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The break came one long day in which 
we held onto one cell for hour after hour. 
To find a region of retina from which our 
spots gave any hint of responses took 
many hours, but we finally found a place 
that gave vague hints of responses. We 
worked away, in shifts. Suddenly, just as 
we inserted one of our glass slides into 
the ophthalmoscope, the cell seemed to 
come to life and began to fire impulses 
like a machine gun. It took a while to dis-
cover that the firing had nothing to do 
with the small opaque spot—the cell was 
responding to the fine moving shadow 
cast by the edge of the glass slide as we 
inserted it into the slot. It took still more 
time and groping around to discover that 
the cell gave responses only when this 
faint line was swept slowly forward in a 
certain range of orientations [1].

That cell became the first discovered 

example of what is now known as “orien-
tation selective cells,” a type of cell which 
is actually prevalent in the visual cortex. 
These cells fire when they detect an edge 
oriented at a particular angle, in a specif-
ic area of the retina. Why orientations? 
Many researchers agreed that this type 
of pattern was reoccurring frequently in 
natural visual scenes, which might jus-
tify why the brain would have an explicit 
representation of such patterns, but for 
many years no one was able to show that 
oriented lines are more important than 
other representations like circles, blobs 
of light or stripes.  

A MATHEMATICAL MODEL
To answer this question, Bruno 
Olshausen and David Field, then work-
ing at Cornell University, decided to 
model the problem mathematically 

using the following experiment. They 
collected a bunch of natural images—
trees, lakes, leaves, and so on—and 
extracted thousands of small image 
patches, 16x16 pixels each, from ran-
dom locations within these images. 
To make things simple, they only used 
gray-scale pictures. They proceeded to 
ask the following question: “Say your 
goal is to reconstruct each one of these 
image patches, but all you can use is a 
fixed set of 400 slides of size 16x16 pix-
els each. You’re allowed to put slides on 
top of each other to approximate each 
patch, but cannot add anything extra, 
only play around with the slides [math-
ematically, this means that each image 
patch has to be a linear combination of 
slides]. If you could pick any 400 slides, 
which ones would you choose?”

Since the goal is to reconstruct 16x16 

I n the spring of 1958, David Hubble and Torsten Wiesel stood helpless in their lab at John 
Hopkins University. In front of them lay an anesthetized cat. In the cat’s skull, just above 
its visual cortex (an area in the back of the brain), there was a 3mm-wide hole through 
which electrodes recorded the response of several neurons. Hubble and Wiesel had 

conjectured that these neurons would fire when shown the right stimulus on the retina. If only 
they had any idea what that stimulus could be. For days they had shown the poor cat different 
shapes and shiny spots of light, testing different areas of the retina, but nothing elicited a 
response. In their book, Brain and the Visual Perception, Hubble and Wiesel give a personal 
account of this experience:

Pondering the brain with the help of machine learning expert Andrew Ng and researcher-
turned-author-turned-entrepreneur Jeff Hawkins.
By Jonathan Laserson
DOI: 10.1145/2000775.2000787

From Neural 
Networks to Deep 
Learning: Zeroing in 
on the Human Brain



XRDS  •  f a l l 2 0 1 1 •  V o l . 1 8 •  N o . 130

patches and you’re allowed to pick 
400 slides, there is a simple answer to 
this question: There are 256 pixels in 
a 16x16 patch; number their locations 
from 1 to 256, now let each slide depict a 
single pixel out of these 256 pixels. The 
first slide will thus depict a small black 
square in location #1, the second slide 
will depict a small black square in loca-
tion #2, and so on (144 slides will be left 
blank). Now, when a black-and-white 
image patch comes along, you can re-
construct it exactly by stacking all the 
slides corresponding to the black pixels 
in the patch one on top of another.

The described method undoubtedly 
works. In fact, using this representa-
tion you could reconstruct any random 
black and white patch, even those that 
look like white noise. Yet somehow 
this doesn’t feel like the right solution. 
First of all, it doesn’t seem efficient. In 
nature, the patches are seldom com-
pletely random. There are correlations 
to exploit—patterns such as surfaces 
and lines that appear over and over 
again in visual scenes. Furthermore, 
as we learned from Hubel and Wiesel’s 
experiment, the brain chose to repre-
sent such patches as combinations of 
oriented lines, not pixels. Why? If all 
the brain was trying to achieve was an 
accurate reconstruction of the patches, 
then the above 256 single-pixel slides 
do the trick (and with 144 slides to 
spare). Clearly the brain must be opti-
mizing over additional considerations.

SPARSE CODING
Olshausen and Field came up with the 
following proposal: sparseness. When 
neurons fire in the brain they consume 
energy and other resources. It would 
be desirable to have a good representa-
tion of the visual data coming from the 
retina, while reducing neuron firing to 
a minimum. Going back to our slides 
problem, we want a pool of 400 slides 
that would enable us to build a reason-
able reconstruction of each patch, but 
we’d like to use as few slides as possible 
per patch. That way we wouldn’t have to 
work so hard collecting all the neces-
sary slides for each patch. Mathemati-
cally, the function being optimized has 
two terms: One term rewards solutions 
that give accurate reconstructions; a 
second term rewards solutions that in-
duce sparse reconstructions.

The algorithm that optimizes this 
function is called “sparse coding.” It 
starts with a completely random set 
of slides and iteratively improves their 
content. In the first part of each itera-
tion, the algorithm keeps the slide con-
tent fixed, and finds the optimal sparse 
representation (i.e., the optimal linear 
combination coefficients) for each patch 
using the fixed slides. In the second part 
of each iteration, the coefficients are 
fixed so that we know which slides are 
used to approximate each patch, while 
the slide content is optimized. When 
you run the algorithm, it’s hard not to 
feel excited as the random pixels start 
forming patterns that end up being very 
close to, you guessed it, oriented lines.

Following these exciting develop-
ments, an old idea reemerged in the 
neuroscience community. Could it be 
that something even deeper was dis-
covered? Maybe, thought researchers, 
the same optimization happens in all 
layers of the visual cortex. Moreover, 
maybe the same learning algorithm 
is used in many regions of the brain to 
discover the building blocks of speech, 

sound, touch, language, and every-
thing else our senses record. 

A WHOLE NEW APPROACH TO AI
When Olshausen and Field published 
their paper in 1996, their goal was limit-
ed to illustrating a possible way in which 
the brain may be processing informa-
tion. Little did they know that their pa-
per would lead to a whole new approach 
to artificial intelligence (AI). However, it 
took almost 10 years before the AI com-
munity even took notice. “It no longer 
surprises me when great ideas lie fallow 
for so many years,” says Andrew Ng, a pro-
fessor at Stanford University and one of 
the leaders of the “Deep Learning” para-
digm that came out of sparse coding. Ng 
explains that in 1996, limited computing 
power allowed only a small-scale imple-
mentation of the algorithm, not enough 
for it to work well on real-world problems 
and for the research community to real-
ize its full potential.

But in 2005, a remarkable thing hap-
pened. An object recognition algorithm 
built upon sparse coding was able to 
beat all other algorithms on the most 

Figure 1: Sparse Coding Illustration. Thousands of 16x16 image patches are extract-
ed from pictures of natural scenes (top left). From this data, a fixed set of 64 slides 
(also called bases) is learned (top right). Each image patch is represented as a linear 
combination of slides (bottom). The slides are chosen so that these linear combina-
tions are sparse, i.e., most of the coefficients are zero. The resulting slides corre-
spond to oriented lines, similar to the receptive fields of cells in the visual cortex.



challenging benchmark of that time—
the Caltech 101 dataset [2]. This dataset 
includes pictures of objects from 101 
categories (such as planes, motorcycles, 
elephants, etc.), and the brain-inspired 
algorithm correctly classified 42 per-
cent of them. (Indeed, current vision 
algorithms correctly classify around 80 
percent, indicating how much comput-
er vision has improved, but back then 
42 percent was the very best.)

“It was a surprise for me too,” admits 
Ng. “I’ve been very skeptical about bio-
logical exploration most of my profes-
sional life. What we are seeing is that 
by taking ideas from neuroscience and 
incorporating them into Deep Learn-
ing algorithms, it actually increases the 
performance of the algorithm.” Profes-
sor Ng was not the only one who was 
skeptical.  The idea that we can look to 
the brain for inspiration on how to build 
intelligent machines is not very popular 
in the AI circles. “I faced a ton of skep-
ticism and advice from well meaning 
colleagues, not to do this. I get almost 
none of that now,” says Ng.  

ON INTELLIGENCE 
The person who has perhaps done the 
most to advance the idea that the brain 
can teach us to do better AI is Jeff Hawk-
ins, who in 2004 published his book On 
Intelligence. “There was an institutional 
problem,” explains Hawkins, recalling 
his struggle with the academic world 
when his grad-school application was 
rejected by MIT in 1981. “These people 
thought that studying brains would limit 
your thinking. You cannot do this easily 
in the normal channels of the academia. 
That is why I created RNI. That is why I 
created Numenta. That is why I wrote 
On Intelligence.” Hawkins is referring to 
the Redwood Neuroscience Institute in 
Berkeley he founded in 2002, which is 
now run by Bruno Olshausen, and to his 
own start-up company Numenta Inc.  

In On Intelligence, deliberately writ-
ten at an undergraduate level, Hawk-
ins focuses on the neocortex—a large 
sheet of neurons folded into the outer 
layer of the brain. He points out two 
main concepts that govern the neo-
cortex—sequence prediction and hier-
archies—and makes a compelling case 
that we can use the same principals 
to build intelligent machines. “Many 
people thought the brain is so complex 

and messy, we know so little about it, 
that it will be fruitless to work on it. 
And we said, that’s not true—we know 
a lot, and we can make progress.” The 
book eventually made its way to the 
libraries of many AI professors. “I was 
buying stacks of his book to give out to 
incoming students,” says Andrew Ng, 
“it’s a hugely inspirational book.”

DEEP LEARNING 101
So how does Deep Learning work? 
Recall that in sparse coding, the idea 
is to come up with a basis, a pool of 
shared building blocks, so that every 
data instance can be reconstructed as 
a different linear combination of the 
same building blocks. You can think 
of sparse coding as a two-layer Deep 
Learning algorithm, where the data is 
in layer 0 and the building blocks are 
in layer 1. Now treat the layer-1 build-
ing blocks as your new data instances 
and try to find layer-2 building blocks 
to reconstruct the layer-1 building 
blocks. You now have a three-layer 
Deep Learning model. Pile on a few 
more layers and you end up with a nice 
deep representation model, in which 
the data lies at the bottom, and every 
layer maintains only the essential in-
gredients required to reconstruct the 
patterns in the layer beneath it. 

Once the whole model is trained, you 
can feed it with a data instance and it 
will find the activation levels (the coef-
ficients of the linear combinations) of 
all the building blocks in all the layers. 
These activation levels form a new rep-

resentation of the picture, no longer in 
the language of pixels but in terms of a 
weighted sum of the different building 
blocks. The hope is that once you learn 
the model using a dataset like Caltech 
101, the building blocks at higher levels 
will be activated only when a specific 
type of object appears in the image, for 
example a cat or a dog. Hence by look-
ing at these high-level building blocks, 
one will be able to tell which type of ob-
ject appears in the picture.  

In AI-speak, this type of learning 
is called “unsupervised learning,” be-
cause we never give the model any in-
formation about the data except for the 
data itself. In the above example, we 
did not tell the algorithm about enti-
ties like cats and dogs, but simply threw 
a bunch of unlabeled pictures at it and 
took a “leap of faith” that the algorithm 
would find the two pets statistically dif-
ferent—sufficiently so that some build-
ing blocks would become specialized 
for cats while others would specialize in 
dogs. This is in contrast to “supervised 
learning,” where each training example 
comes with a label stating its content. 
For example, a training image of a cat 
would be labeled “cat,” hence the algo-
rithm would know right off the bat that 
it had better find what makes a “cat” sta-
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Figure 2: A Deep Learning model applied 
to pictures of faces stored as pixels in 
layer 0 at the bottom; the model discov-
ers oriented lines in layer-1, face parts 
in layer-2, and templates of whole faces 
in layer-3.

Deep Learning 
algorithms are 
already achieving 
state-of-the-art 
results, bypassing 
methods 
incorporating 
hand-engineered 
representations 
obtained through 
years of domain-
specific expertise.
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tistically different because in the future 
it will be asked to tell if an unlabeled 
picture has a cat in it.

STATE-OF-THE-ART RESULTS
In 2006, Geoffrey Hinton of The Uni-
versity of Toronto published his semi-
nal paper on Deep Belief Nets, laying 
the foundations of Deep Learning. 
Following his work, the last few years 
have seen a huge growth in the num-
ber of publications describing Deep 
Learning implementations. Many of 
the AI researchers who use these algo-
rithms care less about mimicking the 
human brain and more about nailing 
down notoriously difficult tasks such 
as object recognition, speech recogni-
tion and action classification in video. 
On many benchmarks, Deep Learning 
algorithms are already achieving state-
of-the-art results, bypassing methods 
incorporating hand-engineered repre-
sentations obtained through years of 
domain-specific expertise.

Jonathan Laserson: Is this as easy as 

it sounds? In a new domain, how much 
work do you need to put in to make a 
Deep Learning algorithm become the 
state-of-the-art?

Andrew Ng: Depends on the domain 
and state-of-the-art. In the early days of 
Deep Learning, three to four years ago, 
the algorithms had more parameters 
and required an in-depth practitioner 
knowledge to get things to work. But 
as the field made progress in the last 
few years, the algorithms have become 
much simpler. The odds of someone 
new to this applying the algorithm 
and getting reasonable results is much 
higher. A naive implementation will 
make up a fairly good algorithm that 
will beat the baseline result. Still, if 
you want to get state-of-the-art results 
you need to play with the architecture. 
Judgment has to be made regarding 
how much data to train on vs. how large 
a model to build, how many hidden lay-
ers and the number of connections, so 
that you don’t run out of memory and 
computational time.

JL: Geoffry Hinton, world expert on 
both Neural Networks and Deep Learn-
ing, coined Deep Learning as “the next 
generation of Neural Networks.” How 
is Deep Learning different from Neural 
Networks? And what makes it attrac-
tive now?

AN: Scalability. The huge change be-
tween learning Neural Networks in the 
1980s and now is labeled vs. unlabeled 
data. Back in the ‘80s, the majority of 
learning was supervised learning. Now 
there is a realization that we can learn 
from unlabeled data. This is exciting 
because in Machine Learning it is of-
ten the case that it’s not the one with 
the best algorithm who wins, but the 
one with the most data. If you are able 
to use unlabeled data then for many 
problems you essentially have an un-
limited source of data. [Hence you’re 
only limited by your computational 
capacity. Indeed, much of the current 
work in Ng’s lab is devoted to scaling 
up Deep Learning, for example by us-
ing graphics processing units.]

The other attractive side of Deep 
Learning is the neuroscience link. 
Deep Learning has more similarities 
to the way we think the brain “does” in-
telligence. First it’s the learning from 
unlabeled data. We get far more data 
from unlabeled data, walking around 
hearing and seeing, far greater than 
what we get from parents and teachers. 
Also we see phenomenas of the brains 
rise naturally in these algorithms. If 
you rewire the optic signal to the audi-
tory cortex, the auditory cortex learns 
to see. If you rewire the optic signal to 
somatosensory cortex it learns to see 
as well. It raises the hypothesis that a 
single underlying algorithms does per-
ception even in different modalities.

JL: In what way is Deep Learning  
not doing what the brain is doing?

AN: The computation in a biological 
neuron is far more complicated than a 
sigmoid on a linear function [a sigmoid 
is a non-linear function often added to 
the output of artificial neurons to en-
hance the network expression power]. 
The neuron has less digits of precision 
than what we use. The brain communi-
cates in spikes while in Deep Learning 
the model communicates in floating 
point numbers, and it is not entirely 
clear what they are analogous to. Also 
none of these algorithms is a dynami-

Figure 3: Sparse Coding for Phoneme Recognition. The data, representing uttered 
phonemes, is passed through a spectrogram (top) that shows the energy in each 
frequency (y-axis) through time (x-axis). A set of bases is learned so that each audio 
segment (bottom left) is represented as a sparse linear combination of bases (bot-
tom right). A Deep Learning algorithm currently shows the best performance on the 
benchmark speech recognition dataset TIMIT.



cal system, while the brain is a dynam-
ical system continuous through time.

JL: Could any of these be key ele-
ments that will take Deep Learning to 
the next level?

AN: It’s hard to tell which of the differ-
ences between Deep Learning and the 
brain are fundamental and which are ar-
tifacts of the hardware. For example, no 
one knows if having a physical body, and 
the ability to see the same thing for mul-
tiple perspective is necessary to build a 
intelligent perceptual system. There is 
theory that children learn about objects 
by having binocular stereo vision that 
helps them do segmentation. Is it possi-
ble for a one-eyed organism with no abil-
ity to move its head (e.g., a computer) to 
learn the same sort of vision system? Is 
feedback and the ability to reach out and 
touch the world essential? Is attention 
crucial? These are all open questions, no 
one knows the answer to that.

NUMENTA: SEQUENCE  
PREDICTION RATHER THAN  
STATIC REPRESENTATION
In the Downtown Redwood City office 
of his company Numenta, Jeff Hawk-
ins and his team are also working on a 
hierarchical model of perception. But 
while in Deep Learning (as in Neural 
Networks), each artificial neuron is not 
doing much more than to compute lin-
ear combinations, Hawkins’ neurons 
behave significantly more like real neu-
rons. They can inhibit each other, form 
synapses, construct dendritic segments, 
and receive inputs from both the lateral 
connections and feed-forward connec-
tions. The most important difference, 
however, is that they can predict their 
own activation. This allows the model 
to learn sequences of events—patterns 
of data across time in addition to space. 
Thus Hawkins’ model not only tries to 
represent the current input, but also to 
tell what the next one is going to be.

The company was founded in 2005, 
shortly after the publication of On In-
telligence. During the few years of its 
existence, Numenta has published a 
number of documents describing its 
model in detail, down to the level of 
pseudo-code. In addition, it released a 
software library and tried to cultivate a 
community of users. However, during 
the last five years, while papers on the 
merits of Deep Learning were accumu-

lating in top AI conferences, Numenta 
was generating less news than antici-
pated. As one of the students inspired 
by Hawkins’ refreshing approach, I was 
curious to know why. I was even more 
curious about a recent breakthrough 
that Hawkins had mentioned in the 
correspondence before our meeting.

Jonathan Laserson: Jeff, something 
didn’t work the way you expected?

Jeff Hawkins: Initially, we thought 
it would be three to five years before 
we had a commercial application. It 
took us six years. In January of 2011 we 
switched from a “research” company to 
a “product” company. After a year of ex-
perimenting with the new algorithms, a 
business opportunity surfaced and we 
decided to take it. We are working on a 
product now, and when it’s ready we’ll 
see how it works. But you all will have to 
wait since we’re in stealth mode.

JL: Tell me about the breakthrough.
JH: The big advance 18 months ago 

is about taking temporal sequences 
of data and forming a stable repre-
sentation for them, and then using it 
to make predictions. It has a tight re-
lationship to neuroscience. The new 
algorithm, which we call the Cortical 
Learning Algorithm (CLA), is a beauti-
ful mesh between top-down theoreti-
cal needs and bottom-up biological 
detail. They both inform one another. 
One thing that came out of this is a very 
detailed model on the role of dendritic 
segments. Most of the computation in 
the neuron is in the dendrites.

Thanksgiving 2009, the concepts be-
hind CLA started. I remember this be-
cause over the holiday I read the book 
Dendrites. Read it cover to cover twice. 

I had a theory about how neurons will 
learn sequences and I wanted to see if it 
is biologically real, so this was a test for 
the theory. The breakthrough was that 
the same cells that learn to represent the 
input have to also learn the sequences. 
There aren’t any other cells—biology 
tells you that. We spent a year imple-
menting the algorithms that followed 
from this breakthrough, and at the end 
of 2010 we set out to build a business out 
of that, including outside funding.

One exciting thing was to learn that 
each cell could look at a sub-sample of 
the cells nearby, and form connections 
to those that were active prior to this 
one becoming active. Mathematically 
you only need to connect to 20 or so of 
the active cells—that is sufficient to pre-
dict your own activity even though the 
overall pattern you are trying to recog-
nize can consist of hundreds or thou-
sands of cells.  Each cell can participate 
in many different patterns resulting in 
a distributed sequence memory. That 
was one key insight, and was different 
than what we had implemented before.

JL: What was the crisis that led to 
the breakthrough?

JH: We had spent five years trying 
to figure out how to learn sequences 
of patterns in complex large data 
streams. We tried many approaches, 
most of them from machine learning. 
At the time, one of the co-founders of 
the company was Dileep George. He is 
more of a math guy, and would come 
up with mathematical techniques, but 
it turned out to be a really hard prob-
lem. Finding temporal structure and 
stable representation in a messy data 
stream—that’s hard. In the fall of 2009 
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Figure 4: From left to right—a real neuron, a classic neural network neuron, a Nu-
menta neuron. Dendritic segments in real and Numenta neurons are marked in color. 
Green segments form feed-forward connections, and blue form lateral connections.
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I said, “Let me go back to biology. Here 
is how I think neurons would do it.” 

JL: Isn’t it ironic? Earlier you men-
tioned how AI professors said that study-
ing brains would limit your thinking. It 
turned out that relying on machine learn-
ing methods could limit your thinking.

JH: You have to do both. You want to 
understand the concepts of machine 
learning—it helped seeing why all the 
other techniques didn’t work. You have 
to have a conceptual framework of the 
problem you are trying to solve. Then 
you can look at the neuroscience and 
take a guess on how to do this.

JL: How do you know if the changes 
you are making to the model are good 
or not?

JH: There are two categories for the 
answer:  one is to look at neuroscience, 
and the other is methods for machine 
intelligence. In the neuroscience realm 
there are many predictions that we can 
make, and those can be tested. If our 
theories explain a vast array of neuro-
science observations then it tells us that 
we’re on the right track. In the machine 
learning world they don’t care about 
that, only how well it works on practi-
cal problems. In our case that remains 
to be seen. To the extent you can solve 
a problem that no one was able to solve 
before, people will take notice.

JL: But you are not trying to optimize 
any particular task?

JH: Is your brain optimizing a par-
ticular task? There’s something called 
the “no free lunch theorem.” It says that 
no one algorithm is best for everything. 
Generally, if you take a particular task 
and you put five Ph.D.s in a room, they 
will come to a pretty good solution. 
But from a business perspective that is 
not a scalable solution. That is not how 
the brain does it. The neocortex uses 
a pretty generic algorithm. It’s not the 
best algorithm but it can solve a large 
class of problems up to a certain level 
of proficiency.

JL: A one-size-fits-all algorithm?
JH: The neocortex is like that, not 

necessarily the rest of the brain (for ex-
ample, the retina is very specific). If you 
are born without sight, your visual cor-
tex becomes sensitive to touch or sound. 
If I practice how to use a new tool, an 
area of the brain becomes dedicated to 
it. Today machine learning is not easy—
it has a broken business model. You’ve 

got to have a bunch of Stanford gradu-
ates to solve problems. The question is 
if we can make it any easier.

JL: Do you think that the Deep 
Learning approach is addressing these 
issues?

JH: Conceptually it’s similar. I am 
happy to see the interest in Deep Learn-
ing. I was also happy to see the interest 
in neural networks, but they didn’t go 
far enough. They stopped too soon. 
The risk with Deep Learning is that 
they will have quick early success and 
then they’ll stop there, which is what 
happened with neural networks.

JL: They stopped too soon?
JH: Early neural network researchers 

had success on simple problems, but 
they didn’t continue to evolve the tech-
nology. They got hung up on doing better 
on very simple tasks. Clearly the brain is 
a neural network, right? But most artifi-
cial neural networks are not biological at 
all. I don’t think that approach can suc-
ceed with such simple networks. I deter-
mined very early that any brain model 
has to explain how the brain makes 
huge amounts of predictions. It requires 
a temporal memory that learns what fol-
lows what. It’s inherent in the brain. If a 
neural network has no concept of time, 
you will not capture a huge portion of 
what brains do. Most Deep Learning al-
gorithms do not have a concept of time.

JL: Is it more important to you to 
understand the brain better or to build 
better algorithms for AI?

JH: My No. 1 has always been to un-
derstand how the brain works. I want 
to understand what my brain is, who I 
am and how my brain works. I wrote in 
my book about my eye opening experi-
ence reading the Scientific American 
article by Francis Crick in September 
1979. I was 22 at the time. Crick said 
that we have lots of data but “no theo-
retical framework” for understanding 
it. I said to myself, “Oh gosh, we can do 
this. What else could be more interest-
ing to work on in your life?” It became 
a personal goal, and I’ve learned so 
much by now that I feel I’ve met that 
goal. There is no reason we can’t build 
a machine that will work like this, and 
that’s exciting. We can build machines 
that are faster and smarter than hu-
mans, and that can solve problems that 
we have difficulty with. I find discovery  
of knowledge is the most exciting thing.
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