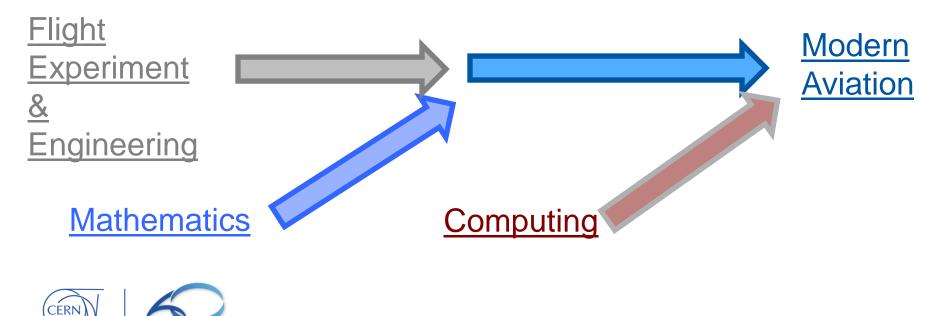


"From Physics to Daily Life" Colloquium Computers and Aviation



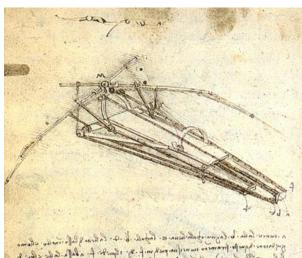
Antony Jameson (FRS, FRAeS, FREng, Foreign Associate of NAE, Fellow of AIAA) Thomas V. Jones Professor of Engineering Department of Aeronautics and Astronautics Stanford University

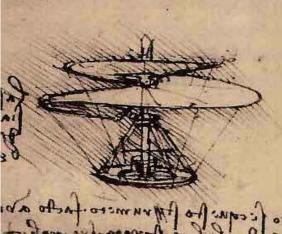

Objective

• To trace the parallel development of computing and flight over the last 300 years, culminating in a fusion of engineering, mathematics and computing in modern aviation.

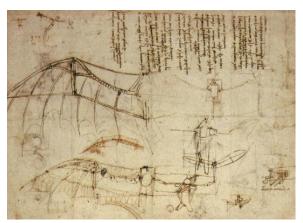
Fusion of Flight Experiments, Mathematics, and Computing:

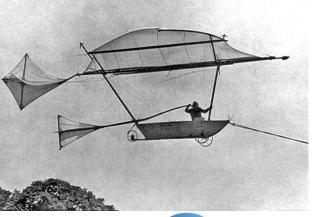
History of Aviation




Leonardo da Vinci

laid out various concepts of flying machines

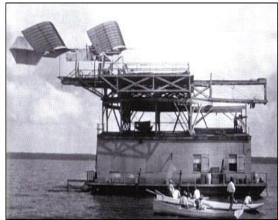




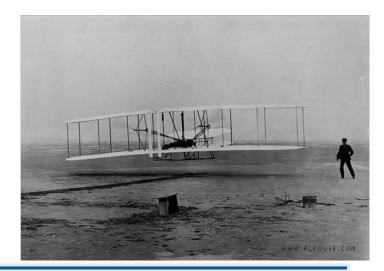
George Cayley (1799 – 1850's)

- identified the four aerodynamic forces
- set forth concept of the modern airplane
- built a successful humancarrying glider

Otto Lilienthal


• was an important source of inspiration and information for practical flying machine

Samuel P. Langley (1896)


• built powered, heavierthan-air machine that had achieved sustained flight (no pilot)

Orville and Wilbur Wright (1903)

• completed the first powered, controlled flight at Kitty Hawk, North Carolina.

DC 3 Design Team (1935):

- Dutch Kindelberger
- Lee Atwood
- Jack Northrop
- Arthur Raymond
- Assisted by Caltech

TRANSCONTINENTAL & WESTERN AIR. INC.

JF/05 Encl.

Xansas City, Missouri Aurust 2nd. 1932

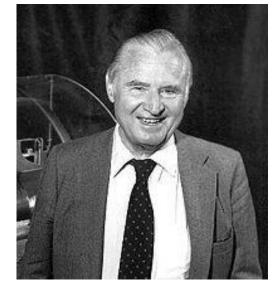
Fry

lease consider this information confidential an sturn specifications if you are not interested.

ONTIMENTAL & WESTERN AIR, INC. ramaport Plans

Spitfire (1936) • designed by R.J. Mitchell **Beverley Shenstone (Wing)**

THE SUPERMARINE AVIAN EXPENDITURE ON PROTO	TYPE ALRCRAFT	(OTHER T	LAW .
AGAINST GRANTS) A	T 29TH FEBRUA	RY, 1936.	LAN .
THIS IS THE SURLING REFERRED TO IN MINUT OF BOARD MEETING, O 2 Off	E no. 11	fied Sing Lghter K.	1e-Seater 5054.
Expenditure at 31st December, 1935.			
Veluation in Belance Sheet at 31st December, 1935.			_11,830.
			11,830.
Total Expenditure to	31.1.36.	Period to 29.2.36.	2
Material	\$3,513	£198	3,711
Labour	3,841	530	4.371
charges - Factory and others	5,760	795	_6,555
Total	£13,114	1,523	14,637
Expenditure to first flig	ht Not	yet flows	1 \$15,000 app
Contract Price	App	roz.	5 har 36 £11,930


Frank Whittle

- patent (1930)
- built first engine (1937)

• First flight in Gloster E.28/39 (1941)

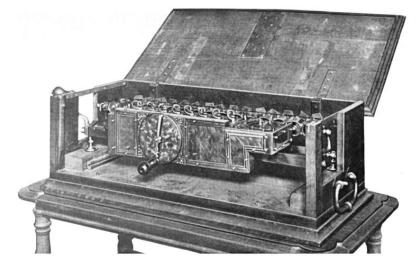
Hans Von Ohainwas the first to power an all-jet aircraft (1938)

• Heinkel He 178

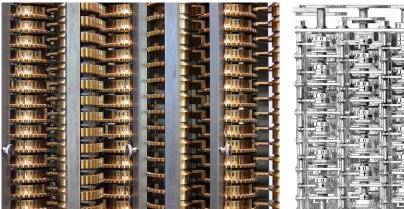
ME 262 (1941)

Boeing 747 (1969) • designed led by Joe Sutter

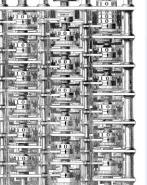
SR 71 (1964) • design led by Kelly Johnson and Ben Rich



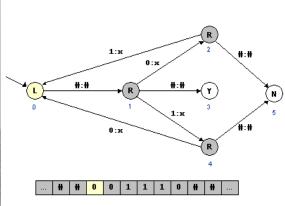
Airbus 380 (2005)

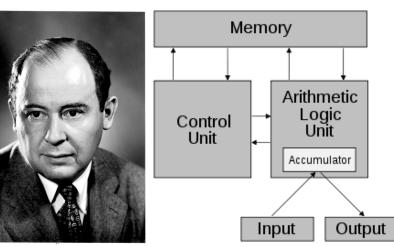

History of Computers

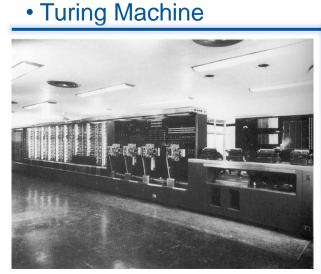
Pascal's Pascaline (1642)


Leibniz's Stepped Reckoner (1640's)

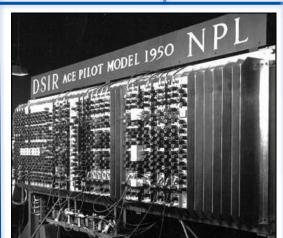
Babbage's Difference Engine and Analytic Engine (1822)



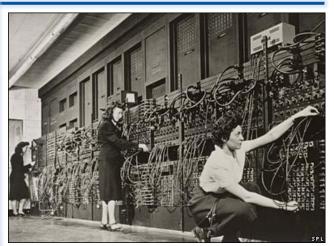



Jacquard's Loom (1801)

John von Neumann (1944) von Neumann architecture



Alan Turing (1912-1954)


Mark I (1944) • first programmable digital computer

ACE (1945)AutomaticComputing Engine



ENIAC (1946)Electronic Numerical IntegratorAnd Computer

Supercomputers Timeline

Cray-1

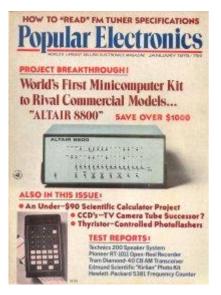
Fujitsu Numerical Wind Tunnel

1964	CDC 6600	3 MFLOPS		
1969	CDC 7600	36 MFLOPS	AEC-Lawrence Livermore National Laboratory, California, USA	
1974	CDC STAR-100	100 MFLOPS	cumonia, corr	
1975	Burroughs ILLIAC IV	150 MFLOPS	NASA Ames Research Center, California, USA	
1976	Cray-1	250 MFLOPS	Energy Research and Development Administration (ERDA) Los Alamos National Laboratory, New Mexico, USA (80+ sold worldwide)	
1981	CDC Cyber 205	400 MFLOPS	(~40 systems worldwide)	
1983	Cray X-MP/4	941 MFLOPS	U.S. Department of Energy (DoE) Los Alamos National Laboratory; Lawrence Livermore National Laboratory; Battelle; Boeing	
1984	M-13	2.4 GFLOPS	Scientific Research Institute of Computer Complexes, Moscow, USSR	
1985	Cray-2/8	3.9 GFLOPS	DoE-Lawrence Livermore National Laboratory, California, USA	
1989	ETA10-G/8	10.3 GFLOPS	Florida State University, Florida, USA	
1990	NEC SX-3/44R	23.2 GFLOPS	NEC Fuchu Plant, Fuchū,_Tokyo, Japan	
	Thinking Machines CM-5/1024	59.7 GFLOPS	DoE-Los Alamos National Laboratory; National Security Agency	
1993	Fujitsu Numerical Wind Tunnel	124.50 GFLOPS	National Aerospace Laboratory, Tokyo, Japan	
	Intel Paragon XP/S 140	143.40 GFLOPS	DoE-Sandia National Laboratories, New Mexico, USA	
1994	Fujitsu Numerical Wind Tunnel	170.40 GFLOPS	DPS National Aerospace Laboratory, Tokyo, Japan	
	Hitachi SR2201/1024	220.4 GFLOPS	University of Tokyo, Japan	
1996	Hitachi/Tsukuba CP-PACS/2048	368.2 GFLOPS	Center for Computational Physics, University of Tsukuba, Tsukuba, Japan	
1997	Intel ASCI Red/9152	1.338 TFLOPS	DoE-Sandia National Laboratories, New Mexico,	
1999	Intel ASCI Red/9632	2.3796 TFLOPS	USA	

Supercomputers Timeline

2000	IBM ASCI White	7.226 TFLOPS	DoE-Lawrence Livermore National Laboratory, California, USA
2002	NEC Earth Simulator	35.86 TFLOPS	Earth Simulator Center, Yokohama, Japan
2004		70.72 TFLOPS	DoE/IBM Rochester, Minnesota, USA
2005		DoE/U.S. National Nuclear Security	
2005 IBM Blue Gene/L 28	280.6 TFLOPS	Administration, Lawrence Livermore National Laboratory,	
2007		478.2 TFLOPS	California, USA
2008	IBM Roadrunner	1.026 PFLOPS	DoE-Los Alamos National Laboratory, New
2008 IBM Roadrunner	1.105 PFLOPS	Mexico, USA	
2009	Cray Jaguar	1.759 PFLOPS	DoE-Oak Ridge National Laboratory, Tennessee, USA

2012 Sequoia 20 PFLOPS IBM



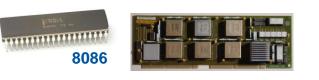
Personal Computers

Xerox Alto 1973

Altair 1975

Apple II 1977

IBM PC 1981



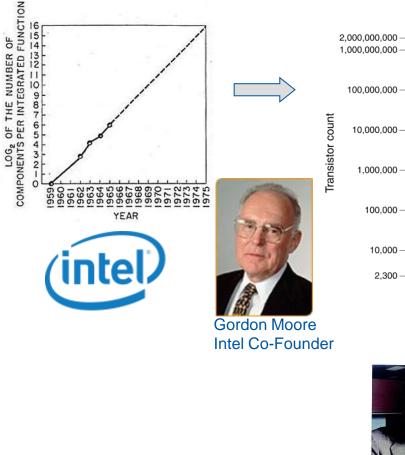
PC Laptop and MacBook (2000's)

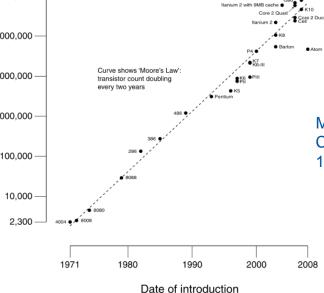
Microprocessor Timeline

POWER CPU (IBM)

Pentium

Core 2 Duo




Year	Name	Developer	Mfg. Process	Transistors	Clock	Bits	Core
1971	4004	Intel	10 µm	2,250	108 kHz	4	1
1972	8008	Intel	10 µm	3,500	200 kHz	8	1
1974	6800	Motorola	-	4,100	2 MHz	8	1
1978	8086	Intel	3 µm	29,000	4.77 MHz	16	1
1979	68000	Motorola	4 µm	68,000	8 MHz	16/32	1
1982	80286	Intel	1.5 μm	134,000	6 MHz	16	1
1985	80386	Intel	1.5 μm	275,000	16 MHz	32	1
1989	80486	Intel	1 µm	1.2 M	25 MHz	32	1
1990	Power1	IBM	1 µm	6.9 M	20-30 MHz	32	1
1993	Pentium	Intel	0.8 μm	3.1 M	66 MHz	32	1
1997	Pentium II	Intel	0.25 μm	7.5 M	300 MHz	32	1
1999	Pentium III	Intel	0.18 μm	9.5 M	500 MHz	32	1
2000	Pentium IV	Intel	0.18 μm	42 M	1.5 GHz	32	1
2001	Power4	IBM	90 nm	174 M	1.1-1.4 GHz	64	1
2003	Opteron	AMD	130 nm	106 M	1.4-2.4 GHz	32/64	1
2006	Core Duo	Intel	65 nm	152 M	2 GHz	64	2
2006	Quad Core Xeon	Intel	65 nm	291 M	3 GHz	64	4
2007	Core 2 Quad	Intel	65 nm	582 M	2.4 GHz	64	4
2008	Core i7	Intel	45 nm	774 M	2.933 GHz	64	4
2008	Six Core Xeon	Intel	45 nm	1,900 M	2.667 GHz	64	6

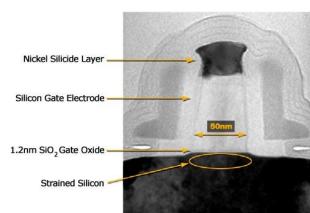
Microprocessor Progress – Intel

Moore's Law graph, 1965

CPU Transistor Counts 1971-2008 & Moore's Law

Quad-Core Itanium Tukwila

• GT200


BV770

Dual-Core Itanium 2 ●

POWER6

Credited to be the inventor of the 1st microprocessor—Intel 4004

CERN

YEARS / ANS CERN

Robert Noyce Intel Co-Founder

> 50nm transistor dimension is ~2000x smaller than diameter of human hair

'Specific Computing Power' – Jameson and Vassberg (2001)

• Weight vs Capability

• The dramatic increase in computational capability is accompanied by equally dramatic decrease in the weight and cost of the computer.

While computers were getting more powerful, enabling aerodynamic and structural calculations of complete aircraft, and simulations of the evolution of the universe, they were also getting smaller, enabling airborne computers with onboard software and fly-by-wire.

With Constant Performance

The Modern Role of Computing in Aviation

Major Impact in Multiple Ways

- Computational Analysis for Structural and Aerodynamic Design
- (2) Computer Aided Design (CAD) Paperless Airplane
- 3 Computational Control and Navigation Fly-by-Wire

Major Milestones

1) First airplane with wing designed by CFD – Canadair Challenger (1977)

2 First commercial aircraft with fly-by-wire – Airbus A320 (1982)

③First commercial aircraft with digital design – Boeing B777 (1994)

History of Finite Element Analysis (FEA)

Timeline: Milestones in FEA and meshless basis function development

1966Isoparametric elements1968–1971Variable-number-of-nodes elements1977–1986 $H(div), H(curl), and H(div) \oplus H(curl)$ elements1992–1996Mesbless methods
1992–1996 Meshless methods

J. Tinsley Oden

Robert L. Taylor

CERN

YEARS / ANS CERN

D. R. J. Owen

Olgierd C. Zienkiewicz

Ted Belytschko

Richard Courant

Richard Gallagher

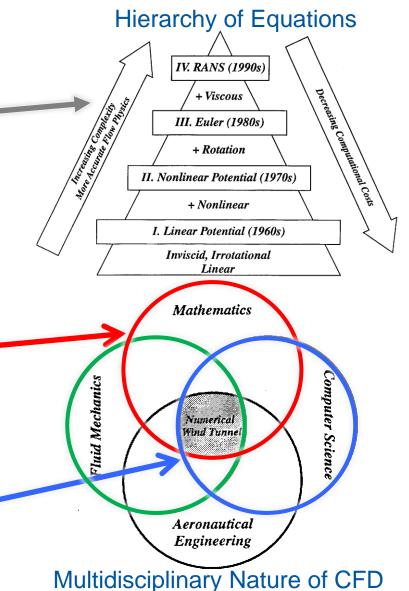
Jean-Claude Nédélec

Pierre Arnaud Raviart

Bruce Irons

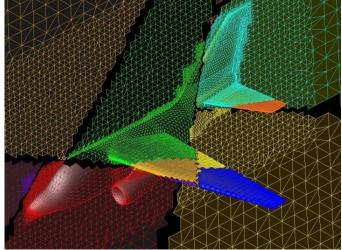
Wing Kam Liu

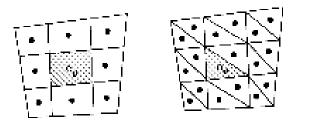
Emergence of CFD 1965–2005


❖In 1960, the underlying principles of fluid dynamics and the formulation of the governing equations (potential flow, Euler, RANS) were well established.

The new element was the emergence of powerful enough computers to make numerical solution possible – to carry this out required <u>new algorithms</u>.

The emergence of CFD in the 1965

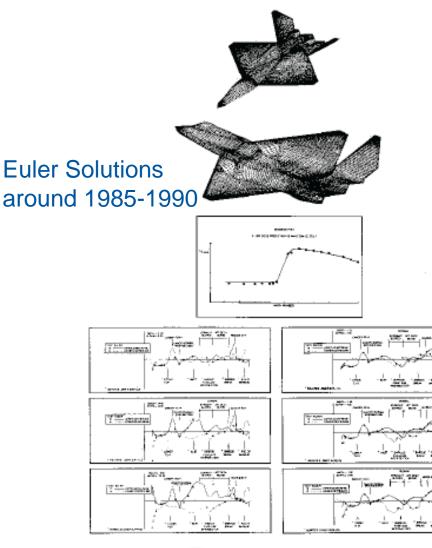

 2005 period depended on a combination of advances in <u>computer</u>, power and algorithms.



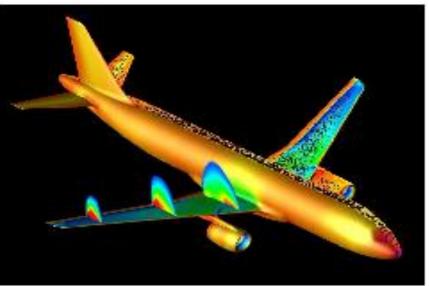

Basic Principle of Finite Volume Schemes for CFD

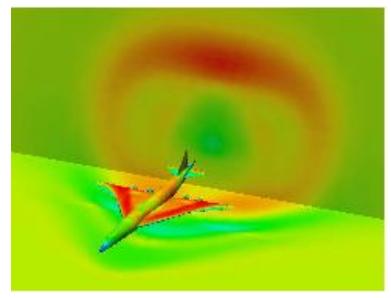
1 Divide the domain into a grid of computational cells

2 Apply the conservation laws of mass, momentum and energy in integral form separately for each cell



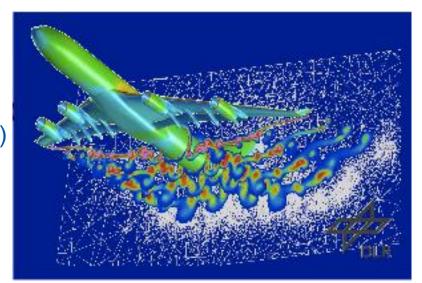
(3) 5N equations for 5N unknowns on a grid of N cells

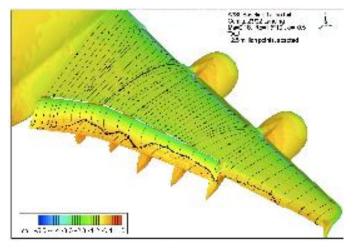



Examples: Northrop YF23, A320 and SST

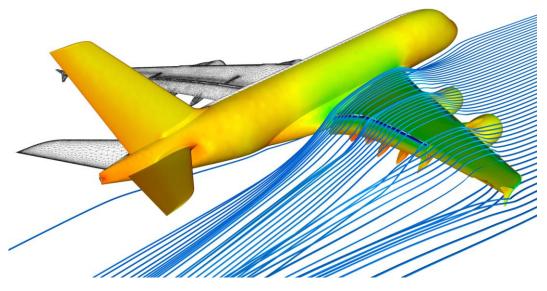
YEARS / ANS CERN

CERN





Examples: Unstructured TAU Code


Tool for complex configurations

- hybrid meshes, cell vertex / cell centered
 high-level turbulence & transition models (RSM, DES, linear stability methods)
- state-of-the-art algorithms (JST, multigrid,...)
- local mesh adaptation
- chimera technique
- fluid / structure coupling
- continuous / discrete adjoint
- extensions to hypersonic flows

CFD Contributions to A380 & B787

YEARS / ANS CERN

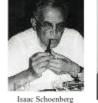
History of Computer Aided Design (CAD)

Timeline: Milestones in CAD representations

1912	Bernstein polynomials
1946	Schoenberg coins the name "spline"
1959	de Casteljau algorithm
1966-1972	Bézier curves and surfaces
1971, 1972	Cox-de Boor recursion
1972	B-splines
1975	NURBS
1978	Catmull-Clark and Doo-Sabin subdivision surfaces
1980	Oslo knot insertion algorithm
1987	Loop subdivision
1987, 1989	Polar forms, blossoms
1996-present	Triangular and tetrahedral B-splines
2003	T-splines

Sergei Bernstein

Ed Catmull



Carl de Boor

Rich Riesenfeld

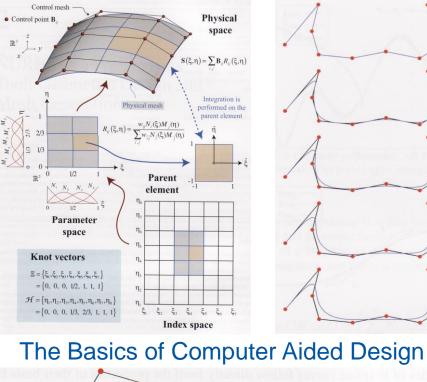
David Gu

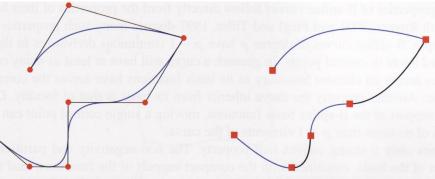
Charles Loop

Peter Schröder

Larry Schumaker

Tom Lyche


Ulrich Reif

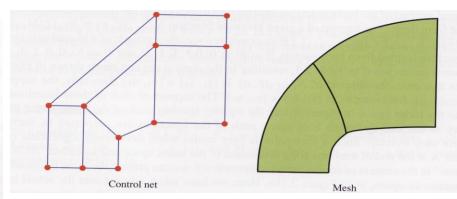


CAD using NURBS

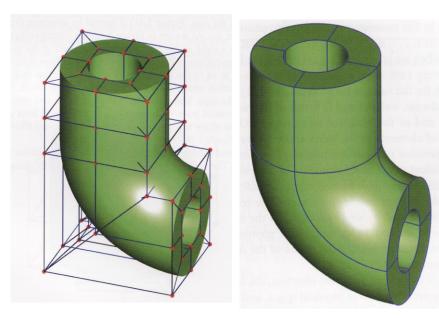
(a) Curve and control points

CERN

(b) Curve and mesh denoted by knot locations

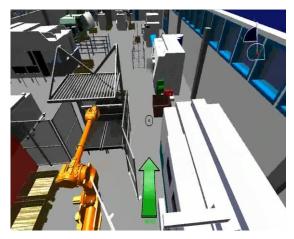

p = 1

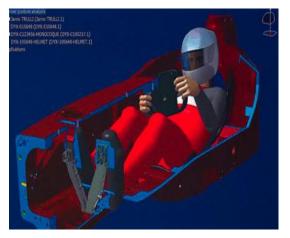
p = 2


p = 3

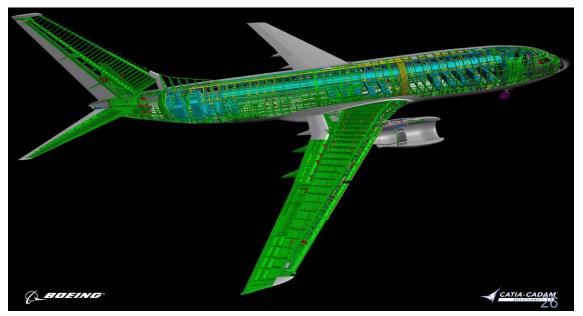
p = 4

p = 5


2D CAD Representation and Mesh


3D CAD Representation and Mesh

CAD Application in Aircraft Design and Manufacturing


3D Fly-Thru

Full-Motion Human Modeling

Digital Pre-Assembly of a Boeing Airplane

The Role of Onboard Computing

Accident HappensBad Luck	Accident HappensPilots
A chain of unfortunate events can	There are more than 300,000 airline
occur	pilots in the world
 Classic case, Cali, Colombia, Dec 20, 1995 A result of pilot error and bad luck But could potentially be avoided with a fly-by-wire system in its final attempt to recover from crash 	 Some incompetent from the start Most recent incident, Buffalo, NY, Feb 12, 2009 Pilot overpowered automatic stick pusher The airplane stalled as a result and
<text><image/></text>	 49 killed > Could potentially be avoided if automatic protection was not overridden ◆ Plenty of once-excellent pilots grow unsafe with time > A320 'aerial baptism', Mulhouse, France, Jun 26, 1988 ◆ Personalities and national cultures can matter as much as experience in flight ◆ Employment seniority can outweigh performance
YEARS/ANS CERN	28

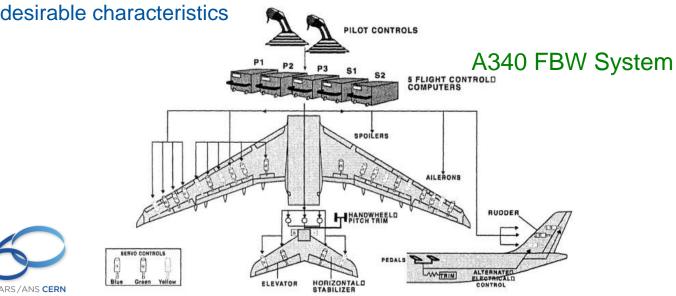
Fly-by-Wire System

Fly-by-wire control systems

replaces manual control of the aircraft with an electronic interface

 movements of flight controls are converted to electronic signals transmitted by wires
 flight control computers determine how to move the actuators at each control surface to provide the expected response

 using electrical control circuits combined with computers, designers can save weight, improve reliability, and use the computers to mitigate the undesirable characteristics


ERN

Mechanical and hydro-mechanical

flight control systems

heavy and require careful routing of flight control cables through the aircraft using systems of pulleys, cranks, tension cables and hydraulic pipes
redundant backup to deal with failures, which again increases weight.

have limited ability to compensate for changing aerodynamic conditions which can lead to dangerous characteristics such as stall, spinning and pilot-induced oscillations

Example of A320 Flight Envelope Protection System: Load Limit Protection

prevent the pilot from overstressing the airplane

never exceeding 2.5 G load limit

Stall Protection

- Three level of low-speed protection
 - Alpha Prot
 - ✤ at 10mph below min. speed
 - ✤ airplane automatic nose down

to speed up

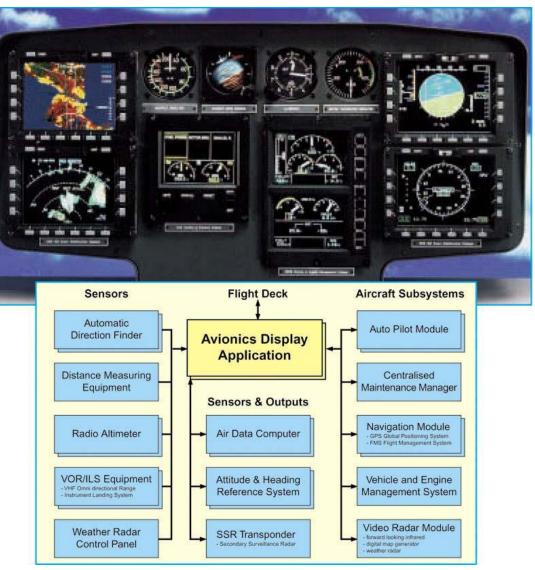
✤ Alpha Floor

- ✤ at even lower speed
- automatically throttles to max.
 engine thrust
- automatically retracts speed brakes
- ✤ goes into emergence climb
- Alpha Max
 - ✤ at slowest speed possible
 - full automatic intervention
 - balance the airplane at the edge of a stall

Damage Tolerance

Fail Safe Technologies

- Damage Tolerance
- Automatic Control and Recovery of Airplane From Multiple Failures
- Made Possible by Advanced Electronics, Sensors and Software
- Example: Rockwell Collins Company
 - autonomously mitigate the effects of physical damage that could potentially occur in the air
 - surviving the effects of an adverse damage,
 - allowing the air vehicle to sustain flight and potentially continue its mission
 - instantaneous, autonomous assessment of damage incurred
 - followed by an immediate response that alters the flight control system to compensate for the effects of that damage



Successful flight demonstration of damage tolerant flight control and autonomous landing capabilities on an unmanned subscale F/A-18 on April 18, 2007 in Maryland.

Airborne Software

Software development for the Boeing 777

 4 million lines of code, consisting of 2.5 million lines of newly developed software (6 times of previous Boeing airplane program) and commercial-offthe-shelf (COTS) software

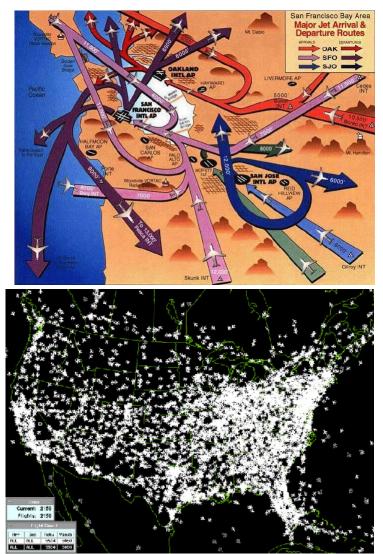
Avionics control display application environment (Source: DO-178B Software Considerations in Airborne Systems and Equipment Certification)

Unmanned Flight

Unmanned Aerial Vehicles (UAVs)

- an aircraft that flies without a human crew on board the aircraft
- historically, UAVs were simple remotely piloted aircraft
 - but autonomous control is increasingly being employed in UAVs.

- UAVs come in two varieties
 - controlled from a remote location
 - fly autonomously based on preprogrammed flight plans using more complex dynamic automation systems



The Role of Ground Based Computing in Flight Operations

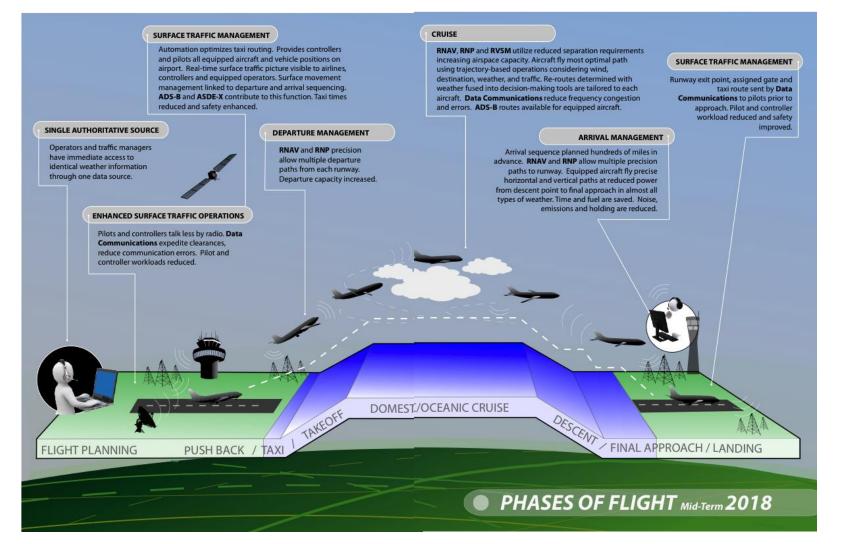
Heavy Air Traffic Today

There are around 7,000 aircraft in the air over the United States at any given time.

オ Air Traffic Control

Needs computers to ensure:

- Safety
- Efficiency
- Increased Capacity


Next Generation Air Transportation System

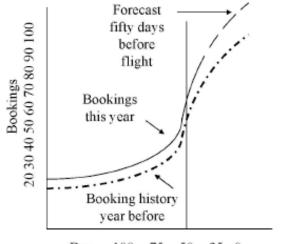
- satellite based navigation and surveillance
- equivalent visual operations
- ✤ air traffic management system
- ✤ digital data exchange
- prognostic safety system
- informed decisions using integrated weather

Traffic Management Throughout All Phases of Flight

The Role of Computing in Airline Management

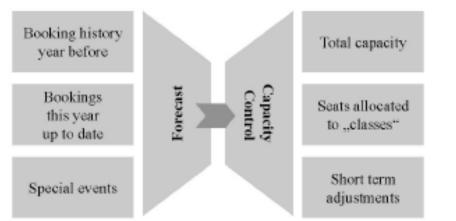
Online Flight Search

YEARS / ANS CERN


7

Hotel Bus Ca		the cursion
🖲 One Way 🛛 🔿 Return	n	
Destination From*	To*	
Select City 💽	Select City	×
Departure Date*	Time*	Adults* Children* Senior*(s
08/15/2008	07 💌 30 💌 🛛	03 💌 01 💌 01 💌
Additional Options		
Airline Preference*	Class*	No. of Stops
Select 💌	Business 💌	Select 💉
	Search	7
		2

Online Flight Tracking



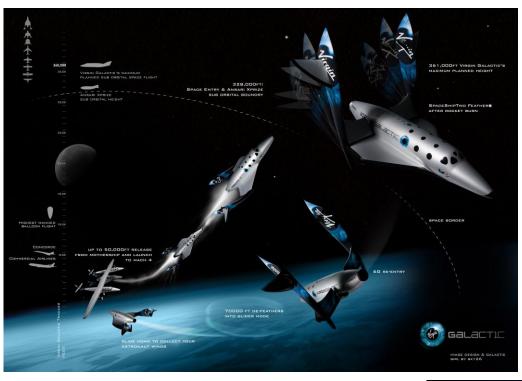
Yield Management System in Airline Industry

Day -100 -75 -50 -25 0

Booking history and forecast

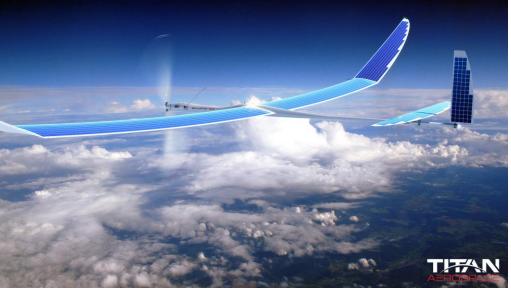
Yield management architecture

Airline Yield Management System


- In a situation where cost and capacity is fixed while demand is fluctuating, the systems aim at
 - オ High load factors, as well as
 - High average yield
- Forecasting: Use computers to store 'booking history', analyze characteristic pattern and forecast seats sold on the date of the flight
- Capacity Control: if the forecast shows excess demand, low fares class will be closed to make room for high fare seats, and vice-versa
- Role of Computers: make storing enormous amount of data, and execution of complicated analysis algorithm possible

The Future

Increasing penetration of autonomous unmanned air vehicles (UAVs).


- Drones for delivering and surveillance.
- Unmanned commercial transport vehicles.
- Morphing with smart materials and embedded computers.
- Fusion of computing and flight technologies to match the capabilities of birds.
- Space tourism.
- Interplanetary flight.

