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On the Instability and Folding 
Deformation of a layered Viscoelastic 
Medium in Compression 
When a layer of material embedded in an infinite medium is subject to a comfiression 
parallel with the layer an instability tends to develofi which manifests itself in the folding 
of the layer. This phenomenon is examined here for the general case where the layer 
and the surrounding medium are both viscoelastic. This problem which was examined 
in preliminary form in an earlier publication [6]t is treated here with particular atten- 
tion to the effect of interfacial adherence of the layer and the medium, and to an evalua- 
tion of the amfilitude of the folding. In general there is a lower and upfier-critical value 
of the compressive load between which folding occurs with a finite rate of deformation. 
There appears also a dominant wave length, for which the rate of folding is maximum 
under a given load. The dominant wave length may or may not depend on the load. 
The effect of interfacial adherence while not negligible is not generally significant. The 
rate of folo%g increases very rapidly beyond a certain value of the wiscosity ratio of the 
two media. A brief discussion is also included of the thermodynamic imfilications of 
incremental stress-strain relations in prestressed media. 

c ONSIDER an inhomogeneous elastic medium of in- 
finite extent containing a layer of material of higher rigidity. It 
is well known that such a system when subject to a compression 
parallel with the layer will buckle beyond a certain critical value 
of the load. This buckling instability manifests itself through a 
folding of the layer which appears suddenly with a characteristic 
wa.ve length at the critical load.2 The nature of the phenomenon 
is typified in the elementary treatment of the buckling of a beam 
or an elastic foundation. It is clear that this phenomenon is a 
particular case of the much more general one where the layer and 
the medium are viscoelastic. In this case we shall not in general 
observe a sharp buckling, but a folding of the layer will appear 
with a rate of folding and a wave-length content which are de- 
pendent on the physical properties, the compressive load, and the 
initial irregularities of the layer. 

The present paper is one in a series presenting the results of an 
investigation of these phenomena carried out at the Shell De- 
velopment Company during the past 10 years. The subject is of 
course of primary interest to the geologist since it furnishes for the 
first time a quantitative basis for the evaluation of folding and 
other tectonic features of stratified rock formations. There are 
also interesting technological applications connected with the 
buckling failure of inhomogeneous structural material such as 
sandwich panels under conditions of creep and the deformation 
due to instability of materials in general in the viscoelastic tem- 
perature range when there is a high-temperature gradient. The 
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result also throws light on the behavior of such engineering com- 
ponents as an axially compressed rod in a viscoelastic fluid, and 

so on. 
A discussion of the fundamental aspects of the theory is given 

in [6]. This makes use of the general results established previ- 
ously for the viscoelastic behavior of solids on the basis of irreversi- 
ble thermodynamics [4, 51. In the present paper we have empha- 
sized a more exact approach .which takes into account the ad- 
herence between the layer and the surrounding medium. While 
this adherence does not affect the phenomenon qualitatively, it 
does introduce considerably more complication in the analysis. 
We also have given a more complete discussion of some aspects of 
the phenomenon, and in particular of the magnitude of the insta- 
bility as represented by the rate of growth of the folding. The 
theory is developed here by representing the layer as a viscoelastic 
plate obeying the equations derived from a straightforward gen- 
eralization of the classical equations for elastic plates by a cor- 
respondence rule [5]. A more rigorous treatment of the problem 
on the basis of a continuum also has been completed [7]. This 
more rigorous treatment takes into account the existence of a 
compression in the surrounding medium which is neglected in the 
present theory. Results indicate that use of the plate equations 
is satisfactory for most practical purposes. In more recent work 
the effect of gravity has also been introduced [13]. 

In Section 1 we derive the equations of flexure of a viscoelastic 
plate under compression, and Section 2 derives the properties of 
the surrounding medium. These results are combined in Section 
3 and equations are established for an embedded layer with per- 
fect or imperfect adherence at the interface. We assume that if 
an interfacial slip occurs the friction is proportional to the rate of 
slip. Section 4 develops quantitatively the results for the case 
where the layer and the surrounding medium are both incompres- 
sible viscous solids under the assumption of perfect adherence. 
Particular attention is paid to a comparison with the case of per- 
fect slip and to the rate of growth of the folding. 

Section 5 discusses briefly other cases such as the elastic layer 
in a viscous medium, and two Maxwell materials. These other 
cases were treated in more detail in reference [6]. 
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In Section 6 a few remarks are presented regarding the incre- 
mental stress-strain relations in nonlinear rheology and it is 
pointed out that an essential distinction is to be made between 
thermodynamic systems in the vicinity of equilibrium or in a 
steady state of flow. 

It is pointed out that there exists, in general, a lower and higher 
limit for the critical compressive load. Between these limits the 
folding takes place with a dominant wave length; i.e., one for 
which under a given load there is a maximum rate of growth. The 
dominant wave length may or may not depend on the load. The 
latter case is true for two viscous fluids and in general for two 
materials with the same relaxation time. The rate of growth of 
the folds which is evaluated for the particular case of two viscous 
fluids becomes large and very wave-length-selective for values of 
the viscosity ratio p/pr, of the order of about 70 or higher. The 
influence of interfacial adherence is found to be very small in 
the range where the magnitude of the instability becomes signifi- 
cant. 

1 Equations for Deformation of a Viscoelastic Plate 
We shall first derive the approximate equations for an elastic 

plate under the assumption that the wave length of the deforma- 
tion is large relative to the- thickness h of the plate. We consider 
a two-dimensional deformation such that the upward displace- 
ment of the plate is, Fig. 1, 

D = 21’ co9 lx (I) 

The assumption stated above corresponds to the conditions Ih<< 1. 
The upward plate deflection may be derived in terms of the 

bending moment M per unit width. We may write the differen- 
tial equation 

Bh3 d=v -- 
12 dx5 = - 

M 

The sign of M is taken positive clockwise when matter is located 
to the left of the cross se&on. The coefficient B is 

B = WG + A) 
2G + X 

The Lame constants of the plate are denoted by X and G.8 
The bending moment M will now be determined. We assume 

that the plate is subject to a total compressive load Ph acting in 
its plane. In addition we assume a vertical load Q per unit area 
taken positive upward and a tangential force r per unit area on 
the surface of the plate acting positively to the right on the upper 
surface and to the left on the lower surface, Fig. 1. These loads 
are distributed sinusoidally according to 

q = qo CO8 lx 

r = 70 sin lx 

If we call M, the bending moment due to Q$ we may write 

d2Ml 
-= 
dx= -q 

3 The shear modulus G is also generally represented by p but we 
prefer to reserve the latter symbol for the viscosity coefficient. 

% 
Fig. 1 Forces and displacements for the plate 

The moment MZ due to the tangential load must satisfy 

h 
s 

,” rdx + Mp = MO 

where MO is the moment at a cross section x = 0 where r = 0; 
i.e., the total shear also vanishes at that cross section. Differen- 
tiating (6) we find 

dM, - = -_7h 
dx 

Finally, we must evaluate the bending moment due to the axial 
compressive load Ph. This bending moment depends on the 
deformation and is equal to 

Ma = Phv 

The total bending moment is 

M = Ml + M2 + MS 

Combining (5), (7), (8), and (9) we derive 

d2M 
-= 
dx2 

-q-hs+Phs 2 

and substituting in (2) we find the differential 
the plate deflection as 

hBh$$+Phg=q+h$ (11) 

(8) 

(9) 

(10) 

equation for 

In addition to the plate deflection we also need for our present 
purpose the displacement u of the plate tangentially to the surface. 
The sign of u is chosen positive to the right on the upper sur- 
face. The displacement u is due to the rotation (dv)/(dx) of 
the cross section and in addition to the shearing deformation 
of the plate produced by the tangential force r. The sum of these 
two effects is 

(12) 

It should be noted that in establishing the last relation we have 
assumed that the shearing deformation of the plate is solely due 
to 7. There is, of course, an additional transverse shear asso- 
ciated with the bending which we have neglected. Although these 
two assumptions are not quite consistent, we are concerned here 
mainly with the separate evaluation of the effect of interfacial 
adherence and therefore we wish to introduce this effect as the 
sole correction to the approximate theory of reference [6] for the 
purpose of comparison. A consistent assumption would be to 
neglect the shear deformation of the plate. This is easily done by 
putting G = m in relation (12) and & = 0~ in all relations derived 
in the following. Further remarks on this point will be found in 
Section 4. It should be added that the effect of shearing deforma- 
tion associated with bending is evaluated implicitly in the exact 
treatment of reference [7] based on equations for the pre- 
stressed continuum. The magnitude of the effect is found to be 
not very significant. 

Putting 

u = U sin lx 
(13) 

we find 

v = v CO8 lx 

qo = L BhY2 12 - P + G hW - 2GlU 

(14) 

25-o = -2GlV + ‘; U 
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As we have pointed out in earlier publications [4,5,6], equations 
obtained for an elastic body can be extended readily to a visco- 
elastic continuum by replacing the elastic constants by their cor- 
responding operators. We have called this the “correspondence 
rule.” This rule holds for the most general case of anisotropy and 
is valid for relations derived by energy or variational methods. 
For an isotropic viscoelastic material Hooke’s law is replaced by 

Uii = 2&j + &j&3 (15) 

Where 04~ and eii are the stress and strain tensors, aij is the 
Kronecker symbol and 

e = e,, + elly + e,, (16) 

is the dilatation. The symbols a and fi represent operators. 
They replace the Lamb constants G and X. We have shown [4] 
from linear irreversible thermodynamics that these operators are 
of the form 

&= “P 
S 0 p+r 

Q(r)y(r)dr + Q + PQ’ (17) 

S 
OD 

B= --!!.- R(r)y(r)dr + R + pl? 
0 P+r 

(18) 

In these expressions p is a differential time operator 

d 
P=x (1% 

The variable of integration r is a relaxation constant with a spec- 
tral density y(r). We have written the function Q(r)y(r) and 
R(r)Y(r) with the spectral density function y(r) as a common 
factor in order to bring out the common properties of these func- 
tions as regards their singularities. In case of relaxation with a 
discrete spectrum the integrals are replaced by summations, 

R, + R + pR’ 

It was also shown that the constants in the operator 0 are all 
positive. In addition, we must have Z? + 0 > 0. The appli- 
cability of these operators for incremental stresses in a linear 
or nonlinear prestressed medium is discussed in Section 6. 

The significance of the operational stress-strain law (15) is 
multifold. It may be interpreted as a relation between Laplace 
or Fourier transforms of the stress and strain components. For 
instance, if the strain components are harmonic functions of time 
and represented by eiie iwi then the stress tensor is uijeiot where 
ei,. is related to uii by equations (15) after putting p = ti in 
the expression of the operators. 

Relations (15) may also be considered as giving directly the re- 
sponse to an arbitrary function of time by operational rules or 
Fourier integrals. For instance, assume a relation for pure shear 

a, = 2Qe, (21) 

and assume the shear strain to be of constant unit value and sud- 
denly applied at t = 0 

=o t<o - 
e, = l(t) (22) 

=l t>o 

We have the operational rule 

P - l(t) = e-" 
p+r 

pi(t) = -$ l(t) = s(t) 

(23) 

(24) 

Hence applying the complete operator & as given by (17) to e, 
we find 

_r 

m 
a, = 

0 
e-"Q(rh(rW + Q + Q'&G (25) 

The time history of the stress contains a distribution of exponen- 
tial stress relaxations. The Dirac function s(t) corresponds to 
infinite shear rate at t = 0. The coefficient Q’ is equivalent to a 
viscosity coefficient since 

Q’pe, = Q’ % 

More generally, if the strain e,(t) is an arbitrary function of time 
the significance of the operator is given by 

P 

S 

t 
- e,(t) = e+ 
P+r 

er+des(r) 
0 

(27) 

The complete stress-strain law expressed by the operational equa- 
tion (21) is therefore 

1 
--a, = 
2 S m Q(rh(rMr 

0 S 
t e-“t-7)de,(7) + &e,(t) + Q’ *$ 
0 

The coefficient Q is pure elastic modulus. Putting 

Q(rh(r) = F(r) 
(29) 

we write (28) in the forti 

1 

S 
t de,(t) -a* = 

2 
h(t - 7)de;(7) + &e,(t) + Q’--g- (30) 

0 

which brings out an heredity function h(t). 
By the correspondence rule we may apply immediately the 

elastic-plate relations (14) to the case of a viscoelastic plate. The 
Lame constants G and X are replaced by the corresponding opera- 
tors 0 and i?. The coefficient B becomes the operator 

(31) 

and equations (14) are transformed into the operational relations 

qo = I Bh2l” - 
12 

P + ij 
> 

hW - 2&X7 

4& 
(32) 

2ro = -2&w + h u 

Again, these may be considered as relations between Fourier or 
Laplace transforms or as differential and integral operations re- 
lating the quantities U, V, t,o qo and TO. 

We should finally add a remark concerning the deformation 
produced by the compressive load P. If the material tends to 
flow indefinitely under load the compression P will be associated 
with a constant rate of compressional deformation of the plate. 
This deformation, however, will be disregarded as we are in- 
terested in cases where the deflection normal to the plate is the 
preponderant effect. 
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2 Deflection of a Semi-infinite Viscoelastic 

Medium Under Normal and Tangential Surface load 
We have pointed out that from the correspondence rule we 

may proceed exactly as in the theory of elasticity provided we 
replace the elastic coefficiedts by the corresponding operators. 
We shall therefore proceed directly by using operational equations 
throughout. The semi-infinite medium is represented in Fig. 2. 
It has a boundary at y = 0 on which the normal and tangential 
loads are Q’ and 7. The solid half space is in the region y > 0. 
We write Lamb’s equations for the displacement components u 
and CJ of the solid after replacing the elastic coefficients G and A 
by the operators & and l?. We have 

&V’u + (Q + 8) $ = 0 

at, the boundary. We therefore assume a sinusoidal dint,ribution 
of the surface load, i.e. 

7 = 70 sin lx 
(41) 

q’ = po’ cos lx 

We also choose Boussinesq potentials $0 and 9, which contain 
the same trigonometric factors, and write 

$0 = Ae+ cos lx 

#, = Ce+ cos lx 
(42) 

These functions satisfy Laplace’s equation in compliance with 
(38) and (40). Substituting $0 and $, in (35) yields the dis- 
placement field, 

&v*v + (& + 8) 3 = 0 

with 

(33) 
u = l(A + Cy)e-rv sin lx 

2(2Q + R) It (43) 
G+R e--lu co8 lx 

(34) 

The Papkovitch-Boussinesq solution of these equations is 

(29+R) * 
u’ = -grad(& + To?) + 2 &+R # (35) 

The field displacement vector is 

u’ = (U, u) (36) 

and the co-ordinate vector is 

Y = (2, Y) (37) 

The vector 4 and the scalar $0 satisfy Laplace’s equation 

V”& = 023 = 0 (36) 

We shall choose the vector 4 to be oriented along y and put 

From stress-stra+ relations (15) we derive the relevant stress 
components at the boundary y = 0: We find 

q’ = uyy = C 1 Ql cos lx 

(44) 

f = a,, = 2 -Al - & y R C Qlsinlx C - 1 
The displacement u, v at the boundary is found by putting y = 0 
in (43). We write the boundary displacement as 

21 = U sin lx 

v = v cos lx 
(45) 

and the boundary stresses as 

q’ = qo’ co5 lx 
(46) 

7 = To sin lx 

Then eliminating A and C in equations (43) and (44) (with 
y = 0) yields the following relation between surface stress and 
displacement: 

,_/ 3 = (0, ti,) (39) 1 & 
-U--Y 

The component $,, a;‘lso satisfied Laplace’s equation 

2&1 qo’ = -3Q + B 
2&+Rv 

3Q + 22 

1 2& + R & 
(47) 

V”$, = 0 (40) 291r0=-~0jRu-39+Rv 

We are seeking here a solution which will match that of the plate It is of interest to call attention to the particular case of the in- 
compressible material. This is the case for which R = m while 

Y e = 0 and Be remains finite. If we substitute R = 03 in relations 

A (47) they simplify to 

V qo’ = -291v 

I- 
70 = -2QIU 

(48) 
duu 

t 
u 

In this case the vertical and horizontal displacements are un- 

- 6xu coupled. 
-___-_ 

I We must remember that the significance of these relations is 

I JJY t operational. For instance, if the material is elastic and incom- 

////////////.///~/////// 
-’ 

pressible then relations (48) are proportionality relations with 

-7/ & replaced by the shear modulus G. If the material is an in- 

I 
compressible vi’scous fluid of viscosity /A then 

4’ Q = l.LP’ (49) 

Fig. 2 Viscoelastic half-space and equations (48) become differential relations 
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(50) 

If the material is elastic in pure compression with an elastic 
hulk modulus K, we have shown [4] that the operator Z? is given 
in terms of 0 by 

In this case, even for a viscous fluid relations (47) imply both 
integrations and differentiations. 

3 Unstable Deformation of the Embedded layer 
We are now in a position to consider the case of the embedded 

layer by putting together the foregoing results. We will first 
assume the case of perfect adherence between the layer and the 
embedding medium, Fig. 3. We will then follow with a brief 
discussion of the case of imperfect adherence. 

Assuming perfect adherence the displacements U and V are 
equal at the interface for both media. The stresses also are con- 
tinuous, the value of the shear rG being the same at each bound- 
ary and the normal load po on the layer being equal to twice the 
normal traction qo’ at the boundary 

qo = 2qo’ (51) 

From (32) and taking into account (51) we may write the stress 
at, the boundary of the layer as 

PO’ = (KnV + ‘MD 

70 = (AnV + &U)Z 
(52) 

with the operators 

(53) 

The stress at the boundary of the embedding medium is given 
by (47). We replace & and l? by &i and &, the latter referring to 
the viscoelastic properties of the embedding medium while the 
former refer to the properties of the layer. We write, for the 
stress at the boundary of the half space, 

qo’ = -(GV + CU)Z 

To = -(CV + C,U)l 
(54) 

with the operators 

The condition that the stresses are continuous at the interface 
is obtained by equating expressions (52) and (54), i.e. 

At this point we must call attention to a property of the 
operators which is implicit in some remarks made previously con- 
cerning their significance. All the operational equations derived 
here are valid if the variables vary with time proportionally to 

Fig. 3 Embedded layer 

an exponential factor ept. In that case all operators are simply 
algebraic quantities and p instead of being the differential opera- 
tor d/dt is the algebraic value of the coefficient of time in the ex- 
ponential factor. If we now consider equations (56) we conclude 
that instability of the layer will appear whenever there are posi- 
tive values of p for which the determinant vanishes, 

(57) 

In that case any initial value of U and V no matter how small 
will increase exponentially with time proportionally to es’. An 
instability of the layer will appear in the form of sinusoidal fold- 
ing. In principle, a range of wave lengths will be unstable but 
not all wave lengths will grow at the same rate. For a given 
value of the load P equation (57) may be considered as a relation 
between p and Zh. The latter parameter being related to the 
wave length L of the folding by the relation 

L 
- = 2?r/Zh 
h 

(58) 

The wave length for which the value of p is maximum will tend 
to grow faster than others and will generally be the observed one. 
We have called it the “dominant wave length” L,, the correspond- 
ing value of 2 being denoted by ld. We have discussed the be- 
havior of the folding and the value of the dominant wave length 
for various types of materials in reference [6] for the case of perfect 
slip. In the next section we shall discuss in more detail the case 
for which the layer and the embedding medium are both incom- 
pressible viscous solids with perfect adherence. 

Before concluding this section let us formulate the case of im- 
perfect adherence. In this case it is assumed that slipping may 
occur at the interface of the layer and the embedding medium. 
The slip layer is assumed to be a thin viscous layer of thickness h, 
and viscosity coefficient Z.L,. The interface displacements of the 
folding layer and the medium are denoted, respectively, by U sin 
lx and Ui sin 2x. The shearing stress TO at the interface is pro- 
portional to the rate of slip, according to the equation 

TO = bp(Ui - U) (59) 

with a coefficient of slip resistance 

h = fi../h, (601 

Expressing that there is continuity of stress and normal dis- 
placement V, we Cnd the three equations 

(A;, + CJV + K&J + cur = 0 

(& + C)V + &U + Gu, = 0 
(61) 

cv-+J+ 
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Equating to zero the determinant yieltls The dominant wave length is determined by considering the 

_ G(K,*& - &a) + A&@ - C”) 
minimum value of this expression as a function of lh. Equating to 
zero the derivative of this expression with respect to Zh yields an 

+ $ [(A,, + ~J(&z + cl) - (A,, + c)“] = 0 (62) 
equation for the value l,h corresponding to the dominant wave 
length. We may write this equation 

The particular case of perfect adherence at the interface cor- 
responds to b = m giving again equation (57), while the case of 
perfect slip b = 0 yields 

(63) 

This case was considered previously 161. We note that 

@ 
c*-T = 

Cl 

2&,@, + 81) = _I_ & 

2&l + RI 2 
- (64) 

while 

> 
lh (6% 

Hence equation (63) becomes 

1 Bl p = - &212 + - 
12 lh 

We note that the dominant wave length for the case of two in- 
compressible viscous solids is independent of the load P. This 
is a particular case of a general rule for systems with a homogene- 
ous spectrum as already discussed in reference (6). 

The second term in the bracket of equation (73) represents the 
effect of the imperfect adherence at the interface. In order to 
evahiate the importance of this adherence let us consider the case 
of perfect interfacial slip. This corresponds to neglecting the 
second term in the bracket of equation (73). The equation then 
gives immediately the value of Zdh. Denoting by Zd’ the value of 
Zd for perfect slip we find 

(74) 

It is readily seen that for every value of p the load P plotted 
The corresponding dominant wave length for perfect slip is 

as a function of lh goes through a minimum which corresponds to 
the dominant wave length for that load. This last equation 

&I =i 21 
1,’ 

= 2rh E 
( > 

‘18 

‘31~1 
(75) 

coincides with relation (3.1) of reference [6] where it was the 
object of a detailed discussion. We denote by 

4 The Case of Two Incompressible Viscous Solids L, = F (76) 

We shall now consider the particular case of a layer of incom- 
d 

pressible purely viscous solid embedded in a medium which is also the dominant wave length for the case of perfect adherence as de- 
incompressible and purely viscous. Perfect adherence is assumed termined by equation (73). We may solve equation (73) for Z,h 
at the interface. Incompressibility of the medium is expressed as a function of p/p1 and derive the value of L/Ld’. Values of 
by the condition 8, = ~0 hence from (55) this ratio are shown in Table 1 along with Z,‘h and L’Jh. 

(67) 

Also for the layer 

B = 44 

For the case of pure viscosity the operators become 

(68) 

0 = PP 

a = /.Lcp 

(69) 

where /J is the viscosity coefficient of the layer and ~1 that of the 
medium. The stability equation (57) becomes 

(KU + G)(& + C,) - A*,e = 0 (70) 

This yields 

p = r &212 + 4&1 + -@!!- 
12 lh 

1+%h 
c1 

(71) 

The two first terms in this expression correspond to the case of 
perfect interfacial slip. The third term represents the correction 
due to perfect interfacial adherence. 

Let us substitute expressions (68) and (69) for the operators. 
Equation (71) becomes 

ld’h 
1.000 

0.793 0.551 

Table 1 

L’dh Ld/Ld’ expbh) 

6.28 1.062 2.7 

11.4 7.90 1.046 1.025 2;:: 
14.4 1.015 221 
18.2 1.010 4440 

Values of L,/L,’ show the influence of interfacial adherence on 
the dominant wave length. We can see that the effect of ad- 
herence is to lengthen the dominant wave length by amounts up 
to about 6 per cent. The effect however becomes vanishingly 
small for viscosity ratios /J/P, > 70. This corresponds to ratios of 
the dominant wave length to the thickness larger than 14. 

That the wave length increases due to adherence follows im- 
mediately from inspection of equation (73) since the bracketed 
factor which represents the effect of adherence amounts to an in- 
crease in the viscosity p of the layer. 

As already pointed out in Section 1, we have assumed that a 
shearing deformation occurs due to the interfacial stress r. If we 
neglect this shearing deformation, i.e., if we assume that all nor- 
mal cross sections of the layer remain normal to the middle surface 
(neutral axis of the beam theory) this amounts to putting & = 0) 
while retaining B finite in equation (70), hence replacing the 
bracket of relation (73) by P 

lh -= (72) 
iJP 

f (Zh)* + 4 % $ + $ 

l+%h 1 
EL 

- $ (Zdh)e 1 
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The correction of the dominant wave length due to adherence will 
in that case be increased, but only by an insignificant amount. 

An important feature to be considered is the “degree of in- 
stability” as represented by the amplitude of the folding observed 
after a given time. Consider that a total time ti has elapsed such 
that under the load P the compressive strain of the layer is E. 
We may write 

(77) 

If the compressive strain is 25 per cent during this time ti, 

P=$ (78) 

l?et us go back to equation (72) and neglect the effect of the ad- 
herence, i.e., let us drop the third term in this equation. Sub- 
stituting in this equation the value (78) for P we find 

1 
-= 
Ptl 

$ /.d2h2 + ‘; (79) 

Introducing the value I = I,’ from (74) corresponding to the 
dominant wave length yields 

(80) 

The factor e@l is an amplification factor. During a compres- 
sive strain of 25 per cent the amplitude of a dominant wave length 
initially present as an irregularity in the layer will be multiplied 
by @. It may therefore be considered as a measure of the in- 
stability. Values of e@l are also shown in Table 1 against p/pL1. 

We notice that the amplification factor eP4 and hence the in- 
stability itself become large for values of the viscosity ratio p/n1 
of the order of 70. For p/pi = 70 the dominant wave length is 
about 14 times the layer thickness. An initial disturbance of the 
layer with this wave length is amplified by a factor of about 200 
in a compressive deformation of 25 per cent. 

Another interesting point brought out by Table 1 is the fact 
that outside the range of the viscosity ratio p/pi, for which the 
instability is mild, the influence of the interfacial adherence on the 
dominant wave length becomes negligible. 

5 Discussien of the More General Case 
In the previous section we have considered the folding of a 

viscous layer in a viscous medium. We shall now consider the 
case where one or both materials is not only viscous but viscoelastic 
in the more general sense. In order to simplify the derivation 
we shall neglect the influence of interface adherence. From our 
discussion in the previous section we may infer that neglecting 
adherence will not affect substantially the results. Since these 
cases have been treated in more detail in another publication [6], 
we shall simply outline briefly the results. 

The essential result is furnished by equation (66) which gives P 
as a function of Zh for every value of the rate coefficient p in the 
time factor exp(pt). The variable p appears in 3 and &. 

The dominant wave length L, is found by taking the derivative 
of equation (66) with respect to Zh. We find 

L, = 2vrh 

The corresponding load 

(81) 

(82) 

Eliminating p between those two relations yields the dominant 
wave length as a function of the load P. It can be seen that, 
in general, there is a lower critical load obtained by putting p = 0 
in equation (82). At this load instability is incipient. The 
higher critical load is a buckling load obtained by putting p = ~0. 
This load corresponds to elastic buckling. The case of two in- 
compressible viscous fluids examined in the foregoing corresponds 
to 

(83) 

We find expression (75) independent of p. Hence in this case the 
dominant wave length is independent of the load. 

For an elastic layer in a viscous medium both incompressible 
we have 

B=4G 

B1 = 4l.lIP 
(84) 

where G is the shear modulus of the layer. Applying expressions 
(81) and (82) and eliminating p between them we find 

46 ‘1% 
L, = ah p 0 

In this case the dominant wave length decreases as the load 
increases. It is interesting to compare L, with the wave length 
of elastic buckling of the layer assumed free. It is found that 
L, is 2/3 times the wave length of free elastic buckling under the 
same load P. It is independent of the viscosity. 

Another case is that of a viscous layer in an elastic medium. 
The layer of course must be sufficiently viscous to sustain the 
load. Assuming again incompressibility of both media, we find 

L, = f rh $ 
I 

where G1 is the shear modulus of the surrounding medium. The 
dominant wave length (86) is independent of the viscosity and 
increases with the load. 

The case of two Maxwell media is also examined in reference 
[6] and it is found that the ratio of relaxation times of the two 
media is an important parameter which controls the dependence 
of the dominant wave length on the load. 

6 Nonlinear and Incremental Stress-Strain Relations 
Qs mentioned in the previous work [6] there is a lot more to be 

said if we wish to apply irreversible thermodynamics to relations 
between incremental stresses and incremental strains. This is of 
course closely related to the problem of nonlinear rheology since 
a deformation may be considered as a succession of incremental 
states.4 While this appears to be quite a complex problem in 
general there is, however, one case which can be immediately 
analyzed by combining the thermodynamics of linear rheology 
[4] with those of the theory of elasticity for incremental stresses 
[8, 91. Consider a solid which is in a state of thermodynamic 
equilibrium under a stress field Sij. Then for small deviations 
from this equilibrium state we may assume Onsager’s relations to 
apply to the incremental strains and stresses. We must be careful, 
however, to express the stress components tii as forces per unit 
area before incremental deformation 18, 91. This is necessary be- 
cause application of thermodynamic principles requires the use of 
conjugate variables in such a way that 

W = $ e& 

‘The somewhat arbitrary assumption proposed by Ziegler [ll] 
that linear viscoelasticity is directly applicable to plasticity over- 
looks the asymmetry of the operators. 
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represents the work done by tii with cij the incremental strains. 
Then the relation between cc{ and l<j is of the same general type as 
for the unstressed system 

tij = Pijkzek, (88) 

where Pijkt is the tensor operator derived in reference [4]. 
The actual incremental stresses Uij as referred to areas after 

deformation are related to tij by the relations [9] 

tij = U(j + eSij - jj (f?ip!3j, f ejlSiI) 

which may also be written 

tii = 6.. + B..rse 0 I, Ik 

with 

B .‘k = &Sii - 
Y 

- f (6i*sjt + sjI&) 

Note that this is not generally a symmetric tensor, i.e., 

Bii" # B,,"' (92) 

For instance, if we start from a two-dimensional state of principal 
stresses 

811 0 
Sij = 

I1 11 522 
(93) 

0 

Then 

Hence the tensor is symmetric only if we have 

sz = &1 (95) 

i.e., if the initial state is isotropic. In three dimensions this will 
be the case if the initial stress is hydrostatic. Substitution of (90) 
in (88) yields 

vii = (Pii" + Biilk)e 26 (96) 

We conclude that under our assumptions the relation between the 
actual incremental stress and strain is not, in general, expressed 
by a symmetric tensor operator except if the initial stress is hy- 
drostatic. 

We see therefore that the stress-strain relation (15) which in- 
volves a symmetric matrix is in contradiction with (96). The 
error, however, will be small if the initial stress is sufficiently small 
relative to the incremental matrix Pij" (incremental moduli in 
the elastic case). This contradiction does not arise if the ma- 
terial is not assumed to satisfy the condition that it is initially 
in thermodynamic equilibrium subject to small perturbations, 
e.g., if the state of prestress produces a steady state of flow. 

Similar considerations may be applied to the more general case 
of perturbation in the vicinity of a steady or near-steady creep. 
In this case, the creep rate is coupled to the deformation be- 
cause of temperature changes due to the thermoelastic effect6 
and the Onsager relations are not satisfied for the incremental 
quantities. 

If the body is such that for infinitely slow deformations it be- 
comes elastic whether linear or nonlinear, then it is probably 
legitimate to assume that Onsager’s relations are satisfied for in- 
cremental deformations and to use relations of the type (96). The 
operator, however, is restricted in this case and must be such that 
an incremental stress produces no steady-state creep. Hence it 

must be of a form such that 

Piilk # 0 for p = 0 (97) 

These simple remarks are presented here to indicate some of ,the 
deeper implications which are involved if we wish to extend linear 
viscoelasticity to incremental deformations. 
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