From log-determinant inequalities to Gaussian entanglement via recoverability theory

L. Lami, C. Hirche, G. Adesso, and A. Winter, IEEE 2017
arXiv:1703:06149

Outline of the talk

- A bridge between probability theory, matrix analysis, and quantum optics.
- Summary of results.
- Properties of log-det conditional mutual information.
- Gaussian states in a nutshell.
- Main result: the Rényi-2 Gaussian squashed entanglement coincides with the Rényi-2 Gaussian entanglement of formation for Gaussian states.
- Conclusions \& open problems.

Connecting probability theory and matrix analysis

- It has been known for a long time that one can turn information theoretical inequalities into determinantal inequalities by applying them to Gaussian random variables. ${ }^{1}$

$$
\text { Gaussian: } \quad T \in_{\mathcal{R}} \mathbb{R}^{N}, \quad T \sim \mathcal{N}(0, V) \quad \longrightarrow \quad p_{V}(t)=\frac{e^{-\frac{1}{2} t^{\top} V^{-1} t}}{\sqrt{(2 \pi)^{N} \operatorname{det} V}}
$$

$$
\text { Differential Rényi entropies: } \begin{aligned}
h_{\alpha}(T) & =\frac{1}{1-\alpha} \ln \int d^{N} t p_{V}(t)^{\alpha} \\
& =\frac{1}{2} \ln \operatorname{det} V+\frac{N}{2}\left(\ln 2 \pi+\frac{1}{\alpha-1} \ln \alpha\right)
\end{aligned}
$$

- All differential Rényi entropies reduce to $1 / 2 \ln \operatorname{det}(V)$ up to additive constants! Balanced entropy inequalities become inequalities between linear combinations of log determinants.

1. T.M. Cover and J.A. Thomas. Determinant inequalities via information theory. SIAM J. Matrix Anal. Appl. 9(3):384-392, 1988.

Example: strong subadditivity

- Strong subadditivity (SSA) is the most important "Shannon-type" entropy inequality. It tells us that any three random variables T_{A}, T_{B}, T_{C} satisfy

$$
I\left(T_{A}: T_{B} \mid T_{C}\right):=H\left(T_{A} T_{C}\right)+H\left(T_{B} T_{C}\right)-H\left(T_{C}\right)-H\left(T_{A} T_{B} T_{C}\right) \geq 0
$$

- When the three variables are jointly normal:

$$
\begin{gathered}
T=\left(T_{A}, T_{B}, T_{C}\right) \sim \mathcal{N}(V), \quad V_{A B C}=\left(\begin{array}{ccc}
V_{A} & X & Y \\
X^{\top} & V_{B} & Z \\
Y^{\top} & Z^{\top} & V_{C}
\end{array}\right)>0 \\
I\left(T_{A}: T_{B} \mid T_{C}\right)=\frac{1}{2} \ln \frac{\operatorname{det} V_{A C} \operatorname{det} V_{B C}}{\operatorname{det} V_{C} \operatorname{det} V_{A B C}}=: I_{M}(A: B \mid C)_{V}
\end{gathered}
$$

- I_{M} is the conditional mutual information (CMI) formed using the following log-det entropy defined on positive definite matrices:

$$
M(V):=\frac{1}{2} \ln \operatorname{det} V
$$

The grand plan

- Why is this relevant for quantum information?
* In continuous variable systems, Gaussian random variables model the outcomes of Gaussian measurements performed on Gaussian states.
* Rényi-2 entropies of Gaussian states are given by log-determinant expressions.

Entropy inequalities for measurement outcomes

Gaussian measurements on

Log-det inequalities for positive matrices

Rényi-2 entropy inequalities

Quantum

Gaussian states

- This correspondences led to the introduction of operationally motivated Rényi-2 entropic quantifiers for Gaussian states. ${ }^{2}$

2. L. Mišta Jr. and R. Tatham. Gaussian intrinsic entanglement. Phys. Rev. Lett. 117:240505, 2016.

Our results in a nutshell

- We study general properties of the log-det conditional mutual information:
* we analyse its behaviour under various matrix operations, most notably matrix inversion;
* we show - among the other things - that the log-det mutual information is convex on the geodesics of the "trace metric".
- We then establish remainder terms for the strong subadditivity inequality. This is done in two ways:
* perturbing known bounds; and
* exploiting new techniques based on recoverability theory.
- Our main result establishes the equality between two apparently very different Gaussian entanglement measures, when computed on Gaussian states:
* Rényi-2 Gaussian squashed entanglement; and
* Rényi-2 Gaussian entanglement of formation.

Schur complements

- Definition.

$$
V_{A B}=\left(\begin{array}{cc}
A & B \\
\underset{V_{A}}{ } & \tilde{X} \\
X^{T} & V_{B}
\end{array}\right) \longrightarrow \text { Schur complement: } \quad V_{A B} / V_{A}:=V_{B}-X^{T} V_{A}^{-1} X
$$

- Schur complements answer a number of problems in matrix analysis \& probability theory. ${ }^{3}$
* Positivity of block matrices:

$$
V_{A B}>0 \Longleftrightarrow V_{A}>0 \text { and } V_{A B} / V_{A}>0
$$

* Determinant factorisation:

$$
\operatorname{det}\left(V_{A B}\right)=\operatorname{det}\left(V_{A}\right) \operatorname{det}\left(V_{A B} / V_{A}\right)
$$

* Formula for block inverse:

$$
V^{-1}=\left(\begin{array}{cc}
* & * \\
* & \left(V_{A B} / V_{A}\right)^{-1}
\end{array}\right)
$$

* Conditional distribution of normal variables:

$$
T_{A B} \sim \mathcal{N}\left(V_{A B}\right) \Longrightarrow T_{B} \mid\left(T_{A}=t\right) \sim \mathcal{N}\left(V_{A B} / V_{A}\right)
$$

3. F. Zhang (ed.). The Schur Complement and Its Applications. Springer New York, 2005.

First properties of log-det CMI

- Log-det (conditional) mutual information:

$$
I_{M}(A: B \mid C)_{V}=\frac{1}{2} \ln \frac{\operatorname{det} V_{A C} \operatorname{det} V_{B C}}{\operatorname{det} V_{C} \operatorname{det} V_{A B C}} \quad \cdots \cdots \cdots \cdots \quad I_{M}(A: B)_{W}=\frac{1}{2} \ln \frac{\operatorname{det} W_{A} \operatorname{det} W_{B}}{\operatorname{det} W_{A B}}
$$

- Theorem. For all $V_{A B C}>0$, one has

$$
\begin{aligned}
& I_{M}(A: B \mid C)_{V}=I_{M}(A: B)_{V_{A B C} / V_{C}} \\
& I_{M}(A: B \mid C)_{V}=I_{M}(A: B)_{V^{-1}}
\end{aligned}
$$

- These are two ways to reduce a conditional mutual information to a simple mutual information. The second one, in particular, is somewhat surprising. It will come in handy later.
- Sketch of proof. For the first identity, observe that $T_{A B} \mid\left(T_{C}=t\right)$ is distributed normally, with covariance matrix $V_{A B C} / V_{C}$ (which is independent from t). Then
$I_{M}(A: B \mid C)_{V}=I\left(T_{A}: T_{B} \mid T_{C}\right)=\mathbb{E}_{T_{C}}\left(I\left(T_{A}: T_{B}\right) \mid T_{C}\right)=\mathbb{E}_{T_{C}}\left(I_{M}(A: B)_{V_{A B C} / V_{C}}\right)=I_{M}(A: B)_{V_{A B C} / V_{C}}$

Second statement: block inversion formulae + determinant factorisation rule:

$$
\begin{aligned}
&\left(V^{-1}\right)_{A B}=\left(V_{A B C} / V_{C}\right)^{-1}, \quad\left(V^{-1}\right)_{A}=\left(V_{A B C} / V_{B C}\right)^{-1}, \quad\left(V^{-1}\right)_{B}=\left(V_{A B C} / V_{A C}\right)^{-1} \\
& I_{M}(A: B)_{V^{-1}}=\frac{1}{2} \ln \frac{\operatorname{det}\left(V^{-1}\right)_{A} \operatorname{det}\left(V^{-1}\right)_{B}}{\operatorname{det}\left(V^{-1}\right)_{A B}} \\
&=\frac{1}{2} \ln \frac{\operatorname{det}\left(V_{A B C} / V_{B C}\right)^{-1} \operatorname{det}\left(V_{A B C} / V_{A C}\right)^{-1}}{\operatorname{det}\left(V_{A B C} / V_{C}\right)^{-1}} \\
&=\frac{1}{2} \ln \frac{\operatorname{det}\left(V_{A B C} / V_{C}\right)}{\operatorname{det}\left(V_{A B C} / V_{B C}\right) \operatorname{det}\left(V_{A B C} / V_{A C}\right)} \\
&=\frac{1}{2} \ln \frac{\left(\operatorname{det} V_{A B C}\right)\left(\operatorname{det} V_{C}\right)^{-1}}{\left(\operatorname{det} V_{A B C}\right)\left(\operatorname{det} V_{B C}\right)^{-1}\left(\operatorname{det} V_{A B C}\right)\left(\operatorname{det} V_{A C}\right)^{-1}} \\
&=\frac{1}{2} \ln \frac{\operatorname{det} V_{A C} \operatorname{det} V_{B C}}{\operatorname{det} V_{A B C} \operatorname{det} V_{C}} \\
&=I_{M}(A: B \mid C)_{V}
\end{aligned}
$$

Application: lower bounds on log-det CMI

- Strong subadditivity is saturated iff the variables form a Markov chain. In other words,

$$
I\left(T_{A}: T_{B} \mid T_{C}\right)=0 \Longleftrightarrow T_{A}-T_{C}-T_{B}
$$

- Problem: in the case of $T=\left(T_{A}, T_{B}, T_{C}\right)$ being Gaussian, how can we read this from the covariance matrix? The question was answered by Ando \& Petz ${ }^{4}$, but here we can give a one-line proof.

$$
0=I\left(T_{A}: T_{B} \mid T_{C}\right)=I_{M}(A: B \mid C)_{V}=I_{M}(A: B)_{V^{-1}}, \quad V_{A B C}=\left(\begin{array}{ccc}
V_{A} & X & Y \\
X^{\top} & V_{B} & Z \\
Y^{\top} & Z^{\top} & V_{C}
\end{array}\right)
$$

Note that $I_{M}(A: B)_{V^{-1}}=0$ is possible iff the off-diagonal blocks of $\left(V^{-1}\right)_{A B}$ vanish. Introducing the projectors Π_{A} and Π_{B} onto the A and B subspaces, this can be rephrased as

$$
0=\Pi_{A}\left(V_{A B C}\right)^{-1} \Pi_{B}^{\top}=-\left(V_{A B C} / V_{B C}\right)^{-1}\left(X-Y V_{C}^{-1} Z^{\top}\right)\left(V_{B C} / V_{C}\right)^{-1}
$$

- Saturation condition (= Markov chain condition): $\quad X-Y V_{C}^{-1} Z^{\top}=0$

4. T. Ando and D. Petz. Acta Sci. Math. (Szeged) 75:265-281, 2009.

- The advantage of this approach over the traditional one is that by working a bit harder you can perturb this saturation condition and get a remainder term:

$$
I_{M}(A: B \mid C)_{V} \geq \frac{1}{2}\left\|V_{A}^{-1 / 2}\left(X-Y V_{C}^{-1} Z^{\top}\right) V_{B}^{-1 / 2}\right\|_{2}^{2}
$$

- Other remainder terms can be obtained by transforming the log-det CMI into a relative entropy and then applying any lower bound to the latter (e.g. negative log fidelity):

$$
I\left(T_{A}: T_{B} \mid T_{C}\right)=D\left(T \| T^{\prime}\right), \quad p_{T^{\prime}}\left(t_{A}, t_{B}, t_{C}\right)=p_{T_{A} T_{C}}\left(t_{A}, t_{C}\right) p_{T_{B} \mid T_{C}}\left(t_{B} \mid t_{C}\right)
$$

- A necessary condition for this strategy to succeed is that we work out the distribution of T^{\prime} : this new variable can be thought of as an "attempt" to reconstruct the original T once T_{B} has been lost, assuming that $T_{A}-T_{C}-T_{B}$ is a Markov chain.

Also T^{\prime} is distributed normally:

$$
T^{\prime} \sim \mathcal{N}\left(V^{\prime}\right), \quad V_{A B C}^{\prime}:=\left(\begin{array}{ccc}
V_{A} & Y V_{C}^{-1} Z^{\top} & Y \\
Z V_{C}^{-1} Y^{\top} & V_{B} & Z \\
Y^{\top} & Z^{\top} & V_{C}
\end{array}\right)
$$

Matrix geometric mean

- The set \mathbb{P}_{N} of positive definite matrices is a differentiable manifold.
- All tangent spaces \mathbf{T}_{K} are isomorphic to $\mathbf{T}_{\mathbb{1}}$ (and hence to each other):

$$
\mathbf{T}_{K} \ni X \mapsto K^{-1 / 2} X K^{-1 / 2} \in \mathbf{T}_{\mathbb{1}}
$$

Tangent space \mathbf{T}_{K}

- $\mathbf{T}_{\mathbb{1}}$ (\simeq Hermitian matrices) has a natural metric that comes from the Hilbert-Schmidt norm. This induces a metric, called the trace metric, on the whole manifold:

$$
d s:=\left\|K^{-1 / 2} d K K^{-1 / 2}\right\|_{2}=\left(\operatorname{Tr}\left[\left(K^{-1} d K\right)^{2}\right]\right)^{1 / 2}
$$

- Then \mathbb{P}_{N} becomes a Riemaniann manifold. How are its geodesics shaped?

As one it turn out, can give an analytical expression ${ }^{5}$ of the geodesic connecting M and N :

$$
\gamma_{M \rightarrow N}(t)=M^{1 / 2}\left(M^{-1 / 2} N M^{-1 / 2}\right)^{t} M^{1 / 2}=: M \#_{t} N
$$

Weighted geometric mean

5. M. Moakher. SIAM J. Matrix Anal. \& Appl. 26(3):735-747, 2005.

- The weighted geometric mean enjoys a wealth of useful properties: ${ }^{6}$
* Determinant factorisation:

$$
\operatorname{det}\left(M \#_{t} N\right)=(\operatorname{det} M)^{1-t}(\operatorname{det} N)^{t}
$$

* Monotonicity under positive maps:

$$
\Phi\left(M \#_{t} N\right) \leq \Phi(M) \#_{t} \Phi(N)
$$

- Consider bipartite block matrices $V_{A B}, W_{A B}$. Applying this monotonicity property to the map that projects onto the subspace A we get

$$
\left(V \#_{t} W\right)_{A}=\Pi_{A}\left(V \#_{t} W\right) \Pi_{A}^{\top} \leq\left(\Pi_{A} V \Pi_{A}^{\top}\right) \#_{t}\left(\Pi_{A} W \Pi_{A}^{\top}\right)=V_{A} \#_{t} W_{A}
$$

Taking the determinant:

$$
\operatorname{det}\left(V \#_{t} W\right)_{A} \leq \operatorname{det}\left(V_{A} \#_{t} W_{A}\right)=\left(\operatorname{det} V_{A}\right)^{1-t}\left(\operatorname{det} W_{A}\right)^{t}
$$

6. T. Ando. Linear Algebra Appl. 26:203-241, 1979.

An important property of log-det MI

- Theorem. The log-det mutual information is convex on the geodesics of the trace metric, i.e.

$$
I_{M}(A: B)_{V \#_{t} W} \leq(1-t) I_{M}(A: B)_{V}+t I_{M}(A: B)_{W}
$$

- This is surprising, given that in general the log-det mutual information is not convex in the covariance matrix! It is also useful, as we shall see.
- Proof. Applying the determinantal inequality we have just found:

$$
\begin{aligned}
I_{M}(A: B)_{V \#_{t} W} & =\frac{1}{2} \ln \frac{\left(\operatorname{det}\left(V \#_{t} W\right)_{A}\right)\left(\operatorname{det}\left(V \#_{t} W\right)_{B}\right)}{\operatorname{det}\left(V \#_{t} W\right)_{A B}} \\
& \leq \frac{1}{2} \ln \frac{\left(\operatorname{det} V_{A}\right)^{1-t}\left(\operatorname{det} W_{A}\right)^{t}\left(\operatorname{det} V_{B}\right)^{1-t}\left(\operatorname{det} W_{B}\right)^{t}}{\left(\operatorname{det} V_{A B}\right)^{1-t}\left(\operatorname{det} W_{A B}\right)^{t}} \\
& =\frac{1-t}{2} \ln \frac{\operatorname{det} V_{A} \operatorname{det} V_{B}}{\operatorname{det} V_{A B}}+\frac{t}{2} \ln \frac{\operatorname{det} W_{A} \operatorname{det} W_{B}}{\operatorname{det} W_{A B}} \\
& =(1-t) I_{M}(A: B)_{V}+t I_{M}(A: B)_{W}
\end{aligned}
$$

Where's the quantum?

- Until now we have explored the connections between classical probability theory and matrix analysis. Why is this relevant for quantum information?

Entropy inequalities for
Gaussian random variables

Entropy inequalities for measurement outcomes

Gaussian measurements on Gaussian states

Log-det inequalities for positive matrices
?

Classical

Quantum

- First we need to introduce the basic formalism of quantum optics: Gaussian states, quantum covariance matrices etc.

Quantum Gaussian states

- Quantum optics ~ quantum mechanics applied to a finite number of harmonic oscillators.

$$
\left[\hat{x}_{j}, \hat{p}_{k}\right]=i \delta_{j k} \quad \longrightarrow \quad \hat{r}:=\left(\hat{x}_{1}, \ldots, \hat{x}_{n}, \hat{p}_{1}, \ldots, \hat{p}_{n}\right)^{T}, \quad\left[\hat{r}, \hat{r}^{T}\right]=i \Omega=i\left(\begin{array}{cc}
0 & \mathbb{1} \\
-\mathbb{1} & 0
\end{array}\right)
$$

- Thermal states of quadratic Hamiltonians, also called Gaussian states, form a privileged class of experimentally relevant quantum states.
- As their classical relatives, they are parametrised by a mean vector w and a covariance matrix V.
- Covariance matrices of n-mode quantum states are exactly those $2 n \times 2 n$ real matrices such that

$$
V \geq i \Omega \quad \longrightarrow \text { Heisenberg uncertainty principle! }
$$

Real symmetric matrices satisfying the above condition are called quantum covariance matrices (QCMs).

- Pure states are represented by minimal QCMs, or equivalently by QCMs with determinant 1 .

$$
\hat{\rho}_{G}(V, w) \text { pure } \quad \Longleftrightarrow \quad V \geq i \Omega \text { and } \operatorname{det} V=1
$$

- Experimentally, Gaussian measurements are easily accessible. These can be described by POVMs parametrised by another QCM, called seed.
- When one makes a Gaussian measurement described by a seed γ on a Gaussian state with covariance matrix V, the outcome T is again distributed normally:

$$
T \sim \mathcal{N}\left(\frac{1}{2}(V+\gamma)\right)
$$

- Hence, its differential entropy becomes:

$$
h(T)=\frac{1}{2} \ln \operatorname{det}\left(\frac{1}{2}(V+\gamma)\right)+n(\ln 2 \pi+1)
$$

The quantum entropy of the Gaussian state itself is significantly more complicated...

- Moral: log-determinant entropies are the right thing to look at if what you care about are measured correlations.
- To recover log-determinant expressions from the quantum state directly one has to work with Rényi-2 entropies:

$$
S_{2}\left(\hat{\rho}_{G}(V, w)\right):=-\ln \operatorname{Tr}\left[\hat{\rho}(V, w)^{2}\right]=\frac{1}{2} \ln \operatorname{det} V
$$

Gaussian entanglement measures

- Consider a bipartite Gaussian state. How to quantify its entanglement? An important measure is the Rényi- α entanglement of formation, aka the convex roof of the Rényi- α entanglement entropy.
- Since we are dealing with Gaussian states, it makes sense to restrict to Gaussian decompositions in the convex roof, and to look at $\alpha=2$. In this way one obtains the Rényi-2 Gaussian entanglement of formation. ${ }^{7}$
- The choice of α makes the expression extremely simple at the level of covariance matrices:

$$
E_{F, 2}^{G}(A: B)_{V}=\inf \frac{1}{2} I_{M}(A: B)_{\gamma} \quad \begin{gathered}
\text { It has been conjectured to be } \\
\text { linked to the secret key distillation } \\
\text { rate in the Gaussian setting [Mišta }
\end{gathered}
$$

Main result

- Theorem. For any quantum covariance matrix $V_{A B C}$, twice the Rényi-2 Gaussian entanglement of formation between A and B is a lower bound on the log-det CMI:

$$
\frac{1}{2} I_{M}(A: B \mid C)_{V} \geq E_{F, 2}^{G}(A: B)_{V}
$$

Furthermore, the r.h.s can be recovered by taking the infimum of the l.h.s over all (legal) extensions $V_{A B C}$ of $V_{A B}$:

$$
\inf _{V_{A B C} \geq i \Omega_{A B C}} \frac{1}{2} I_{M}(A: B \mid C)_{V}=E_{F, 2}^{G}(A: B)_{V}
$$

- Sketch of proof (first inequality). Start by defining ${ }^{8}$

$$
\gamma_{A B}:=\left(V_{A B C} / V_{C}\right) \#_{1 / 2}\left(\Omega_{A B}\left(V_{A B C} / V_{C}\right)^{-1} \Omega_{A B}^{T}\right)
$$

Even if it is not obvious at first glance, this is always a QCM, and moreover $\gamma_{A B} \leq V_{A B}$. Now, compute its determinant:

$$
\operatorname{det} \gamma_{A B}=\left(\operatorname{det}\left(V_{A B C} / V_{C}\right) \operatorname{det}\left(\Omega_{A B}\left(V_{A B C} / V_{C}\right)^{-1} \Omega_{A B}^{T}\right)\right)^{1 / 2}=\left(\operatorname{det}\left(V_{A B C} / V_{C}\right) \operatorname{det}\left(V_{A B C} / V_{C}\right)^{-1}\right)^{1 / 2}=1
$$

Hence, this $\gamma_{A B}$ is a pure QCM. This means that we can use it as an ansatz in the inf that defines the Rényi-2 Gaussian entanglement of formation!
8. LL, C. Hirche, G. Adesso, and A. Winter. Phys. Rev. Lett. 117:220502, 2016.

Doing so yields:

$$
\begin{aligned}
E_{F, 2}^{\mathrm{G}}(A: B)_{V} & =\inf _{\tau_{A B} \leq V_{A B}, \tau_{A B} \text { pure }} \frac{1}{2} I_{M}(A: B)_{\tau} \\
& \leq \frac{1}{2} I_{M}(A: B)_{\left(V_{A B C} / V_{C}\right) \not \#_{1 / 2}\left(\Omega\left(V_{A B C} / V_{C}\right)^{-1} \Omega \tau\right)}
\end{aligned}
$$

Convexity of log-det MI on the geodesics of the

$$
\longrightarrow \leq \frac{1}{4} I_{M}(A: B)_{V_{A B C} / V_{C}}+\frac{1}{4} I_{M}(A: B)_{\Omega\left(V_{A B C} / V_{C}\right)^{-1} \Omega T}
$$

trace metric

$$
\underset{\text { (orthogonal matrix) }}{\text { Getting rid of } \Omega} \quad \longrightarrow=\frac{1}{4} I_{M}(A: B)_{V_{A B C} / V_{C}}+\frac{1}{4} I_{M}(A: B)_{\left(V_{A B C} / V_{C}\right)^{-1}}
$$

Properties of log-det CMI $\longrightarrow=\frac{1}{4} I_{M}(A: B \mid C)_{V}+\frac{1}{4} I_{M}(A: B \mid C)_{V}$

$$
\begin{aligned}
& I_{M}(A: B \mid C)_{V}=I_{M}(A: B)_{V_{A B C} / V_{C}} \\
& I_{M}(A: B \mid C)_{V}=I_{M}(A: B)_{V-1} \quad=\frac{1}{2} I_{M}(A: B \mid C)_{V}
\end{aligned}
$$

In the second part of the proof we had to construct suitable extensions that can saturate the above bound (a bit more cumbersome).

Consequences

$$
\inf _{V_{A B C} \geq i \Omega_{A B C}} \frac{1}{2} I_{M}(A: B \mid C)_{V}=E_{F, 2}^{G}(A: B)_{V}
$$

- The theorem reduces the inf on the 1.h.s., which is in principle over extensions of unbounded dimension, to an optimisation over a compact set of matrices of fixed dimension.
- The optimised mutual information is reminiscent of the squashed entanglement: ${ }^{10}$

$$
E_{\mathrm{sq}}(A: B)_{\rho}:=\inf _{\rho_{A B C}} \frac{1}{2} I(A: B \mid C)_{\rho}
$$

In fact, it is a "Rényi-2 Gaussian" version of the squashed entanglement.

- For comparison, remember that a simple expression for the von Neumann squashed entanglement remains out of reach, even for very simple states.
- Our results may be useful to tackle a conjecture in [Mišta \& Tatham, PRL 2016]: the Rényi-2 Gaussian entanglement of formation coincides with the Gaussian intrinsic entanglement, i.e. the intrinsic information of the measured correlations, when all the parties are assumed to employ only Gaussian processing.

9. R.R. Tucci, arXiv:quant-ph/9909041. - M. Christandl and A. Winter, J. Math. Phys. 45(3):829-840, 2004.

Conclusions

- Log-determinant expressions appear:
* in the entropies of normal variables;
* in the entropies of the outcomes of Gaussian measurements on Gaussian states;
* in the Rényi-2 entropies of Gaussian states.
- The log-determinant mutual information enjoys lots of useful properties: for instance, it is convex on the geodesics of the trace metric.
- These properties can be used to show that the Rényi-2 Gaussian squashed entanglement coincides with the Rényi-2 Gaussian entanglement of formation.
- This may shed light on the connections between these quantifiers and the cryptographically motivated Gaussian intrinsic entanglement.

Thank you!

