Finance and Economics Discussion Series
 Divisions of Research \& Statistics and Monetary Affairs
 Federal Reserve Board, Washington, D.C.

From Which Consumption-Based Asset Pricing Models Can Investors Profit? Evidence from Model-Based Priors

Mathias S. Kruttli

2016-027
Please cite this paper as:
Kruttli, Mathias S. (2016). "From Which Consumption-Based Asset Pricing Models Can
Investors Profit? Evidence from Model-Based Priors," Finance and Economics Discus-
sion Series 2016-027. Washington: Board of Governors of the Federal Reserve System,
http://dx.doi.org/10.17016/FEDS.2016.027.

Please cite this paper as:
Kruttli, Mathias S. (2016). "From Which Consumption-Based Asset Pricing Models Can Investors Profit? Evidence from Model-Based Priors," Finance and Economics Discushttp://dx.doi.org/10.17016/FEDS.2016.027.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.

From Which Consumption-Based Asset Pricing Models Can Investors Profit? Evidence from Model-Based Priors*

Mathias S. Kruttli ${ }^{\dagger}$

March 29, 2016

Abstract

This paper compares consumption-based asset pricing models on the basis of whether they can improve the forecast accuracy of investors who try to predict the equity premium out-of-sample with valuation ratios. Model-based priors are derived from three prominent consumption-based asset pricing models: Habit Formation, Long Run Risk, and Prospect Theory. A simple Bayesian framework is proposed through which the investors impose these model-based priors on the parameters of their predictive models. An investor whose prior beliefs are rooted in the Long Run Risk model achieves more accurate forecasts overall. The greatest difference in performance occurs during the bull market of the late 1990s. During this period, the weak predictability of the equity premium implied by the Long Run Risk model helps the investor to not prematurely anticipate falling stock prices.

JEL classification: G11, G12, G17
Keywords: Bayesian econometrics, consumption-based asset pricing, return predictability

[^0]
1 Introduction

Predicting aggregate stock returns has been of great interest to finance practitioners and academic finance economists alike. For an investor, knowing whether the equity premium is predictable is crucial for portfolio allocation decisions. An extensive literature uses a variety of variables to explain the time-variation of returns (see, for example, Campbell and Shiller (1988); Campbell (1987); Fama and French (1988 and 1989); Baker and Wurgler (2000); Lettau and Ludvigson (2001); Polk, Thompson, and Vuolteenaho (2006); Li, Ng, and Swaminathan (2013); and Kruttli, Patton, and Ramadorai (2015)). Valuation ratios were initially found to have predictive power when forecasting the equity premium, but the set of forecasting variables has since been extended with variables such as, corporate payout, implied cost of capital, and yields on bonds and Treasury securities.

Welch and Goyal (2008) provide a comprehensive analysis of the in-sample and out-of-sample (OOS) predictive power of the major variables and question whether the equity premium is predictable OOS. Campbell and Thompson (2008) further investigate these findings by imposing restrictions when estimating the predictive model. They apply sign restrictions on the parameter estimates of the predictive model and a non-negativity restriction on the forecast of the equity premium. Campbell and Thompson (2008) find that through these restrictions, a real-time investor could profitably forecast the equity premium. Other papers have also analyzed how predictive regressions can yield more accurate forecasts through restrictions that help alleviate the problem of noisy data and parameter uncertainty when estimating the predictive model. A form of Bayesian framework is often preferred to implement such restrictions. Stambaugh (1999), Barberis (2000), and Brandt, Goyal, SantaClara, and Stroud (2005) consider the problem of parameter uncertainty that an investor faces. Other papers make use of economically motivated parameter constraints. Pastor and Stambaugh (2009 and 2012) employ a prior that implies a negative correlation between expected and unexpected return shocks. Pettenuzzo,

Timmermann, and Valkanov (2014) propose a Bayesian methodology that imposes a non-negative equity premium and bounds on the conditional Sharpe ratio. Their constraints lead to forecasts of the equity premium that are substantially more accurate. Shanken and Tamayo (2012) consider prior beliefs on mispricing as a driver of predictability and on the risk-return tradeoff. Wachter and Warusawitharana (2009) model skepticism of an investor over the predictability of the equity premium as an informative prior over the R^{2} and show that a skeptical investor achieves better forecasts. Wachter and Warusawitharana (2015) analyze whether an investor who is skeptical about the existence of equity premium predictability would update her prior and conclude that the equity premium is predictable when being confronted with historical data.

This paper contributes to this growing literature by imposing novel economic constraints derived from consumption-based asset pricing models. I propose a simple Bayesian econometric framework to implement these economic constraints as prior distributions on the parameters of single-variable predictive regressions. These prior distributions are named model-based priors. My approach relates to the macroeconometric literature, in which prior distributions from dynamic stochastic equilibrium models are imposed on vector autoregressions to predict macroeconomic variables (see, for example, Del Negro and Schorfheide (2011)). To my knowledge, prior distributions derived from asset pricing models have not been previously explored for the purpose of forecasting returns. The three consumption-based asset pricing models that act as sources for the model-based priors are the Habit Formation (HF) model (see Campbell and Cochrane (1999)), the Prospect Theory (PT) model (see Barberis, Huang, and Santos (2001)), and the Long Run Risk (LRR) model (see Bansal and Yaron (2004)). All three models propose different theories that can explain the equity premium puzzle (Mehra and Prescott (1985)). The model-based priors allow me to assess whether an investor could have profited from knowing the asset pricing theories and their implications for the predictability of the
equity premium inherent in these consumption-based asset pricing models. I assume that an investor who forecasts the equity premium with valuation ratios has a prior belief about the parameter estimates of the predictive model that stems from one of the asset pricing models. The investor then updates her beliefs with empirical data and predicts the equity premium OOS based on the posterior parameter estimates. Unlike other papers in the equity premium prediction literature, the focus of this paper is to compare the performances of the model-based priors from the three asset pricing models with each other. Comparing the accuracy of the forecasts provides an assessment of how useful the theories developed by the asset pricing models are for a finance practitioner who attempts to time her investments in the aggregate stock market. This novel way of comparing consumption-based asset pricing models leads to insights that are not obtained when matching empirical data moments with model-based moments from Monte Carlo simulations, as is generally done.

My sample comprises data from 1926 to 2014. The paper assesses the gains in predictability to an investor who had access to these models from 1926 onward and who tries to time the market by forecasting the equity premium with valuation ratios - that is, the dividend-price ratio and the dividend yield. ${ }^{1}$ I find a sharp distinction between the performance of the LRR model-based priors and the modelbased priors derived from the HF and PT models. The LRR model-based priors perform particularly well from 1980 onward. The HF and PT model-based priors result in more accurate forecasts up to the 1980s. Over the whole data sample, an investor armed with the knowledge of the LRR model would have generally outperformed investors whose prior beliefs about the predictability of the equity premium were rooted in the HF or PT model. The differences in performance hold when comparing both the accuracy of the forecasts and the utility gains achieved by the investors. The key to the strong performance of the LRR model over the total sample period is the bull market of the late 1990s, when low valuation ratios

[^1]predicted negative stock returns that did not materialize for several years. The LRR model implies a lower predictive power of valuation ratios than the other two asset pricing models. Hence, an investor who uses the LRR model as guidance for her investment choices is reluctant to conclude that low valuation ratios imply an immediate decline in stock prices. This reluctance improves her forecast performance during the late 1990s, and this effect dominates less accurate forecasts of the LRR priors during episodes when the predictive power of valuation ratios was stronger.

The limited equity premium predictability that the LRR model implies is often considered a shortcoming (see, for example, Beeler and Campbell (2012)). This paper shows that from the viewpoint of an investor, the weak predictability of the LRR model can be an advantage. Thus, the findings in this paper contribute to the current debates in consumption-based asset pricing and equity premium prediction.

The structure of this paper is as follows. Section 2 explains the Bayesian methodology used to impose the model-based priors. Section 3 reports the data used and the results. Section 4 discusses the utility gains that an investor with power utility achieves when implementing the model-based priors. Section 5 analyzes the robustness of the results. Section 6 concludes the paper.

2 Methodology

This section describes how I impose economic constraints on the single-variable predictive regressions through priors derived from consumption-based asset pricing models and how these models are simulated to obtain the priors.

2.1 Equity premium prediction model

The equity premium at time $t+1$ is denoted by r_{t+1} and is defined as the rate of return on the stock market in excess of the prevailing short-term interest rate. As is common in the equity premium prediction literature, r_{t+1} is regressed on a constant
and a predictor, x_{t}, which is lagged by one period:

$$
\begin{equation*}
r_{t+1}=\beta_{0}+\beta_{1} x_{t}+\epsilon_{t+1}, \text { where } \epsilon_{t+1} \sim N\left(0, \sigma_{\epsilon}^{2}\right) . \tag{1}
\end{equation*}
$$

The OOS predictions of the equity premium are generated through recursive forecasts (see, for example, Campbell and Thompson (2008), Welch and Goyal (2008), and Pettenuzzo et al. (2014)). Hence, all available observations up to period t are used to estimate the model in equation (1). Based on the resulting estimates of the parameters $\beta=\left[\beta_{0}, \beta_{1}\right]^{\prime}$ and σ_{ϵ}^{2}, and by observing x_{t}, one can forecast the equity premium in $t+1$. The predicted equity premium is denoted by \hat{r}_{t+1}. Because observations after $t+1$ are not used to estimate β, a real-time investor who forecasts the equity premium can implement this procedure. If no model-based priors are imposed, the parameters can be estimated via ordinary least squares (OLS). A common benchmark for a predictor in the equity premium literature is the historical average model, which forecasts that the equity premium will be next period what it has been on average in the past (β_{1} in equation (1) is set to zero).

2.2 Model-based priors

An investor who wants to make use of the theoretical insights of a consumptionbased asset pricing model can impose economic constraints on β derived from the asset pricing model. These model-based constraints are best imposed via Bayesian techniques. I assume that the investor's prior belief is that β and σ_{ϵ}^{2} take the values implied by the asset pricing model. She then updates her belief through empirical data.

The prior distribution of the parameters in equation (1) - that is β and σ_{ϵ}^{2} is assumed to be Gamma-Normal (see, for example, Koop (2003) and Pettenuzzo et
al. (2014)). The prior distribution for the coefficients is then given by

$$
\begin{equation*}
\beta \sim N(\underline{\beta}, \underline{V}), \sigma_{\epsilon}^{-2} \sim G\left(\sigma_{\epsilon}^{*-2}, \underline{v}(t-1)\right) . \tag{2}
\end{equation*}
$$

The mean and the variance of the Normal prior distribution are specified as

$$
\underline{\beta}=\left[\begin{array}{c}
\beta_{0}^{*} \tag{3}\\
\beta_{1}^{*}
\end{array}\right], \underline{V}=\left[\begin{array}{cc}
\lambda^{2} \sigma_{r, t}^{2} & 0 \\
0 & \lambda \sigma_{r, t}^{2} / \sigma_{x, t}^{2}
\end{array}\right]
$$

where β_{0}^{*} and β_{1}^{*} are the coefficient values implied by the consumption-based asset pricing model. The parameter λ is exogenously chosen and is weakly positive. If λ is large, the prior is loose. If λ is equal to zero, the prior is dogmatic. I set $\lambda=1$ for the benchmark case. Section 5 discusses the robustness of my results for different choices of λ. The sample moments $\sigma_{r, t}^{2}$ and $\sigma_{x, t}^{2}$ are scaling factors, which ensures that the results are comparable for different predictors and forecast frequencies. Such scaling factors are commonly used in Bayesian macroeconometrics and date back to Litterman (1986). The sample moments are given by

$$
\begin{equation*}
\sigma_{r, t}^{2}=\frac{1}{t-2} \sum_{\tau=2}^{t}\left(r_{\tau}-\bar{r}_{t}\right)^{2}, \bar{r}_{t}=\frac{1}{t-1} \sum_{\tau=2}^{t} r_{\tau} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{x, t}^{2}=\frac{1}{t-2} \sum_{\tau=1}^{t-1}\left(x_{\tau}-\bar{x}_{t}\right)^{2}, \bar{x}_{t}=\frac{1}{t-1} \sum_{\tau=1}^{t-1} x_{\tau} . \tag{5}
\end{equation*}
$$

The Gamma distribution parametrization follows Koop (2003) by specifying the distribution with mean σ_{ϵ}^{*-2} and degrees of freedom $\underline{v}(t-1)$, where σ_{ϵ}^{*-2} is derived from the consumption-based asset pricing model. The tightness of the prior is controlled by \underline{v}, which is strictly positive. A large \underline{v} corresponds to a tight prior, and a small \underline{v} corresponds to a diffuse prior. The benchmark case sets \underline{v} to 0.1 , but my results are robust for a tighter or a more diffuse prior on σ_{ϵ}^{-2} (see Section 5).

2.3 Posterior distribution

The model-based prior distributions yield conditional posterior distributions for β and σ_{ϵ}^{-2}. I draw from these two conditional distributions through a Gibbs sampler. The conditional posterior distribution for β is

$$
\begin{equation*}
\beta \mid \sigma_{\epsilon}^{-2}, \mathcal{I}_{t} \sim N(\bar{\beta}, \bar{V}), \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{V}=\left(\underline{V}^{-1}+\sigma_{\epsilon}^{*-2} X^{\prime} X\right)^{-1}, \bar{\beta}=\bar{V}\left(\underline{V}^{-1} \underline{\beta}+\sigma_{\epsilon}^{*-2} X^{\prime} R\right) \tag{7}
\end{equation*}
$$

X is a $t-1 \times 2$ matrix with rows $\left[1 x_{\tau}\right]$ for $\tau=1, \ldots, t-1$, and R is a $t-1 \times 1$ vector with elements r_{τ} for $\tau=2, \ldots, t$. The information set at time t is denoted by \mathcal{I}_{t}. The conditional posterior distribution for $\sigma_{\epsilon}{ }^{-2}$ takes the form

$$
\begin{equation*}
\sigma_{\epsilon}^{-2} \mid \beta_{0}, \beta_{1}, \mathcal{I}_{t} \sim G\left(\bar{s}^{-2}, \bar{v}\right), \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{v}=\underline{v}+(t-1), \text { and } \bar{s}^{2}=\frac{\sum_{\tau=2}^{t}\left(r_{\tau}-\beta_{0}-\beta_{1} x_{\tau-1}\right)^{2}+\sigma_{\epsilon}^{* 2} \underline{v}(t-1)}{\bar{v}} . \tag{9}
\end{equation*}
$$

Through the Gibbs sampling algorithm with J iterations, we obtain a series of draws for each of the parameters denoted by $\left\{\beta^{j}\right\}$ and $\left\{\sigma_{\epsilon}^{-2, j}\right\}$ for $j=1, \ldots, J$. These simulated series can then be used to draw from the predictive return distribution

$$
\begin{equation*}
p\left(r_{t+1} \mid \mathcal{I}_{t}\right)=\int_{\beta, \sigma_{\epsilon}^{-2}} p\left(r_{t+1} \mid \beta, \sigma_{\epsilon}^{-2}, \mathcal{I}_{t}\right) p\left(\beta, \sigma_{\epsilon}^{-2} \mid \mathcal{I}_{t}\right) d \beta d \sigma_{\epsilon}^{2} \tag{10}
\end{equation*}
$$

which yields $\left\{r_{t+1}^{j}\right\}$ for $j=1, \ldots, J$. The point forecast for the equity premium in period $t+1$ is given by the mean of the sampled distribution

$$
\begin{equation*}
\hat{r}_{t+1}^{m}=\frac{1}{J} \sum_{j=1}^{J} r_{t+1}^{j} . \tag{11}
\end{equation*}
$$

2.4 Deriving priors from asset pricing models

I next describe how the priors $\beta^{*}=\left[\beta_{0}^{*}, \beta_{1}^{*}\right]^{\prime}$ and σ_{ϵ}^{*-2} are derived from the three consumption-based asset pricing models: HF, LRR, and PT. All three models specify a log consumption and a log dividend growth process. By simulating random shocks, time series of consumption growth and dividend growth are generated, based on which I solve the models for the log equity premium, the dividend-price ratio, and the dividend yield. The dividend-price ratio is the difference between the \log of dividends and the log of prices, and the dividend yield is the difference between the \log of dividends and the log of prices lagged by one period. ${ }^{2}$ (A more detailed description of the models and how to solve them is provided in Appendix A.) I denote the simulated period $t+1 \log$ equity premium r_{t+1}^{*}. I can then estimate the model given in equation (1) with simulated data, where the simulated predictor x_{t}^{*} is either the dividend-price ratio or the dividend yield:

$$
\begin{equation*}
r_{t+1}^{*}=\beta_{M, 0}+\beta_{M, 1} x_{t}^{*}+\epsilon_{t+1}^{*}, \quad \text { where } \epsilon_{t}^{*} \sim N\left(0, \sigma_{M, \epsilon}^{2}\right) . \tag{12}
\end{equation*}
$$

The OLS estimates of $\beta_{M, 0}=\left[\beta_{M, 0}, \beta_{M, 1}\right]^{\prime}$ and $\sigma_{M, \epsilon}{ }^{2}$ are denoted by β^{*} and $\sigma_{\epsilon}^{* 2}$, which act as the prior means of the Gamma-Normal distribution described in Section 2.2.

For the HF model, the simulation is at a monthly frequency, and the quarterly (annual) data are constructed via time-averaging the monthly data. The same procedure is used by Campbell and Cochrane (1999). The log equity premium

[^2]is summed across the quarter (year). For the dividend-price ratio and the dividend yield, consumption and dividends are summed across the quarter (year) and the end-of-quarter (year) price is used. I simulate 120,000 months, estimate β^{*} and $\sigma_{\epsilon}^{* 2}$, and average the estimates over 10 iterations. The HF model has two specifications, and I use both to generate priors. The first specification (HF 1) assumes a perfect positive correlation between the log consumption and log dividend growth, and the second specification (HF 2) assumes that the correlation is imperfect and positive.

Similar to the HF model, the PT model is specified by Barberis et al. (2001) with perfect positive correlation between the \log consumption and \log dividend growth processes and with imperfect positive correlation between the two processes. I only use the latter specification, as it more successfully matches the empirical data moments. The authors calibrate the model with a range of parameter values for the investor's sensitivity to financial wealth fluctuations (b0) and the effect of prior losses on risk aversion (k). I generate priors from the parameterizations that set $b 0$ equal to 100 and k equal to 3 (PT 1) and 8 (PT 2). Of the specifications proposed by Barberis et al. (2001), setting $b 0$ equal to 100 and k equal to 8 generates a log equity premium that is closest to the empirical data moment. For the $b 0$ equal to 100 and k equal to 3 , the generated \log equity premium is lower, but the average loss aversion of the agent is 2.25 , which is in line with experimental evidence. Following Barberis et al. (2001), I simulate the model at monthly, quarterly, and annual frequencies by adjusting the model parameters accordingly.

The LRR model, like the HF model, is simulated at a monthly frequency, and quarterly (annual) values are time-averaged. Bansal and Yaron (2004) use the same procedure to generate simulated data. Again, 120,000 months are simulated to estimate β^{*} and $\sigma_{\epsilon}^{* 2}$, and the estimates are averaged across 10 iterations. Bansal and Yaron (2004) present two specifications of their model: with and without timevarying volatility of consumption growth. Because the specification that accounts for time-varying volatility of consumption growth is substantially more successful at
matching the empirical data moments, I generate priors only from this specification. However, as in Bansal and Yaron (2004), I consider two calibrations for the agent's risk aversion to simulate the model: a risk aversion of 7.5 (LRR 1) and a risk aversion of 10 (LRR 2).

Panels A and B of Table 1 show β^{*} and σ_{ϵ}^{*-2} estimated from simulated data of the three consumption-based asset pricing models. The table also reports the empirical estimates over the total sample from 1926 to 2014 for comparison. For all three asset pricing models, β_{1}^{*} is positive for the dividend-price ratio and the dividend yield. Thus, high valuation ratios predict higher subsequent returns, which is in line with the empirical estimates. For both predictors and across all return frequencies, the coefficients of the LRR model are substantially lower than for the HF and PT models. The implication is that in the LRR model, the predictive power of valuation ratios is weak. Of the three models, the PT model generates the highest β_{0}^{*} and β_{1}^{*} for the dividend-price ratio. ${ }^{3}$ For the dividend yield, the β_{0}^{*} and β_{1}^{*} of the HF model are greater than the estimates of the other two models and the empirical estimates. The pattern for σ_{ϵ}^{*-2} is more mixed. However, the values implied by the asset pricing models are also close to the empirical values.

The weak implied predictability of the LRR model can also be seen in Panel C. Panel C reports the \bar{R}^{2} for the single-variable predictive regression in equation (12). The \bar{R}^{2} values for the LRR model are lower than for the HF and PT models and the empirical data. The predictability of the equity premium is strongest for the HF model, for which the \bar{R}^{2} is higher than for the empirical data across all frequencies and both predictors. For the PT model, the dividend-price ratio has considerable predictive power, but the \bar{R}^{2} values for the dividend yield are lower consistent with the higher β_{1}^{*} for the dividend-price ratio in Panel A. While the \bar{R}^{2} positively correlates with the magnitude of the β_{1}^{*}, the β_{1}^{*} of the HF model is lower

[^3]than for the PT model for the dividend-price ratio, despite the \bar{R}^{2} being higher for the HF model. The reason for the smaller β_{1}^{*} of the HF model is the more volatile dividend-price ratio simulated from the model (shown in Appendix A).

3 Results

In this section, I describe the data and report the OOS results when imposing economic constraints derived from asset pricing models on equity premium forecasts.

3.1 Data

The empirical data on the equity premium and the predictors at a monthly, quarterly, and annual frequency are available on Amit Goyal's website. ${ }^{4}$ The equity premium is computed as the log return on the $\mathrm{S} \& \mathrm{P} 500$ index minus the log threemonth U.S. Treasury bill rate. I set the start date of the time series at 1926, as high-quality return data on the S\&P 500 from the Center of Research in Security Prices became available in 1926. The time series ends in 2014. The availability of predictor variables that can be used to assess the performance of the model-based priors is restricted by the three asset pricing models. The predictor variables that can be simulated from the three models are the dividend-price ratio and the dividend yield. Dividends on the S\&P 500 index are 12-month moving sums from 1926 to 2014. As for the data simulated from the asset pricing models, the dividend-price ratio is defined as the difference between \log dividends and \log prices, and the dividend yield is defined as the difference between \log dividends and \log prices lagged by one period.

[^4]
Table 1: Model-implied parameters

Panel A reports the coefficient estimates of the single-variable predictive regression of the log equity premium given in equation (1) for two predictors: the \log dividend-price ratio and the log dividend yield. The empirical estimates are for the data sample from 1926 to 2014 . The model-based estimates from the three asset pricing models HF, LRR, and PT are obtained through the Monte Carlo simulation procedure described in Section 2.4. These coefficient estimates are used as means of the Normal prior in equation (2). Panel B shows the inverse of the variance of the return innovation used for the Gamma prior in equation (2). Panel C reports the \bar{R}^{2} (in percent) of the single-variable predictive regression.

Panel A: Coefficients (β)														
	Empirical		HF 1		HF 2		LRR 1		LRR 2		PT 1		PT 2	
	$\boldsymbol{\beta}_{0}$	$\boldsymbol{\beta}_{1}$	β_{0}^{*}	β_{1}^{*}										
Log dividend-price ratio														
Annual returns	0.282	0.066	0.635	0.195	0.614	0.186	0.049	0.007	0.073	0.011	0.738	0.246	0.869	0.321
Quarterly returns	0.085	0.021	0.166	0.051	0.169	0.052	0.011	0.001	0.020	0.003	0.406	0.171	0.469	0.220
Monthly returns	0.023	0.005	0.057	0.018	0.057	0.018	0.004	0.000	0.007	0.001	0.255	0.132	0.270	0.158
Log dividend yield														
Annual returns	0.313	0.077	0.555	0.169	0.516	0.154	0.052	0.007	0.082	0.013	0.167	0.046	0.216	0.063
Quarterly returns	0.080	0.019	0.093	0.051	0.092	0.049	0.010	0.001	0.022	0.003	0.078	0.025	0.135	0.054
Monthly returns	0.027	0.007	0.056	0.017	0.056	0.017	0.003	0.000	0.007	0.001	0.022	0.005	0.046	0.019

Panel B: Inverse variance of return innovation $\left(\sigma_{\epsilon}^{-2}\right)$

Log dividend-price ratio							
Annual returns	25.632	50.231	27.667	35.377	37.215	25.284	18.733
Quarterly returns	89.139	173.088	99.737	143.642	147.224	125.520	499.265
Monthly returns	333.634	507.683	293.951	429.903	441.194		
Log dividend yield							
Annual returns	25.777	48.400	26.656	35.592	36.612	24.481	123.022
Quarterly returns	89.019	172.678	100.382	144.485	147.307	123.579	86.093
Monthly returns	333.969	502.700	294.971	432.105	440.879	498.053	391.489

Log dividend-price ratio							
Annual	1.273	12.180	7.280	0.013	0.012	2.960	5.900
Quarterly	0.538	3.210	2.140	0.000	0.003	1.200	2.750
Monthly	0.106	1.090	0.710	0.000	0.001	0.410	0.940
Log dividend yield							
Annual	1.828	8.940	5.240	0.000	0.027	0.180	0.320
Quarterly	0.405	3.010	1.880	0.001	0.002	0.055	0.250
Monthly	0.206	1.080	0.680	0.000	0.001	0.002	0.032

3.2 Measuring forecast accuracy

I assess the performance of the model-based priors via the OOS R^{2} (see, for example, Campbell and Thompson (2008)):

$$
\begin{equation*}
R_{O O S}^{2}=1-\frac{\sum_{\tau=\underline{t}}^{T}\left(r_{\tau}-\hat{r}_{\tau}^{m}\right)^{2}}{\sum_{\tau=\underline{t}}^{T}\left(r_{\tau}-\hat{r}_{\tau}^{h}\right)^{2}}, \tag{13}
\end{equation*}
$$

where \hat{r}_{τ}^{m} is the equity premium forecast when imposing the model-based prior as given in equation (11); \hat{r}_{τ}^{h} is the prediction of the historical average model; and \underline{t} and T are the start and end dates, respectively, of the OOS forecast period. Thus, the $R_{O O S}^{2}$ assesses the forecast performance of the model-based priors relative to the non-predictability model, which assumes that the best forecast of the equity premium is its historical average. The historical average model corresponds to the model given in equation (1) with β_{1} being set equal to zero.

3.3 Forecasting

I consider four sample periods for the OOS predictability exercise. First, I use the full sample from 1926 to 2014 and start the recursive OOS forecast in 1947. This starting point guarantees that a sufficient number of data points are available to estimate the predictive model. Next, I analyze the subsample stability by splitting the OOS forecast period (1947 to 2014) in half and consider forecasts up to 1980 and forecasts starting in 1981. Last, I only use the postwar sample from 1947 to 2014, and the forecasts start in 1968.

Figure 1 shows the quarterly OOS forecasts of the log equity premium from 1947 to 2014 in the top panel. The valuation ratios predict a substantial time variation of the equity premium. The lower panel depicts the corresponding coefficient estimates. Both predictors lost predictive power during the dot-com boom in the late 1990s, which leads to the sharp drop in the coefficient estimates.

Table 2 shows the $R_{O O S}^{2}$ (in percent) results for all six model-based priors for

Figure 1: Empirical out-of-sample forecasts
The top panel shows the OOS quarterly log equity premium forecasts for two predictors: the log dividend-price ratio and the log dividend yield. The predictive model in equation (1) is estimated recursively via OLS. The data sample starts in 1926 and the OOS period is from 1947 to 2014. The lower panel depicts the corresponding OLS coefficient estimates.
three return frequencies: monthly, quarterly, and annual. The "no prior" column reports the $R_{O O S}^{2}$ for the case in which the single-variable predictive model in equation (1) is estimated via OLS. If the model-based prior leads to an increase in the $R_{O O S}^{2}$, then the figure is in bold. The last two columns of the table show the bestand second-best-performing prior for the respective frequency, predictor, and time period. In Panel D, the performance of the model-based priors is summarized across the three frequencies.

For every case, there is at least one asset-pricing model that would help an investor improve the accuracy of her equity premium forecasts, with the exception of the \log dividend-price ratio at a monthly frequency for the OOS period from 1947 to 1980. The gains in $R_{O O S}^{2}$ are considerable compared with the literature (see, for example, Campbell and Thompson (2008)). In Section 4, I show that these $R_{O O S}^{2}$ values correspond to sizable gains in utility for an investor with power
utility preferences. For the \log dividend-price ratio, the LRR priors are the best performing for three of the four sample periods. The only OOS period for which the LRR priors are never the best-performing priors is the period from 1947 to 1980. This finding is consistent across all return frequencies. For the OOS period from 1947 to 1980, the PT model-based priors lead to the greatest increase in $R_{O O S}^{2}$ at the annual frequency, but the HF model-based priors result in more accurate forecasts at the monthly and quarterly frequencies. For the \log dividend yield, the findings are similar: The LRR model-based priors are never superior to the priors derived from the other two asset pricing models for the 1947-1980 OOS period regardless of the frequency. However, for the other three sample periods, the LRR priors are the best performing for at least one return frequency. The summary in Panel D reports that the LRR 1 (LRR 2) model yielded the best-performing prior in 50.0 percent (8.3 percent) of all cases. Additionally, the LRR 1 (LRR 2) prior was the second-best prior 12.5 percent (50.0percent) of the time. However, the HF 2 and PT 2 models were the best performing priors only in 12.5 percent of all cases (second best for 4.2 percent and 8.3 percent, respectively).

Table 3 reports the differences in the $R_{O O S}^{2}$ (in percent) between the bestperforming prior and the other priors for every return frequency, predictor, and sample period. To test whether the difference is statistically significant, I use a onesided Diebold-Mariano test (see Diebold and Mariano (1995)). Despite the difficult task to statistically reject OOS forecasting models of the equity premium (see, for example, Campbell and Thompson (2008) and Welch and Goyal (2008)), the differences are statistically significant in several cases. For the log dividend-price ratio, the hypothesis of equal predictive power of the model estimated with the LRR priors and the PT priors can be rejected for the majority of data samples. The differences between the $R_{O O S}^{2}$ of the LRR priors and the HF priors are generally smaller and, thus, significant in fewer cases. When the log dividend yield acts as the predictor, the results are not as pronounced as for the dividend-price ratio, but the hypothesis of
Table 2: Out-of-sample forecast performance of model-based priors
Panels A, B, and C show the OOS performance of the model-based priors derived from the three consumption-based asset pricing models: HF, LRR, and PT. The priors are imposed on the single variable predictive regression given in equation (1). Reported is the $R_{O O S}^{2}$ (in percent) from equation (13), which measures the accuracy of OOS log equity premium forecasts of the single variable predictive regression relative to the historical average model. The predictors are the dividend-price ratio and the dividend yield. If the model-based prior leads to an increase in the $R_{O O S}^{2}$ relative to OLS forecast in the "no prior" column, the figure is in bold. The last two columns denote which model-based prior leads to the greatest and second-greatest improvement in forecast accuracy. Panel D shows the number of times each model-based prior is the best or second best.

Panel A: Annual returns										
Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	0.396	-1.209	-1.292	0.333	1.195	-4.045	-7.579	LRR 2	LRR 1
1926	1947-1980	11.895	15.342	14.727	3.863	3.865	16.355	16.564	PT 2	PT 1
1926	1981-2014	-12.242	-18.486	-18.681	-2.277	-2.666	-25.224	-34.249	LRR 1	LRR 2
1947	1968-2014	-3.521	-1.831	-1.606	1.786	2.654	-4.978	-9.168	LRR 2	LRR 1
Log dividend yield										
1926	1947-2014	-16.280	-4.923	-3.060	-0.015	0.675	0.837	0.788	PT 1	PT 2
1926	1947-1980	-10.255	11.488	11.530	4.522	5.354	6.698	8.389	HF 2	HF 1
1926	1981-2014	-22.902	-21.777	-19.763	-4.506	-4.911	-6.115	-8.073	LRR 1	LRR 2
1947	1968-2014	-1.334	-0.069	-0.001	0.880	0.992	1.899	2.345	PT 2	PT 1

Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	-0.815	-0.607	-1.020	0.088	0.054	-5.032	-7.551	LRR 1	LRR 2
1926	1947-1980	3.753	4.110	3.680	3.738	3.711	1.752	0.306	HF 1	LRR 1
1926	1981-2014	-4.727	-4.995	-5.074	-2.601	-2.714	-11.334	-14.032	LRR 1	LRR 2
1947	1968-2014	-0.391	-0.541	-0.542	0.513	0.451	-5.060	-7.135	LRR 1	LRR 2
Log dividend yield										
1926	1947-2014	0.340	0.877	0.642	0.546	0.441	0.740	0.416	HF 1	PT 2
1926	1947-1980	4.740	4.889	4.253	3.721	3.599	4.458	5.035	PT 2	HF 1
1926	1981-2014	-3.429	-3.031	-2.646	-2.202	-2.265	-2.442	-3.225	LRR 1	LRR 2
1947	1968-2014	-0.297	0.495	0.439	0.642	0.613	0.606	0.075	LRR 1	LRR 2

Table 2: Out-of-sample forecast performance of model-based priors (continued)

Panel C: Monthly returns									
Sample start OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio									
1926 1947-2014	-0.061	-0.254	-0.075	0.092	0.063	-1.680	-1.656	LRR 1	LRR 2
1926 1947-1980	1.264	1.109	1.204	1.080	0.777	0.740	0.182	HF 2	HF 1
1926 1981-2014	-1.142	-1.369	-0.996	-0.937	-1.121	-3.268	-3.450	LRR 1	HF 2
1947 1968-2014	-0.237	-0.357	-0.093	0.126	0.014	-2.483	-2.784	LRR 1	LRR 2
Log dividend yield									
1926 1947-2014	-0.393	-0.300	-0.310	-0.211	-0.267	-0.356	-0.435	LRR 1	LRR 2
1926 1947-1980	1.175	1.149	1.238	1.014	1.046	1.026	1.217	HF 2	PT 2
1926 1981-2014	-1.672	-1.944	-1.810	-1.236	-1.272	-1.401	-1.791	LRR 1	LRR 2
1947 1968-2014	-0.166	-0.253	-0.129	-0.087	0.110	0.153	-0.038	PT 1	LRR 2
Panel D: Summary of model-based prior performance									
	Best-performing prior					Second-best-performing prior			
	\#		in \%			\#		in \%	
HF 1	2		8.3\%			3		12.5\%	
HF 2	3		12.5\%			1		4.2\%	
LRR 1	12		50.0\%			3		12.5\%	
LRR 2	2		8.3\%			12		50.0\%	
PT 2	2		8.3\%			3		12.5\%	
PT2	3		12.5\%			2		8.3\%	

equal predictive power can be rejected particularly at the monthly frequency, where more data points are available and the power of the test is increased. The analysis in Section 4 shows that even small differences in $R_{O O S}^{2}$ can lead to substantial utility gains for an investor with power utility.

The strong performance of the LRR prior can be explained by the low modelimplied predictability. In Table 1, β_{0}^{*} and β_{1}^{*} are lower for all three frequencies and both predictors compared with the empirical estimates and β_{0}^{*} and β_{1}^{*} of the HF and PT models. Thus, imposing the LRR prior pushes the posterior estimates of β_{0} and β_{1} down. Figure 2 shows the OLS estimates - that is, no prior is imposed on the predictive regression - and the posterior estimates for the log dividend-price ratio and quarterly returns for the 1968-2014 OOS period. The LRR 1 posterior estimates are substantially lower than the OLS estimates and the posterior estimates of the HF 1 and PT 1 models. However, the model-based priors derived from the HF 1 model lead to posterior estimates that are similar to the OLS estimates. The modelbased priors from the PT 1 model push the posterior estimates for both coefficients higher than they are when ignoring any prior and simply relying on OLS estimates.

The lower posterior estimates achieved through the LRR 1 prior are beneficial for an investor as shown in Figure 3. The top panel depicts the differences in the cumulative sum of squared errors (SSE) when forecasting with the historical average model compared with the single-variable predictive model estimated via OLS and via model-based priors. I subtract the cumulative SSE of the predictive model from the cumulative SSE of the historical average model. Hence, a positive value implies that the predictive model outperforms the historical average model. Until the beginning of the 1990s, the predictive regression performs better than the historical average model regardless of the estimation method. The highest cumulative SSE value is achieved for an investor who relies on the priors of the PT 1 model, which is due to the strong predictive power of the log dividend-price ratio implied by the PT 1 model. In the 1970s, valuation ratios had strong predictive power, and the PT
Table 3: Comparison of the model-based prior out-of-sample performance
Reported are the differences in the $R_{O O S}^{2}$ (in percent), where the $R_{O O S}^{2}$ is given in equation (13) and measures the accuracy of OOS log equity premium forecasts of a single-variable predictive regression, given in equation (1), relative to the historical average
 models: HF, LRR, and PT. The predictors are the dividend-price ratio and the dividend yield. For each frequency, predictor, and sample period, the $R_{O O S}^{2}$ of each prior is subtracted from the $R_{O O S}^{2}$ of the best-performing prior. The statistical significance of the difference is tested with a one-sided Diebold-Mariano test (see Diebold and Mariano (1995)). A significant test statistic is denoted by ${ }^{* *}$ at the 5 percent level and by * at the 10 percent level. The best performing-prior is reported in the third column.

Panel A: Annual returns								
Sample start	OOS period	Best prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2
Log dividend-price ratio								
1926	1947-2014	LRR2	2.404	2.487	0.862*		5.239	8.774
1926	1947-1980	PT2	1.222	1.837	12.701*	12.699*	0.209	
1926	1981-2014	LRR1	16.209	16.404		0.389	22.947	31.972*
1947	1968-2014	LRR2	4.485	4.259	0.867**		7.631	11.821
Log dividend yield								
1926	1947-2014	PT1	5.760	3.897	0.852	0.162		0.048
1926	1947-1980	HF2	0.042		7.009	6.176	4.833	3.141
1926	1981-2014	LRR1	17.272*	15.257*		0.405	1.610	3.567
1947	1968-2014	PT2	2.415	2.346	1.465	1.353	0.446	

Table 3: Comparison of the model-based prior out-of-sample performance (continued)

Panel B: Quarterly returns								
Sample start	OOS period	Best prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2
Log dividend-price ratio								
1926	1947-2014	LRR1	0.695	1.108		0.034	5.120**	7.639**
1926	1947-1980	HF1		0.430	0.372	0.399	2.358	3.804
1926	1981-2014	LRR1	2.394*	2.473*		0.113	8.733**	11.431**
1947	1968-2014	LRR1	1.054	1.055		0.063	5.573*	7.648*
Log dividend yield								
1926	1947-2014	HF1		0.235	0.331	0.436	0.137	0.461
1926	1947-1980	PT2	0.146	0.782*	1.314	1.436*	0.577	
1926	1981-2014	LRR1	0.829	0.444		0.063	0.240	1.023
1947	1968-2014	LRR1	0.147	0.204		0.029	0.037	0.568
Panel C: Monthly returns								
Sample start	OOS period	Best prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2
Log dividend-price ratio								
1926	1947-2014	LRR1	0.347*	0.167		0.029	1.773**	1.749**
1926	1947-1980	HF2	0.096		0.124	0.427	0.464	1.023
1926	1981-2014	LRR1	0.432*	0.059		0.184	2.331**	2.512**
1947	1968-2014	LRR1	$0.483 * *$	0.218		0.112	2.608**	2.910**
Log dividend yield								
1926	1947-2014	LRR1	0.089	0.099		0.057	0.146	0.224
1926	1947-1980	HF2	0.088		0.224	0.192	0.212	0.021
1926	1981-2014	LRR1	0.707**	0.574**		0.036	0.165	0.555**
1947	1968-2014	PT1	$0.406^{* *}$	0.283*	0.240*	0.043		0.191*

Apr-1971 Oct-1976 Mar-1982 Sep-1987 Mar-1993 Sep-1998 Feb-2004 Aug-2009

1. The predictor is the log dividend-price ratio, and the predictive model in equation (1) is estimated with quarterly data.

1 model makes the investor rely on this predictive power to a higher degree than an investor who uses the HF 1 or LRR 1 model to form her priors. The LRR 1 prior leads to the lowest cumulative SSE value until 1994. However, during the dotcom boom from 1994 to 1999, the predictive power of the log dividend-price ratio collapses and the cumulative SSE of the predictive model turns negative for all four estimation methods. The investor armed with the LRR 1 model is able to avoid poor forecasts to some extent, as her belief in the predictive ability of valuation ratios is qualified because of her prior. The lower panel of Figure 3 provides further detail. The equity premium forecasts for the OOS period from 1968 to 2014 are depicted. The posterior point forecasts given in equation (11) of the LRR 1 model are close to zero during the dot-com boom. The other two model-based priors and the OLS estimates result in strongly negative forecasts. Hence, an investor relying on these forecasts to time the market suffers losses during this bull market period.

Unlike the dot-com boom and its subsequent downturn, the financial crisis in 2008 does not have a substantial effect on the performance of the model-based priors, which can be explained by the different nature of these two episodes. Campbell, Giglio, and Polk (2013) find that during the dot-com boom, the discount rates of investors were at a historically low level. These low discount rates resulted in low valuation ratios, which were not followed by negative returns. Hence, the predictive power of the dividend-price ratio and the dividend yield decreased. However, according to Campbell et al. (2013), the downturn from 2007 to 2009 was driven by a decrease in rational expectations of future profits and the preceding boom caused by positive cash flow news. Consequently, valuation ratios performed better at predicting the equity premium compared with the late 1990s.

Figure 4 shows the simulated posterior density of the quarterly log equity premium prediction given in equation (10) for the third quarter in 1998. The predictor is the \log dividend-price ratio, and the model-based priors are the same as in Figures 2 and 3. The densities are simulated with 10,000 draws. For all three model-based

әэиәдән！ヨSS әп！џеןnunう

шn！̣шəдd K！！nbヨヨ
Figure 3：Out－of－sample performance of model－based priors
The top panel shows the differences in cumulative sum of squared errors（SSE）between the log equity premium forecasts of the historical average model and the predictive model given in equation（1）estimated via OLS or model－based prior．The model－based priors are derived from the HF 1，LLR 1，and PT 1 models．The cumulative SSE of the predictive model are subtracted from the cumulative SSE of the historical average model．The OOS period is from 1968 to 2014 and the forecasts are at a quarterly frequency．The predictor is the log dividend－price ratio．The lower panel depicts the point forecasts of the equity premium of the predictive model for the OLS estimates and the model－based priors．For the model－based priors，the posterior point forecasts are given in equation（11）．
priors, the posterior densities are similarly shaped and approximate a Normal distribution. When imposing the LRR 1 prior, the density is furthest to the right, corresponding to an equity premium forecast that is greater than the forecast of the other two models. These posterior densities are in line with the predictions during the dot-com boom shown in the lower panel of Figure 3. Figure 5 shows the corresponding posterior densities of β_{0} and β_{1} given in equation (6). The densities are again similar across the three model-based priors. For both coefficients, the LRR 1 prior results in posterior densities that are centered to the left of the HF 1 and PT 1 priors, consistent with the higher posterior mean of the equity premium predictive density shown in Figure 4. Hence, in the third quarter of 1998 at the height of the dot-com boom, when the dividend-price ratio was low, an investor who believes in the HF 1 or PT 1 model expects a negative equity premium to materialize in the next period. However, an investor whose prior beliefs are in line with the LRR 1 model is more hesitant to draw this conclusion.

4 Utility of an investor

So far, I have analyzed how priors derived from the three consumption-based asset pricing models affect the forecast accuracy of single-variable predictive regressions. To investigate the economic significance of the changes in predictive performance, we need to compute the utility gains of an investor who uses the model-based priors to forecast the equity premium. The Bayesian technique that I use to impose the economic constraints provides the full predictive density of the equity premium, which allows me to compute the portfolio allocation and utility gains of an investor with power utility (see, for example, Pettenuzzo et al. (2014) and Wachter and Warusawitharana (2015)). The utility gains of an investor achieved through the model-based priors will also give us an estimate of how much an investor would be willing to pay to know the theory of the consumption-based asset pricing models.

Figure 4: Posterior density of equity premium prediction
This figure shows the simulated posterior density of the quarterly log equity premium prediction given in equation (10) for the third quarter in 1998 for three model-based priors: HF 1 , LRR 1 , and PT 1. The predictor is the log dividend-price ratio. Data from the first quarter in 1947 to the second quarter in 1998 are used to estimate the predictive model. The density are simulated with 10,000 draws.

4.1 Asset allocation

An investor is assumed to have power utility, and she chooses portfolio weights for a risky asset and a risk-free asset. The return on the risky asset is the equity premium, r_{t+1}, plus the log risk-free return $r_{f, t}$, and the risk-free asset yields $r_{f, t}$. At time t, the investor solves the maximization problem

$$
\begin{equation*}
\alpha_{t}^{*}=\underset{\alpha_{t}}{\arg \max } E\left[\left.\frac{W_{t+1}^{1-\gamma}}{1-\gamma} \right\rvert\, \mathcal{I}_{t}\right], \tag{14}
\end{equation*}
$$

subject to

$$
\begin{equation*}
W_{t+1}=\alpha_{t} \exp \left(r_{t+1}+r_{f, t}\right)+\left(1-\alpha_{t}\right) \exp \left(r_{f, t}\right), \tag{15}
\end{equation*}
$$

where α_{t} is the portfolio share of the risky asset, and γ is the risk aversion of the investor. For an investor who imposes model-based priors to forecast the equity

Figure 5: Posterior density of coefficients
This figure shows the simulated posterior density of the coefficients β_{0} and β_{1} given in equation (6) for the third quarter in 1998 for three model-based priors: HF 1, LRR 1, and PT 1. The predictor is the \log dividend-price ratio. Quarterly data from the first quarter in 1947 to the second quarter in 1998 are used to estimate the predictive model. The densities are simulated with 10,000 draws.
premium, we can use draws from the predictive density of r_{t+1} given in equation (10) to approximate the expectation in equation (14):

$$
\begin{equation*}
\hat{\alpha}_{t, m}^{*}=\arg \max _{\alpha_{t}} \frac{1}{J} \sum_{j=1}^{J} \frac{\left[\alpha_{t} \exp \left(r_{t+1}^{j}+r_{f, t}\right)+\left(1-\alpha_{t}\right) \exp \left(r_{f, t}\right)\right]^{1-\gamma}}{1-\gamma} . \tag{16}
\end{equation*}
$$

Based on $\hat{\alpha}_{t, m}^{*}$ and the realized equity premium, the realized wealth and utility in period $t+1$ can be computed:

$$
\begin{equation*}
\widehat{W}_{t+1, m}=\hat{\alpha}_{t, m}^{*} \exp \left(r_{t+1}+r_{f, t}\right)+\left(1-\hat{\alpha}_{t, m}^{*}\right) \exp \left(r_{f, t}\right), \text { and } \widehat{U}_{t+1, m}=\frac{\widehat{W}_{t+1, m}^{(1-\gamma)}}{1-\gamma} \tag{17}
\end{equation*}
$$

Solving the investor's maximization problem for every period $t=\underline{t}-1, \ldots, T-1$ results in a sequence of $\left\{\widehat{W}_{t, m}\right\}_{t=\underline{t}}^{T}$ and $\left\{\widehat{U}_{t+1, m}\right\}_{t=\underline{t}}^{T}$.

When estimating the realized utility of portfolios N and A, a certainty equivalent
return (CER) can be computed. The CER is defined as a constant return that, when added to the portfolio return of portfolio N, equates the realized utility of portfolios N and A. The CER for period t is given by

$$
\begin{equation*}
\mathrm{CER}_{t}=\left[\frac{\widehat{U}_{t, A}}{\widehat{U}_{t, N}}\right]^{1 /(1-\gamma)}-1 \tag{18}
\end{equation*}
$$

For the total OOS forecasting period, the CER can be computed as

$$
\begin{equation*}
\mathrm{CER}=\left[\frac{\sum_{\tau=\underline{t}}^{T} \widehat{U}_{\tau, A}}{\sum_{\tau=\underline{t}}^{T} \widehat{U}_{\tau, N}}\right]^{1 /(1-\gamma)}-1 . \tag{19}
\end{equation*}
$$

A more intuitive interpretation of the CER is a transaction cost or a management fee that the investor is willing to pay to have access to the equity premium forecasts used for portfolio A. For example, when portfolio N uses the model-based prior from the HF model and portfolio A uses the model-based prior from the LRR model, then the CER tells us how much the investor would be willing to pay to have access to the LRR model compared with the HF model.

With this framework, I can also estimate the utility gains when implementing the model-based priors relative to the unconstrained predictive model or the historical average model. However, because I need a predictive density of the risky asset return for the portfolio allocation problem shown in equation (14), the unconstrained predictive model and the historical average model have to be estimated with a Bayesian estimator. This Bayesian estimator is implemented by using the Gamma-Normal framework described in Section 2 but replacing the prior means with empirical data OLS estimates rather than parameters estimated from the asset pricing model simulations.

4.2 Utility results

I compute the CER given in equation (19) for each return frequency, predictor, and OOS period. The share of the risky asset for portfolio A is computed based on the predictions of the predictive model. The share of the risky asset for portfolio N is computed based on the predictions of the historical average model. Hence, the CER is interpreted as the additional risk-free return that would make an investor indifferent between the historical average model and the predictive model. The results are shown in Table 4, which is structured like Table 2 but with the $R_{O O S}^{2}$ figures replaced with the annualized CERs. The risk aversion parameter γ is set equal to 5 .

The CER results are in line with the $R_{O O S}^{2}$ reported in Table 2: An investor who derives her prior belief about the predictability of the equity premium from the LRR model generally performs the best for three out of the four sample periods. The only OOS period during which the HF and PT priors dominate is from 1947 to 1980. Also, the model-based priors can achieve substantial utility gains compared with the predictive model estimated without a model-based prior. The CER values are economically significant. For the HF model, the values range from -1.46 percent to 0.66 percent. The priors from the LRR model result in CERs from -1.28 percent to 0.73 percent, and the PT model-based prior CERs range from -4.02% to 0.74%.

The top panel of Figure 6 shows the cumulative $\log \left(1+\mathrm{CER}_{t}\right)$, where CER_{t}, given in equation (18), is computed with the A model being the predictive model, given (1), estimated by imposing the model-based priors, and the N model being the predictive model estimated without a prior. The bottom panel shows the portfolio share of the risky asset. The predictor is the log dividend yield, the forecasts are at an annual frequency, and the OOS period is from 1968 to 2014. The model-based priors from the LRR 2 and PT 2 models lead to higher cumulative CERs than the priors from the HF model. The greatest difference in performance is again during the bull market of the late 1990s. Also, the share of the risky asset is less volatile for the
Table 4: Economic performance of model-based priors

Panels A, B, and C show the economic performance when imposing the model-based priors derived from the three consumption-based asset pricing models: HF, LRR, and PT. The priors are imposed on the single-variable predictive regression given in equation (1). Reported is the CER (in percent) given in equation (19). The CER can be interpreted as a management fee that an investor with power utility and a risk aversion of 5 is willing to pay to have access to the equity premium forecasts of the predictive model given in equation (1) instead of the equity premium forecasts of the historical average model. The predictors are the dividend-price ratio and the dividend yield. If the predictive model estimated with a model-based prior leads to a higher CER than the OLS estimates of the predictive regression reported in the "no prior" column, the figure is in bold. The last two columns denote which model-based prior leads to the greatest and second greatest improvement in the CER. Panel D shows the number of times each model-based prior is the best or second best.

Panel A: Annual returns										
Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	-0.28	-0.37	-0.35	-0.09	-0.07	-0.49	-0.68	LRR 2	LRR 1
1926	1947-1980	0.29	0.51	0.49	0.12	0.11	0.51	0.53	PT 2	PT 1
1926	1981-2014	-0.90	-1.22	-1.25	-0.31	-0.30	-1.49	-1.80	LRR 2	LRR 1
1947	1968-2014	-0.10	-0.04	0.10	0.40	0.56	-0.25	-0.50	LRR 2	LRR 1
Log dividend yield										
1926	1947-2014	-0.52	-0.45	-0.44	-0.15	-0.10	-0.12	-0.19	LRR 2	PT 1
1926	1947-1980	0.38	0.46	0.50	0.12	0.11	0.17	0.23	HF 2	HF 1
1926	1981-2014	-1.43	-1.46	-1.31	-0.38	-0.37	-0.53	-0.63	LRR 2	LRR 1
1947	1968-2014	0.40	0.35	0.55	0.46	0.58	0.62	0.74	PT 2	PT 1

[^5]Table 4: Economic performance of model-based priors (continued)

Panel C: Monthly returns										
Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	-0.41	-0.32	-0.35	-0.29	-0.30	-0.96	-0.93	LRR 1	LRR 2
1926	1947-1980	0.18	0.32	0.27	0.19	0.28	0.38	0.36	PT 1	PT 2
1926	1981-2014	-1.06	-1.15	-1.05	-0.84	-0.92	-2.18	-2.33	LRR 1	LRR 2
1947	1968-2014	-0.57	-0.48	-0.34	-0.03	-0.02	-3.90	-4.02	LRR 2	LRR 1
Log dividend yield										
1926	1947-2014	-0.51	-0.47	-0.59	-0.51	-0.44	-0.41	-0.52	PT 1	LRR 2
1926	1947-1980	0.31	0.36	0.29	0.24	0.09	0.31	0.45	PT 2	HF 1
1926	1981-2014	-1.34	-1.41	-1.34	-1.28	-1.11	-1.25	-1.40	LRR 2	PT 1
1947	1968-2014	-0.24	-0.29	0.14	0.52	0.73	0.27	0.15	LRR 2	LRR 1
Panel D: Summary of model-based prior performance										
		Best-performing prior					Second-best-performing prior			
		\#		in \%			\#		in \%	
HF 1		0		0.0\%			4		16.7\%	
HF 2		1		4.2\%			0		0.0\%	
LRR 1		5		20.8\%			9		33.3\%	
LRR 2		10		41.7\%			6		20.8\%	
PT 1		4		16.7\%			3		16.7\%	
PT 2		4		16.7\%			2		8.3\%	

LRR 2 and PT 2 priors, which can be explained by the prior means of the predictive regression coefficients reported in Panel A of Table 1. For the dividend yield, the model-implied parameters of HF 2 are greater than the empirical values, but the model-implied parameters of LRR 2 and PT 2 are smaller than the empirical values. Hence, an investor who uses priors from the HF 2 model adjusts her forecasts more strongly in response to changes in the dividend yield. This investor is also expecting low valuation ratios to predict strongly negative returns, which leads to less accurate forecasts in the late 1990s.

5 Robustness

For the results previously discussed, the tightness parameters of the Gamma-Normal prior, λ and \underline{v}, are set equal to 1 and 0.1, respectively, as described in Section 2.2. This section analyzes whether the results and the conclusions drawn in this paper are robust to tightening or loosening the model-based priors.

Table 5 reports the results when tightening the prior by a factor of two - that is, $\lambda=0.5$ and $\underline{v}=0.2$. As in Table 2, the LRR priors excel for three of the four sample periods. Across both predictors, the OOS period from 1947 to 1980 is the only period for which the LRR priors are never the best-performing prior. This finding is consistent across all frequencies. Panel D shows that the LRR 1 and LRR 2 priors are the best-performing priors 33.3 percent and 25.0 percent of the time, respectively. In comparison, the HF 2 prior only achieves 16.7%, and the remaining three priors are even lower. Additionally, the LRR 1 and LRR 2 priors are the second-best-performing priors in 20.8% and 33.3%, respectively, of all cases. These values are greater than for any of the other priors, except the HF 1 prior, which is also second best in 20.8 percent of all cases.

We obtain a similar picture when loosening the priors by a factor of two, i.e. $\lambda=2$ and $\underline{v}=0.05$. The results are shown in Table 6. The LRR priors generally

Figure 6: Performance of model-based priors for power utility investor
The top panel shows the cumulative $\log \left(1+\mathrm{CER}_{t}\right)$, where CER_{t}, given in equation (18), is computed with the A model being the predictive model, given (1), estimated by imposing the model-based priors, and the N model being the predictive model estimated without a prior. The predictor is the log dividend yield, and the forecasting frequency is annual. The bottom panel shows the risky asset's portfolio share. The investor has power utility preferences as described in Section 4.1, with γ set equal to 5 .
perform worse than priors derived form the other asset pricing models for the OOS period from 1947 to 1980. However, for the other sample periods, the LRR priors dominate, with LRR 1 being the best performing prior 41.7% of the time. The prior from the LRR 2 model is the best performing prior in only 12.5% of all cases but the second best performing prior 58.3% of the time.

These results are consistent with the benchmark parametrization that assumes $\lambda=1$ and $\underline{v}=0.1$.

6 Conclusion

Different theories have been proposed to resolve the equity premium puzzle (Mehra and Prescott (1985)). Three prominent consumption-based asset pricing models that provide different explanations for the existence of the equity premium puzzle are the Habit Formation (HF), the Long Run Risk (LRR), and the Prospect Theory (PT) models. I analyze whether these asset pricing models can profitably guide the investment decisions of investors who try to time the equity market. I propose a simple Bayesian framework in which prior distributions on the parameters of a single-variable predictive regression are derived from the three asset pricing models. The investors update their prior beliefs with empirical data and predict the equity premium OOS with valuation ratios - that is, the dividend-price ratio and the dividend yield.

The priors derived from the LRR model perform particularly well during the dot-com boom in the late 1990s. During that period, low valuation ratios predicted negative returns that failed to materialize for several years. The key to the strong performance of the LRR priors is the low implied predictive power of valuation ratios for the equity premium. Hence, an investor who uses the LRR model to guide her investment choices is hesitant to conclude that low valuation ratios result in an immediate fall in stock prices. The stronger predictability implied by the HF
and PT models helps to improve forecast accuracy up to the 1980s. However, the performance deteriorates quickly during the dot-com boom, as the investors who believe in the strong predictive power of valuation ratios anticipate a sharp price decline much earlier than it materializes. Because the performance during the dotcom boom dominates, an investor whose prior beliefs are anchored in the LRR model would have outperformed investors whose prior beliefs stem from the HF and PT models in most sample periods. These differences in forecast accuracy are not only shown by differences in the $R_{O O S}^{2}$, but also translate into considerable utility gains for an investor with power utility preferences.

By imposing model-based priors derived from consumption-based asset pricing models on predictive regressions and showing how the performances of these priors differ, this paper makes novel contributions to the equity premium prediction literature and also adds to our understanding of consumption-based asset pricing models.
Table 5: Out-of-sample forecast performance of tighter model-based priors
Panels A, B, and C show the OOS performance of the model-based priors derived from the three consumption-based asset pricing models: HF, LRR, and PT. The priors are imposed on the single-variable predictive regression given in equation (1). Reported is the $R_{O O S}^{2}$ (in percent) from equation (13), which measures the accuracy of OOS log equity premium forecasts of the single variable predictive regression relative to the historical average model. The predictors are the dividend-price ratio and the dividend yield. If the model-based prior leads to an increase in the $R_{O O S}^{2}$ relative to OLS forecast in the "no prior" column, the figure is in bold. The last two columns denote which model-based prior leads to the greatest and second-greatest improvement in forecast accuracy. Panel D shows the number of times each model-based prior is the best or second best. The tightness of the priors is increased relative to the benchmark of $\lambda=1$ and $\underline{v}=0.1$ by setting $\lambda=0.5$ and $\underline{v}=0.2$.

Panel A: Annual returns										
Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	0.396	-3.973	-3.896	-0.746	0.648	-9.778	-17.885	LRR2	LRR1
1926	1947-1980	11.895	15.790	15.310	0.990	2.647	15.473	15.641	HF1	PT2
1926	1981-2014	-12.242	-25.786	-24.813	-0.622	-1.062	-37.621	-55.485	LRR1	LRR2
1947	1968-2014	-3.521	-2.131	-1.271	1.085	1.049	-6.049	-13.556	LRR1	LRR2
Log dividend yield										
1926	1947-2014	-16.280	-5.320	-3.164	-0.356	0.236	1.529	1.338	PT1	PT2
1926	1947-1980	-10.255	11.874	12.018	0.918	0.797	5.116	6.521	HF2	HF1
1926	1981-2014	-22.902	-22.605	-20.132	-2.248	-1.501	-2.274	-3.112	LRR2	LRR1
1947	1968-2014	-1.334	-0.716	0.134	0.082	0.506	2.537	3.283	PT2	PT1

Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	-0.815	-1.065	-1.382	0.156	0.886	-15.619	-22.461	LRR2	LRR1
1926	1947-1980	3.753	4.546	3.878	1.370	2.723	-1.404	-5.016	HF1	HF2
1926	1981-2014	-4.727	-5.654	-6.536	-0.694	-0.967	-28.044	-38.214	LRR1	LRR2
1947	1968-2014	-0.391	-0.458	-0.760	0.498	0.672	-14.340	-21.854	LRR2	LRR1
Log dividend yield										
1926	1947-2014	0.340	0.893	0.977	0.376	0.467	0.834	0.347	HF2	HF1
1926	1947-1980	4.740	4.716	4.229	1.400	2.025	3.027	5.423	PT2	HF1
1926	1981-2014	-3.429	-2.232	-2.103	-0.301	-0.353	-0.897	-3.513	LRR1	LRR2
1947	1968-2014	-0.297	1.017	1.003	0.523	0.902	1.061	0.675	PT1	HF1

Table 5: Out-of-sample forecast performance of tighter model-based priors (continued)

Panel C: Monthly returns										
Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	-0.061	-0.347	-0.347	0.175	-0.124	-9.205	-10.724	LRR1	LRR2
1926	1947-1980	1.264	1.227	1.343	0.824	0.978	-5.103	-6.015	HF2	HF1
1926	1981-2014	-1.142	-1.453	-1.756	-0.482	-0.445	-12.645	-14.710	LRR2	LRR1
1947	1968-2014	-0.237	-0.320	-0.263	0.217	0.118	-11.671	-13.943	LRR1	LRR2
Log dividend yield										
1926	1947-2014	-0.393	-0.083	-0.523	0.192	0.060	0.003	-0.275	LRR1	LRR2
1926	1947-1980	1.175	1.088	1.558	0.641	1.279	1.379	1.414	HF2	PT2
1926	1981-2014	-1.672	-1.776	-2.141	-1.145	-0.764	-0.984	-1.446	LRR2	PT1
1947	1968-2014	-0.166	-0.399	-0.208	0.282	0.135	0.109	-0.154	LRR1	LRR2
Panel D: Summary of model-based prior performance										
		Best-performing prior					Second-best-performing prior			
		\#		in \%			\#		in \%	
HF1		2		8.3\%			5		20.8\%	
HF2		4		16.7\%			1		4.2\%	
LRR1		8		33.3\%			5		20.8\%	
LRR2		6		25.0\%			8		33.3\%	
PT1		2		8.3\%			2		8.3\%	
PT2		2		8.3\%			3		12.5\%	

Table 6: Out-of-sample forecast performance of looser model-based priors
Panels A, B, and C show the OOS performance of the model-based priors derived from the three consumption-based asset pricing models: HF, LRR, and PT. The priors are imposed on the single-variable predictive regression given in equation (1). Reported is the $R_{O O S}^{2}$ (in percent) from equation (13), which measures the accuracy of OOS \log equity premium forecasts of the single-variable predictive regression relative to the historical average model. The predictors are the dividend-price ratio and the dividend yield. If the model-based prior leads to an increase in the $R_{O O S}^{2}$ relative to OLS forecast in the "no prior" column, the figure is in bold. The last two columns denote which model-based prior leads to the greatest and second-greatest improvement in forecast accuracy. Panel D shows the number of times each model-based prior is the best or second best. The tightness of the priors is reduced relative to the benchmark of $\lambda=1$ and $\underline{v}=0.1$ by setting $\lambda=2$ and $\underline{v}=0.05$.

Panel A: Annual returns										
Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	0.396	0.493	-0.074	0.795	1.413	-0.167	-1.591	LRR2	LRR1
1926	1947-1980	11.895	14.002	14.637	7.940	8.225	13.798	14.978	PT2	HF2
1926	1981-2014	-12.242	-15.678	-13.389	-6.318	-7.427	-15.967	-19.843	LRR1	LRR2
1947	1968-2014	-3.521	-2.139	-1.633	1.882	1.826	-3.716	-5.555	LRR1	LRR2
Log dividend yield										
1926	1947-2014	-16.280	-5.358	-5.479	-1.021	-1.188	-1.666	-2.849	LRR1	LRR2
1926	1947-1980	-10.255	7.847	8.435	8.748	9.336	9.173	9.395	PT2	LRR2
1926	1981-2014	-22.902	-20.556	-20.715	-12.645	-13.209	-13.492	-14.987	LRR1	LRR2
1947	1968-2014	-1.334	-0.462	-0.816	1.306	1.128	1.194	1.103	LRR1	PT1

Sample start	OOS period	No prior	HF 1	HF 2	LRR 1	LRR 2	PT 1	PT 2	1st prior	2nd prior
Log dividend-price ratio										
1926	1947-2014	-0.815	-0.716	-0.947	-0.192	-0.412	-1.912	-2.298	LRR1	LRR2
1926	1947-1980	3.753	4.085	4.163	3.588	3.822	3.535	3.194	HF2	HF1
1926	1981-2014	-4.727	-5.068	-5.308	-3.883	-4.459	-6.708	-6.833	LRR1	LRR2
1947	1968-2014	-0.391	-0.346	-0.244	0.284	0.029	-1.445	-1.895	LRR1	LRR2
Log dividend yield										
1926	1947-2014	0.340	0.342	0.337	0.648	0.528	0.490	0.144	LRR1	LRR2
1926	1947-1980	4.740	4.765	4.865	4.410	4.398	4.824	4.814	HF2	PT1
1926	1981-2014	-3.429	-3.296	-3.059	-3.166	-3.060	-3.129	-4.064	HF2	LRR2
1947	1968-2014	-0.297	0.039	0.227	0.223	0.334	0.132	-0.050	LRR2	HF2

Table 6: Out-of-sample forecast performance of looser model-based priors (continued)

Appendix A Asset pricing models

A. 1 By force of habit: A consumption-based explanation of aggregate stock market behavior

Campbell and Cochrane (1999) use a standard representative-agent consumptionbased asset pricing model but add a slow-moving habit to the basic power utility function. This slow-moving habit leads to a slowly time-varying risk aversion and an equity risk premium that is higher at business cycle troughs than at peaks.

The agents are identical and maximize their utility given by

$$
\begin{equation*}
E\left[\sum_{t=0}^{\infty} \delta^{t} \frac{\left(C_{t}-X_{t}\right)^{(1-\gamma)}-1}{1-\gamma}\right], \tag{20}
\end{equation*}
$$

where X_{t} is the level of habit, and δ is the time discount factor. A surplus consumption ratio $S_{t} \equiv\left(C_{t}-X_{t}\right) / C_{t}$ is defined - a small value of S_{t} indicates that the economy is in a bad state.

A process is specified for $s_{t}=\ln \left(S_{t}\right)$ which ensures that C_{t} is always above X_{t}. This process is given by

$$
\begin{equation*}
s_{t+1}=(1-\phi) \bar{s}+\phi s_{t}+\Psi\left(s_{t}\right)\left(c_{t+1}-c_{t}-g\right), \tag{21}
\end{equation*}
$$

with ϕ reflecting habit persistence - that is, how quickly s_{t+1} returns to the steady state value \bar{s}. The function $\Psi\left(s_{t}\right)$ is specified as

$$
\Psi\left(s_{t}\right)= \begin{cases}\frac{1}{S} \sqrt{1-2\left(s_{t}-\bar{s}\right)}-1, & s_{t} \leq s_{\max } \tag{22}\\ 0 & s_{t}>s_{\max }\end{cases}
$$

with the parameter $s_{\text {max }}$ set equal to $\bar{s}+\frac{1}{2}\left(1-\bar{S}^{2}\right)$. The steady state value \bar{s} is given by $\ln (\sigma \sqrt{\gamma /(1-\phi)})$. The evolution of s_{t+1} is based on consumption growth being
an i.i.d. lognormal process:

$$
\begin{equation*}
\Delta c_{t+1}=g+v_{t+1}, \text { where } v_{t+1} \stackrel{i . i . d .}{\sim} N\left(0, \sigma_{v}^{2}\right) \text {. } \tag{23}
\end{equation*}
$$

Stocks represent a claim to the consumption stream. The price-consumption ratio for a consumption claim satisfies

$$
\begin{equation*}
\frac{P_{t}}{C_{t}}\left(s_{t}\right)=E_{t}\left[M_{t+1} \frac{C_{t+1}}{C_{t}}\left[1+\frac{P_{t+1}}{C_{t+1}}\left(s_{t+1}\right)\right]\right] . \tag{24}
\end{equation*}
$$

The underlying assumption is that dividend growth is perfectly correlated with consumption growth in (23). ${ }^{5}$

The price-consumption ratio is correlated with the business cycles, as it depends on s_{t}. The ratio is high at business cycle peaks and low at troughs. Because of the slowly time-varying risk aversion, the equity premium is also correlated with the business cycle, but this correlation is negative. Hence, the model generates an equity risk premium that is predictable by the price-consumption ratio. A high price-consumption ratio predicts a low equity premium.

I apply the fixed-point method to solve for the price-consumption and the pricedividend ratio (see Wachter (2005)). Summary statistics of the simulation for the model specification with perfectly (HF 1) and imperfectly (HF 2) correlated log consumption and log dividend growth are given in Table A.1. The simulated moments match the moments obtained by Campbell and Cochrane (1999) and Wachter (2005).

A. 2 Prospect theory and asset prices

In the model of Barberis et al. (2001), the agent not only derives utility from consumption but also from fluctuations of her financial wealth. There are two impor-

[^6]tant aspects in the way financial wealth fluctuations affect the utility of an economic agent. First, the agent is loss averse. Second, the degree of loss aversion depends on prior investment outcomes. Prior gains lead to less loss aversion, and prior losses lead to more loss aversion. Hence, the risk aversion of the agent varies over time, as in the HF model.

Aggregate consumption growth and dividend growth follow the i.i.d. lognormal processes given by

$$
\begin{equation*}
\Delta c_{t+1}=g_{c}+\sigma_{c} \epsilon_{c, t+1}, \text { where } \epsilon_{c, t+1} \stackrel{i . i . d .}{\sim} N(0,1) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta d_{t+1}=g_{d}+\sigma_{d} \epsilon_{d, t+1}, \text { where } \epsilon_{d, t+1} \stackrel{i . i . d .}{\sim} N(0,1), \tag{26}
\end{equation*}
$$

with $\operatorname{corr}\left(\epsilon_{c, t+1}, \epsilon_{d, t+1}\right)=\omega .{ }^{6}$
The agent's maximization problem is set up as

$$
\begin{equation*}
E\left[\sum_{t=0}^{\infty}\left(\delta^{t} \frac{C_{t}^{1-\gamma}}{1-\gamma}+b_{0} \bar{C}_{t}^{-\gamma} \delta^{t+1} v\left(X_{t+1}, S_{t}, z_{t}\right)\right)\right] . \tag{27}
\end{equation*}
$$

The second term captures the fact that the agent cares about fluctuations in financial wealth. The variable X_{t+1} denotes the change of the financial wealth between time t and $t+1$ and is defined as

$$
\begin{equation*}
X_{t+1} \equiv S_{t} R_{t+1}-S_{t} R_{f, t} \tag{28}
\end{equation*}
$$

The variable S_{t} measures the value of the agent's risky assets at time t. The variable z_{t} accounts for prior gains and losses up to time t and is defined as Z_{t} / S_{t}, where Z_{t} is a historical benchmark level for the value of the risky asset. If z_{t} is smaller

[^7]than one, the agent has prior gains; if z_{t} is greater than one, the agent faces prior losses. The discount factor is δ, and $b_{0} \bar{C}_{t}^{-\gamma}$ is a scaling term. The form of the utility function $v($.$) is different conditional on prior gains or prior losses.$

The dynamics of z_{t} are given by the process

$$
\begin{equation*}
z_{t+1}=\eta\left(z_{t} \frac{\bar{R}}{R_{t+1}}\right)+(1-\eta) \tag{29}
\end{equation*}
$$

The benchmark level Z_{t} reacts sluggishly to changes in the stock price. When S_{t} increases, Z_{t} should increase by less in order to allow for prior gains. The sluggishness is determined by the parameter $\eta \in[0,1]$. The closer η is to one, the more sluggish the benchmark level becomes. The parameter \bar{R} is chosen such that the median value of z_{t} is around one.

The price-dividend ratio is assumed to be a function of the state variable z_{t} :

$$
\begin{equation*}
f_{t} \equiv P_{t} / D_{t}=f\left(z_{t}\right) \tag{30}
\end{equation*}
$$

The real stock returns are thus given as

$$
\begin{equation*}
R_{t+1}=\frac{1+f\left(z_{t+1}\right)}{f\left(z_{t}\right)} e^{g_{d}+\sigma_{d} \epsilon_{d, t+1}} \tag{31}
\end{equation*}
$$

Barberis et al. (2001) show that the equilibrium is characterized by a constant real risk-free rate,

$$
\begin{equation*}
R_{f}=\delta^{-1} e^{\gamma g_{c}-\gamma^{2} \sigma_{c}^{2} / 2} \tag{32}
\end{equation*}
$$

and a price-dividend ratio given by

$$
\begin{align*}
1= & \delta e^{g_{d}-\gamma g_{c}+\gamma^{2} \sigma_{c}^{2}\left(1-\omega^{2}\right) / 2} E_{t}\left[\frac{1+f\left(z_{t+1}\right)}{f\left(z_{t}\right)} e^{\left(\sigma_{d}-\gamma \omega \sigma_{c}\right) \epsilon_{d, t+1}}\right] \\
& +b_{0} \delta E_{t}\left[\hat{v}\left(\frac{1+f\left(z_{t+1}\right)}{f\left(z_{t}\right)} e^{g_{d}+\sigma_{d} \epsilon_{d, t+1}}, z_{t}\right)\right], \tag{33}
\end{align*}
$$

where the utility function $\hat{v}\left(R_{t+1}, z_{t}\right)$ is equal to $v\left(R_{t+1}, S_{t}, z_{t}\right) / S_{t}$.

As the HF model, the PT model is able to generate predictability in returns. A decrease in z_{t} leads to both a higher price-dividend ratio and a less risk averse investor. Also, subsequent returns will be lower, as less compensation for risk is required. Hence, a high price-dividend ratio predicts a low equity risk premium.

I solve the model by following the process laid out by Barberis et al. (2001). The moments in Table A. 2 are generated by simulating the model with $b 0=100$ and $k=3$ (PT 1) and $b 0=100$ and $k=8$ (PT 2). The moments match the moments obtained by Barberis et al. (2001).

A. 3 Risks for the long run: a potential resolution of asset pricing puzzles

Bansal and Yaron (2004) propose a solution to the equity premium puzzle through a consumption-based asset pricing model with Epstein and Zin (1989) preferences. Their model differs from other consumption-based asset pricing models in two ways. First, they include a small persistent expected growth rate component in the consumption and dividend growth rate processes. This component causes consumption and the return on the market portfolio to covary positively, and hence, the economic agents require a higher risk premium. Second, they allow for time-varying volatility, which accounts for fluctuating economic uncertainty, in both processes: this additional source of systematic risk increases the risk premium further.

The asset pricing restriction for the real return on the market portfolio $R_{m, t+1}$, according to the Epstein and Zin (1989) preferences, is

$$
\begin{equation*}
E_{t}\left[\delta^{\theta} G_{c, t+1}^{-\frac{\theta}{\psi}} R_{c, t+1}^{-(1-\theta)} R_{m, t+1}\right]=1 \tag{34}
\end{equation*}
$$

where $G_{c, t+1}$ is the aggregate gross growth rate of consumption, $R_{c, t+1}$ denotes the real return on an asset that pays aggregate consumption as dividends, and δ is the time discount factor. The parameter θ is defined as $(1-\gamma) /\left(1-\frac{1}{\psi}\right)$, where γ is the risk
aversion parameter, and ψ accounts for the intertemporal elasticity of substitution. To derive the real returns, the authors use the standard approximation of Campbell and Shiller (1988). The real log return for the claim to aggregate consumption is

$$
\begin{equation*}
r_{c, t+1}=\kappa_{0}+\kappa_{1} z_{t+1}-z_{t}+g_{c, t+1}, \tag{35}
\end{equation*}
$$

where $g_{c, t+1}$ is the \log consumption growth, and z_{t} denotes the log price-consumption ratio. The specification for the real log return on the market portfolio is

$$
\begin{equation*}
r_{m, t+1}=\kappa_{0, m}+\kappa_{1, m} z_{m, t+1}-z_{m, t}+g_{d, t+1}, \tag{36}
\end{equation*}
$$

where $g_{d, t+1}$ is the \log dividend growth rate, and $z_{m, t}$ denotes the \log price-dividend ratio. The values for the κ and κ_{m} are constants that depend on the average level of the price-consumption ratio and the price-dividend ratio, respectively. ${ }^{7}$

The dynamics of log consumption growth and \log dividend growth - which incorporate a small persistent predictable component x_{t}, the long run risk component, and a time-varying volatility σ_{t}, reflecting fluctuating economic uncertainty - are

$$
\begin{align*}
x_{t+1} & =\rho x_{t}+\varphi_{e} \sigma_{t} e_{t+1} \\
g_{c, t+1} & =\mu_{c}+x_{t}+\sigma_{t} \eta_{t+1} \tag{37}\\
g_{d, t+1} & =\mu_{d}+\phi x_{t}+\varphi_{d} \sigma_{t} u_{t+1} \\
\sigma_{t+1}^{2} & =\sigma^{2}+v_{1}\left(\sigma_{t}^{2}-\sigma^{2}\right)+\sigma_{w} w_{t+1},
\end{align*}
$$

with $e_{t+1}, u_{t+1}, \eta_{t+1}$, and w_{t+1} having i.i.d. standard Normal distributions. ${ }^{8}$ The state variables, which determine the price-consumption and price-dividend ratios,

[^8]are x_{t} and σ_{t}. The solutions for z_{t} and $z_{m, t}$ are
\[

$$
\begin{align*}
z_{t} & =A_{0}+A_{1} x_{t}+A_{2} \sigma_{t}^{2} \tag{38}\\
z_{m, t} & =A_{0, m}+A_{1, m} x_{t}+A_{2, m} \sigma_{t}^{2}
\end{align*}
$$
\]

The derivation of A and A_{m} can be found in Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2010).

The model generates excess returns that are predictable by the price-dividend ratio. Equation (36) shows that the lagged price-dividend ratio has a negative effect on future returns. Hence, the relation implied between the price-dividend ratio and future returns is the same as in the HF and PT models.

Table A. 3 reports the moments of the simulated data from the LRR model for $\gamma=7.5$ (LRR 1) and $\gamma=10$ (LRR 2). The data moments obtained match the data moments in Bansal and Yaron (2004) and Beeler and Campbell (2012).

Table A.1: Habit Formation model simulated moments
Simulated moments at monthly, quarterly, and annual frequencies are reported for the specifications of the HF model (Campbell and Cochrane (1999)), which assumes perfect (HF 1) and imperfect correlation (HF 2) between \log consumption and \log dividend growth. The price-dividend ratio moments are annualized.

Model	Freq.	P/D Mean	Log P/D Std. dev.	Log equity prem.		
Mean	Log Sharpe					
		Std. dev.	ratio			
HF 1	Annual	18.55	0.27	6.60%	15.06%	0.44
HF 2	Annual	19.00	0.30	6.52%	19.91%	0.33
HF 1	Quarterly	18.43	0.27	1.65%	7.73%	0.21
HF 2	Quarterly	18.92	0.28	1.63%	10.08%	0.16
HF 1	Monthly	18.39	0.27	0.55%	4.49%	0.12
HF 2	Monthly	18.89	0.28	0.54%	5.84%	0.09

Table A.2: Prospect Theory model simulated moments
Simulated moments at monthly, quarterly, and annual frequencies are reported for the specifications of the PT model (Barberis et al. (1999)) with $b 0=100$ and $k=3$ (PT 1) and $b 0=100$ and $k=8$ (PT 2). The price-dividend ratio moments are annualized.

Model	Freq.	Price-dividend ratio		Log equity prem.		Log Sharpe
		Mean	Std. dev.	Mean	Std. dev.	ratio
PT 1	Annual	17.30	2.38	3.74%	20.23%	0.19
PT 2	Annual	12.73	2.21	5.87%	23.87%	0.25
PT 1	Quarterly	9.46	0.54	2.13%	9.00%	0.24
PT 2	Quarterly	7.45	0.60	2.84%	10.79%	0.26
PT 1	Monthly	6.30	0.14	1.15%	4.48%	0.26
PT 2	Monthly	5.05	0.16	1.47%	5.05%	0.29

Table A.3: Long Run Risk model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported for the specifications of the LRR model (Bansal and Yaron (2004)) with $\gamma=7.5$ (LRR 1) and $\gamma=10$ (LRR 2). The price-dividend ratio moments are annualized.

Model	Freq.	P/D Mean	Log P/D Std. dev.	Log equity prem.		Lean Sharpe
		Std. dev.	ratio			
LRR 1	Annual	26.55	0.17	2.73%	16.76%	0.16
LRR 2	Annual	20.46	0.16	4.26%	16.53%	0.26
LRR 1	Quarterly	26.55	0.16	0.67%	8.32%	0.08
LRR 2	Quarterly	20.41	0.16	1.04%	8.24%	0.13
LRR 1	Monthly	26.65	0.16	0.23%	4.81%	0.05
LRR 2	Monthly	20.44	0.16	0.35%	4.76%	0.07

References

Baker, M., and J. Wurgler. 2000. The equity share in new issues and aggregate stock returns. Journal of Financial Economics 55:2219-2257.

Bansal, R., D. Kiku, and A. Yaron. 2010. Risks for the long run: estimation and inference. Unpublished working paper.

Bansal, R., and A. Yaron. 2004. Risks for the long run: A potential resolution of asset pricing puzzles. Journal of Finance 59:1481-1509.

Barberis, N. 2000. Investing for the long run when returns are predictable. Journal of Finance 55:225-264.

Barberis, N., M. Huang, and T. Santos. 2001. Prospect theory and asset prices. Quarterly Journal of Economics 116:1-53.

Beeler, J., and J. Y. Campbell. 2012. The long run risks model and aggregate asset prices: An empirical assessment. Critical Finance Review 1:141-182.

Brandt, M. W., A. Goyal, P. Santa-Clara, and J. R. Stroud. 2005. A simulation approach to dynamics portfolio choice with an application to learning about return predictability. Review of Financial Studies 18:831-873.

Campbell, J. Y. 1987. Stock returns and the term structure. Journal of Financial Economics 18:373-399.

Campbell, J. Y., and R. J. Shiller. 1988. The dividend-price ratio and expectations of future dividends and discount factors. Review of Financial Studies 1:195-228.

Campbell, J. Y., and J. H. Cochrane. 1998. By force of habit: A consumption-based explanation of aggregate stock market behavior. Center for Research in Security Prices Working Paper No. 412.

Campbell, J. Y., and J. H. Cochrane. 1999. By force of habit: A consumptionbased explanation of aggregate stock market behavior. Journal of Political Economy 107:205-251.

Campbell, J. Y., and S. B. Thompson. 2008. Predicting excess stock returns out of sample: Can anything beat the historical average? Review of Financial Studies 21:1509-1531.

Campbell, J. Y., S. Giglio, and C. Polk. 2013. Hard times. Review of Asset Pricing Studies 3:95-132.

Del Negro, M., and F. Schorfheide. 2011. Bayesian macroeconometrics. The Oxford Handbook of Bayesian Econometrics.

Epstein, L., and S. Zin. 1989. Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica 57:937969.

Fama, E. F., and K. French. 1988. Dividend yields and expected stock returns. Journal of Financial Economics 22:3-25.

Fama, E. F., and K. French. 1989. Business conditions and expected returns on stocks and bonds. Journal of Financial Economics 25:23-49.

Koop, G. 2003. Bayesian econometrics. John Wiley \& Sons, Ltd, England.

Kruttli, M. S., A. J. Patton, and T. Ramadorai. 2015. The impact of hedge funds on asset markets. Review of Asset Pricing Studies 5:185-226.

Lettau, M., and S. Ludvigson. 2001. Consumption, aggregate wealth, and expected stock returns. Journal of Finance 56:815-849.

Li, Y., D. T. Ng, and B. Swaminathan. 2013. Predicting market returns using aggregate implied cost of capital. Journal of Financial Economics 110:419-436.

Litterman, R. B. 1986. Forecasting with Bayesian vector autoregressions: Five years of experience. Journal of Business $\mathfrak{6}$ Economic Statistics 4:25-38.

Mehra, R., and E. C. Prescott. 1985. The equity premium: A puzzle. Journal of Monetary Economics 15:145-161.

Pastor, L., and R. F. Stambaugh. 2009. Predictive systems: Living with imperfect predictors. Journal of Finance 64:1583-1628.

Pastor, L., and R. F. Stambaugh. 2012. Are stocks really less volatile in the long run? Journal of Finance 67:431-478.

Pettenuzzo, D., A. Timmermann, and R. Valkanov. 2014. Forecasting stock returns under economic constraints. Journal of Financial Economics 114:517-553.

Polk, C., S. Thompson, and T. Vuolteenaho. 2006. Cross-sectional forecasts of the equity premium. Journal of Financial Economics 81:101-141.

Shanken, J. A., and A. Tamayo. 2012. Payout yield, risk, and mispricing: A Bayesian analysis. Journal of Financial Economics 105:131-152.

Stambaugh, R. F. 1999. Predictive regressions. Journal of Financial Economics 54:375-421.

Wachter, J. A. 2005. Solving models with external habit. NBER Working Paper No. 11559.

Wachter, J. A., and M. Warusawitharana. 2009. Predictable returns and asset allocation: should a skeptical investor time the market? Journal of Econometrics 148:162-178.

Wachter, J. A., and M. Warusawitharana. 2015. What is the chance that the equity premium varies over time? Evidence from regressions on the dividend-price ratio. Journal of Econometrics 186:74-93.

Welch, I., and A. Goyal. 2008. A comprehensive look at the empirical performance of equity premium prediction. Review of Financial Studies 21:1455-1508.

[^0]: *I thank Nicholas Barberis, John Campbell, Narayan Naik, Andrew Patton, Tarun Ramadorai, Kevin Sheppard, Dimitri Vayanos, Jessica Wachter, Missaka Warusawitharana, Sumudu Watugala, Mungo Wilson, and seminar participants at the Saïd Business School, Oxford-Man Institute of Quantitative Finance, and the 10th Swiss Economist Abroad Annual Conference 2015 for useful comments. The analysis and conclusions set forth are those of the author and do not indicate concurrence by other members of the Board of Governors of the Federal Reserve System. Part of this paper was completed when Mathias S. Kruttli was at the University of Oxford Economics Department. An earlier version of this paper was named "Model-Based Priors for Predicting the Equity Premium" (2014).
 ${ }^{\dagger}$ Mathias S. Kruttli is at the Board of Governors of the Federal Reserve System and the OxfordMan Institute of Quantitative Finance. Email: mathias.s.kruttli@frb.gov.

[^1]: ${ }^{1}$ Because the authors of the asset pricing models use almost identical data sets for the calibration of their respective models, this assumption should not lead to distorted results.

[^2]: ${ }^{2}$ The dividend-price ratio and the dividend yield are the only two predictors used by the equity premium prediction literature that can be simulated from the three asset pricing models.

[^3]: ${ }^{3}$ For the PT model, β_{0}^{*} and β_{1}^{*} are substantially lower for the dividend yield than for the dividend-price ratio. The reason for the low correlation of the dividend-price ratio and the dividend yield in the PT model is the higher volatility of the dividend growth process.

[^4]: ${ }^{4}$ Amit Goyal's website address is http://www.hec.unil.ch/agoyal/.

[^5]: Log dividend yield
 1926 1947-2014
 1926 1947-1980
 1926 1981-2014

[^6]: ${ }^{5}$ The solution for the model specification which assumes imperfectly correlated consumption and dividend processes, is given in Campbell and Cochrane (1999).

[^7]: ${ }^{6}$ Barberis et al. (2001) consider two different specifications: Economy I, in which dividends equal consumption, and Economy II, in which consumption and dividends follow separate processes. The simulated moments of Economy II are much more successful in matching the empirical moments; hence, I do not consider Economy I.

[^8]: ${ }^{7}$ Bansal, Kiku, and Yaron (2010) define κ_{1} as $\exp (\bar{z}) /(1+\exp (\bar{z}))$ and set κ_{0} equal to $\ln (1+$ $\exp (\bar{z}))-\kappa_{1} \bar{z}$, where \bar{z} is the mean log price-consumption ratio. Accordingly, $\kappa_{1, m}$ is defined by $\exp \left(\bar{z}_{m}\right) /\left(1+\exp \left(\bar{z}_{m}\right)\right)$, and $\kappa_{0, m}$ is set equal to $\ln \left(1+\exp \left(\bar{z}_{m}\right)\right)-\kappa_{1, m} \bar{z}_{m}$, with \bar{z}_{m} being the mean \log price-dividend ratio.
 ${ }^{8}$ Bansal and Yaron (2004) also simulate a version of their model without time-varying volatility of consumption growth. However, this version is less successful in matching empirical data moments.

