
Chapter 1

From zero to deploy
Welcome to the Ruby on Rails Tutorial! The purpose of this tutorial is to teach
you how to develop custom web applications. The resulting skillset will put you
in a great position to get a job as a web developer, start a career as a freelancer,
or found a company of your own. If you already know how to develop web
applications, this tutorial will quickly get you up to speed with Ruby on Rails.

The focus throughout the Ruby on Rails Tutorial is on general skills that are
useful no matter which specific technology you end up using. Once you under-
stand how web apps work, learning another framework can be done with much
less effort. That being said, the framework of choice in this tutorial—namely,
Ruby on Rails—has never been a better choice for learning web development
(Box 1.1).

Box 1.1. The many advantages of Rails

Ruby on Rails (or just “Rails” for short) is a free and open-source web devel-
opment framework written in the Ruby programming language. Upon its debut,
Ruby on Rails rapidly became one of the most popular tools for building dynamic
web applications. Rails is used by companies as varied as Airbnb, SoundCloud,
Disney, Hulu, GitHub, and Shopify, as well as by innumerable freelancers, inde-
pendent development shops, and startups.

1

https://www.railstutorial.org/
https://rubyonrails.org/
https://www.ruby-lang.org/en/
https://airbnb.com/
https://soundcloud.com
https://disney.com/
https://hulu.com/
https://github.com/
https://shopify.com/

2 CHAPTER 1. FROM ZERO TO DEPLOY

Although there are many choices in web development, Rails stands apart for its
elegance, power, and integrated approach to web applications. Using Rails, even
novice developers can build a full-stack web application without ever leaving the
framework—a huge boon for people learning web development for the first time.
Rails also gives you flexibility going forward—for example, serving as a great back
end if you want to build a single-page application or mobile app sometime down
the line.

One big advantage is that Rails is not prone to the “new hotness” problem that
plagues some development communities (notably JavaScript/Node.js), in which
a dizzyingly complex set of technologies seems to change every six months. As
Rails creator David Heinemeier Hansson once noted:

Back then the complexity merchant of choice was J2EE, but the com-
plaints are uncannily similar to those leveled against JavaScript to-
day… The core premise of Rails remains in many ways as controver-
sial today as it was when it premiered. That by formalizing conven-
tions, eliminating valueless choices, and offering a full-stack frame-
work that provides great defaults for anyone who wants to create a
complete application, we can make dramatic strides of productivity.

Due in part to this philosophy, Rails has remained so stable at its core much of this
tutorial has been the same since the third edition, launched in 2014. The things you
learn here won’t go out of date soon.

And yet, Rails continues to innovate. For example, the Rails 6 release includes
major new features for email routing, text formatting, parallel testing, and multiple-
database support. A big part of Rails 6 is being “scalable by default”, which means
that Rails scales no matter how big your app gets. All this while maintaining rock-
solid dependability—indeed, the wildly popular developer platform GitHub, the
hugely successful online store-builder Shopify, and the collaboration tool (and very
first Rails app) Basecamp all run their sites on the pre-release versions of Rails.
This means that new versions of Rails are immediately tested by some of the largest,
most successful web apps in existence.

https://en.wikipedia.org/wiki/Front_and_back_ends
https://en.wikipedia.org/wiki/Front_and_back_ends
https://en.wikipedia.org/wiki/Single-page_application
https://dhh.dk
https://www.quora.com/What-makes-Rails-a-framework-worth-learning-in-2017
https://weblog.rubyonrails.org/2019/8/15/Rails-6-0-final-release/
https://youtu.be/8evXWvM4oXM
https://github.com/
https://shopify.com/
https://basecamp.com

3

Not bad for a little side project cooked up by a freelance Danish web developer
way back in 2004. What was an edgy choice then is an easy choice now: with
its proven track-record, productive feature-set, and helpful community, Rails is a
fantastic framework for building modern web applications.

There are no formal prerequisites for this book, which contains integrated
tutorials for the Ruby programming language, the Unix command line, HTML,
CSS, a small amount of JavaScript, and even a little SQL. That’s a lot of mate-
rial to absorb, though, and if you’re new to software development I recommend
starting with the tutorials at Learn Enough, especially Learn Enough Command
Line to Be Dangerous and Learn Enough Ruby to Be Dangerous.1 On the other
hand, a surprising number of complete beginners have gotten through this tuto-
rial, so don’t let me stop you if you’re excited to build web apps.

The principal teaching method of this tutorial is building real working soft-
ware through a series of example applications of increasing sophistication, start-
ing with a minimal hello app (Figure 1.1, Section 1.2), a slightly more capable
toy app (Figure 1.2, Chapter 2), and a real sample app (Figure 1.3, Chapter 3
through Chapter 14). As implied by their generic names, these applications fo-
cus on general principles, which are applicable to practically any kind of web
application. In particular, the full sample application includes all the major fea-
tures needed by professional-grade web apps, including user signup, login, and
account management. The final version of the sample app, developed in Chap-
ter 14, also bears more than a passing resemblance to Twitter—a website which,
coincidentally, was also originally written in Rails.

Let’s get started!

1Adding the rest of the Learn Enough sequence would certainly provide excellent preparation for this tutorial,
but if you’re in a hurry you can probably get by with just Command Line and Ruby. Learn Enough Ruby to Be
Dangerous in particular has a chapter on building a simple web application using Sinatra, a Ruby-based micro-
framework that serves as excellent preparation for Rails. If you get stuck in the present tutorial, I suggest giving
Learn Enough Ruby to Be Dangerous and its prerequisites a try, then loop back here to see how it goes the second
time.

https://www.ruby-lang.org/en/
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/SQL
https://www.learnenough.com/
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.learnenough.com/ruby
http://twitter.com/
https://www.learnenough.com/#full_sequence
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby
https://www.learnenough.com/ruby

4 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.1: The beginning hello app.

5

Figure 1.2: An intermediate toy app.

6 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.3: The final sample app.

1.1. UP AND RUNNING 7

1.1 Up and running
One advantage of using this tutorial is that you can get up and running fast. In
particular, the Rails Tutorial has a long-running partnership with AWS Cloud9,
a development environment that runs in your browser. The result is a complete
system for developing all the software in this tutorial.

This is important because, even for experienced developers, installing Ruby,
Rails, and all the associated supporting software can be quite challenging. Com-
pounding the problem is the multiplicity of environments: different operating
systems, version numbers, preferences in text editors, etc.

This is why the recommended solution, especially for newer users, is to
sidestep most installation and configuration issues by using a cloud integrated
development environment, or cloud IDE (Section 1.1.1). The cloud IDE used
in this tutorial runs inside an ordinary web browser, and hence works the same
across different platforms. It also maintains the current state of your work, so
you can take a break from the tutorial and come back to the system just as you
left it.

A second possibility is to set up your native system (Windows, macOS, or
Linux) for Rails development. It is definitely recommended that you do this
eventually, but it can represent significant overhead, and is likely to require a
healthy amount of technical sophistication (Box 1.2). Instructions for setting
up your native system can be found in the “Native OS setup” section of Learn
Enough Dev Environment to Be Dangerous. (Note in particular that you’ll need
Ruby 2.6 or greater to run Rails 6.) If you go this route, be sure to complete the
configuration and Rails installation steps in Section 1.1.2 as well.

Box 1.2. Technical sophistication

The Ruby on Rails Tutorial is part of the Learn Enough family of tutorials,
which develop the theme of technical sophistication: the combination of hard and
soft skills that make it seem like you can magically solve any technical problem
(as illustrated in “Tech Support Cheat Sheet” from xkcd).

https://aws.amazon.com/cloud9/
https://www.learnenough.com/dev-environment-tutorial#sec-native_os_setup
https://www.learnenough.com/dev-environment
https://www.learnenough.com/dev-environment
https://www.railstutorial.org/
https://www.learnenough.com/
https://m.xkcd.com/627/
https://xkcd.com/

8 CHAPTER 1. FROM ZERO TO DEPLOY

Knowing how to code is an important component of technical sophistication,
but there’s more to it than that—you also have to know how to click around menu
items to learn the capabilities of a particular application, how to clarify a confusing
error message by googling it, or when to give up and just reboot the darn thing.

Because web applications have so many moving parts, they offer ample op-
portunities to develop your technical sophistication. In the context of Rails web
development, some specific examples of technical sophistication include making
sure you’re using the right Ruby gem versions, running bundle install or
bundle update, and restarting the local webserver if something doesn’t work.
(Don’t worry if all this sounds like gibberish; we’ll cover everything mentioned
here in the course of completing this tutorial.)

As you proceed through this tutorial, in all likelihood you will occasionally be
tripped up by things not immediately working as expected. Although some partic-
ularly tricky steps are explicitly highlighted in the text, it is impossible to anticipate
all the things that can go wrong. I recommend you embrace these inevitable stum-
bling blocks as opportunities to work on improving your technical sophistication.
Or, as we say in geek speak: It’s not a bug, it’s a feature!

1.1.1 Development environment
Considering various idiosyncratic customizations, there are probably as many
development environments as there are Rails programmers. To avoid this com-
plexity, the Ruby on Rails Tutorial standardizes on the excellent cloud develop-
ment environment Cloud9, part of Amazon Web Services (AWS). The resulting
workspace environment comes pre-configured with most of the software needed
for Ruby on Rails web development, including Ruby, RubyGems, Git. (Indeed,
the only big piece of software we’ll install separately is Rails itself, and this is
intentional (Section 1.1.2).)

The cloud IDE includes the three essential components needed to develop
web applications: a command-line terminal, a filesystem navigator, and a text
editor (Figure 1.4). Among other features, the cloud IDE’s text editor supports

https://www.google.com/
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files#aside-speak_geek
https://aws.amazon.com/cloud9/

1.1. UP AND RUNNING 9

Figure 1.4: The anatomy of the cloud IDE.

the “Find in Files” global search that I consider essential to navigating any large
Ruby or Rails project. Finally, even if you decide not to use the cloud IDE
exclusively in real life (and I certainly recommend learning other tools as well),
it provides an excellent introduction to the general capabilities of command-line
terminals, text editor, and other development tools.

Here are the steps for getting started with the cloud development environ-
ment:2

1. Because Cloud9 is part of Amazon Web Services (AWS), if you already
2Due to the constantly evolving nature of sites like AWS, details may vary; use your technical sophistication

(Box 1.2) to resolve any discrepancies.

10 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.5: Creating an environment on AWS Cloud9.

have an AWS account you can just sign in.3 To create a new Cloud9
workspace environment, go to the AWS console and type “Cloud9” in
the search box.

2. If you don’t already have an AWS account, you should sign up for a free
account at AWS Cloud9.4 In order to prevent abuse, AWS requires a valid
credit card for signup, but the workspace is 100% free (for a year as of
this writing), and your card will not be charged. You might have to wait
up to 24 hours for the account to be activated, but in my case it was ready
in about ten minutes.

3. Once you’ve successfully gotten to the Cloud9 administrative page (Fig-
ure 1.5), clicking on “Create environment” and fill in the information
as shown in Figure 1.6, including the name “rails-tutorial”.5 fill in the
description as shown in Figure 1.6. On the next page, choose Ubuntu
Server (not Amazon Linux) (Figure 1.7), and then click “Next step”.
clicking the confirmation buttons to accept the default settings until AWS
starts provisioning the IDE (Figure 1.9). You may run into a warning mes-
sage about being a “root” user, which you can safely ignore at this early
stage. (We’ll discuss the preferred but more complicated practice, called
an Identity and Access Management (IAM) user, in Section 13.4.4.)

3https://aws.amazon.com/
4https://www.railstutorial.org/cloud9-signup
5If you’ve previously done this tutorial, you may want to use a fresh environment, with a name like “rails-

tutorial-6”.

https://aws.amazon.com/
https://console.aws.amazon.com/
https://www.railstutorial.org/cloud9-signup
https://www.railstutorial.org/cloud9-signup

1.1. UP AND RUNNING 11

Figure 1.6: Naming a new work environment at AWS Cloud9.

12 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.7: Selecting Ubuntu Server.

1.1. UP AND RUNNING 13

Figure 1.8: The final step before provisioning the IDE.

14 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.9: The default cloud IDE.

1.1. UP AND RUNNING 15

Figure 1.10: Setting Cloud9 to use two spaces for indentation.

Because using two spaces for indentation is a near-universal convention in
Ruby, I also recommend changing the editor to use two spaces instead of the
default four. As shown in Figure 1.10, you can do this by clicking the gear icon
in the upper right and then clicking the minus sign in the “Soft Tabs” setting
until it reaches 2. (Note that this takes effect immediately; you don’t need to
click a “Save” button.)

16 CHAPTER 1. FROM ZERO TO DEPLOY

1.1.2 Installing Rails
The development environment from Section 1.1.1 includes all the software we
need to get started except for Rails itself. This is by design, as installing the
exact version of Rails used in this tutorial is important for getting predictable
results.

First, we’ll do a little preparation by adding configuration settings to pre-
vent the time-consuming installation of local Ruby documentation, as shown in
Listing 1.1.6 Note that this step needs to be done only once per system. (For
more information on the command-line and other conventions in this book, see
Section 1.6.)

Listing 1.1: Configuring the .gemrc file to skip the installation of Ruby doc-
umentation.
$ echo "gem: --no-document" >> ~/.gemrc

To install Rails, we’ll use the gem command provided by the RubyGems
package manager, which involves typing the command shown in Listing 1.2
into your command-line terminal. (If developing on your local system, this
means using a regular terminal window; if using the cloud IDE, this means
using the command-line area shown in Figure 1.4.)

Listing 1.2: Installing Rails with a specific version number.
$ gem install rails -v 6.0.1

Here the -v flag ensures that the specified version of Rails gets installed. You
can confirm that the installation succeeded by passing the -v flag to the rails
command itself:

6This uses the echo and >> (append) commands covered in Section 1.3 and Section 2.1 of Learn Enough
Command Line to Be Dangerous. Note that if the file being appended to doesn’t exist, >> is smart enough to
create it.

https://rubygems.org
https://www.learnenough.com/r/learn_enough_command_line/basics/our_first_command#sec-our_first_command
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files/redirecting_and_appending
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line

1.2. THE FIRST APPLICATION 17

$ rails -v

Rails 6.0.1

The version number output by this command should match the version installed
in Listing 1.2.

There’s one more configuration step, which is to install Yarn, a program to
manage software dependencies. If you’re using your native OS, you should fol-
low the Yarn installation instructions for your platform. If you’re on the cloud
IDE, you can run this command, which downloads and executes the necessary
commands from the Learn Enough CDN:

$ source <(curl -sL https://cdn.learnenough.com/yarn_install)

From time to time, you’ll probably get a warning message that looks like this:

==

Your Yarn packages are out of date!

Please run `yarn install --check-files` to update.

==

All you need to do if this happens is execute the suggested yarn command:

$ yarn install --check-files

That’s it! You’ve now got a system fully configured for Ruby on Rails web
development.

1.2 The first application
Following a long tradition in computer programming, our goal for the first appli-
cation is to write a “hello, world” program. In particular, we will create a simple
application that displays the string “hello, world!” on a web page, both on our
development environment (Section 1.2.4) and on the live web (Section 1.4).

https://yarnpkg.com/
https://yarnpkg.com/lang/en/docs/install/
https://en.wikipedia.org/wiki/Content_delivery_network
http://www.catb.org/jargon/html/H/hello-world.html

18 CHAPTER 1. FROM ZERO TO DEPLOY

Virtually all Rails applications start the same way, by running the rails

new command. This handy command creates a skeleton Rails application in a
directory of your choice. To get started, users not using the Cloud9 IDE rec-
ommended in Section 1.1.1 should make a environment directory for your
Rails projects if it doesn’t already exist (Listing 1.3) and then change into the
directory.7

Listing 1.3: Making an environment directory for Rails projects.
These steps are not needed on the cloud IDE.

$ cd # Change to the home directory.

$ mkdir environment # Make an environment directory.

$ cd environment/ # Change into the environment directory.

Listing 1.3 uses the Unix commands cd and mkdir; see Box 1.3 if you are not
already familiar with these commands.

Box 1.3. A crash course on the Unix command line

For readers coming from Windows or macOS, the Unix command line may
be unfamiliar. Luckily, if you are using the recommended cloud environment, you
automatically have access to a Unix (Linux) command line running a standard shell
(command-line interface) known as Bash.

The basic idea of the command line is simple: by issuing short commands, users
can perform a large number of operations, such as creating directories (mkdir),
moving and copying files (mv and cp), and navigating the filesystem by chang-
ing directories (cd). Although the command line may seem primitive to users
mainly familiar with graphical user interfaces (GUIs), appearances are deceiving:
the command line is one of the most powerful tools in the developer’s toolbox. In-
deed, you will rarely see the desktop of an experienced developer without several
open terminal windows running command-line shells.

7This step is designed to unify the treatment of native systems and the cloud IDE by using identical directory
structures. If you are confident in your technical sophistication, feel free to omit this step, and use a directory of
your choice.

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

1.2. THE FIRST APPLICATION 19

Description Command Example
list contents ls $ ls -l

make directory mkdir <dirname> $ mkdir environment

change directory cd <dirname> $ cd environment/

cd one directory up $ cd ..

cd to home directory $ cd ~ or just $ cd
cd to path incl. home dir $ cd ~/environment/

move file (rename) mv <source> <target> $ mv foo bar

copy file cp <source> <target> $ cp foo bar

remove file rm <file> $ rm foo

remove empty directory rmdir <directory> $ rmdir environment/

remove nonempty directory rm -rf <directory> $ rm -rf tmp/

concatenate & display file contents cat <file> $ cat ~/.ssh/id_rsa.pub

Table 1.1: Some common Unix commands.

The general subject is deep, but for the purposes of this tutorial we will need
only a few of the most common Unix command-line commands, as summarized in
Table 1.1. For a more thorough introduction to the basics of the command line, see
the first Learn Enough tutorial, Learn Enough Command Line to Be Dangerous.

The next step on both local systems and the cloud IDE is to create the first
application using the command in Listing 1.4. Note that Listing 1.4 explicitly
includes the Rails version number as part of the command. This ensures that
the same version of Rails we installed in Listing 1.2 is used to create the first
application’s file structure.

Listing 1.4: Running rails new (with a specific version number).
$ cd ~/environment

$ rails _6.0.1_ new hello_app

create

create README.md

create Rakefile

create .ruby-version

create config.ru

create .gitignore

create Gemfile

run git init from "."

https://www.learnenough.com/
https://www.learnenough.com/command-line

20 CHAPTER 1. FROM ZERO TO DEPLOY

Initialized empty Git repository in /home/ubuntu/environment/hello_app/.git/

create package.json

create app

create app/assets/config/manifest.js

create app/assets/stylesheets/application.css

create app/channels/application_cable/channel.rb

create app/channels/application_cable/connection.rb

create app/controllers/application_controller.rb

create app/helpers/application_helper.rb

.

.

.

Notice how many files and directories the rails command creates. This
standard directory and file structure (Figure 1.11) is one of the many advan-
tages of Rails: it immediately gets you from zero to a functional (if minimal)
application. Moreover, since the structure is common to all Rails apps, you can
immediately get your bearings when looking at someone else’s code.

A summary of the default Rails files appears in Table 1.2. We’ll learn about
most of these files and directories throughout the rest of this book. In particular,
starting in Section 5.2.1 we’ll discuss the app/assets directory, part of the
asset pipeline that makes it easy to organize and deploy assets such as Cascading
Style Sheets and image files.

1.2.1 Bundler
After creating a new Rails application, the next step is to use Bundler to install
and include the gems needed by the app. Bundler is run automatically (via
bundle install) by the rails command in Listing 1.4, but in this section
we’ll make some changes to the default application gems and run Bundler again.
This involves opening the Gemfile with a text editor. (With the cloud IDE,
this involves clicking the arrow in the file navigator to open the sample app
directory and double-clicking the Gemfile icon.) Although the exact version
numbers and details may differ slightly, the results should look something like
Figure 1.12 and Listing 1.5. (The code in this file is Ruby, but don’t worry at
this point about the syntax; Chapter 4 will cover Ruby in more depth.)

If the files and directories don’t appear as shown in Figure 1.12, click on

1.2. THE FIRST APPLICATION 21

Figure 1.11: The directory structure for a newly created Rails app.

22 CHAPTER 1. FROM ZERO TO DEPLOY

File/Directory Purpose
app/ Core application (app) code, including models, views, controllers, and helpers
app/assets Applications assets such as Cascading Style Sheets (CSS) and images
bin/ Binary executable files
config/ Application configuration
db/ Database files
doc/ Documentation for the application
lib/ Library modules
log/ Application log files
public/ Data accessible to the public (e.g., via web browsers), such as error pages
bin/rails A program for generating code, opening console sessions, or starting a local server
test/ Application tests
tmp/ Temporary files
README.md A brief description of the application
Gemfile Gem requirements for this app
Gemfile.lock A list of gems used to ensure that all copies of the app use the same gem versions
config.ru A configuration file for Rack middleware
.gitignore Patterns for files that should be ignored by Git

Table 1.2: A summary of the default Rails directory structure.

the file navigator’s gear icon and select “Refresh File Tree”. (As a general
rule, you should refresh the file tree any time files or directories don’t appear as
expected.)8

Listing 1.5: The default Gemfile in the hello_app directory.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

ruby '2.6.3'

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'

gem 'rails', '~> 6.0.1'

Use sqlite3 as the database for Active Record

gem 'sqlite3', '~> 1.4'

Use Puma as the app server

gem 'puma', '~> 3.11'

Use SCSS for stylesheets

gem 'sass-rails', '~> 5'

Transpile app-like JavaScript. Read more: https://github.com/rails/webpacker

gem 'webpacker', '~> 4.0'

Turbolinks makes navigating your web application faster.

8This is a typical example of technical sophistication (Box 1.2).

https://rack.github.io/

1.2. THE FIRST APPLICATION 23

Figure 1.12: The default Gemfile open in a text editor.

24 CHAPTER 1. FROM ZERO TO DEPLOY

Read more: https://github.com/turbolinks/turbolinks

gem 'turbolinks', '~> 5'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder

gem 'jbuilder', '~> 2.7'

Use Redis adapter to run Action Cable in production

gem 'redis', '~> 4.0'

Use Active Model has_secure_password

gem 'bcrypt', '~> 3.1.7'

Use Active Storage variant

gem 'image_processing', '~> 1.2'

Reduces boot times through caching; required in config/boot.rb

gem 'bootsnap', '>= 1.4.2', require: false

group :development, :test do

Call 'byebug' anywhere in the code to stop execution and get a

debugger console

gem 'byebug', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

Access an interactive console on exception pages or by calling 'console'

anywhere in the code.

gem 'web-console', '>= 3.3.0'

gem 'listen', '>= 3.0.5', '< 3.2'

Spring speeds up development by keeping your application running in the

background. Read more: https://github.com/rails/spring

gem 'spring'

gem 'spring-watcher-listen', '~> 2.0.0'

end

group :test do

Adds support for Capybara system testing and selenium driver

gem 'capybara', '>= 2.15'

gem 'selenium-webdriver'

Easy installation and use of web drivers to run system tests with browsers

gem 'webdrivers'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Many of these lines are commented out with the hash symbol # (Section 4.2);
they are there to show you some commonly needed gems and to give examples
of the Bundler syntax. For now, we won’t need any gems other than the defaults.

Unless you specify a version number to the gem command, Bundler will
automatically install the latest requested version of the gem. This is the case,

1.2. THE FIRST APPLICATION 25

for example, in the code

gem 'sqlite3'

There are also two common ways to specify a gem version range, which allows
us to exert some control over the version used by Rails. The first looks like this:

gem 'capybara', '>= 2.15'

This installs the latest version of the capybara gem (which is used in test-
ing) as long as it’s greater than or equal to version 2.15—even if it’s, say,
version 7.2.

The second method looks like this:

gem 'rails', '~> 6.0.1'

This installs the gem rails as long as it’s version 6.0.1 or newer but not 6.1
or newer. In other words, the >= notation always installs the latest gem, whereas
the ~> 6.0.1 notation will install 6.0.2 (if available) but not 6.1.0.9

Unfortunately, experience shows that even minor point releases can break
Rails applications, so for the Ruby on Rails Tutorial we’ll err on the side of
caution by including exact version numbers for all gems. You are welcome to
use the most up-to-date version of any gem, including using the ~> construction
in the Gemfile (which I generally recommend for more advanced users), but
be warned that this may cause the tutorial to act unpredictably.

Converting the Gemfile in Listing 1.5 to use exact gem versions results in
the code shown in Listing 1.6.10 Note that we’ve also taken this opportunity to
arrange for the sqlite3 gem to be included only in a development or test en-
vironment (Section 7.1.1), which prevents potential conflicts with the database

9Similarly, ~> 6.0 would install version 6.9 of a gem but not 7.0. This is especially useful if the project in
question uses semantic versioning (also called “semver”), which is a convention for numbering releases designed
to minimize the chances of breaking software dependencies.

10You can determine the exact version number for each gem by running gem list <gem name> at the com-
mand line, but Listing 1.6 saves you the trouble.

https://semver.org/

26 CHAPTER 1. FROM ZERO TO DEPLOY

used by Heroku (Section 1.4). Finally, we’ve removed the line from Listing 1.5
specifying the exact Ruby version number; as noted in Section 7.5.4, it’s rec-
ommended to keep this line in a mission-critical app, but keeping it in a tutorial
of this nature introduces potential errors and complexity. (That said, if your app
fails to work without that line, you should definitely restore it.)

Important note: For all the Gemfiles in this book, you should use the
version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

Listing 1.6: A Gemfile with an explicit version for each Ruby gem.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'puma', '3.12.1'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.4', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

Once you’ve placed the contents of Listing 1.6 into the application’s Gem-

https://gemfiles-6th-ed.railstutorial.org/

1.2. THE FIRST APPLICATION 27

file, install the gems using bundle install:11

$ cd hello_app/

$ bundle install

Fetching source index for https://rubygems.org/

.

.

.

The bundle install command might take a few moments, but when it’s
done our application will be ready to run.

By the way, when you run bundle install it’s possible that you’ll get
a message saying you need to run bundle update first. In this case you
should… run bundle update first! (Learning not to panic when things don’t
go exactly as planned is a key part of technical sophistication, and you’ll be
amazed at how often the “error” message contains the exact instructions you
need to fix the problem at hand.)

1.2.2 rails server

Thanks to running rails new in Section 1.2 and bundle install in Sec-
tion 1.2.1, we already have an application we can run—but how? Happily, Rails
comes with a command-line program, or script, that runs a local webserver to
assist us in developing our application: rails server.

Before running rails server, it’s necessary on some systems (including
the cloud IDE) to allow connections to the local web server. To enable this, you
should navigate to the file config/environments/development.rb and
paste in the two extra lines shown in Listing 1.7 and Figure 1.13.

Listing 1.7: Allowing connections to the local web server.
config/environments/development.rb

Rails.application.configure do

.

11As noted in Table 3.1, you can even leave off install, as the bundle command by itself is an alias for
bundle install.

28 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.13: Allowing Cloud9 to connect to the Rails server.

.

.

Allow connections to local server.

config.hosts.clear

end

The rails server command appears in Listing 1.8, which I recommend
you run in a second terminal tab so that you can still issue commands in the first
tab, as shown in Figure 1.14 and Figure 1.15. Note from Listing 1.8 that you
can shut the server down using Ctrl-C.12

12Here “C” refers to the character on the keyboard, not the capital letter, so there’s no need to hold down the
Shift key to get a capital “C”.

1.2. THE FIRST APPLICATION 29

Figure 1.14: Opening a new terminal tab.

Listing 1.8: Running the Rails server.
$ cd ~/environment/hello_app/

$ rails server

=> Booting Puma

=> Ctrl-C to shutdown server

To view the result of rails server on a native OS, paste the URL
http://localhost:3000 into the address bar of your browser. On the cloud IDE,
go to Preview and click on Preview Running Application (Figure 1.16), and
then open it in a full browser window or tab (Figure 1.17). In either case, the
result should look something like Figure 1.18.

http://localhost:3000

30 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.15: Running the Rails server in a separate tab.

1.2. THE FIRST APPLICATION 31

Figure 1.16: Sharing the local server running on the cloud workspace.

32 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.17: Opening the running app in a full browser window or tab.

1.2. THE FIRST APPLICATION 33

Figure 1.18: The default Rails page served by rails server.

34 CHAPTER 1. FROM ZERO TO DEPLOY

Exercises
The Ruby on Rails Tutorial contains a large number of exercises. Solving them
as you proceed through the tutorial is strongly recommended.

In order to keep the main discussion independent of the exercises, the so-
lutions are not generally incorporated into subsequent code listings. (In the
rare circumstance that an exercise solution is used subsequently, it is explic-
itly solved in the main text.) This means that over time your code may diverge
from the code shown in the tutorial due to differences introduced in the ex-
ercises. Learning how to resolve such discrepancies is a valuable exercise in
technical sophistication (Box 1.2).

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.
Many of the exercises are challenging, but we’ll start out with some easy

ones just to get warmed up:

1. According to the default Rails page, what is the version of Ruby on your
system? Confirm by running ruby -v at the command line.

2. What is the version of Rails? Confirm that it matches the version installed
in Listing 1.2.

1.2.3 Model-View-Controller (MVC)
Even at this early stage, it’s helpful to get a high-level overview of how Rails
applications work, as illustrated in Figure 1.19. You might have noticed that the
standard Rails application structure (Figure 1.11) has an application directory
called app/, which includes subdirectories called models, views, and con-

trollers (among others). This is a hint that Rails follows the model-view-
controller (MVC) architectural pattern, which enforces a separation between the
data in the application (such as user information) and the code used to display
it, which is a common way of structuring a graphical user interface (GUI).

When interacting with a Rails application, a browser sends a request, which
is received by a webserver and passed on to a Rails controller, which is in charge

https://www.railstutorial.org/
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller

1.2. THE FIRST APPLICATION 35

of what to do next. In some cases, the controller will immediately render a view,
which is a template that gets converted to HTML and sent back to the browser.
More commonly for dynamic sites, the controller interacts with a model, which
is a Ruby object that represents an element of the site (such as a user) and is in
charge of communicating with the database. After invoking the model, the con-
troller then renders the view and returns the complete web page to the browser
as HTML.

If this discussion seems a bit abstract right now, don’t worry; we’ll cover
these ideas in more detail later in this book. In particular, Section 1.2.4 shows a
first tentative application of MVC, while Section 2.2.2 includes a more detailed
discussion of MVC in the context of the toy app. Finally, the full sample app
will use all aspects of MVC: we’ll cover controllers and views starting in Sec-
tion 3.2, models starting in Section 6.1, and we’ll see all three working together
in Section 7.1.2.

1.2.4 Hello, world!
As a first application of the MVC framework, we’ll make a wafer-thin change
to the first app by adding a controller action to render the string “hello, world!”
to replace the default Rails page from Figure 1.18. (We’ll learn more about
controller actions starting in Section 2.2.2.)

As implied by their name, controller actions are defined inside controllers.
We’ll call our action hello and place it in the Application controller. Indeed,
at this point the Application controller is the only controller we have, which
you can verify by running

$ ls app/controllers/*_controller.rb

to view the current controllers. (We’ll start creating our own controllers in
Chapter 2.) Listing 1.9 shows the resulting definition of hello, which uses the
render function to return the HTML text “hello, world!”. (Don’t worry about
the Ruby syntax right now; it will be covered in more depth in Chapter 4.)

https://en.wikipedia.org/wiki/Mr_Creosote

36 CHAPTER 1. FROM ZERO TO DEPLOY

Controller Model

View

Database

Figure 1.19: A schematic representation of the model-view-controller (MVC)
architecture.

1.2. THE FIRST APPLICATION 37

Listing 1.9: Adding a hello action to the Application controller.
app/controllers/application_controller.rb

class ApplicationController < ActionController::Base

def hello

render html: "hello, world!"

end

end

Having defined an action that returns the desired string, we need to tell Rails
to use that action instead of the default page in Figure 1.18. To do this, we’ll edit
the Rails router, which sits in front of the controller in Figure 1.19 and deter-
mines where to send requests that come in from the browser. (I’ve omitted the
router from Figure 1.19 for simplicity, but we’ll discuss it in more detail start-
ing in Section 2.2.2.) In particular, we want to change the default page, the root
route, which determines the page that is served on the root URL. Because it’s
the URL for an address like http://www.example.com/ (where nothing comes
after the final forward slash), the root URL is often referred to as / (“slash”) for
short.

As seen in Listing 1.10, the Rails routes file (config/routes.rb) in-
cludes a comment directing us to the Rails Guide on Routing, which includes
instructions on how to define the root route. The syntax looks like this:

root 'controller_name#action_name'

In the present case, the controller name is application and the action name
is hello, which results in the code shown in Listing 1.11.

Listing 1.10: The default routing file (formatted to fit).
config/routes.rb

Rails.application.routes.draw do

For details on the DSL available within this file,

see https://guides.rubyonrails.org/routing.html

end

https://guides.rubyonrails.org/routing.html

38 CHAPTER 1. FROM ZERO TO DEPLOY

Listing 1.11: Setting the root route.
config/routes.rb

Rails.application.routes.draw do

root 'application#hello'

end

With the code from Listing 1.9 and Listing 1.11, the root route returns “hello,
world!” as required (Figure 1.20).13 Hello, world!

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Change the content of the hello action in Listing 1.9 to read “hola,
mundo!” instead of “hello, world!”.

2. Show that Rails supports non-ASCII characters by including an inverted
exclamation point, as in “¡Hola, mundo!” (Figure 1.21).14 To get a ¡ char-
acter on a Mac, you can use Option-1; otherwise, you can always copy-
and-paste the character into your editor.

3. By following the example of the hello action in Listing 1.9, add a sec-
ond action called goodbye that renders the text “goodbye, world!”. Edit
the routes file from Listing 1.11 so that the root route goes to goodbye

instead of to hello (Figure 1.22).

13The base URL for the Rails Tutorial Cloud9 shared URLs has changed from rails-tutorial-c9-mhartl.c9.io to
one on Amazon Web Services, but in many cases the screenshots are identical, so the browser address bar will
show old-style URLs in some figures (such as Figure 1.20). This is the sort of minor discrepancy you can resolve
using your technical sophistication (Box 1.2).

14Your editor may display a message like “invalid multibyte character”, but this is not a cause for concern. You
can Google the error message if you want to learn how to make it go away.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://en.wikipedia.org/wiki/ASCII
https://www.google.com/search?q=invalid+multibyte+character

1.2. THE FIRST APPLICATION 39

Figure 1.20: Viewing “hello, world!” in the browser.

40 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.21: Changing the root route to return “¡Hola, mundo!”.

1.2. THE FIRST APPLICATION 41

Figure 1.22: Changing the root route to return “goodbye, world!”.

42 CHAPTER 1. FROM ZERO TO DEPLOY

1.3 Version control with Git
Now that we have a working “hello, world” application, we’ll take a moment
for a step that, while technically optional, would be viewed by many expe-
rienced software developers as practically essential: placing our application
source code under version control. Version control systems allow us to track
changes to our project’s code, collaborate more easily, and roll back any in-
advertent errors (such as accidentally deleting files). Knowing how to use a
version control system is a required skill for every professional-grade software
developer.

There are many options for version control, but the software development
community has largely standardized on Git, a distributed version control sys-
tem originally developed by Linus Torvalds to host the Linux kernel. Git is a
large subject, and we’ll only be scratching the surface in this book; for a more
thorough introduction to the basics, see Learn Enough Git to Be Dangerous.

Putting your source code under version control with Git is strongly recom-
mended, not only because it’s nearly a universal practice in the Rails world,
but also because it will allow you to back up and share your code more eas-
ily (Section 1.3.3) and deploy your application right here in the first chapter
(Section 1.4).

1.3.1 Installation and setup
The cloud IDE recommended in Section 1.1.1 includes Git by default, so no
installation is necessary in this case. Otherwise, Learn Enough Git to Be Dan-
gerous includes instructions for installing Git on your system.

First-time system setup

Before using Git, you should perform a few one-time setup steps. These are
system setups, meaning you only have to do them once per computer.

The first (and required) step is to configure your name and email address,
as shown in Listing 1.12.

https://git-scm.com/
https://en.wikipedia.org/wiki/Linux_kernel
https://www.learnenough.com/git
https://www.learnenough.com/git
https://www.learnenough.com/git
https://www.learnenough.com/r/learn_enough_git/getting_started/installation_and_setup#sec-installation_and_setup

1.3. VERSION CONTROL WITH GIT 43

Listing 1.12: Configuring the name and email fields for Git.
$ git config --global user.name "Your Name"

$ git config --global user.email your.email@example.com

Note that the name and email address you use in your Git configuration will be
available in any repositories you make public.

If you’re using the cloud IDE, the next step is to configure a default editor
for the times when Git needs one (such as editing, or “amending” changes to
projects). We’ll use the nano editor, which is relatively friendly to beginners
and is the default on the cloud IDE. As of this writing, the default editor gets
reset on logout, and the path is also incorrect, so we need to execute Listing 1.13,
which creates a symbolic link (or “symlink”) to the correct location of the nano
executable.15 (The command in Listing 1.13 is a little advanced, so certainly
don’t worry about understanding it if it looks confusing.)

Listing 1.13: Configuring the default editor on the cloud IDE.
$ sudo ln -sf `which nano` /usr/bin

Next, we’ll take an optional but convenient step and set up an alias, or syn-
onym, for the commonly used checkout command, as shown in Listing 1.14.

Listing 1.14: Setting up git co as a checkout alias.
$ git config --global alias.co checkout

In this tutorial, I’ll always use the full git checkout command for maximum
compatibility, but in practice I almost always use git co for short.

The final step is to prevent Git from asking for your password every time you
want to use commands like push or pull (Section 1.3.4). The options for doing

15Vim is actually my Git preferred editor in this context, and is recommended for people who have Minimum
Viable Vim™ or better (as described in Learn Enough Text Editor to Be Dangerous). To use vim in Listing 1.13,
just replace `which nano` with `which vim`

https://help.github.com/en/articles/changing-a-commit-message
https://www.learnenough.com/r/learn_enough_text_editor/vim/mvv#sec-mvv
https://www.learnenough.com/text-editor

44 CHAPTER 1. FROM ZERO TO DEPLOY

this are system-dependent; see the article “Caching your GitHub password in
Git” if you’re using anything other than Linux (including the cloud IDE). If you
are using Linux (including of course the cloud IDE), you can simply set a cache
timeout as shown in Listing 1.15.

Listing 1.15: Configuring Git to remember passwords for a set length of time.
$ git config --global credential.helper "cache --timeout=86400"

Listing 1.15 configures Git to remember any passwords you use for 86,400 sec-
onds (one day).16 If you’re highly security-conscious, you can use a shorter
timeout, such as the default 900 seconds, or 15 minutes.

First-time repository setup
Now we come to some steps that are necessary each time you create a new
repository (sometimes called a repo for short). The first step is to navigate to
the root directory of the hello app and initialize a new repository:

$ cd ~/environment/hello_app # Just in case you weren't already there

$ git init

Reinitialized existing Git repository in

/home/ubuntu/environment/hello_app/.git/

Note that Git outputs a message that the repository has been reinitialized. This is
because, as of Rails 6, running rails new (Listing 1.4) automatically initialize
a Git repository (a strong indication of how ubiquitous Git’s use is in tech).
Thus, the git init step isn’t technically necessary in our case, but this won’t
hold for general Git repositories, so always running git init is a good habit
to cultivate.

The next step is to add all the project files to the repository using git add
-A:17

16In theory, you could use a longer timeout, but on the cloud IDE the timer seems to gets reset every day or so,
so entering a timeout of more than 86,400 seconds appears to have little effect in this case.

17Many developers use the nearly equivalent git add ., where . (“dot”) represents the current directory. In
the rare cases where the two differ, what you usually want is git add -A, and this is what’s used in the official
Git documentation, so that’s what we go with here.

https://help.github.com/en/articles/caching-your-github-password-in-git
https://help.github.com/en/articles/caching-your-github-password-in-git
https://stackoverflow.com/questions/572549/difference-between-git-add-a-and-git-add
https://git-scm.com/docs/git-add
https://git-scm.com/docs/git-add

1.3. VERSION CONTROL WITH GIT 45

$ git add -A

This command adds all the files in the current directory apart from those that
match the patterns in a special file called .gitignore. The rails new com-
mand automatically generates a .gitignore file appropriate to a Rails project,
but you can add additional patterns as well.18

The added files are initially placed in a staging area, which contains pending
changes to our project. We can see which files are in the staging area using the
status command:

$ git status

On branch master

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: .browserslistrc

new file: .gitignore

new file: .ruby-version

new file: Gemfile

new file: Gemfile.lock

.

.

.

To tell Git we want to keep the changes, we use the commit command:

$ git commit -m "Initialize repository"

[master (root-commit) df0a62f] Initialize repository

.

.

.

The -m flag lets us add a message for the commit; if we omit -m, Git will open
the system’s default editor and have us enter the message there. (All the exam-
ples in this tutorial will use the -m flag.)

18Although we’ll never need to edit it in the main tutorial, an example of adding a rule to the .gitignore file
appears in Section 3.6.2, which is part of the optional advanced testing setup in Section 3.6.

46 CHAPTER 1. FROM ZERO TO DEPLOY

It is important to note that Git commits are local, recorded only on the ma-
chine on which the commits occur. We’ll see how to push the changes up to a
remote repository (using git push) in Section 1.3.4.

By the way, we can see a list of the commit messages using the log com-
mand:

$ git log

commit b981e5714e4d4a4f518aeca90270843c178b714e (HEAD -> master)

Author: Michael Hartl <michael@michaelhartl.com>

Date: Sun Aug 18 17:57:06 2019 +0000

Initialize repository

Depending on the length of the repository’s log history, you may have to type
q to quit. (As explained in Learn Enough Git to Be Dangerous, git log uses
the less interface covered in Learn Enough Command Line to Be Dangerous.)

1.3.2 What good does Git do you?
If you’ve never used version control before, it may not be entirely clear at
this point what good it does you, so let’s look at just one example. Suppose
you’ve made some accidental changes, such as (D’oh!) deleting the critical
app/controllers/ directory.

$ ls app/controllers/

application_controller.rb concerns/

$ rm -rf app/controllers/

$ ls app/controllers/

ls: app/controllers/: No such file or directory

Here we’re using the Unix ls command to list the contents of the app/con-
trollers/ directory and the rm command to remove it (Table 1.1). As noted
in Learn Enough Command Line to Be Dangerous, the -rf flag means “recur-
sive force”, which recursively removes all files, directories, subdirectories, and
so on, without asking for explicit confirmation of each deletion.

Let’s check the status to see what changed:

https://www.learnenough.com/git
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/less_is_more#sec-less_is_more
https://www.learnenough.com/command-line
https://youtu.be/H22t-tiWiLw
https://www.learnenough.com/r/learn_enough_command_line/directories/removing_directories#sec-removing_directories
https://www.learnenough.com/command-line

1.3. VERSION CONTROL WITH GIT 47

$ git status

On branch master

Changes not staged for commit:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

deleted: app/controllers/application_controller.rb

deleted: app/controllers/concerns/.keep

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the “work-
ing tree”; they haven’t been committed yet. This means we can still undo the
changes using the checkout command with the -f flag to force overwriting
the current changes:

$ git checkout -f

$ git status

On branch master

nothing to commit, working tree clean

$ ls app/controllers/

application_controller.rb concerns/

The missing files and directories are back. That’s a relief!

1.3.3 GitHub
Now that we’ve put our project under version control with Git, it’s time to push
our code up to GitHub, a site optimized for hosting and sharing Git reposito-
ries.19 Putting a copy of your Git repository at GitHub serves two purposes: it’s
a full backup of your code (including the full history of commits), and it makes
any future collaboration much easier.

Getting started with GitHub is straightforward: just sign up for a GitHub
account if you don’t already have one (Figure 1.23).

Once you’ve signed up or signed in, click on the + sign dropdown menu and
select “New repository” (Figure 1.24).

19Bitbucket and GitLab are also excellent choices. Like GitHub, GitLab is written in Rails.

https://github.com/
https://github.com/join
https://github.com/join
https://bitbucket.org/
https://gitlab.com

48 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.23: Signing up for GitHub.

1.3. VERSION CONTROL WITH GIT 49

Figure 1.24: Selecting the “New repository” option.

50 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.25: Creating a private repository at GitHub.

On the new repository page, fill the fields with the repository name
(hello_app) and optional description, and take special care to select the “Pri-
vate” option, as shown in Figure 1.25. Although Rails apps are in principle
safe to expose as public repositories, so many things can go wrong (such as ac-
cidentally exposing passwords or private keys) that making all such repositories
private is a prudent default.20

After clicking the “Create repository” button, you should see something
like Figure 1.26, with commands for adding an existing repository to GitHub.

20GitHub allows unlimited public and private repositories.

https://en.wikipedia.org/wiki/Public-key_cryptography

1.3. VERSION CONTROL WITH GIT 51

Figure 1.26: Code for adding an existing repository.

Click on the HTTPS option,21 and then copy the commands in the section for
an existing repository. I suggest clicking the small icon on the right side of the
screen, which automatically copies the commands shown in Listing 1.16 to your
pasteboard buffer, allowing you to paste them into the command-line terminal.

Finally, run the commands in Listing 1.16. You will have to type your
GitHub password, but you won’t the next time (as long as it’s within the cache
timeout period) due to the configuration in Listing 1.15.

21The SSH option shown in Figure 1.26 is excellent for more advanced users, so feel free to use it if you’re
comfortable with generating and configuring SSH keys. Among other things, this option allows your system to
cache your password automatically, rendering the setup step in Listing 1.15 unnecessary.

https://help.github.com/en/articles/connecting-to-github-with-ssh

52 CHAPTER 1. FROM ZERO TO DEPLOY

Listing 1.16: Adding GitHub as a remote origin and pushing up the repository.
$ git remote add origin https://github.com/<username>/hello_app.git

$ git push -u origin master

The commands in Listing 1.16 first tell Git that you want to add GitHub as the
origin for your repository, and then push your repository up to the remote origin.
(Don’t worry about what the -u flag does; if you’re curious, do a web search for
“git set upstream”.) Of course, you should replace <username> in Listing 1.16
with your actual username. For example, the command I ran looked like this:

$ git remote add origin https://github.com/mhartl/hello_app.git

The result is a page at GitHub for the hello_app repository, with file browsing,
full commit history, and lots of other features (Figure 1.27).

1.3.4 Branch, edit, commit, merge
If you’ve followed the steps in Section 1.3.3, you might notice that GitHub au-
tomatically rendered the repository’s README file, as shown in Figure 1.28.
This file, called README.md, was generated automatically by the command in
Listing 1.4. As indicated by the filename extension .md, it is written in Mark-
down,22 a human-readable markup language designed to be easy to convert to
HTML—which is exactly what GitHub has done.

This automatic rendering of the README is convenient, but of course it
would be better if we tailored the contents of the file to the project at hand.
In this section, we’ll customize the README by adding some Rails Tutorial–
specific content. In the process, we’ll see a first example of the branch, edit,
commit, merge workflow that I recommend using with Git.23

22See Learn Enough Text Editor to Be Dangerous and Learn Enough Git to Be Dangerous for more information
about Markdown.

23For a convenient way to visualize Git repositories, take a look at Atlassian’s SourceTree app.

https://www.google.com/search?q=git+set+upstream
https://www.learnenough.com/text-editor
https://www.learnenough.com/git
https://www.sourcetreeapp.com/

1.3. VERSION CONTROL WITH GIT 53

Figure 1.27: A GitHub repository page.

54 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.28: GitHub’s rendering of the default Rails README.

1.3. VERSION CONTROL WITH GIT 55

Branch

Git is incredibly good at making branches, which are effectively copies of a
repository where we can make (possibly experimental) changes without modi-
fying the parent files. In most cases, the parent repository is the master branch,
and we can create a new topic branch by using checkout with the -b flag:

$ git checkout -b modify-README

Switched to a new branch 'modify-README'

$ git branch

master

* modify-README

Here the second command, git branch, just lists all the local branches, and
the asterisk * identifies which branch we’re currently on. Note that git
checkout -b modify-README both creates a new branch and switches to
it, as indicated by the asterisk in front of the modify-README branch.

The full value of branching only becomes clear when working on a project
with multiple developers,24 but branches are helpful even for a single-developer
tutorial such as this one. In particular, because the master branch is insulated
from any changes we make to the topic branch, even if we really mess things
up we can always abandon the changes by checking out the master branch and
deleting the topic branch. We’ll see how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother
with a new branch (opting instead to work directly on the master branch), but
in the present context it’s a prime opportunity to start practicing good habits.

Edit

After creating the topic branch, we’ll edit the README to add custom content,
as shown in Listing 1.17 and Figure 1.29.

24See, for example, the section on Collaborating in Learn Enough Git to Be Dangerous.

https://www.learnenough.com/r/learn_enough_git/collaborating
https://www.learnenough.com/git

56 CHAPTER 1. FROM ZERO TO DEPLOY

Figure 1.29: Editing the README file.

Listing 1.17: The new README file.
README.md

Ruby on Rails Tutorial

"hello, world!"

This is the first application for the

[*Ruby on Rails Tutorial*](https://www.railstutorial.org/)

by [Michael Hartl](https://www.michaelhartl.com/). Hello, world!

1.3. VERSION CONTROL WITH GIT 57

Commit
With the changes made, we can take a look at the status of our branch:

$ git status

On branch modify-README

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

At this point, we could use git add -A as in Section 1.3.1, but git commit
provides the -a flag as a shortcut for the (very common) case of committing all
modifications to existing files:

$ git commit -a -m "Improve the README file"

[modify-README 34bb6a5] Improve the README file

1 file changed, 5 insertions(+), 22 deletions(-)

Be careful about using the -a flag improperly; if you have added any new files
to the project since the last commit, you still have to tell Git about them using
git add -A first.

Note that we write the commit message in the present tense (and, technically
speaking, the imperative mood). Git models commits as a series of patches,
and in this context it makes sense to describe what each commit does, rather
than what it did. Moreover, this usage matches up with the commit messages
generated by Git commands themselves. See Committing to Git from Learn
Enough Git to Be Dangerous for more information.

Merge
Now that we’ve finished making our changes, we’re ready to merge the results
back into our master branch:

https://en.wikipedia.org/wiki/Imperative_mood
https://www.learnenough.com/r/learn_enough_git/getting_started/our_first_commit#aside-commit_messages
https://www.learnenough.com/git
https://www.learnenough.com/git

58 CHAPTER 1. FROM ZERO TO DEPLOY

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating b981e57..015008c

Fast-forward

README.md | 27 +++++----------------------

1 file changed, 5 insertions(+), 22 deletions(-)

Note that the Git output frequently includes things like 34f06b7, which are
related to Git’s internal representation of repositories. Your exact results will
differ in these details, but otherwise should essentially match the output shown
above.

After you’ve merged in the changes, you can tidy up your branches by delet-
ing the topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README

Deleted branch modify-README (was 015008c).

This step is optional, and in fact it’s quite common to leave the topic branch
intact. This way you can switch back and forth between the topic and master
branches, merging in changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch
changes, in this case with git branch -D:

For illustration only; don't do this unless you mess up a branch

$ git checkout -b topic-branch

$ <really mess up the branch>

$ git add -A

$ git commit -a -m "Make major mistake"

$ git checkout master

$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t
merged in the changes.

1.3. VERSION CONTROL WITH GIT 59

Figure 1.30: The improved README file at GitHub.

Push

Now that we’ve updated the README, we can push the changes up to GitHub to
see the result. Since we have already done one push (Section 1.3.3), on most
systems we can omit origin master, and simply run git push:

$ git push

As with the default README, GitHub nicely converts the Markdown in our up-
dated README to HTML (Figure 1.30).

60 CHAPTER 1. FROM ZERO TO DEPLOY

1.4 Deploying
Even though this is only the first chapter, we’re already going to deploy our
Rails application to production! As with the version control setup in Sec-
tion 1.3, this step is technically optional, but deploying early and often allows
us to catch any deployment problems early in our development cycle. The
alternative—deploying only after laborious effort sealed away in a develop-
ment environment—often leads to terrible integration headaches when launch
time comes.25

Deploying Rails applications used to be a pain, but the Rails deployment
ecosystem has matured rapidly in the past few years, and now there are several
great options. These include shared hosts or virtual private servers running
Phusion Passenger (a module for the Apache and Nginx26 webservers), full-
service deployment companies such as Engine Yard and Rails Machine, and
cloud deployment services such as Engine Yard Cloud and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform
built specifically for deploying Rails and other web applications. (As you might
guess, Heroku itself is written in Rails.) Heroku makes deploying Rails appli-
cations ridiculously easy, as long as your source code is under version control
with Git—which is is yet another reason to follow the Git setup steps in Sec-
tion 1.3 if you haven’t already. In addition, for many purposes, including for
this tutorial, Heroku’s free tier is more than sufficient.

The rest of this section is dedicated to deploying our first application to
Heroku. Some of the ideas are fairly advanced, so don’t worry about under-
standing all the details; what’s important is that by the end of the process we’ll
have deployed our application to the live web.

1.4.1 Heroku setup and deployment
Heroku uses the PostgreSQL database (pronounced “post-gres-cue-ell”, and of-
ten called “Postgres” for short), which means that we need to add the pg gem

25Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about acci-
dentally making your app public too soon there are several options; see Section 1.4.3 for one.

26Pronounced “Engine X”.

https://www.phusionpassenger.com/
https://www.engineyard.com/
https://railsmachine.com/
https://www.engineyard.com/features
https://www.heroku.com/
https://www.postgresql.org/

1.4. DEPLOYING 61

in the production environment to allow Rails to talk to Postgres:

group :production do

gem 'pg', '1.1.4'

end

Also be sure to incorporate the changes made in Listing 1.6 preventing the
sqlite3 gem from being included in a production environment, since the
SQLite database isn’t supported at Heroku:27

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

end

The resulting Gemfile appears as in Listing 1.18.
Important note: For all the Gemfiles in this book, you should use the

version numbers listed at gemfiles-6th-ed.railstutorial.org instead of the
ones listed below (although they should be identical if you are reading this
online).

Listing 1.18: A Gemfile with added and rearranged gems.
source 'https://rubygems.org'

git_source(:github) { |repo| "https://github.com/#{repo}.git" }

gem 'rails', '6.0.1'

gem 'puma', '3.12.1'

gem 'sass-rails', '5.1.0'

gem 'webpacker', '4.0.7'

gem 'turbolinks', '5.2.0'

gem 'jbuilder', '2.9.1'

gem 'bootsnap', '1.4.4', require: false

group :development, :test do

gem 'sqlite3', '1.4.1'

gem 'byebug', '11.0.1', platforms: [:mri, :mingw, :x64_mingw]

27SQLite is widely used as an embedded database—for instance, it’s ubiquitous in mobile phones—and Rails
uses it locally by default because it’s so easy to set up, but it isn’t designed for database-backed web applications.
See Section 3.1 for more information.

https://en.wikipedia.org/wiki/SQLite
https://gemfiles-6th-ed.railstutorial.org/

62 CHAPTER 1. FROM ZERO TO DEPLOY

end

group :development do

gem 'web-console', '4.0.1'

gem 'listen', '3.1.5'

gem 'spring', '2.1.0'

gem 'spring-watcher-listen', '2.0.1'

end

group :test do

gem 'capybara', '3.28.0'

gem 'selenium-webdriver', '3.142.4'

gem 'webdrivers', '4.1.2'

end

group :production do

gem 'pg', '1.1.4'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem

gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64_mingw, :jruby]

To prepare the system for deployment to production, we run bundle install
with a special flag to prevent the local installation of any production gems
(which in this case consists of the pg gem), as shown in Listing 1.19.

Listing 1.19: Bundling without production gems.
$ bundle install --without production

Because the only gem added in Listing 1.18 is restricted to a production envi-
ronment, right now the command in Listing 1.19 doesn’t actually install any ad-
ditional local gems, but it’s needed to update Gemfile.lock with the pg gem.
We can commit the resulting change as follows:

$ git commit -a -m "Update Gemfile for Heroku"

Next we have to create and configure a new Heroku account. The first step is
to sign up for Heroku. Then check to see if your system already has the Heroku
command-line client installed:

https://signup.heroku.com/

1.4. DEPLOYING 63

$ heroku --version

This will display the current version number if the heroku command-line in-
terface (CLI) is available, but on most systems it will be necessary to install the
Heroku CLI by hand.28 In particular, if you’re working on the cloud IDE, you
can install Heroku using the command shown in Listing 1.20.

Listing 1.20: The command to install Heroku on the cloud IDE.
$ source <(curl -sL https://cdn.learnenough.com/heroku_install)

After running the command in Listing 1.20, you should now be able to verify
the installation by displaying the current version number (details may vary):

$ heroku --version

heroku/7.27.1 linux-x64 node-v11.14.0

Once you’ve verified that the Heroku command-line interface is installed,
use the heroku command to log in with the mail address and password you used
when signing up (the --interactive option prevents heroku from trying to
spawn a browser):

$ heroku login --interactive

Finally, use the heroku create command to create a place on the Heroku
servers for the sample app to live (Listing 1.21).

Listing 1.21: Creating a new application at Heroku.
$ heroku create

Creating app... done, � blooming-bayou-75897

https://blooming-bayou-75897.herokuapp.com/ |

https://git.heroku.com/blooming-bayou-75897.git

28toolbelt.heroku.com

https://toolbelt.heroku.com/

64 CHAPTER 1. FROM ZERO TO DEPLOY

The heroku command creates a new subdomain just for our application, avail-
able for immediate viewing. There’s nothing there yet, though, so let’s get busy
deploying.

1.4.2 Heroku deployment, step one
At this point, we’re ready to deploy to Heroku.

Step 1
The first step is to use Git to push the master branch up to Heroku:

$ git push heroku master

(You may see some warning messages, which you should ignore for now. We’ll
discuss them further in Section 7.5.)

Step 2
There is no step two! We’re already done. To see your newly deployed ap-
plication, visit the address that you saw when you ran heroku create (i.e.,
Listing 1.21).29 The result appears in Figure 1.31. The page is identical to Fig-
ure 1.20, but now it’s running in a production environment on the live web.30

Exercises
Solutions to the exercises are available to all Rails Tutorial purchasers here.

To see other people’s answers and to record your own, subscribe to the Rails
Tutorial course or to the Learn Enough All Access Bundle.

1. By making the same change as in Section 1.2.4, arrange for your produc-
tion app to display “hola, mundo!”.

29If you’re working on your local machine instead of the cloud IDE, you can use heroku open to open the
site automatically in a web browser.

30Your results may differ if you completed the exercises in Section 1.2.4.

https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access

1.4. DEPLOYING 65

Figure 1.31: The first Rails Tutorial application running on Heroku.

66 CHAPTER 1. FROM ZERO TO DEPLOY

2. As in Section 1.2.4, arrange for the root route to display the result of the
goodbye action. When deploying, confirm that you can omit master in
the Git push, as in git push heroku.

1.4.3 Heroku commands
There are many Heroku commands, and we’ll barely scratch the surface in this
book. Let’s take a minute to show just one of them by renaming the application
as follows:

$ heroku rename rails-tutorial-hello

Don’t use this name yourself; it’s already taken by me! In fact, you probably
shouldn’t bother with this step right now; using the default address supplied by
Heroku is fine. But if you do want to rename your application, you can arrange
for it to be reasonably secure by using a random or obscure subdomain, such as
the following:

hwpcbmze.herokuapp.com

seyjhflo.herokuapp.com

jhyicevg.herokuapp.com

With a random subdomain like this, someone could visit your site only if you
gave them the address.31 (By the way, as a preview of Ruby’s compact awe-
someness, here’s the code I used to generate the random subdomains:

('a'..'z').to_a.shuffle[0..7].join

31This solution, known as “security through obscurity”, is fine for hobby projects, but for sites that require
greater initial security I recommend using Rails HTTP basic authentication. This is a much more advanced tech-
nique, though, and requires significantly more technical sophistication (Box 1.2) to implement. (Thanks to Alfie
Pates for raising this issue.)

https://devcenter.heroku.com/articles/heroku-cli
https://www.google.com/search?q=HTTP+basic+authentication

1.5. CONCLUSION 67

We’ll return to this bit of code in Chapter 4.)32

In addition to supporting subdomains, Heroku also supports custom do-
mains. (In fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re read-
ing this book online, you’re looking at a Heroku-hosted site right now!) See the
Heroku documentation for more information about custom domains and other
Heroku topics.

Exercises

Solutions to the exercises are available to all Rails Tutorial purchasers here.
To see other people’s answers and to record your own, subscribe to the Rails

Tutorial course or to the Learn Enough All Access Bundle.

1. Run heroku help to see a list of Heroku commands. What is the com-
mand to display logs for an app?

2. Use the command identified in the previous exercise to inspect the activity
on your application. What was the most recent event? (This command is
often useful when debugging production apps.)

1.5 Conclusion
We’ve come a long way in this chapter: development environment setup, in-
stallation, version control, and deployment. In the next chapter, we’ll build on
the foundation from Chapter 1 to make a database-backed toy app, which will
give us our first real taste of what Rails can do.

If you’d like to share your progress at this point, feel free to send a tweet or
Facebook status update with something like this:

I’m learning Ruby on Rails with the @railstutorial!
https://www.railstutorial.org/

32As is often the case, this code can be made even more compact using a built-in part of Ruby, in this case
something called sample: ('a'..'z').to_a.sample(8).join. Thanks to alert reader Stefan Pochmann for
pointing this out—I didn’t even know about sample until he told me!

https://www.railstutorial.org
https://devcenter.heroku.com/
https://www.learnenough.com/solutions/ruby_on_rails_tutorial_6th_edition
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/ruby-on-rails-6th-edition#course_and_downloads
https://www.learnenough.com/all-access
https://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20https://www.railstutorial.org/
https://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20https://www.railstutorial.org/

68 CHAPTER 1. FROM ZERO TO DEPLOY

I also recommend signing up for the Rails Tutorial email list33, which will en-
sure that you receive priority updates (and exclusive coupon codes) regarding
the Ruby on Rails Tutorial.

1.5.1 What we learned in this chapter
• Ruby on Rails is a web development framework written in the Ruby pro-

gramming language.

• Installing Rails, generating an application, and editing the resulting files
is easy using a pre-configured cloud environment.

• Rails comes with a command-line command called rails that can gen-
erate new applications (rails new) and run local servers (rails ser-
ver).

• We added a controller action and modified the root route to create a “hello,
world” application.

• We protected against data loss while enabling collaboration by placing
our application source code under version control with Git and pushing
the resulting code to a private repository at GitHub.

• We deployed our application to a production environment using Heroku.

1.6 Conventions used in this book
The conventions used in this book are mostly self-explanatory. In this section,
we’ll go over some that may not be.

This tutorial makes frequent use of command-line commands. For simplic-
ity, all command line examples use a Unix-style command-line prompt (a dollar
sign), as follows:

33railstutorial.org/email

https://www.railstutorial.org/#email
https://www.learnenough.com/command-line

1.6. CONVENTIONS USED IN THIS BOOK 69

$ echo "hello, world"

hello, world

Rails comes with many commands that can be run at the command line. For
example, in Section 1.2.2 we’ll run a local development webserver with the
rails server command:

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix conven-
tion for directory separators (i.e., a forward slash /). For example, the sample
application production.rb configuration file appears as follows:

config/environments/production.rb

This file path should be understood as being relative to the application’s root
directory, which will vary by system. For example, on the cloud IDE (Sec-
tion 1.1.1) it looks like this:

/home/ubuntu/environment/sample_app/

Thus, the full path to production.rb is

/home/ubuntu/environment/sample_app/config/environments/production.rb

I will typically omit the application path and write just config/environ-
ments/production.rb for short.

The Rails Tutorial often shows output from various programs. Because of
the innumerable small differences between different computer systems, the out-
put you see may not always agree exactly with what is shown in the text, but this
is not cause for concern. In addition, some commands may produce errors de-
pending on your system; rather than attempt the Sisyphean task of documenting

https://en.wikipedia.org/wiki/Sisyphus

70 CHAPTER 1. FROM ZERO TO DEPLOY

all such errors in this tutorial, I will delegate to the “Google the error message”
algorithm, which among other things is good practice for real-life software de-
velopment (Box 1.2). If you run into any problems while following the tutorial,
I suggest consulting the resources listed at the Rails Tutorial Help page.34

Because the Rails Tutorial covers testing of Rails applications, it is often
helpful to know if a particular piece of code causes the test suite to fail (indicated
by the color red) or pass (indicated by the color green). For convenience, code
resulting in a failing test is thus indicated with red, while code resulting in a
passing test is indicated with green.

Finally, for convenience the Ruby on Rails Tutorial adopts two conventions
designed to make the many code samples easier to understand. First, some code
listings include one or more highlighted lines, as seen below:

class User < ApplicationRecord

validates :name, presence: true

validates :email, presence: true

end

Such highlighted lines typically indicate the most important new code in the
given sample, and often (though not always) represent the difference between
the present code listing and previous listings. Second, for brevity and simplicity
many of the book’s code listings include vertical dots, as follows:

class User < ApplicationRecord

.

.

.

has_secure_password

end

These dots represent omitted code and should not be copied literally.

34https://www.railstutorial.org/help

https://www.railstutorial.org/help

