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Abstract. Language patterns pertaining to a geographic region has var-
ious uses including cultural exploration, disaster response and targeted
advertising. In this paper, we propose a method for geographically locat-
ing short text data within a multiple instance learning framework aug-
mented by neural networks. Our representation learning approach tackles
minimally pre-processed social media discourse and discovers high level
language features that are used for classification. The proposed method
scales and adapts to datasets relating to 15 cities in the United States.
Empirical evaluation demonstrates that our approach outperforms state
of the art in multiple instance learning while providing a framework that
alleviates the need for subjective feature engineering based approaches.
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1 Introduction

Due to privacy concerns, users of social media often chose not to share the geo-
graphic location while they generate content. Besides commercial and malicious
uses such as targeted advertising and recommender systems [3], this information
could also be used to facilitate better disaster response and help law enforcement
[1] with crime prevention [8]. Thus, a system which geo-tags user generated text
is valuable for its social applications.

Prior work on text geolocation frames the problem as classification of user
discourse into regions based on words that appear in the text [9]. Since the phrase
level structure is distorted by this Bag Of Words approach, these models often
lose context because word order is lost. Additionally, the data requirements tend
to move away from short text to body of text produced by a user. Hence, they
end up predicting a user’s location rather than locating a stand alone piece of
content.

Hence, this is a problem where location is available for users rather than an
individual tweet. This allows us to express the problem for distilling information
from group level labels to individual parts within the group. This is referred to as
multiple instance learning (MIL) and has found extensive use in semi-supervised
learning and sentiment analysis. Since MIL research makes strong assumptions
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about the membership of instances inside a bag and/or use feature engineering
based approaches, there is scope to augment this work. This paper makes a
contribution to the tractability and abstraction mechanisms employed within an
MIL exercise.

The approach proposed in this work provides a flexible and scalable frame-
work for transferring geographic location labels from user to tweet level without
the use of explicit features or kernels. The flexibility is present in its modular
structure that separates instance level predictions from bag level aggregations
while still enabling a backward flow of information of labels from the aggre-
gate to the individual instance level. Since thel underlying method is a neural
network that can be trained using optimization techniques and learns internal
representations in the datasets, it scales well to the size and types of datasets
under consideration.

2 Related Work

Multiple Instance Learning. Within the standard formulation, a group of
instances referred as bags are labeled but individual instances are not [11] The
bag level label is associated with its contents by a membership assumption and
an aggregation function.

Single Instance Learning (SIL) is a naive and noisy way to accomplish this
task [10] wherein every instance is assigned the label of its bag. Recently, neural
networks have been used with adapted cost functions to accomplish the task
of relaxing aggregation assumptions while using custom similarity measures [5].
Most of these prior methods are kernel based, as they require substantial fea-
ture engineering and are thus hard to scale. Additionally, in prior applications
instances share heavy context, whereas tweets within a user-bag need not share
context or even temporal origins.

Geographic Information Retrieval. Geographic Information Retrieval refers to
methods that deal with mapping language to location [7]. Classically, a supple-
mentary dataset or gazetteer, that maps words to locations along with heuristics
to disambiguate place names was used. However as scale of datasets grew lan-
guage modeling became prevalent in GIR which solves the problem for the user
level with Bag of Words models using traditional bayesian techniques and using
neural networks [7].

3 Methods

To overcome the gaps in prior work, we leverage basic feed forward neural net-
work architectures like the multi layer perceptron (MLP) [6]. We make simple
changes to this basic architecture to enable it to perform MIL with higher level
of modular abstraction for instance level classification and bag level aggregation,
as shown in Fig. 1b. We consider a user-bag, labeled with a binary location label
which contains tweet-instances that are devoid of labels at the training stage.
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Fig. 1. (a): Instance level model: the model for each tweet and (b) model architec-
ture: to achieve MIL, the instance level models feed their predictions to a bag level
aggregation layer to be able to share the weights from retro-propagated losses.

3.1 Problem Statement

Given a user U; with a binary location label y; € {0, 1} where 1 denotes that the
user is from a particular city and 0 denotes otherwise. Each Uj is a collection of
tweets tij,j = 1,2,...N and the task is then to devise a function f(t) — y which
essentially labels individual tweets as belonging to the city under consideration.

For a treatment of the problem as formulated here, an end-to-end trainable
neural network architecture is proposed in this work and is called milNN. The
model’s architecture is illustrated in Fig. 1a and b.

Instance Level Classifier. The tweet level classifier consists of an embedding
layer that feeds into the fully connected hidden layer component and is designed
as though labels were available (Fig. 1a). The embedding layer learns representa-
tions that can be viewed as an intuitive language model as opposed to a symbolic
language model that stems from rigid grammatical rules or engineered features
[6]. This also makes the model well suited to social media content which often
deviates from traditional language use.

Bag Level Classifier. The instance level classifier is then applied to individual
tweets and the results are averaged to get the bag level labels as shown in Fig. 1b.
This is the component of the architecture that addresses the relationship between
bag and instance level labels.

Loss Function and Training. At this stage a label is available and losses (binary
cross entropy) can be back-propagated (Adam Optimizer [4]) throughout the
network. Thus, the instance level classifier gets trained as a result of gradients
of the bag level losses.
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3.2 Method Characteristics

Due to being fully embedded in the neural network and representation learning
paradigm, milNN relies on learning distributed representations and is devoid of
subjective feature engineering requirements. This also equips it to handle any
changes that might occur organically in the data. Moreover, this framework
does not have high computational and memory requirements and learned using
stochastic gradient descent which is easy to parallelize.

Additionally, the assumptions of membership proportions are relaxed and
aggregation assumptions are not particularly stringent as the sigmoid layer does
not provide exact labels for the instances, but rather a probabilistic average
across all tweet classifications outputs for a user level label. The architecture is
also flexible and the model described here can be seen as one example of the
most basic possibilities.

The datasets were created by reverse geocoding information from Twitter
North America dataset [12]. The latitude and longitude readings were recorded
when the user registered on Twitter and provided the location. Subsequent
tweets were recorded for this user. For use in this work, the top cities in the
data were split into fifteen datasets of equal number of positive and negative
samples. The negative samples for each city were randomly selected from the
rest of the dataset after stratified sampling from other cities.

3.3 Experimental Setup

At the instance level, the tweets are preprocessed by changing URLs, @mentions,
and hashtags to a generic tags for each. Subsequently they are tokenized and
vocabulary size is chosen to be 5000. The tweet is then padded to a 20 word
maximum and then fed through an embedding layer with 32 dimensions which
is randomly initialized. Following this, there is a single hidden layer with 100
nodes that process the various language level relationships and feed the relu
activations to the sigmoid layer for classification after adding a dropout of 25%
for regularization. 10 tweets from each user are averaged from the instance model
at a higher layer for the bag level output. At this level binary cross entropy loss
is calculated using the bag level labels and back-propagated using the Adam
optimizer. A batch size of 256 bags at a time is chosen and trained for 200
epochs with a learning rate of 0.0001. An early stopping condition is included
which breaks out of training when the loss of the epoch converges and waits for
5 iterations to confirm the convergence. The hyper-parameters chosen for the
model are described in this section and were chosen using half the training data
for validation. The performance of all considered choices was comparable except
for a running time increase for models with more parameters.

3.4 Results

As seen in Table1, in terms of the accuracy metric milNN outperforms state of
the art on 14 of the 15 datasets considered here. When considering the F-score,
it outperforms the other methods on 10 of the 15 datasets. It is important to



50 S. Nagpaul and H. Rangwala

notice that when it loses to older methods, it is for smaller datasets and not
by a lot of margin. However, when it outperforms it is significantly better (eg.
Boston performance is better by 20%). Also, it is consistently good on datasets
of varied sizes and needs while the other methods don’t seem to be able to adapt
to the feature requirements and scale of the data.

Table 1. Accuracy and F-scores for milNN and prior methods. milNN scores a 14/15
and 10/15 on Accuracy and F-score respectively on the 15 datasets of varied sizes
(train-test split was 80:20)

City Acc:SIL | Acc:GICF | Acc:milNN | F1:SIL | F1:GICF | F1:milNN | Total
Atlanta 0.5780 | 0.6025 0.6602 0.6900 | 0.6982 | 0.6568 4414
Austin 0.6070 | 0.6501 0.7015 0.6650 | 0.6291 0.6848 2915
Baltimore 0.5180 | 0.6248 0.6858 0.6560 | 0.6957 | 0.6816 2700
Boston 0.5460 0.5774 0.6276 0.5820 | 0.5960 0.6130 2389
Chicago 0.5760 | 0.6429 0.6502 0.5180 | 0.5163 0.6420 8286
New Orleans 0.5230 | 0.6365 0.6962 0.6690 | 0.6976 0.7041 2592
New York City 0.5740 | 0.6476 0.7024 0.6230 | 0.6349 0.6988 19000
Paradise 0.6060 | 0.6629 0.6565 0.6510 | 0.6365 0.6468 3095
Philadelphia 0.5190 | 0.6195 0.6644 0.6620 | 0.7006 | 0.6830 5792
San Diego 0.6300 | 0.6504 0.6850 0.6080 | 0.6325 0.6548 2452
San Francisco 0.6300 | 0.7322 0.7542 0.6980 | 0.7398 0.7603 7710
Seattle 0.6210 0.6970 0.7269 0.6840 | 0.7112 0.7215 3350
Toronto 0.6390 | 0.6895 0.7520 0.6810 | 0.7056 0.7485 5037
Washington, D.C. | 0.5740 | 0.6298 0.6437 0.6190 | 0.4910 0.6108 5732
Weehawken 0.6160 | 0.6727 0.7000 0.6590 | 0.6588 0.6827 2196

3.5 Case Study

Since San Francisco was the biggest dataset and milNN outperformed the state
of the art on all counts due to its scalability. The structure of the following
analysis is to go over examples of users that belong to SF for exploring language
patterns. Additionally the anti-patterns are explored by analyzing tweets from
users that do not belong in order to discover how SF users don’t tweet.

The word cloud visual is created using all the test instance tweets that
were classified to be over 0.95 by the instance level classifier. Location enti-
ties were subsequently extracted from these tweets using StandfordNER [2] and
then weighted into a word cloud (Fig. 2).

While the San Francisco model caught traditional place names such as ‘Alca-
traz’ and ‘San Franciso’, more exotic language patterns were also discovered in
this dataset. For the second user that was from SF, technology related tweets
were identified as indicative of the region. Additionally, a proclivity to tweet with
correct grammar is also discovered when a single word change causes probability
to increase as grammatical usage becomes less awkward. This point is further
reinforced when a user that is not from SF is seen to have no high probability
tweets due to use of slang (Fig. 3).
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Fig. 2. Word cloud - SF

San Francisco - User 1

0.9999975- " I'm at Alcatraz (Alcatraz Island, San Francisco Bay,
San Francisco) w/ 6 others http:/t.co/47Y WmX9p "

0.9999856 - " I'm at Chinatown Gate (500 Bush St, at Grant Ave,
San Francisco) http:/t.co/tb49RnFa "

0.025480814 - " I'm at Tiffany & Co. (210 N Rodeo Dr., Beverly
Hills) http://t.co/YppqS7ix ")

San Francisco - User 2

0.99910492 - "Can't wait for @BankSimple, @usbank is such a
joke from a technology / ease-of-use perspective."

0.3358801 - "My whole morning had been devoted to banking.
Not done yet. Living the life."

User not from San Francisco

0.16304019 - "Follow the OG triple OG @thad4mayor to ensure
that he don't steal ur wallet when he see you in the
streets...&lt;&gt;jtfo"

0.23261635 - "@jbdachamp u show me no luv :("
0.0011654327 - "Nap time"

0.011714808 - "somethins gotta give"

0.10918618- "@Cree_Oh_Lay CO how ya been?"
0.00020607341 -"@jbdachamp and u won't lol",

0.0094076423 - "@jbdachamp I was MIA 4 a min due 2 technical
issues but now I'm baaaaack lol"

0.010172283 - "da best part is that the downs dont last always"
0.20761815 - "I luv fridays :)"

0.064976566 - "TGIF"

0.073392898 - "@Cree_Oh_Lay CO we're great :)"

0.18137941 - "@thad4mayor "our" hmmm lol"

Fig. 3. San Francisco examples

4 Conclusion

This work demonstrated a flexible multiple instance learning framework applied
to identifying geographic location of short text data. The experiments showed
that miINN was scalable and capable of discovering high level language features
such as grammar in addition to place names in data. Thus this work contributed
to multiple instance learning and geographic information retrieval literature by
designing a novel model architecture that was end-to-end trainable.



52 S. Nagpaul and H. Rangwala

While recurrent neural networks and attention mechanisms might have lent
themselves to the problem considered here, we chose to focus this exercise on
MIL in order to augment prior research that has suffered from the intractability
of kernel based methods. Given the flexibility of the neural network architecture,
future work could focus on developing recurrent neural network based models
that can take a variable length input both in terms of tweet length and number
of tweets. Additionally, extensions of standard aggregation functions could be
developed for instance level data that have bag-internal structure that needs to
be exploited, like in reviews. Transfer learning approaches could also be explored
given the embedding based input of the neural network as and when reliable
twitter word vectors become available.
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ment of Homeland Security under Grant Award Number 2017-ST-061-CINAO1. The
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