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Abstract

This paper compares consumption-based asset pricing models on the basis of
whether they can improve the forecast accuracy of investors who try to predict
the equity premium out-of-sample with valuation ratios. Model-based priors
are derived from three prominent consumption-based asset pricing models:
Habit Formation, Long Run Risk, and Prospect Theory. A simple Bayesian
framework is proposed through which the investors impose these model-based
priors on the parameters of their predictive models. An investor whose prior
beliefs are rooted in the Long Run Risk model achieves more accurate fore-
casts overall. The greatest difference in performance occurs during the bull
market of the late 1990s. During this period, the weak predictability of the
equity premium implied by the Long Run Risk model helps the investor to
not prematurely anticipate falling stock prices.
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1 Introduction

Predicting aggregate stock returns has been of great interest to finance practitioners
and academic finance economists alike. For an investor, knowing whether the equity
premium is predictable is crucial for portfolio allocation decisions. An extensive
literature uses a variety of variables to explain the time-variation of returns (see, for
example, Campbell and Shiller (1988); Campbell (1987); Fama and French (1988 and
1989); Baker and Wurgler (2000); Lettau and Ludvigson (2001); Polk, Thompson,
and Vuolteenaho (2006); Li, Ng, and Swaminathan (2013); and Kruttli, Patton, and
Ramadorai (2015)). Valuation ratios were initially found to have predictive power
when forecasting the equity premium, but the set of forecasting variables has since
been extended with variables such as, corporate payout, implied cost of capital, and
yields on bonds and Treasury securities.

Welch and Goyal (2008) provide a comprehensive analysis of the in-sample and
out-of-sample (OOS) predictive power of the major variables and question whether
the equity premium is predictable OOS. Campbell and Thompson (2008) further
investigate these findings by imposing restrictions when estimating the predictive
model. They apply sign restrictions on the parameter estimates of the predictive
model and a non-negativity restriction on the forecast of the equity premium. Camp-
bell and Thompson (2008) find that through these restrictions, a real-time investor
could profitably forecast the equity premium. Other papers have also analyzed how
predictive regressions can yield more accurate forecasts through restrictions that help
alleviate the problem of noisy data and parameter uncertainty when estimating the
predictive model. A form of Bayesian framework is often preferred to implement
such restrictions. Stambaugh (1999), Barberis (2000), and Brandt, Goyal, Santa-
Clara, and Stroud (2005) consider the problem of parameter uncertainty that an
investor faces. Other papers make use of economically motivated parameter con-
straints. Pastor and Stambaugh (2009 and 2012) employ a prior that implies a

negative correlation between expected and unexpected return shocks. Pettenuzzo,



Timmermann, and Valkanov (2014) propose a Bayesian methodology that imposes
a non-negative equity premium and bounds on the conditional Sharpe ratio. Their
constraints lead to forecasts of the equity premium that are substantially more accu-
rate. Shanken and Tamayo (2012) consider prior beliefs on mispricing as a driver of
predictability and on the risk-return tradeoff. Wachter and Warusawitharana (2009)
model skepticism of an investor over the predictability of the equity premium as an
informative prior over the R? and show that a skeptical investor achieves better
forecasts. Wachter and Warusawitharana (2015) analyze whether an investor who
is skeptical about the existence of equity premium predictability would update her
prior and conclude that the equity premium is predictable when being confronted
with historical data.

This paper contributes to this growing literature by imposing novel economic con-
straints derived from consumption-based asset pricing models. I propose a simple
Bayesian econometric framework to implement these economic constraints as prior
distributions on the parameters of single-variable predictive regressions. These prior
distributions are named model-based priors. My approach relates to the macroe-
conometric literature, in which prior distributions from dynamic stochastic equi-
librium models are imposed on vector autoregressions to predict macroeconomic
variables (see, for example, Del Negro and Schorfheide (2011)). To my knowledge,
prior distributions derived from asset pricing models have not been previously ex-
plored for the purpose of forecasting returns. The three consumption-based asset
pricing models that act as sources for the model-based priors are the Habit Forma-
tion (HF) model (see Campbell and Cochrane (1999)), the Prospect Theory (PT)
model (see Barberis, Huang, and Santos (2001)), and the Long Run Risk (LRR)
model (see Bansal and Yaron (2004)). All three models propose different theories
that can explain the equity premium puzzle (Mehra and Prescott (1985)). The
model-based priors allow me to assess whether an investor could have profited from

knowing the asset pricing theories and their implications for the predictability of the



equity premium inherent in these consumption-based asset pricing models. I assume
that an investor who forecasts the equity premium with valuation ratios has a prior
belief about the parameter estimates of the predictive model that stems from one of
the asset pricing models. The investor then updates her beliefs with empirical data
and predicts the equity premium OOS based on the posterior parameter estimates.
Unlike other papers in the equity premium prediction literature, the focus of this
paper is to compare the performances of the model-based priors from the three asset
pricing models with each other. Comparing the accuracy of the forecasts provides
an assessment of how useful the theories developed by the asset pricing models are
for a finance practitioner who attempts to time her investments in the aggregate
stock market. This novel way of comparing consumption-based asset pricing models
leads to insights that are not obtained when matching empirical data moments with
model-based moments from Monte Carlo simulations, as is generally done.

My sample comprises data from 1926 to 2014. The paper assesses the gains
in predictability to an investor who had access to these models from 1926 onward
and who tries to time the market by forecasting the equity premium with valuation
ratios — that is, the dividend-price ratio and the dividend yield.! I find a sharp
distinction between the performance of the LRR model-based priors and the model-
based priors derived from the HF and PT models. The LRR model-based priors
perform particularly well from 1980 onward. The HF and PT model-based priors
result in more accurate forecasts up to the 1980s. Over the whole data sample,
an investor armed with the knowledge of the LRR model would have generally
outperformed investors whose prior beliefs about the predictability of the equity
premium were rooted in the HF or PT model. The differences in performance hold
when comparing both the accuracy of the forecasts and the utility gains achieved
by the investors. The key to the strong performance of the LRR model over the

total sample period is the bull market of the late 1990s, when low valuation ratios

1Because the authors of the asset pricing models use almost identical data sets for the calibration
of their respective models, this assumption should not lead to distorted results.



predicted negative stock returns that did not materialize for several years. The
LRR model implies a lower predictive power of valuation ratios than the other two
asset pricing models. Hence, an investor who uses the LRR model as guidance for
her investment choices is reluctant to conclude that low valuation ratios imply an
immediate decline in stock prices. This reluctance improves her forecast performance
during the late 1990s, and this effect dominates less accurate forecasts of the LRR
priors during episodes when the predictive power of valuation ratios was stronger.
The limited equity premium predictability that the LRR model implies is often
considered a shortcoming (see, for example, Beeler and Campbell (2012)). This
paper shows that from the viewpoint of an investor, the weak predictability of the
LRR model can be an advantage. Thus, the findings in this paper contribute to the
current debates in consumption-based asset pricing and equity premium prediction.
The structure of this paper is as follows. Section 2 explains the Bayesian method-
ology used to impose the model-based priors. Section 3 reports the data used and
the results. Section 4 discusses the utility gains that an investor with power util-
ity achieves when implementing the model-based priors. Section 5 analyzes the

robustness of the results. Section 6 concludes the paper.

2 Methodology

This section describes how I impose economic constraints on the single-variable
predictive regressions through priors derived from consumption-based asset pricing

models and how these models are simulated to obtain the priors.

2.1 Equity premium prediction model

The equity premium at time ¢ + 1 is denoted by r;y; and is defined as the rate of
return on the stock market in excess of the prevailing short-term interest rate. As is

common in the equity premium prediction literature, r;,; is regressed on a constant



and a predictor, x;, which is lagged by one period:

Tir1 = Bo + Bize + €41, where €t+1NN(0> 062)- (1)

The OOS predictions of the equity premium are generated through recursive fore-
casts (see, for example, Campbell and Thompson (2008), Welch and Goyal (2008),
and Pettenuzzo et al. (2014)). Hence, all available observations up to period t are
used to estimate the model in equation (1). Based on the resulting estimates of
the parameters 8 = [By, (1]’ and o2, and by observing w;, one can forecast the
equity premium in t+4 1. The predicted equity premium is denoted by 7;,,. Because
observations after ¢t + 1 are not used to estimate (3, a real-time investor who fore-
casts the equity premium can implement this procedure. If no model-based priors
are imposed, the parameters can be estimated via ordinary least squares (OLS). A
common benchmark for a predictor in the equity premium literature is the historical
average model, which forecasts that the equity premium will be next period what it

has been on average in the past (; in equation (1) is set to zero).

2.2 Model-based priors

An investor who wants to make use of the theoretical insights of a consumption-
based asset pricing model can impose economic constraints on [ derived from the
asset pricing model. These model-based constraints are best imposed via Bayesian
techniques. T assume that the investor’s prior belief is that 5 and o2 take the values
implied by the asset pricing model. She then updates her belief through empirical
data.

The prior distribution of the parameters in equation (1) — that is 8 and o2 —

is assumed to be Gamma-Normal (see, for example, Koop (2003) and Pettenuzzo et



al. (2014)). The prior distribution for the coefficients is then given by
B ~N (é, K) L0 i~ G (0:_2,y(t — 1)) ) (2)
The mean and the variance of the Normal prior distribution are specified as

x \2o2 0
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where 5 and 3] are the coefficient values implied by the consumption-based asset
pricing model. The parameter A is exogenously chosen and is weakly positive. If A

is large, the prior is loose. If A is equal to zero, the prior is dogmatic. I set A = 1 for

the benchmark case. Section 5 discusses the robustness of my results for different

2

choices of A. The sample moments o,

and o2, are scaling factors, which ensures
that the results are comparable for different predictors and forecast frequencies.
Such scaling factors are commonly used in Bayesian macroeconometrics and date

back to Litterman (1986). The sample moments are given by

1 1
or = f—9 : (rr —7)% Tt = 1 4 rr (4)
and
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The Gamma distribution parametrization follows Koop (2003) by specifying the
distribution with mean ¢*~? and degrees of freedom v(¢ — 1), where ¢* 2 is derived
from the consumption-based asset pricing model. The tightness of the prior is
controlled by v, which is strictly positive. A large v corresponds to a tight prior,
and a small v corresponds to a diffuse prior. The benchmark case sets v to 0.1, but

my results are robust for a tighter or a more diffuse prior on o2 (see Section 5).



2.3 Posterior distribution

The model-based prior distributions yield conditional posterior distributions for £
and o2, T draw from these two conditional distributions through a Gibbs sampler.

The conditional posterior distribution for f is

ﬁ‘0227ItNN(67V)7 (6)

where

V=V"14+o2X'X)" =V '+ X'R), (7)

X is a t — 1 x 2 matrix with rows [1 ;] for 7 =1,..,t — 1, and Risat—1x1
vector with elements r, for 7 = 2, ..., t. The information set at time t is denoted by

Z,. The conditional posterior distribution for o.~2 takes the form

o |60, B, L ~ G (572,0) (8)

where

v=v+(t—1),and 5 = ZiZQ(TT — = 61%7_1)2 oyt - 1). (9)

v

Through the Gibbs sampling algorithm with J iterations, we obtain a series of draws
for each of the parameters denoted by {7} and {o.%7} for j = 1,...,J. These

simulated series can then be used to draw from the predictive return distribution

p(Tt+1|It):/ 21?(7"t+1|5aUE_QaIt)P( ,0.°|T,)dBdo?, (10)
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which yields {ri 1} for 5 =1,...,J. The point forecast for the equity premium in

period t 4+ 1 is given by the mean of the sampled distribution

J
m 1 ;
Tip1 = Wi ng-&-l' (11)

j=1
2.4 Deriving priors from asset pricing models

I next describe how the priors 8* = [, 5;]' and 072 are derived from the three
consumption-based asset pricing models: HF, LRR, and PT. All three models specify
a log consumption and a log dividend growth process. By simulating random shocks,
time series of consumption growth and dividend growth are generated, based on
which I solve the models for the log equity premium, the dividend-price ratio, and
the dividend yield. The dividend-price ratio is the difference between the log of
dividends and the log of prices, and the dividend yield is the difference between
the log of dividends and the log of prices lagged by one period.? (A more detailed
description of the models and how to solve them is provided in Appendix A.) I
denote the simulated period ¢ + 1 log equity premium 77 ;. I can then estimate the
model given in equation (1) with simulated data, where the simulated predictor z}

is either the dividend-price ratio or the dividend yield:
ri1 = Bao + Buax; + €541, where €,~N (0, ‘712\4,5)‘ (12)

The OLS estimates of Baro = [Baro, Bua] and o2 are denoted by 8* and 072,
which act as the prior means of the Gamma-Normal distribution described in Section
2.2.

For the HF model, the simulation is at a monthly frequency, and the quarterly
(annual) data are constructed via time-averaging the monthly data. The same

procedure is used by Campbell and Cochrane (1999). The log equity premium

2The dividend-price ratio and the dividend yield are the only two predictors used by the equity
premium prediction literature that can be simulated from the three asset pricing models.



is summed across the quarter (year). For the dividend-price ratio and the dividend
yield, consumption and dividends are summed across the quarter (year) and the
end-of-quarter (year) price is used. I simulate 120,000 months, estimate 3* and o2,
and average the estimates over 10 iterations. The HF model has two specifications,
and T use both to generate priors. The first specification (HF 1) assumes a perfect
positive correlation between the log consumption and log dividend growth, and the
second specification (HF 2) assumes that the correlation is imperfect and positive.

Similar to the HF model, the PT model is specified by Barberis et al. (2001)
with perfect positive correlation between the log consumption and log dividend
growth processes and with imperfect positive correlation between the two processes.
I only use the latter specification, as it more successfully matches the empirical data
moments. The authors calibrate the model with a range of parameter values for
the investor’s sensitivity to financial wealth fluctuations (b0) and the effect of prior
losses on risk aversion (k). I generate priors from the parameterizations that set b0
equal to 100 and k equal to 3 (PT 1) and 8 (PT 2). Of the specifications proposed by
Barberis et al. (2001), setting b0 equal to 100 and k equal to 8 generates a log equity
premium that is closest to the empirical data moment. For the b0 equal to 100 and &
equal to 3, the generated log equity premium is lower, but the average loss aversion
of the agent is 2.25, which is in line with experimental evidence. Following Barberis
et al. (2001), I simulate the model at monthly, quarterly, and annual frequencies by
adjusting the model parameters accordingly.

The LRR model, like the HF model, is simulated at a monthly frequency, and
quarterly (annual) values are time-averaged. Bansal and Yaron (2004) use the same
procedure to generate simulated data. Again, 120,000 months are simulated to
estimate $* and o’?, and the estimates are averaged across 10 iterations. Bansal
and Yaron (2004) present two specifications of their model: with and without time-
varying volatility of consumption growth. Because the specification that accounts

for time-varying volatility of consumption growth is substantially more successful at
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matching the empirical data moments, I generate priors only from this specification.
However, as in Bansal and Yaron (2004), I consider two calibrations for the agent’s
risk aversion to simulate the model: a risk aversion of 7.5 (LRR 1) and a risk aversion
of 10 (LRR 2).

Panels A and B of Table 1 show 3* and o7 2 estimated from simulated data of the
three consumption-based asset pricing models. The table also reports the empirical
estimates over the total sample from 1926 to 2014 for comparison. For all three
asset pricing models, 87 is positive for the dividend-price ratio and the dividend
yield. Thus, high valuation ratios predict higher subsequent returns, which is in line
with the empirical estimates. For both predictors and across all return frequencies,
the coefficients of the LRR model are substantially lower than for the HF and PT
models. The implication is that in the LRR model, the predictive power of valuation
ratios is weak. Of the three models, the PT model generates the highest 35 and
S5 for the dividend-price ratio.> For the dividend yield, the 83 and 3; of the HF
model are greater than the estimates of the other two models and the empirical
estimates. The pattern for 0¥~ is more mixed. However, the values implied by the
asset pricing models are also close to the empirical values.

The weak implied predictability of the LRR model can also be seen in Panel
C. Panel C reports the R? for the single-variable predictive regression in equation
(12). The R? values for the LRR model are lower than for the HF and PT models
and the empirical data. The predictability of the equity premium is strongest for
the HF model, for which the R? is higher than for the empirical data across all
frequencies and both predictors. For the PT model, the dividend-price ratio has
considerable predictive power, but the R? values for the dividend yield are lower —
consistent with the higher 3 for the dividend-price ratio in Panel A. While the R?

positively correlates with the magnitude of the 37, the 37 of the HF model is lower

3For the PT model, 3; and B; are substantially lower for the dividend yield than for the
dividend-price ratio. The reason for the low correlation of the dividend-price ratio and the dividend
yield in the PT model is the higher volatility of the dividend growth process.
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than for the PT model for the dividend-price ratio, despite the R? being higher for
the HF model. The reason for the smaller g7 of the HF model is the more volatile

dividend-price ratio simulated from the model (shown in Appendix A).

3 Results

In this section, I describe the data and report the OOS results when imposing

economic constraints derived from asset pricing models on equity premium forecasts.

3.1 Data

The empirical data on the equity premium and the predictors at a monthly, quar-
terly, and annual frequency are available on Amit Goyal’s website.* The equity
premium is computed as the log return on the S&P 500 index minus the log three-
month U.S. Treasury bill rate. I set the start date of the time series at 1926, as
high-quality return data on the S&P 500 from the Center of Research in Security
Prices became available in 1926. The time series ends in 2014. The availability of
predictor variables that can be used to assess the performance of the model-based
priors is restricted by the three asset pricing models. The predictor variables that
can be simulated from the three models are the dividend-price ratio and the divi-
dend yield. Dividends on the S&P 500 index are 12-month moving sums from 1926
to 2014. As for the data simulated from the asset pricing models, the dividend-price
ratio is defined as the difference between log dividends and log prices, and the div-
idend yield is defined as the difference between log dividends and log prices lagged

by one period.

4Amit Goyal’s website address is http://www.hec.unil.ch/agoyal/.
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3.2 Measuring forecast accuracy

I assess the performance of the model-based priors via the OOS R? (see, for example,

Campbell and Thompson (2008)):

> gy (rr =77

Sy (re = )2

RQOOS =1- (13)

where 7" is the equity premium forecast when imposing the model-based prior as

h

T

given in equation (11); 7 is the prediction of the historical average model; and ¢t
and T are the start and end dates, respectively, of the OOS forecast period. Thus,
the R%,q assesses the forecast performance of the model-based priors relative to
the non-predictability model, which assumes that the best forecast of the equity

premium is its historical average. The historical average model corresponds to the

model given in equation (1) with 51 being set equal to zero.

3.3 Forecasting

I consider four sample periods for the OOS predictability exercise. First, I use the
full sample from 1926 to 2014 and start the recursive OOS forecast in 1947. This
starting point guarantees that a sufficient number of data points are available to
estimate the predictive model. Next, I analyze the subsample stability by splitting
the OOS forecast period (1947 to 2014) in half and consider forecasts up to 1980
and forecasts starting in 1981. Last, I only use the postwar sample from 1947 to
2014, and the forecasts start in 1968.

Figure 1 shows the quarterly OOS forecasts of the log equity premium from 1947
to 2014 in the top panel. The valuation ratios predict a substantial time variation of
the equity premium. The lower panel depicts the corresponding coefficient estimates.
Both predictors lost predictive power during the dot-com boom in the late 1990s,
which leads to the sharp drop in the coefficient estimates.

Table 2 shows the R%,q (in percent) results for all six model-based priors for
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Figure 1: Empirical out-of-sample forecasts

The top panel shows the OOS quarterly log equity premium forecasts for two predictors: the log
dividend-price ratio and the log dividend yield. The predictive model in equation (1) is estimated
recursively via OLS. The data sample starts in 1926 and the OOS period is from 1947 to 2014.
The lower panel depicts the corresponding OLS coefficient estimates.

three return frequencies: monthly, quarterly, and annual. The “no prior” column
reports the R4 for the case in which the single-variable predictive model in equa-
tion (1) is estimated via OLS. If the model-based prior leads to an increase in the
R% g, then the figure is in bold. The last two columns of the table show the best-
and second-best-performing prior for the respective frequency, predictor, and time
period. In Panel D, the performance of the model-based priors is summarized across
the three frequencies.

For every case, there is at least one asset-pricing model that would help an
investor improve the accuracy of her equity premium forecasts, with the exception
of the log dividend-price ratio at a monthly frequency for the OOS period from
1947 to 1980. The gains in R%,g are considerable compared with the literature

(see, for example, Campbell and Thompson (2008)). In Section 4, I show that

these R34 values correspond to sizable gains in utility for an investor with power
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utility preferences. For the log dividend-price ratio, the LRR priors are the best
performing for three of the four sample periods. The only OOS period for which the
LRR priors are never the best-performing priors is the period from 1947 to 1980.
This finding is consistent across all return frequencies. For the OOS period from
1947 to0 1980, the PT model-based priors lead to the greatest increase in R%,4 at the
annual frequency, but the HF model-based priors result in more accurate forecasts
at the monthly and quarterly frequencies. For the log dividend yield, the findings
are similar: The LRR model-based priors are never superior to the priors derived
from the other two asset pricing models for the 1947-1980 OOS period regardless
of the frequency. However, for the other three sample periods, the LRR priors are
the best performing for at least one return frequency. The summary in Panel D
reports that the LRR 1 (LRR 2) model yielded the best-performing prior in 50.0
percent (8.3 percent) of all cases. Additionally, the LRR 1 (LRR 2) prior was the
second-best prior 12.5 percent (50.0percent) of the time. However, the HF 2 and PT
2 models were the best performing priors only in 12.5 percent of all cases (second
best for 4.2 percent and 8.3 percent, respectively).

Table 3 reports the differences in the R%,¢ (in percent) between the best-
performing prior and the other priors for every return frequency, predictor, and
sample period. To test whether the difference is statistically significant, I use a one-
sided Diebold-Mariano test (see Diebold and Mariano (1995)). Despite the difficult
task to statistically reject OOS forecasting models of the equity premium (see, for
example, Campbell and Thompson (2008) and Welch and Goyal (2008)), the differ-
ences are statistically significant in several cases. For the log dividend-price ratio,
the hypothesis of equal predictive power of the model estimated with the LRR priors
and the PT priors can be rejected for the majority of data samples. The differences
between the R%,q of the LRR priors and the HF priors are generally smaller and,
thus, significant in fewer cases. When the log dividend yield acts as the predictor, the

results are not as pronounced as for the dividend-price ratio, but the hypothesis of
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equal predictive power can be rejected particularly at the monthly frequency, where
more data points are available and the power of the test is increased. The analysis
in Section 4 shows that even small differences in R%¢ can lead to substantial utility
gains for an investor with power utility.

The strong performance of the LRR prior can be explained by the low model-
implied predictability. In Table 1, 35 and 3] are lower for all three frequencies and
both predictors compared with the empirical estimates and /; and 3 of the HF and
PT models. Thus, imposing the LRR prior pushes the posterior estimates of fy and
f£1 down. Figure 2 shows the OLS estimates — that is, no prior is imposed on the
predictive regression — and the posterior estimates for the log dividend-price ratio
and quarterly returns for the 1968-2014 OOS period. The LRR 1 posterior estimates
are substantially lower than the OLS estimates and the posterior estimates of the
HF 1 and PT 1 models. However, the model-based priors derived from the HF 1
model lead to posterior estimates that are similar to the OLS estimates. The model-
based priors from the PT 1 model push the posterior estimates for both coefficients
higher than they are when ignoring any prior and simply relying on OLS estimates.

The lower posterior estimates achieved through the LRR 1 prior are beneficial
for an investor as shown in Figure 3. The top panel depicts the differences in the
cumulative sum of squared errors (SSE) when forecasting with the historical average
model compared with the single-variable predictive model estimated via OLS and via
model-based priors. I subtract the cumulative SSE of the predictive model from the
cumulative SSE of the historical average model. Hence, a positive value implies that
the predictive model outperforms the historical average model. Until the beginning
of the 1990s, the predictive regression performs better than the historical average
model regardless of the estimation method. The highest cumulative SSE value is
achieved for an investor who relies on the priors of the PT 1 model, which is due
to the strong predictive power of the log dividend-price ratio implied by the PT

1 model. In the 1970s, valuation ratios had strong predictive power, and the PT
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1 model makes the investor rely on this predictive power to a higher degree than
an investor who uses the HF 1 or LRR 1 model to form her priors. The LRR 1
prior leads to the lowest cumulative SSE value until 1994. However, during the dot-
com boom from 1994 to 1999, the predictive power of the log dividend-price ratio
collapses and the cumulative SSE of the predictive model turns negative for all four
estimation methods. The investor armed with the LRR 1 model is able to avoid poor
forecasts to some extent, as her belief in the predictive ability of valuation ratios is
qualified because of her prior. The lower panel of Figure 3 provides further detail.
The equity premium forecasts for the OOS period from 1968 to 2014 are depicted.
The posterior point forecasts given in equation (11) of the LRR 1 model are close
to zero during the dot-com boom. The other two model-based priors and the OLS
estimates result in strongly negative forecasts. Hence, an investor relying on these
forecasts to time the market suffers losses during this bull market period.

Unlike the dot-com boom and its subsequent downturn, the financial crisis in
2008 does not have a substantial effect on the performance of the model-based pri-
ors, which can be explained by the different nature of these two episodes. Campbell,
Giglio, and Polk (2013) find that during the dot-com boom, the discount rates of
investors were at a historically low level. These low discount rates resulted in low
valuation ratios, which were not followed by negative returns. Hence, the predic-
tive power of the dividend-price ratio and the dividend yield decreased. However,
according to Campbell et al. (2013), the downturn from 2007 to 2009 was driven
by a decrease in rational expectations of future profits and the preceding boom
caused by positive cash flow news. Consequently, valuation ratios performed better
at predicting the equity premium compared with the late 1990s.

Figure 4 shows the simulated posterior density of the quarterly log equity pre-
mium prediction given in equation (10) for the third quarter in 1998. The predictor
is the log dividend-price ratio, and the model-based priors are the same as in Figures

2 and 3. The densities are simulated with 10,000 draws. For all three model-based
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priors, the posterior densities are similarly shaped and approximate a Normal dis-
tribution. When imposing the LRR 1 prior, the density is furthest to the right,
corresponding to an equity premium forecast that is greater than the forecast of the
other two models. These posterior densities are in line with the predictions during
the dot-com boom shown in the lower panel of Figure 3. Figure 5 shows the corre-
sponding posterior densities of fy and f; given in equation (6). The densities are
again similar across the three model-based priors. For both coefficients, the LRR 1
prior results in posterior densities that are centered to the left of the HF 1 and PT 1
priors, consistent with the higher posterior mean of the equity premium predictive
density shown in Figure 4. Hence, in the third quarter of 1998 at the height of the
dot-com boom, when the dividend-price ratio was low, an investor who believes in
the HF 1 or PT 1 model expects a negative equity premium to materialize in the
next period. However, an investor whose prior beliefs are in line with the LRR 1

model is more hesitant to draw this conclusion.

4 Utility of an investor

So far, I have analyzed how priors derived from the three consumption-based asset
pricing models affect the forecast accuracy of single-variable predictive regressions.
To investigate the economic significance of the changes in predictive performance,
we need to compute the utility gains of an investor who uses the model-based priors
to forecast the equity premium. The Bayesian technique that I use to impose the
economic constraints provides the full predictive density of the equity premium,
which allows me to compute the portfolio allocation and utility gains of an investor
with power utility (see, for example, Pettenuzzo et al. (2014) and Wachter and
Warusawitharana (2015)). The utility gains of an investor achieved through the
model-based priors will also give us an estimate of how much an investor would be

willing to pay to know the theory of the consumption-based asset pricing models.
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Figure 4: Posterior density of equity premium prediction

This figure shows the simulated posterior density of the quarterly log equity premium prediction
given in equation (10) for the third quarter in 1998 for three model-based priors: HF 1, LRR 1,
and PT 1. The predictor is the log dividend-price ratio. Data from the first quarter in 1947 to the
second quarter in 1998 are used to estimate the predictive model. The density are simulated with
10,000 draws.

4.1 Asset allocation

An investor is assumed to have power utility, and she chooses portfolio weights for a
risky asset and a risk-free asset. The return on the risky asset is the equity premium,
T++1, plus the log risk-free return r;, and the risk-free asset yields r;;. At time ¢,

the investor solves the maximization problem

Wi
of = arg max E | —*L |7, (14)
Qg I- Y
subject to
Wip1 = apexp(repr +750) + (1 — ) exp(ry,), (15)

where oy is the portfolio share of the risky asset, and ~ is the risk aversion of the

investor. For an investor who imposes model-based priors to forecast the equity
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Figure 5: Posterior density of coefficients

This figure shows the simulated posterior density of the coefficients Sy and ; given in equation (6)
for the third quarter in 1998 for three model-based priors: HF 1, LRR 1, and PT 1. The predictor
is the log dividend-price ratio. Quarterly data from the first quarter in 1947 to the second quarter
in 1998 are used to estimate the predictive model. The densities are simulated with 10,000 draws.

premium, we can use draws from the predictive density of r;.; given in equation

(10) to approximate the expectation in equation (14):

J _
Oétm = arg max %Z a1 OXp rt“ ) + (1 — ) eXp(Tf’t)]l 7. (16)

I—7

Based on &7, and the realized equity premium, the realized wealth and utility in

period t 4+ 1 can be computed:

717 (1=7)
Wisim = &5 exp(ri1 +7yp4) + (1= &f,,) exp(ryy), and Upym = %1’;71 (17)

Solving the investor’s maximization problem for every period t =t —1,....,7 — 1
results in a sequence of {Wum}; and {ﬁtﬂ,m}tT:t.

When estimating the realized utility of portfolios IV and A, a certainty equivalent
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return (CER) can be computed. The CER is defined as a constant return that, when
added to the portfolio return of portfolio NV, equates the realized utility of portfolios
N and A. The CER for period t is given by

0 1/(1=y)
CER, = | <22 —1. (18)
Utn
For the total OOS forecasting period, the CER can be computed as
T 73 1/(1—=y)
~U:
CER = # _1 (19)
27:1 UT,N

A more intuitive interpretation of the CER is a transaction cost or a management
fee that the investor is willing to pay to have access to the equity premium forecasts
used for portfolio A. For example, when portfolio N uses the model-based prior from
the HF model and portfolio A uses the model-based prior from the LRR model, then
the CER tells us how much the investor would be willing to pay to have access to
the LRR model compared with the HF model.

With this framework, I can also estimate the utility gains when implementing
the model-based priors relative to the unconstrained predictive model or the his-
torical average model. However, because I need a predictive density of the risky
asset return for the portfolio allocation problem shown in equation (14), the un-
constrained predictive model and the historical average model have to be estimated
with a Bayesian estimator. This Bayesian estimator is implemented by using the
Gamma-Normal framework described in Section 2 but replacing the prior means
with empirical data OLS estimates rather than parameters estimated from the asset

pricing model simulations.
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4.2 Utility results

I compute the CER given in equation (19) for each return frequency, predictor, and
OOS period. The share of the risky asset for portfolio A is computed based on the
predictions of the predictive model. The share of the risky asset for portfolio N
is computed based on the predictions of the historical average model. Hence, the
CER is interpreted as the additional risk-free return that would make an investor
indifferent between the historical average model and the predictive model. The
results are shown in Table 4, which is structured like Table 2 but with the R%g¢
figures replaced with the annualized CERs. The risk aversion parameter v is set
equal to 5.

The CER results are in line with the R%,¢ reported in Table 2: An investor
who derives her prior belief about the predictability of the equity premium from the
LRR model generally performs the best for three out of the four sample periods.
The only OOS period during which the HF and PT priors dominate is from 1947 to
1980. Also, the model-based priors can achieve substantial utility gains compared
with the predictive model estimated without a model-based prior. The CER values
are economically significant. For the HF model, the values range from -1.46 percent
to 0.66 percent. The priors from the LRR model result in CERs from -1.28 percent
to 0.73 percent, and the PT model-based prior CERs range from -4.02% to 0.74%.

The top panel of Figure 6 shows the cumulative log(1 + CER;), where CER,,
given in equation (18), is computed with the A model being the predictive model,
given (1), estimated by imposing the model-based priors, and the N model being the
predictive model estimated without a prior. The bottom panel shows the portfolio
share of the risky asset. The predictor is the log dividend yield, the forecasts are at
an annual frequency, and the OOS period is from 1968 to 2014. The model-based
priors from the LRR 2 and PT 2 models lead to higher cumulative CERs than the
priors from the HF model. The greatest difference in performance is again during the

bull market of the late 1990s. Also, the share of the risky asset is less volatile for the
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LRR 2 and PT 2 priors, which can be explained by the prior means of the predictive
regression coefficients reported in Panel A of Table 1. For the dividend yield, the
model-implied parameters of HF 2 are greater than the empirical values, but the
model-implied parameters of LRR 2 and PT 2 are smaller than the empirical values.
Hence, an investor who uses priors from the HF 2 model adjusts her forecasts more
strongly in response to changes in the dividend yield. This investor is also expecting
low valuation ratios to predict strongly negative returns, which leads to less accurate

forecasts in the late 1990s.

5 Robustness

For the results previously discussed, the tightness parameters of the Gamma-Normal
prior, A and v, are set equal to 1 and 0.1, respectively, as described in Section 2.2.
This section analyzes whether the results and the conclusions drawn in this paper
are robust to tightening or loosening the model-based priors.

Table 5 reports the results when tightening the prior by a factor of two — that
is, A = 0.5 and v = 0.2. As in Table 2, the LRR priors excel for three of the four
sample periods. Across both predictors, the OOS period from 1947 to 1980 is the
only period for which the LRR priors are never the best-performing prior. This
finding is consistent across all frequencies. Panel D shows that the LRR 1 and LRR
2 priors are the best-performing priors 33.3 percent and 25.0 percent of the time,
respectively. In comparison, the HF 2 prior only achieves 16.7%, and the remaining
three priors are even lower. Additionally, the LRR 1 and LRR 2 priors are the
second-best-performing priors in 20.8% and 33.3%, respectively, of all cases. These
values are greater than for any of the other priors, except the HF 1 prior, which is
also second best in 20.8 percent of all cases.

We obtain a similar picture when loosening the priors by a factor of two, i.e.

A =2 and v = 0.05. The results are shown in Table 6. The LRR priors generally
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perform worse than priors derived form the other asset pricing models for the OOS
period from 1947 to 1980. However, for the other sample periods, the LRR priors
dominate, with LRR 1 being the best performing prior 41.7% of the time. The prior
from the LRR 2 model is the best performing prior in only 12.5% of all cases but
the second best performing prior 58.3% of the time.

These results are consistent with the benchmark parametrization that assumes

A=1and v=0.1.

6 Conclusion

Different theories have been proposed to resolve the equity premium puzzle (Mehra
and Prescott (1985)). Three prominent consumption-based asset pricing models
that provide different explanations for the existence of the equity premium puzzle
are the Habit Formation (HF), the Long Run Risk (LRR), and the Prospect Theory
(PT) models. I analyze whether these asset pricing models can profitably guide
the investment decisions of investors who try to time the equity market. I propose
a simple Bayesian framework in which prior distributions on the parameters of a
single-variable predictive regression are derived from the three asset pricing models.
The investors update their prior beliefs with empirical data and predict the equity
premium OOS with valuation ratios — that is, the dividend-price ratio and the
dividend yield.

The priors derived from the LRR model perform particularly well during the
dot-com boom in the late 1990s. During that period, low valuation ratios predicted
negative returns that failed to materialize for several years. The key to the strong
performance of the LRR priors is the low implied predictive power of valuation
ratios for the equity premium. Hence, an investor who uses the LRR model to guide
her investment choices is hesitant to conclude that low valuation ratios result in

an immediate fall in stock prices. The stronger predictability implied by the HF
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and PT models helps to improve forecast accuracy up to the 1980s. However, the
performance deteriorates quickly during the dot-com boom, as the investors who
believe in the strong predictive power of valuation ratios anticipate a sharp price
decline much earlier than it materializes. Because the performance during the dot-
com boom dominates, an investor whose prior beliefs are anchored in the LRR model
would have outperformed investors whose prior beliefs stem from the HF and PT
models in most sample periods. These differences in forecast accuracy are not only
shown by differences in the R%,g, but also translate into considerable utility gains
for an investor with power utility preferences.

By imposing model-based priors derived from consumption-based asset pricing
models on predictive regressions and showing how the performances of these pri-
ors differ, this paper makes novel contributions to the equity premium prediction
literature and also adds to our understanding of consumption-based asset pricing

models.
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Appendix A Asset pricing models

A.1 By force of habit: A consumption-based explanation of

aggregate stock market behavior

Campbell and Cochrane (1999) use a standard representative-agent consumption-
based asset pricing model but add a slow-moving habit to the basic power utility
function. This slow-moving habit leads to a slowly time-varying risk aversion and
an equity risk premium that is higher at business cycle troughs than at peaks.

The agents are identical and maximize their utility given by

(17_1

X
Zat (G = X)) , (20)
-

where X; is the level of habit, and ¢ is the time discount factor. A surplus con-
sumption ratio S; = (Cy — X;)/Cy is defined — a small value of S; indicates that the
economy is in a bad state.

A process is specified for s; = In(.S;) which ensures that C; is always above X;.

This process is given by

str1 = (1= @)5 + ¢sp + V(sy)(crp1 — ¢ — 9), (21)

with ¢ reflecting habit persistence — that is, how quickly s; 1 returns to the steady

state value 5. The function W(s,) is specified as

L 1_2(315_3)_1 St < Smax

W(s) = , (22)

0 St > Smax

with the parameter s,,,, set equal to 5+ %(1 — S5?). The steady state value 5 is given

by In(o+/7v/(1 — ¢)). The evolution of s;,; is based on consumption growth being
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an i.i.d. lognormal process:
Acii 1 = g+ vip1, where vy S N(0,02). (23)

Stocks represent a claim to the consumption stream. The price-consumption

ratio for a consumption claim satisfies

Ct+1 Pt+1
— =FE;, | M, 1+ — . 24
(3) = B [Moss S50 14 22 51| 24

The underlying assumption is that dividend growth is perfectly correlated with
consumption growth in (23).°

The price-consumption ratio is correlated with the business cycles, as it depends
on s;. The ratio is high at business cycle peaks and low at troughs. Because of
the slowly time-varying risk aversion, the equity premium is also correlated with
the business cycle, but this correlation is negative. Hence, the model generates an
equity risk premium that is predictable by the price-consumption ratio. A high
price-consumption ratio predicts a low equity premium.

I apply the fixed-point method to solve for the price-consumption and the price-
dividend ratio (see Wachter (2005)). Summary statistics of the simulation for the
model specification with perfectly (HF 1) and imperfectly (HF 2) correlated log
consumption and log dividend growth are given in Table A.1. The simulated mo-
ments match the moments obtained by Campbell and Cochrane (1999) and Wachter
(2005).

A.2 Prospect theory and asset prices

In the model of Barberis et al. (2001), the agent not only derives utility from con-

sumption but also from fluctuations of her financial wealth. There are two impor-

5The solution for the model specification which assumes imperfectly correlated consumption
and dividend processes, is given in Campbell and Cochrane (1999).
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tant aspects in the way financial wealth fluctuations affect the utility of an economic
agent. First, the agent is loss averse. Second, the degree of loss aversion depends
on prior investment outcomes. Prior gains lead to less loss aversion, and prior losses
lead to more loss aversion. Hence, the risk aversion of the agent varies over time, as
in the HF model.

Aggregate consumption growth and dividend growth follow the i.i.d. lognormal

processes given by

Acit1 = ge + 0c€cyr1, wWhere €411 R N(0,1) (25)
and
iid.
Adyi1 = ga + 0q€ar1, Where €541~ N(0, 1), (26)

with cm“r(ec,Hl, €dr1) = w.

The agent’s maximization problem is set up as

E

t=0 o

S thtl—’Y ~— st+1
> o' 7+boct S w(Xpy1, Siyz) ) | - (27)

The second term captures the fact that the agent cares about fluctuations in financial
wealth. The variable X;,; denotes the change of the financial wealth between time

t and ¢t 4+ 1 and is defined as
Xt—l—l = Sth+1 - StRf,t' (28)

The variable S; measures the value of the agent’s risky assets at time ¢. The variable
2z, accounts for prior gains and losses up to time ¢ and is defined as Z;/S;, where

Zy; is a historical benchmark level for the value of the risky asset. If z; is smaller

6Barberis et al. (2001) consider two different specifications: Economy I, in which dividends equal
consumption, and Economy II, in which consumption and dividends follow separate processes. The
simulated moments of Economy II are much more successful in matching the empirical moments;
hence, I do not consider Economy 1.
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than one, the agent has prior gains; if z; is greater than one, the agent faces prior
losses. The discount factor is 6, and byC; ” is a scaling term. The form of the utility
function v(.) is different conditional on prior gains or prior losses.

The dynamics of z; are given by the process

d ) ). (20)

Zt41 =7 (Zt
Ry

The benchmark level Z; reacts sluggishly to changes in the stock price. When S;
increases, Z; should increase by less in order to allow for prior gains. The sluggishness
is determined by the parameter n € [0, 1]. The closer 7 is to one, the more sluggish
the benchmark level becomes. The parameter R is chosen such that the median
value of z; is around one.

The price-dividend ratio is assumed to be a function of the state variable z;:

ft = Pt/Dt = f(Zt). (30)
The real stock returns are thus given as

1+ f(z141)
R = IV p9dtoded i1 31
t+1 f(Zt) ( )
Barberis et al. (2001) show that the equilibrium is characterized by a constant real

risk-free rate,

Ry = 5—167964203/27 (32)

and a price-dividend ratio given by

f(zt)

OB, {@ (1 + f(Zt—H) egd+0'ded7t+17 Zt>:| 7
f(z)

1 :5€grvgc+7203(1*w2)/2Et {1 + f(zt+1)€(0d7wac)6d,t+1]

where the utility function v(Ry41, 2;) is equal to v(Ryi1, S, 2¢)/S;.
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As the HF model, the PT model is able to generate predictability in returns.
A decrease in z; leads to both a higher price-dividend ratio and a less risk averse
investor. Also, subsequent returns will be lower, as less compensation for risk is
required. Hence, a high price-dividend ratio predicts a low equity risk premium.

I solve the model by following the process laid out by Barberis et al. (2001). The
moments in Table A.2 are generated by simulating the model with 60 = 100 and
k=3 (PT 1) and b0 = 100 and k = 8 (PT 2). The moments match the moments
obtained by Barberis et al. (2001).

A.3 Risks for the long run: a potential resolution of asset

pricing puzzles

Bansal and Yaron (2004) propose a solution to the equity premium puzzle through
a consumption-based asset pricing model with Epstein and Zin (1989) preferences.
Their model differs from other consumption-based asset pricing models in two ways.
First, they include a small persistent expected growth rate component in the con-
sumption and dividend growth rate processes. This component causes consumption
and the return on the market portfolio to covary positively, and hence, the eco-
nomic agents require a higher risk premium. Second, they allow for time-varying
volatility, which accounts for fluctuating economic uncertainty, in both processes:
this additional source of systematic risk increases the risk premium further.

The asset pricing restriction for the real return on the market portfolio R,, 11,

according to the Epstein and Zin (1989) preferences, is
e
Et 50Gc,tzﬁr1Rc,t(i10)Rm7t+1 = 17 (34>

where G, 11 is the aggregate gross growth rate of consumption, R. ;1 denotes the
real return on an asset that pays aggregate consumption as dividends, and ¢ is the

time discount factor. The parameter 6 is defined as (1—+)/(1— i), where 7 is the risk
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aversion parameter, and 1 accounts for the intertemporal elasticity of substitution.
To derive the real returns, the authors use the standard approximation of Campbell

and Shiller (1988). The real log return for the claim to aggregate consumption is

Tetr1 = Ko+ 12601 — 2t + Gttt (35)

where g.;41 is the log consumption growth, and z; denotes the log price-consumption

ratio. The specification for the real log return on the market portfolio is

Tmtt+1 = Kom + K1mZmtt+1 — Zmit + Jdi+1, (36)

where gq+41 is the log dividend growth rate, and z,,; denotes the log price-dividend
ratio. The values for the x and k,, are constants that depend on the average level
of the price-consumption ratio and the price-dividend ratio, respectively.”

The dynamics of log consumption growth and log dividend growth — which in-
corporate a small persistent predictable component x;, the long run risk component,

and a time-varying volatility oy, reflecting fluctuating economic uncertainty — are

Tip1 =pPT + PeOi€p1
Gept1 =pe T Ty + 04N
Gd,t+1 =Hd + QT¢ + PaoUi

2 _ 2 2 2
01 =0 +vi(0] — 0%) + oW,

with e, 1, w1, Mt1, and wyy; having ii.d. standard Normal distributions.® The

state variables, which determine the price-consumption and price-dividend ratios,

"Bansal, Kiku, and Yaron (2010) define k1 as exp(z)/(1 + exp(z)) and set kg equal to In(1 +
exp(Z)) — k1Z, where Z is the mean log price-consumption ratio. Accordingly, K1, is defined by
exp(Zy)/(1+exp(Zy)), and Ko, is set equal to In(1+exp(Zy,)) — K1,mZm, With Z,, being the mean
log price-dividend ratio.

8Bansal and Yaron (2004) also simulate a version of their model without time-varying volatil-
ity of consumption growth. However, this version is less successful in matching empirical data
moments.

45



are x; and oy. The solutions for z; and z,,; are

2 =Ag + A1y + Azaf
(38)
Zmit =Aom + ALmTt + Agmo?.
The derivation of A and A,, can be found in Bansal and Yaron (2004) and Bansal,
Kiku, and Yaron (2010).

The model generates excess returns that are predictable by the price-dividend
ratio. Equation (36) shows that the lagged price-dividend ratio has a negative effect
on future returns. Hence, the relation implied between the price-dividend ratio and
future returns is the same as in the HF and PT models.

Table A.3 reports the moments of the simulated data from the LRR model for
v=7.5 (LRR 1) and v = 10 (LRR 2). The data moments obtained match the data

moments in Bansal and Yaron (2004) and Beeler and Campbell (2012).

46



Table A.1: Habit Formation model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported for the spec-
ifications of the HF model (Campbell and Cochrane (1999)), which assumes perfect (HF 1)
and imperfect correlation (HF 2) between log consumption and log dividend growth. The
price-dividend ratio moments are annualized.

Model Freq. P/D Log P/D Log equity prem. Log Sharpe
Mean Std. dev. Mean Std. dev. ratio

HF 1 Annual 18.55 0.27 6.60% 15.06% 0.44

HF 2 Annual 19.00 0.30 6.52% 19.91% 0.33

HF 1 Quarterly 18.43 0.27 1.65% 7.73% 0.21

HF 2 Quarterly 18.92 0.28 1.63% 10.08% 0.16

HF 1 Monthly 18.39 0.27 0.55% 4.49% 0.12

HF 2 Monthly 18.89 0.28 0.54% 5.84% 0.09

Table A.2: Prospect Theory model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported for the specifica-
tions of the PT model (Barberis et al. (1999)) with 60 = 100 and £ = 3 (PT 1) and b0 = 100 and
k =8 (PT 2). The price-dividend ratio moments are annualized.

Model Freq. Price-dividend ratio Log equity prem. Log Sharpe
Mean Std. dev. Mean Std. dev. ratio

PT 1 Annual 17.30 2.38 3.74% 20.23% 0.19

PT 2 Annual 12.73 2.21 5.87% 23.87% 0.25

PT 1 Quarterly 9.46 0.54 2.13% 9.00% 0.24

PT 2 Quarterly 7.45 0.60 2.84% 10.79% 0.26

PT 1 Monthly 6.30 0.14 1.15% 4.48% 0.26

PT 2 Monthly 5.05 0.16 1.47% 5.05% 0.29

Table A.3: Long Run Risk model simulated moments

Simulated moments at monthly, quarterly, and annual frequencies are reported for the specifica-
tions of the LRR model (Bansal and Yaron (2004)) with v = 7.5 (LRR 1) and v = 10 (LRR 2).
The price-dividend ratio moments are annualized.

Model Freq. P/D Log P/D Log equity prem. Log Sharpe
Mean Std. dev. Mean Std. dev. ratio
LRR 1 Annual 26.55 0.17 2.73% 16.76% 0.16
LRR 2 Annual 20.46 0.16 4.26% 16.53% 0.26
LRR 1 Quarterly 26.55 0.16 0.67% 8.32% 0.08
LRR 2 Quarterly 20.41 0.16 1.04% 8.24% 0.13
LRR 1 Monthly 26.65 0.16 0.23% 4.81% 0.05
LRR 2 Monthly 20.44 0.16 0.35% 4.76% 0.07
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