). Since
p(i(a)) = 1G by exactness and α(1G′) = 1G as α is a homomorphism, we see that the range of
i′ is indeed in E′. Since i is injective, we see that i′ is also injective. Clearly prG′ is surjective.
Since im i = ker p, we get :

ker prG′ = E ×G {1G′}
= ker p× {1G′}
= im i× {1G′}
= im i′

So the sequence is exact.

Let us prove now that α : G′ → G induce the desired mapping. By our previous work, we are
able to define :

E (G,A) −→ E (G′, A)
(0→ A→ E → G→ 1) 7−→ (0→ A→ E′ → G′ → 1).

We only need to show it is well-defined, that is, for two extensions E1 and E2 of G by A which
are equivalent, their image E′1 and E′2 are also equivalent. Let us name ϕ : E1 → E2 the
isomorphism, we have the following commutative diagram :

0 A E′1 G′ 1

E1

0 A G 1

E2

0 A E′2 G′ 1.

i′1 (prG′ )1

prE1

α

ϕ

p1i1

i2
p2

i′2 (prG′ )2

prE2

α

By the universal property of the pullback, we get there exists a unique group homomorphism
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ϕ′ : E′1 → E′2 such that the following diagram commutes :

E′1

E′2 G′

E1 E2 G.

prE1

ϕ′

(prG′ )1

(prG′ )2

prE2 α

ϕ−1 p2

Combining the two previous diagrams, we get the following commutative diagram :

E′1

0 A G′ 1.

E′2

ϕ′

(prG′ )1i′1

i′2 (prG′ )2

So ϕ′ is an isomorphism and the two extensions E′1 and E′2 are indeed equivalent.

Let us prove now that this mapping corresponds to the map :

H2(α,A) : H2(G,A) −→ H2(G′, A)
[f ] 7−→

[
f ′
]
,

where here we regard H2(G,A) as the quotient Z2(G,A)/B2(G,A), and [f ] is the class of an
element f ∈ Z2(G,A) in H2(G,A), and where f ′ is defined as :

f ′ : G′ ×G′ −→ A

(g′, h′) 7−→ f(α(g′), α(h′)).

Let us remind how the correspondance between E (G,A) and H2(G,A) works. For any extension
0 → A

i→ E → G → 1, apply the forgetful functor G r → S et∗ from the category of groups to
the category of pointed sets so that we regard this sequence in S et∗. In this category, all exact
sequences split. Choose a section s : G→ E, and define f : G×G→ A as a map in S et∗ that
measures the failure of s being a group homomorphism, for all g, h ∈ G :

s(g)s(h) = i(f(g, h))s(gh). (2.3)

It turns out that f ∈ Z2(G,A), and changing the choice of the section s corresponds precisely
to modifying the cocycle f by a coboundary (see chapter IV in [Brown, 1982] for more details).
So take an extension 0 → A

i→ E → G → 1 in E (G,A) and choose a section s : G → E of
pointed sets, so that it defines by equation (2.3) a 2-cocycle f : G × G → A. Our mapping
E (G,A)→ E (G′, A) maps the pointed set map s : G→ E to the pointed set map :

s′ : G′ −→ E′

g′ 7−→ (s(α(g′)), g′),
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since the diagram (2.2) must commute. As s is a section, p(s(α(g′))) = α(g′), for any g′ ∈ G,
so s′ is indeed well-defined. Now this pointed set section s′ defines a 2-cocycle f ′ in Z2(G′, A),
by the following equation, for all g′, h′ ∈ G′ :

s′(g′)s′(h′) = i′(f ′(g′, h′))s′(g′h′).

We apply the definition of s′ :

(s(α(g′)), g′) · (s(α(h′), h′) = (i(f ′(g′, h′)), 1G′) · (s(α(g′h′)), g′h′).

We multiply the terms, so that it is equivalent :

(s(α(g′))s(α(h′))), g′h′) = (i(f ′(g′, h′))s(α(g′h′)), g′h′).

But by equation (2.3), we get :

i(f(α(g′), f(α(h′))s(α(g′h′)) = s(α(g′))s(α(h′)) = i(f ′(g′, h′))s(α(g′h′)).

Since i is injective, we finally obtain :

f(α(g′), α(h′))) = f ′(g′, h′).

The last equation shows that [f ′] is indeed the image of [f ] by the homomorphism H2(α,A).
Therefore our mapping E (G,A) → E (G′, A) corresponds to the abelian group homomorphism
H2(α,A) : H2(G,A)→ H2(G′, A).

The next exercise shows how much information the group cohomology in dimension 2 con-
tains. We look at the group of order 2, and we see we can deduce all the group of order 8. It is
an example of a basic application of group cohomology in algebra.

Exercise 2.2.8 (Application of Group Cohomology). Let A := C4 and G := C2 be the cyclic
groups of order 4 and of order 2 respectively.

(a) Find all linear actions of G on A.

(b) For each such action, compute H2(G,A).

(c) For each such action, describe all extensions of A by G.

(d) Find all groups of order 8.

Proof. We will write G = 〈g〉 multiplicatively, and A = Z/4Z additively.

(a) Let us denote Aut(A) the group formed by all the automorphisms A → A. Each linear
action of G on A is determined uniquely by a group homomorphism :

h : G→ Aut(A),

where g · a = h(g)(a), for all a ∈ A. We only specify the action of g since 1G · a = a for
all a. Since h is a group homomorphism, we have h(1G) = idA, and h(gg) = h(g) ◦ h(g),
therefore h(g) is its own inverse, i.e. of order 2 in Aut(A), for any homomorphism h.
Since h(g) ∈ Aut(A) and A is a cyclic group generated by 1, the automorphism h(g) is
determined uniquely by its value in 1. Since h(g) must be its own inverse, we see that
h(g)(1) = 1 and h(g)(1) = 3 are the only possibilities. So either h is the trivial map
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(sending all its elements to the identity idA), and so A is a trivial ZG-module, either h is
the homomorphism which sends g to the automorphism :

h(g) : A −→ A

0 7−→ 0
1 7−→ 3
2 7−→ 2
3 7−→ 1.

We will refer to this homomorphism by h subsequently. Notice that actually h(g)(a) = −a,
for all a ∈ A, so it is the inversion homomorphism. The homomorphism h gives rise to
a ZG-structure on A. Thereby, there are only two linear actions of G on A : the trivial
action and the action induced by h.

(b) Let us write t = 1G + g ∈ ZG. Since G is a finite cyclic group, we know that (see
[Brown, 1982], chapter III.1) :

H2(G,A) = AG/(t ·A),

where AG are the fixed elements of A by the action of G. So if A has the trivial ZG-
structure, then H2(G,A) = A/({0, 2}) ∼= Z/2Z, and if A has the ZG-structure induced
by h, we have H2(G,A) = {0, 2}/{0} ∼= Z/2Z. Therefore, for any action of G on A, we
have H2(G,A) ∼= Z/2Z.

(c) We will determine all the extensions up to equivalence. Let us recall the correspon-
dance between H2(G,A) and E (G,A) (see [Brown, 1982], chapter IV.3 for more details).
Choose a 2-cocycle f : G×G→ A modulo a 2-coboundary in H2(G,A), it determines an
extension :

0 A Ef G 1,i p

where Ef is the set A×G together with a group law given by, for all a, b ∈ A and g, k ∈ G :

(a, g) · (b, k) = (a+ gb+ f(g, k), gk), (2.4)

and i and p are group homomorphisms defined by i(a) := (a, 1G) and p(a, g) = g, for all
a ∈ A and g ∈ G.
Now recall that a 2-cocycle f satisfies the identity, for all g, k, ` ∈ G :

gf(k, `)− f(gk, `) + f(g, k`)− f(g, k) = 0.

But since G = 〈g〉, the previous equation reduces to :

g · f(g, g) = f(g, g),

since to be a 2-cocycle also requires that f(1, g) = f(1, 1) = f(g, 1) = 0. Therefore, we get
that a 2-cocycle f in our case is only determined by its value f(g, g) and that f(g, g) ∈ AG.

So if A has a trivial action of G, since H2(G,A) = Z/2Z and AG = A, we get that there
are four 2-cocycles f : G × G → A, and up to a 2-coboundary, there are two 2-cocycles.
Recall that a 2-coboundary is a function f : G×G→ A such that there exists a function
c : G→ A such that c(1G) = 0 and for all g, k ∈ G :

f(g, k) = gc(g)− c(gk) + c(k).
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In our case, this means that f(g, g) = 2c(g). So, for i = 0, 1, 2, 3, let us name by fi :
G×G→ A the 2-coboundary such that f(g, g) = i. We get that the set of 2-coboundary
is B2(G,A) = {f0, f2}. Therefore, we choose f0 and f1 as the two representatives of
H2(G,A). Thus we get two extensions : Ef0 and Ef1 . Now for Ef0 , the group law (2.4)
simply becomes :

(a, g) · (b, k) = (a+ b, gk).

Therefore Ef0 is an abelian group of order 8 and we see directly that Ef0 = A×G.
Similarly, we get that the group law (2.4) in Ef1 becomes :

(a, g) · (b, k) = (a+ b+ f1(g, k), gk).

It is therefore an abelian group of order 8 as f1(g, k) = f1(k, g) for all g, k ∈ G. Now we
compute :

(1, g)2 = (3, 1G), (1, g)3 = (0, g), (1, g)4 = (2, 1G), (1, g)5 = (3, g),

(1, g)6 = (1, 1G), (1, g)7 = (2, g), (1, g)8 = (0, 1G),

so (1, g) is an element of order 8 that generates Ef1 , so we get Ef1 = 〈(1, g)〉 ∼= Z/8Z.
Therefore, if we write now G = Z/2Z, when G acts trivially on A, we have the following
two extensions of G by A, up to equivalence :

0 Z/4Z Z/4Z× Z/2Z Z/2Z 0,

0 Z/4Z Z/8Z Z/2Z 0,

i0 p0

i1 p1

where i0, i1, p0 and p1 are determined by our previous isomorphisms on Ef0 and Ef1 . In
details, we see that i0([a]4) = ([a]4, 0) and p0([a]4, [b]2) = [b]2, where we used the bracket
notations to remind in which class are the elements. And we see that i1([a]4) = 6 · [a]8
and p1([b]8) = [b]2.

Let us now look the case where G acts on A with h. We get back to the previous notation
G = 〈g〉. In this case AG = {0, 2} and H2(G,A) = Z/2Z. So we get directly that
f0, f2 : G×G→ A are the 2-cocycle of H2(G,A). For Ef0 , the group law (2.4) becomes :

(a, g) · (b, k) = (a+ h(g)(b), gk).

If we call r = (1, 1G) and s = (1, g), we get that (we do not write down the computations
as they are not enlightening) :

Ef0 =
〈
r, s | r4 = (0, 1G), s2 = (0, 1G), srs = r−1

〉
.

Therefore Ef0
∼= D8 the dihedral group of order 8 (see [Brown, 1982] chapter IV for the

definition of D8 with generators).
For Ef2 , the group law (2.4) becomes :

(a, g) · (b, k) = (a+ h(g)(b) + f2(g, k), gk).

Let us name x = (1, 1G) and y = (1, g). We get :

Ef2 =
〈
x, y | x4 = (0, 1G), x2 = y2, yxy−1 = x−1

〉
.
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Therefore Ef2
∼= Q, the quaternion group (see [Brown, 1982] chapter IV for the definition

of Q with generators). Therefore, if we write now G = Z/2Z, when G acts by h on A, we
have the following two extensions of G by A, up to equivalence :

0 Z/4Z D8 Z/2Z 0,

0 Z/4Z Q Z/2Z 0,

i3 p3

i4 p4

where i3, i4, p3 and p4 are determined by our previous isomorphisms on Ef0 and Ef2 . In
details, we see that i3(a) = ra and p3(rasb) = [b]2, and i4(a) = xa and p4(xayb) = [b]2.

(d) Let E be a group of order 8. If E contains an element of order 4, say a, then 〈a〉 ∼= Z/4Z
is a normal subgroup of E, of index 2. Therefore it fits into a short exact sequence :

0 Z/4Z E Z/2Z 0.

In question (c), we have classified all these short exact sequence up to equivalence.
If E does not contain an element of order 4 then, by Lagrange’s theorem, it contains an
element a of order 8 or of order 2. If a is of order 8, then a2 is of order 4, which is
impossible. So if E does not contain an element of order 4, then all its elements are at
most of order 2. Then we claim that in that case E is abelian. To prove this, we need to
show xy = yx for all x and y in E. As E is a group, xy is in E, and it is of order 2, so it
is its own inverse. Therefore :

xy = (xy)−1 = y−1x−1 = yx.

So E is abelian and so we have : E ∼= Z/2Z× Z/2Z× Z/2Z.

Therefore, all the groups of order 8, up to isomorphism, are :

Z/8Z, Z/4Z× Z/2Z, Z/2Z× Z/2Z× Z/2Z, D8, Q.

We finish this paper by presenting a proof of Hilbert’s Theorem 90 using group cohomology.
It is a founding result for classifying cyclic extensions of fields. The only difficulty is the change
of notation : the group law of the modules will be written multiplicatively instead of additively.

Exercise 2.2.9 (Galois Cohomology, a first result). Let K be a field, and E ⊇ K be a Galois
extension, with Galois group G := Gal(E,K). The multiplicative group E∗ is a KG-module,
and H1(G,E∗) = 0.

Proof. The extension E is a K-vector space, and G acts on E∗ by the inclusion homomorphism :

G Aut(E∗),

so E∗ is indeed a KG-module.

Let d : G → E∗ be a derivation (i.e. a 1-cocycle). We must show that d is actually a
principal derivation (i.e. a 1-coboundary), that is, there exists b ∈ E∗ such that d(σ) = bσ(b)−1,
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for all σ ∈ G. Let us write dσ instead of d(σ). Since d is a derivation, we have for all σ and τ
in G (remember that E∗ is written mutliplicatively) :

dσ◦τ = dσσ(dτ ),

and so, as E∗ is abelian, we obtain the equation :

σ(dτ ) = dσ◦τd
−1
σ . (2.5)

By the linear independence of automorphisms (see [Rotman, 2003] Proposition 4.30), there
exists e ∈ E∗ such that :

b :=
∑
τ∈G

dττ(e) 6= 0.

In particular, we have b ∈ E∗. Therefore, for all σ ∈ G :

σ(b) =
∑
τ∈G

σ(dτ )σ(τ(e)), as σ is an automorphism,

=
∑
τ∈G

dσ◦τd
−1
σ σ(τ(e)), by equation (2.5)

= d−1
σ

∑
σ∈G

dσ◦τσ(τ(e))

= d−1
σ

∑
τ ′∈G

dτ ′τ
′(e)

= d−1
σ b.

Thus dσ = bσ(b)−1, for all σ ∈ G. Whence d is a principal derivation. Therefore H1(G,E∗) is
trivial.

Exercise 2.2.10 (Hilbert’s Theorem 90). Let E be a finite cyclic extension of K and let β ∈ E∗.
Then NE

K(β) = 1E if and only if there exists α ∈ E∗ such that β = ασ(α)−1, where σ is the
generator of G = Gal(E,K).

Proof. We refer the reader to the definition 7.1 of Chapter V of the reference [Lang, 1974] for
the definition the norm NE

K of an extension. Let n be the degree of extension of E over K.
Recall that the cohomology of a finite cyclic group is given by (see [Brown, 1982], chapter
III.1) :

H1(G,E∗) = kerN/im D,

where N is the multiplication by id · σ · σ2 · · ·σn−1, i.e., N(e) = NE
K(e), and D(e) = σ(e)e−1.

By previous exercise, we have H1(G,E∗) = 0, so kerN = im D. Hence, if β ∈ E∗, then
NE
K(β) = 1E if and only if there is α ∈ E∗ such that D(α) = β, i.e., β = ασ(α)−1.
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