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Abstract

Removing pixel-wise heterogeneous motion blur is chal-

lenging due to the ill-posed nature of the problem. The pre-

dominant solution is to estimate the blur kernel by adding

a prior, but extensive literature on the subject indicates the

difficulty in identifying a prior which is suitably informative,

and general. Rather than imposing a prior based on the-

ory, we propose instead to learn one from the data. Learn-

ing a prior over the latent image would require modeling

all possible image content. The critical observation under-

pinning our approach, however, is that learning the mo-

tion flow instead allows the model to focus on the cause

of the blur, irrespective of the image content. This is a

much easier learning task, but it also avoids the iterative

process through which latent image priors are typically ap-

plied. Our approach directly estimates the motion flow from

the blurred image through a fully-convolutional deep neu-

ral network (FCN) and recovers the unblurred image from

the estimated motion flow. Our FCN is the first universal

end-to-end mapping from the blurred image to the dense

motion flow. To train the FCN, we simulate motion flows

to generate synthetic blurred-image-motion-flow pairs thus

avoiding the need for human labeling. Extensive experi-

ments on challenging realistic blurred images demonstrate

that the proposed method outperforms the state-of-the-art.

1. Introduction

Motion blur is ubiquitous in photography, especially

when using light-weight mobile devices, such as cell-

phones and on-board cameras. While there has been sig-
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(a) Blurry image (b) Xu and Jia [42]

(c) Sun et al. [33] (d) Ours

Figure 1. A blurry image with heterogeneous motion blur from

a widely used dataset Microsoft COCO [23]. Estimated motion

flows are shown in the bottom right corner of each image.

nificant progress in image deblurring [9, 6, 42, 27, 28, 10],

most work focuses on spatially-uniform blur. Some recent

methods [40, 12, 14, 18, 26, 32] have been proposed to

remove spatially-varying blur caused by camera panning,

and/or object movement, with some restrictive assumptions

on the types of blur, image prior, or both. In this work,

we focus on recovering a blur-free latent image from a sin-

gle observation degraded by heterogeneous motion blur, i.e.

the blur kernels may independently vary from pixel to pixel.

Motion blur in real images has a variety of causes, in-

cluding camera [40, 47] and object motion [15, 26], lead-

ing to blur patterns with complex variations (See Figure 1

(a)). In practice, uniform deblurring methods [9, 6, 42] usu-

ally fail to remove the non-uniform blur (See Figure 1 (b)).

Most existing non-uniform deblurring methods rely on a

specific motion model, such as 3D camera motion modeling

2319

https://donggong1.github.io/blur2mflow


[11, 40] and segment-wise motion [20, 26]. Although a re-

cent method [18] uses a flexible motion flow map to handle

heterogeneous motion blur, it requires a time-consuming

iterative estimator. In addition to the assumptions about

the cause of blur, most existing deblurring methods also

rely on predefined priors or manually designed image fea-

tures. Most conventional methods [9, 22, 44] need to it-

eratively update the intermediate image and the blur ker-

nel with using these predefined image priors to reduce the

ill-posedness. Solving these non-convex problems is non-

trivial, and many real images do not conform to the assump-

tions behind a particular model. Recently, learning-based

discriminative methods [4, 7] have been proposed to learn

blur image patterns and avoid the heavy computational cost

of blur estimation. However, their representation and pre-

diction abilities are limited by their manually designed fea-

tures and simple mapping functions. Although a deep learn-

ing based method [33] aimed to overcome these problems, it

restrictively conducts the learning process at the patch-level

and thus cannot take full advantage of the context informa-

tion from larger image regions.

In summary, there are three main problems with existing

approaches: 1) the range of applicable motion types is lim-

ited, 2) manually defined priors and image features may not

reflect the nature of the data and 3) complicated and time-

consuming optimization and/or post-processing is required.

Generally, these problems limit the practical applicability of

blur removal methods to real images, as they tend to cause

worse artifacts than they cure.

To handle general heterogeneous motion blur, based on

the motion flow model, we propose a deep neural network

based method able to directly estimate a pixel-wise motion

flow map from a single blurred image by learning from tens

of thousands of examples. To summarize, the main contri-

butions of this paper are:

• We propose an approach to estimate and remove pixel-

wise heterogeneous motion blur by training on simu-

lated examples. Our method uses a flexible blur model

and makes almost no assumptions about the underly-

ing images, resulting in effectiveness on diverse data.

• We introduce a universal FCN for end-to-end estima-

tion of dense heterogeneous motion flow from a single

blurry image. Beyond the previous patch-level learn-

ing [33], we directly perform training and testing on

the whole image, which utilizes the spatial context

over a wider area and estimates a dense motion flow

map accurately. Moreover, our method does not re-

quire any post-processing.

2. Related Work

Conventional blind image deblurring To constrain the so-

lution space for blind deblurring, a common assumption is

that image blur is spatially uniform [5, 6, 9, 22, 28, 10].

Numerous image priors or regularizers have been studied

to overcome the ill-posed nature of the problem, such as

the total variational regularizer [5, 29], Gaussian scale mix-

ture priors [9] and ℓ1/ℓ2-norms [19], ℓ0-norms [44, 27],

and dark channel [28] based regularizers. Various esti-

mators have been proposed for more robust kernel estima-

tion, such as edge-extraction-based maximum-a-posteriori

(MAP) [6, 34], gradient activation based MAP [10], varia-

tional Bayesian methods [21, 22, 46], etc . Although these

powerful priors and estimators work well on many bench-

mark datasets, they are often characterised by restrictive as-

sumptions that limit their practical applicability.

Spatially-varying blur removal To handle spatially-

varying blur, more flexible blur models are proposed. In

[35], a projective motion path model formulates a blurry

image as the weighted sum of a set of transformed sharp

images, an approach which is which is simplified and ex-

tended in [40] and [45]. Gupta et al. [11] model the camera

motion as a motion density function for non-uniform de-

blurring. Several locally uniform overlapping-patch-based

models [13, 12] are proposed to reduce the computational

burden. Zheng et al. [47] specifically modelled the blur

caused by forward camera motion. To handle blur caused

by object motion, some methods [20, 8, 15, 26] segment

images into areas with different types of blur, and are thus

heavily dependent on an accruate segmentation of a blurred

image. Recently, a pixel-wise linear motion model [18] is

proposed to handle heterogeneous motion blur. Although

the motion is assumed to be locally linear, there is no as-

sumption on the latent motion, making it flexible enough to

handle an extensive range of possible motion.

Learning based motion blur removing Recently, learn-

ing based methods have been used to achieve more flexible

and efficient blur removal. Some discriminative methods

are proposed for non-blind deconvolution based on Gaus-

sian CRF [30], multi-layer perceptron (MLP) [31], and deep

convolution neural network (CNN) [43], etc, which all re-

quire the known blur kernels. Some end-to-end methods

[17, 25] are proposed to reconstruct blur-free images, how-

ever, they can only handle mild Gaussian blur. Recently,

Wieschollek et al. [41] introduce an MLP based blind de-

blurring method by using information in multiple images

with small variations. Chakrabarti [3] trains a patch-based

neural network to estimate the frequency information for

uniform motion blur removal. The most relevant work is

a method based on CNN and patch-level blur type classi-

fication [33], which also focuses on estimating the motion

flow from single blurry image. The authors train a CNN

on small patch examples with uniform motion blur, where

each patch is assigned a single motion label, violating the

real data nature and ignoring the correspondence in larger

areas. Many post-processing such as MRF are required for

the final dense motion flow.
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Figure 2. Overview of our scheme for heterogeneous motion blur removal. (a) We train an FCN using examples based on simulated motion

flow maps. (b) Given a blurry image, we perform end-to-end motion flow estimation using the trained FCN, and then recover the sharp

image via non-blind deconvolution.

3. Estimating Motion Flow for Blur Removal

3.1. A Heterogeneous Motion Blur Model

Letting ∗ denote a general convolution operator, a P ×Q
blurred image Y can be modeled as

Y = K ∗X+N, (1)

where X denotes the latent sharp image, N refers to addi-

tive noise, and K denotes a heterogeneous motion blur ker-

nel map with different blur kernels for each pixel in X. Let

K(i,j) represent the kernel from K that operates on a region

of the image centered at pixel (i, j). Thus, at each pixel of

Y, we have

Y(i, j) =
∑

i′,j′

K(i,j)(i
′, j′)X(i+ i′, j + j′). (2)

If we define an operator vec(·) which vectorises a matrix

and let y = vec(Y), x = vec(X) and n = vec(N) then (1)

can also be represented as

y = H(K)x+ n, (3)

where H(K) ∈ R
PQ×PQ1and each row corresponds to a

blur kernel located at each pixel (i.e. K(i,j)).

3.2. Blur Removal via Motion Flow Estimation

Given a blurry image Y, our goal is to estimate the blur

kernel K and recover a blur-free latent image X through

non-blind deconvolution that can be performed by solving a

convex problem (Figure 2 (b)). As mentioned above, kernel

estimation is the most difficult and crucial part.

Based on the model in (1) and (2), heterogeneous mo-

tion blur can be modeled by a set of blur kernels, one as-

sociated with each pixel and its motion. By using a linear

motion model to indicate each pixel’s motion during imag-

ing process [18], and letting p = (i, j) denote a pixel lo-

cation, the motion at pixel p, can be represented by a 2-

dimensional motion vector (up, vp), where up and vp rep-

resent the movement in the horizontal and vertical direc-

tions, respectively (See Figure 3 (a)). By a slight abuse of

1For simplicity, we assume X and Y have the same size.

Kp2

Mp3

up3

vp3

Kp3 p3

(a) Motion blur and motion flow

u

v

0

D
+
u

Dv

Du

(b) Domain of motion

Figure 3. Motion blur and motion vector. (a) An example with blur

cause by clock-wise rotation. Three examples of the blur pattern,

linear blur kernel and motion vector are shown. The blur kernels

on p1 and p3 caused by motions with opposite directions and have

the same appearance. (b) Illustrations of the feasible domain of

motion flow.

notation we express this as Mp = (up, vp), which charac-

terizes the movement at pixel p over the exposure time. If

we have the feasible domain up ∈ Du and vp ∈ Dv , then

Mp ∈ Du × Dv , but will be introduced in detail later. As

shown in Figure 3, the blur kernel on each pixel appears as

a line trace with nonzero components only along the mo-

tion trace. As a result, the motion blur Kp in (2) can be

expressed as [2]:

Kp(i
′, j′) =

{
0, if ‖(i′, j′)‖2 ≥

‖Mp‖2

2 ,
1

‖Mp‖2
δ(vpi

′−upj
′), otherwise,

(4)

where δ(·) denotes the Dirac delta function. We thus can

achieve heterogeneous motion blur estimation by estimat-

ing the motion vectors on all pixels, the result of which is

M, which is referred as motion flow. For convenience of

expression, we let M = (U,V), where U and V denote

the motion maps in the horizontal and vertical directions,

respectively. For any pixel p = (i, j), we define Mp =
(U(i, j),V(i, j)) with U(i, j) = up and V(i, j) = vp.

As shown in Figure 2 (b), given a blurred image and the

estimated motion flow, we can recover the sharp image by

solving an non-blind deconvolution problem

min
x

‖y −H(K)x‖22 +Ω(x)

with regularizer Ω(x) on the unknown sharp image. In prac-

tice, we use a Gaussian mixture model based regularizer as

Ω(x) [48, 33].
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Figure 4. Our network structure. A blurred image goes through layers and produces a pixel-wise dense motion flow map. conv means a

convolutional layer and uconv means a fractionally-strided convolutional (deconvolutional) layer, where n×n for each uconv layer denotes

that the up-sampling size is n. Skip connections on top of pool2 and pool3 are used to combine features with different resolutions.

3.3. Learning for Motion Flow Estimation

The key contribution of our work is to show how to ob-

tain the motion flow field that results in the pixel-wise mo-

tion blur. To do so we train a FCN to directly estimate the

motion flow field from the blurry image.

Let {(Yt,Mt)}Tt=1 be a set of blurred-image and

motion-flow-map pairs, which we take as our training set.

Our task is to learn an end-to-end mapping function M =
f(Y) from any observed blurry image Y to the underlying

motion flow M. In practice, the challenge is that obtaining

the training ground-truth dense motion flow for sufficiently

many and varied real blurry images is infeasible. Human la-

beling is impossible, and training from automated methods

for image deblurring would defeat the purpose. To over-

come this problem, we generate the training set by simu-

lating motion flows maps. (See section 4.2). Specifically,

we collect a set of sharp images {Xn}, simulate T motion

flows {Mt} in total for all images in {Xn}, and then gener-

ate T blurred images {Yt} based on the models in (1) and

(4) (See Figure 2 (a)).

Feasible domain of motion flow To simplify the train-

ing process, we train the FCN over a discrete output do-

main. Interestingly, classification on discrete output space

has achieved some impressive results for some similar ap-

plications, e.g. optical flow estimation [36] and surface nor-

mal prediction [37]. In our work, we adopt an integer do-

main for both U and V, and treat the mapping M = f(Y)
as a multi-class classification problem. Specifically, we uni-

formly discretize the motion values as integers with a 1

(pixel) interval, which provides a high-precision approxi-

mation to the latent continuous space. As a result, by as-

suming the maximum movements in the horizontal and ver-

tical directions to be umax and vmax, respectively, we have

Du = {u|u ∈ Z, |u| ≤ umax} and Dv = {v|v ∈ Z, |v| ≤
vmax}, where Z denotes the integer domain.

As shown in Figure 3 (a), any linear blur kernel is sym-

metric. Any two motion vectors with same length and op-

posite directions, e.g. (up, vp) and (−up,−vp), generate

the same blur pattern, which may confuse the learning pro-

cess. We thus further restrict the motion in the horizon-

tal direction to be nonnegative as shown in Figure 3 (b),

i.e. up ∈ D
+
u = {u|u ∈ Z

+
0 , |u| ≤ umax}, by letting

(up, vp) = φ(up, vp) where

φ(up, vp) =

{
(−up,−vp), if up < 0,
(up, vp), otherwise.

(5)

4. Dense Motion Flow Estimation

4.1. Network Design

The goal of this FCN network is to achieve the end-to-

end mapping from a blurry image to its corresponding mo-

tion flow map. Given any RGB image with the arbitrary

size P ×Q, the FCN is used to estimate a motion flow map

M = (U,V) with the same size to the input image, where

U(i, j) ∈ D
+
u and V(i, j) ∈ Dv , ∀i, j. For convenience,

we let D = |D+
u | + |Dv| denote the total number of labels

for both U and V. Our network structure is similar to the

FCN in [24]. As shown in Figure 4, we use 7 convolutional

(conv) layers and 4 max-pooling (pool) layers as well as

3 uconv layers to up-sample the prediction maps. Follow-

ing [38], uconv denotes the fractionally-strided convolution,

a.k.a. deconvolution. We use a small stride of 1 pixel for all

convolutional layers. The uconv layers are initialized with

bilinear interpolation and used to up-sample the activations.

We also add skip connections which combine the informa-

tion from different layers as shown in Figure 4.

The feature map of the last uconv layer (conv7 + uconv2)

is a P × Q × D tensor with the top |D+
u | slices of fea-

ture maps (P × Q × |D+
u |) corresponding to the estima-

tion of U, and the remaining |Dv| slices of feature maps

(P ×Q× |Dv|) corresponding to the estimation of V. Two

separate soft-max layers are applied to those two parts re-

spectively to obtain the posterior probability estimation of

both channels. Let Fu,i,j(Y) represent the probability that

the pixel at (i, j) having a movement u along the horizontal

direction, and Fv,i,j(Y) represent the probability that the

pixel at (i, j) having a movement v along the vertical di-

rection, we then use the sum of the cross entropy loss from
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(a) Sharp Image (b) x and y-axis translation (c) z-axis translation (d) z-axis rotation (e) Arbitrary sampled motion

Figure 5. Demonstration of the motion flow simulation. (a) A sharp example image and the coordinate system of camera. (b)-(c) The

sampled motion flow and the corresponding blurred image by simulating the translation along x and y-axes (MTx
+ MTy

), translation

along z-axis (MTz
) and rotation around z-axis (MRz

), respectively. (d) A sample based on the model considering all components in (6).

both channels as the final loss function:

L(Y,M)=−

P∑

i=1

Q∑

j=1

∑

u∈D
+
u

✶(U(i, j) = u) log(Fu,i,j(Y))

−
P∑

i=1

Q∑

j=1

∑

v∈Dv

✶(V(i, j) = v) log(Fv,i,j(Y)),

where ✶ is an indicator function.

4.2. Simulate Motion Flow for Data Generation

The gist of this section is generating a dataset that con-

tains realistic blur patterns on diverse images for training.

Although an i.i.d. random sampling may generate very di-

verse training samples, since the realistic motion flow pre-

serves some properties such as piece-wise smoothness, we

aim to design a simulation method to generate motion flows

reflecting the natural properties of the movement in imaging

process. Although the object motion [15] can lead to hetero-

geneous motion blur in real images, our method only sim-

ulates the motion flow caused by camera motion for learn-

ing. Even so, as shown in Section 5.5, data generated by

our method can also give the model certain ability to handle

object motion.

For simplicity, we generate a 3D coordinate system

where the origin at the camera’s optical center, the xy-plane

is aligned with the camera sensors, and the z-axis is per-

pendicular to the xy-plane, as shown in Figure 5. Since our

objective is the motion flow on an image grid, we directly

simulate the motion flow projected on 2D image instead of

the 3D motion trajectory [40]. Considering the ambiguities

caused by rotations around x and y axis [11], we simulate a

motion flow M by sampling four additive components:

M = MTx
+MTy

+MTz
+MRz

, (6)

where MTx
, MTy

and MTz
denote the motion flows associ-

ated with the translations along x, y and z axis, receptively,

and MRz
represents the motion from the rotation around z

axis. We generate each element as the following.

Translation along x or y axis We describe the gener-

ation of MTx
as an example. We first sample a cen-

tral pixel pTx
= (iTx

, jTx
) on image plane, a basic mo-

tion value tTx
and a acceleration coefficient rTx

. Then

MTx
= (UTx

,VTx
) can be generated as the following

UTx
(i, j) = (i − iTx

)rTx
+ tTx

,VTx
(i, j) = 0. MTy

can

be generated in a similar way.

Translation along z axis The translation along z axis usu-

ally causes radial motion blur pattern towards the vanishing

point [47]. By ignoring the semantic context and assuming a

simple radial pattern, MTz
can be generated by UTz

(i, j) =
tTz

d(i, j)ζ(i−iTz
),VTz

(i, j) = tTz
d(i, j)ζ(j−jTz

) where

pTz
denotes a sampled vanishing point, d(i, j) = ‖(i, j) −

pTz
‖2 is the distance from any pixel (i, j) to the vanish-

ing point, ζ and tTz
are used to control the shape of radial

patterns, which reflects the moving speed.

Rotation around z axis We first sample a rotation cen-

ter pRz
and an angular velocity ω, where ω > 0 de-

notes the clockwise rotation. Let d(i, j) = ‖(i, j) −
pRz

‖2. The motion magnitude at each pixel is s(i, j) =
2d(i, j) tan(ω/2). By letting θ(i, j) = atan[(i− iRz

)/(j −
jRz

)] ∈ [−π, π], motion vector at pixel (i, j) can be gener-

ated as URz
(i, j) = s(i, j) cos(θ(i, j)−π/2),VRz

(i, j) =
s(i, j) sin(θ(i, j)− π/2).

We place uniform priors over all the parameters corre-

sponding to the motion flow simulation as Uniform(α, β).
More details can be found in supplementary materials. Note

that the four components in (6) are simulated in continuous

domain and are then discretized as integers.

Training dataset generation We use 200 training images

with sizes around 300 × 460 from the dataset BSD500 [1]

as our sharp image set {Xn}. We then independently simu-

late 10,000 motion flow maps {Mt} with ranges umax =
vmax = 36 and assign each Xn 50 motion flow maps

without duplication. The non-blurred images {Xn} with

U(i, j) = 0 and V(i, j) = 0, ∀i, j are used for training.

As a result we have a dataset with 10,200 blurred-image-

motion-flow pairs {Yt,Mt} for training.
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Table 1. Evaluation on motion blur estimation. Comparison on PSNR and SSIM of the recovered images with the estimated blur kernel.

Dataset Metric GT K Xu and Jia [42] Whyte et al. [40] Xu et al. [44] noMRF [33] patchCNN [33] Ours

BSD-S PSNR 23.022 17.773 17.360 18.351 20.483 20.534 21.947

SSIM 0.6609 0.4431 0.3910 0.4766 0.5272 0.5296 0.6309

BSD-M PSNR 24.655 19.673 18.451 20.057 22.789 22.9683 23.978

SSIM 0.7481 0.5661 0.5010 0.5973 0.6666 0.6735 0.7249

5. Experiments

We implement our model based on Caffe [16] and train

it by stochastic gradient descent with momentum and batch

size 1. In the training on the dataset simulated on BSD,

we use a learning rate of 10−9 and a step size of 2 ×
105. The training converges after 65 epochs. The code

can be found at https://donggong1.github.io/

blur2mflow.html.

(a) Blurry image (b) Ground truth (c) [33], MSE:16.68 (d) Ours, MSE:1.05

Figure 6. A motion flow estimation example on a synthetic image

in BSD-M. The method of Sun et al. [33] is more sensitive to the

image content (See the black box in (c)).

5.1. Datasets and Evaluation Metrics

Datasets We conduct the experiments on both synthetic

datasets and real-world images. Since ground truth mo-

tion flow and sharp image for real blurry image are diffi-

cult to obtain, to perform general quantitative evaluation,

we first generate two synthetic datasets, which both con-

tain 300 blurred images, with 100 sharp images randomly

picked from BSD500 [1]2, and 3 different motion flow maps

for each. Note that no two motion flow maps are the same.

We simulate the motion flow with umax = vmax = 36,

which is same as in the training set. For fairness to the

method [33] with a smaller output space, we also gener-

ate relative mild motion flows for the second dataset with

umax = vmax = 17. These two are referred as BSD-S and

BSD-M, respectively. In addition, we evaluate the general-

ization ability of the proposed method using two synthetic

datasets (MC-S and MC-M) with 60 blurry images gener-

ated from 20 sharp images from Microsoft COCO [23] and

above motion flow generation setting.

Evaluation Metrics For evaluating the accuracy of the mo-

tion flow, we measure the mean-squared-error (MSE) of

the motion flow map. Specifically, given an estimated mo-

tion flow M̂ and the ground truth M, the MSE is defined

as 1
2|M |

∑
i,j((U(i, j)− Û(i, j))2 +((V(i, j)− V̂(i, j))2,

where |M| denotes the number of motion vectors in M. For

2No overlapping with the training dataset.

evaluating the image quality, we adopt peak signal-to-noise-

ratio (PSNR) and structural similarity index (SSIM) [39].

5.2. Evaluation of Motion Flow Estimation

We first compare with the method of Sun et al.

(“patchCNN”) [33], the only method with available code for

estimating motion flow from blurry images3. This method

performs training and testing on small image patches, and

uses MRF to improve the accuracy on the entire image. Its

version without MRF post-processing (“noMRF”) is also

compared, where the soft-max output is directly used to get

the motion flow as in our method. Table 2 shows the average

MSE of the estimated motion flow maps on all images in

BSD-S and BSD-M. It is noteworthy that, even without any

post-processing such as MRF or CRF, the comparison man-

ifests the high quality of our estimated motion flow maps.

Furthermore, our method can still produce accurate motion

flow even on the more challenging BSD-S dataset, on which

the accuracies of the patch based method [33] decrease sig-

nificantly. We also show an example of the the estimated

motion flows in Figure 6, which shows that our method

achieves motion flow very similar to the ground truth, and

the method of Sun et al. [33] is more sensitive to the image

contents. From this example, we can see that the method of

Sun et al. [33] generally underestimates the motion values

and produces errors near the strong edges, maybe because

its patch-level processing is confused by the strong edges

and ignores the blur pattern context in a larger area.

Table 2. Evaluation on motion flow estimation (MSE).

Dataset patchCNN [33] noMRF [33] Ours

BSD-S 50.1168 54.4863 6.6198

BSD-M 15.6389 20.7761 5.2051

To compare with other blind deblurring methods of Xu

and Jia [42], Xu et al. [44] and Whyte et al. [40], which

do not estimate the motion flow, we directly evaluate the

quality of the image recovered using their estimated blur

kernel. For fairness, we use the same non-blind deconvolu-

tion method with least square loss function and a Gaussian

mixture model prior [48] to recover the sharp image. As the

non-blind deconvolution method may limit the recovering

quality, we evaluate the images recovered using the ground

truth motion flow as reference. As shown in 1, our method

produces significantly better results than the others.

3The code of the other motion flow based method [18] is unavailable.
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(a) Blurry image (b) Blurry image (c) Blurry image (d) Blurry image

(e) Motion flow of [33] (f) Motion flow of [33] (g) Motion flow of [33] (h) Motion flow of [33]

(i) Our Motion flow (j) Our Motion flow (k) Our Motion flow (l) Our Motion flow

Figure 7. Examples of motion flow estimation on real-world blurry images. From top to bottom: Blurry image Y, motion flow estimated

by the patchCNN [33], and by our motion flow M. Our results are more smooth and more accurate on moving objects.

5.3. Evaluation of Generalization Ability

To evaluate the generalization ability of our approach on

different images, we use the datasets based on the Microsoft

COCO [23] (i.e. MC-S and MC-M) to evaluate our model

trained on the dataset based on BSD500 [1]. Table 3 shows

the evaluation and comparison with the “patchCNN” [33].

The results demonstrate that our method stably produces

high accuracies on both datasets. This experiment suggests

that the generalization ability of our approach is strong.

Table 3. Evaluation of the generalization ability on datasets MC-S

and MC-M. The best results are bold-faced.
Dataset Metric GT K patchCNN noMRF [33] Ours

MSE – 52.1234 60.9397 7.8038

MC-S PSNR 22.620 20.172 20.217 21.954

SSIM 0.6953 0.5764 0.5772 0.6641

MSE – 22.4383 31.2754 7.3405

MC-M PSNR 23.827 22.186 22.028 23.227

SSIM 0.7620 0.6924 0.6839 0.7402

5.4. Runningtime Evaluation

We conduct a running-time comparison with the relevant

motion flow estimation methods [33, 18] by estimating mo-

tion flow for 60 blurred images with sizes around 640×480
on a PC with an NVIDIA GeForce 980 Ti graphics card

and Intel Core i7 CPU. For the method in [18], we quote

its running-time from the paper. Note that both the method

of Sun et al. and ours use the GPU to accelerate the com-

putation. As shown in Table 4, the method in [18] takes

very long time due to its iterative optimization scheme. Our

method takes less than 10 seconds, which is more efficient

than others. The patchCNN method [33] takes more time

because many post-processing steps are required.

Table 4. Running-time comparison.

Method [18] patchCNN [33] noMRF [33] Ours

Time (s) 1500 45.2 18.5 8.4

5.5. Evaluation on Realworld Images

As the ground truth images of real-world blurry im-

ages are unavailable, we only present the visual evaluation

and comparison against several state-of-the-art methods for

spatially-varying blur removing.

Results of motion flow estimation We first compare the

proposed method with the method of Sun et al. [33] on mo-

tion flow estimation. Four examples are shown in Figure 7.

Since the method of Sun et al. performs on local patches,

their motion flow components are often misestimated, es-

pecially when the blur pattern in a small local area is sub-

tle or confusing, such as the areas with low illumination or

textures. Thanks to the universal end-to-end mapping, our

method generates natural results with smooth flow and less

clutters. Although we train our model with only smoothly

varying motion flow, compared with [33], our method can

obtain better results on images with moving object.

Comparison with the method in [18] Kim et al. [18] use

the similar heterogeneous motion blur model as ours and

also estimate motion flow for deblurring. As their code

is unavailable, we directly perform a comparison on their

real-world data. Figure 11 shows the results on an example.

Compared with the results of Kim and Lee [18], our motion

flow more accurately reflects the complex blur pattern, and
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(a) Blurry image (b) Whyte et al. [40] (c) Sun et al. [33] (d) Ours

Figure 8. Deblurring results on an image with camera motion blur.

(a) Blurry image (b) Whyte et al. [40] (c) Kim and Lee [18] (d) Sun et al. [33] (e) Ours

Figure 9. Deblurring results on an non-uniform blur image with strong blur on background.

(a) Blurry image (b) Pan et al. [26] (c) Sun et al. [33] (d) Ours

Figure 10. Deblurring results on an image with large scale motion blur caused by moving object.

(a) Blurry image (b) [18] (c) Ours

(d) [33] (e) [18] (f) Ours

Figure 11. Comparison with the method of Kim and Lee [18].

our recovered image contains more details and less artifacts.

Images with camera motion blur Figure 8 shows an ex-

ample containing blur mainly caused by the camera motion.

The result generated by the non-uniform camera shake de-

blurring method [40] suffers from heavy blur because its

model ignores the blur caused by large forward motion.

Compared with the result of Sun et al. [33], our result is

sharper and contains more details and less artifacts.

Images with object motion blur We evaluate our method

on the images containing object motion blur. In Figure 9,

the result of Whyte et al. [40] contains heavy ringing arti-

facts due to the object motion. Our method can handle the

strong blur in the background and generate a more natural

image. We further compare with the segmentation-based

deblurring method of Pan et al. [26] on an image with large

scale blur caused by moving object on static background.

As shown in Figure 10, the result of Sun et al. [33] is over-

smooth due to the underestimate of motion flow. In the

result of Pan et al. [26], some details are lost due to the

segmentation error. Our proposed method can recover the

details on blurred moving foreground and keep the sharp

background as original.

6. Conclusion

In this paper, we proposed a flexible and efficient deep

learning based method for estimating and removing the het-

erogeneous motion blur. By representing the heterogeneous

motion blur as pixel-wise linear motion blur, the proposed

method uses a FCN to estimate the a dense motion flow

map for blur removal. Moreover, we automatically generate

training data with simulated motion flow maps for training

the FCN. Experimental results on both synthetic and real-

world data show the excellence of the proposed method.
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