
ibm.com/redbooks

 Front cover

Building Multi-Tier Scenarios
for WebSphere Enterprise
Applications

Holger Wunderlich
Diego Cardalliaguet

Russ Heald
Tomokuni Shimizu

Dirk Ziesemann

Architecting an infrastructure for
seamless 3-tier integration

Developing, deploying, and tooling
for interoperability

Security, performance, cost,
and management views

International Technical Support Organization

Building Multi-Tier Scenarios for WebSphere
Enterprise Applications

August 2003

SG24-6956-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (August 2003)

This edition applies to WebSphere Application Server V4.01 for z/OS and OS/390.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . xi
Comments welcome. xi

Part 1. Integrated and multi-tier solution concepts . 1

Chapter 1. Integrated and multi-tier WebSphere application deployment. 3
1.1 Multi-tiered environment considerations . 4

1.1.1 Today’s e-business infrastructures . 4
1.1.2 Platforms to run e-business applications . 6
1.1.3 Basic architectural considerations. 8
1.1.4 Separating Web components from business logic . 9

1.2 Concepts and building blocks for hybrid WebSphere solutions 11
1.2.1 Using the Patterns approach . 11
1.2.2 Mapping the patterns to our identified motivations . 12

1.3 An introduction to tiers and architectures . 14
1.3.1 Introducing multi-tier architectures . 14
1.3.2 Multiple logical and physical tiers . 16
1.3.3 The network layer . 23

1.4 Application architecture and packaging . 25
1.4.1 Model-View-Controller (MVC) design pattern . 27
1.4.2 Application packaging . 29

1.5 Decision guidelines for handling Web applications . 30
1.5.1 Deployment choices . 31

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios . . . 33
2.1 Static Web component relocation . 34

2.1.1 Architectural elements for static Web content acceleration 34
2.2 Dynamic component relocation . 36

2.2.1 Application elements . 36
2.2.2 Overview of hybrid deployment assessment criteria. 37
2.2.3 Options for logical application separation . 42
2.2.4 Options for physical application separation. 47
2.2.5 Options for J2EE inter-component communication. 54

2.3 Evaluation criteria for remote component and EIS access . 58
2.3.1 Performance . 59
2.3.2 Availability . 64
2.3.3 Security . 64
2.3.4 Transaction integrity . 65
2.3.5 Infrastructure criteria . 67
2.3.6 Development and deployment criteria. 68
2.3.7 Systems management . 72
2.3.8 Strategic considerations . 73

Chapter 3. Component interaction characteristics . 75

© Copyright IBM Corp. 2003. All rights reserved. iii

3.1 Connection types . 76
3.1.1 Cross-reference table . 76

3.2 RMI/IIOP access to remote enterprise beans . 76
3.2.1 Performance . 77
3.2.2 Availability . 78
3.2.3 Security . 78
3.2.4 Transaction integrity . 79
3.2.5 Infrastructure . 79
3.2.6 Development and deployment . 80
3.2.7 Systems management . 81
3.2.8 Strategic considerations . 81

3.3 JDBC access to DB2. 82
3.3.1 DB2 Connect. 82
3.3.2 Performance . 83
3.3.3 Availability . 84
3.3.4 Security . 84
3.3.5 Transaction integrity . 87
3.3.6 Infrastructure . 87
3.3.7 Development and deployment . 87
3.3.8 Systems management . 90
3.3.9 Strategic considerations . 90

3.4 JCA access to CICS . 90
3.4.1 CICS Transaction Gateway. 92
3.4.2 Performance . 92
3.4.3 Availability . 93
3.4.4 Security . 94
3.4.5 Transaction integrity . 95
3.4.6 Infrastructure . 96
3.4.7 Development and deployment . 96
3.4.8 Systems management . 99
3.4.9 Strategic considerations . 99

Chapter 4. Static Web component optimization . 101
4.1 Overview . 102
4.2 Dynamic fragment caching concepts . 105

4.2.1 Configuring dynamic fragment cache support. 107
4.3 Configuration 1: Local IBM HTTP Server for static file handling 109

4.3.1 HTTP session considerations . 110
4.3.2 Security considerations . 110
4.3.3 System management considerations . 111
4.3.4 Performance considerations . 111

4.4 Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in 115
4.4.1 HTTP session considerations . 117
4.4.2 Security considerations . 117
4.4.3 System management considerations . 117
4.4.4 Performance considerations . 117
4.4.5 Infrastructure considerations for configurations 1 and 2 120

4.5 Configuration 3: Remote reverse proxy caching server . 122
4.5.1 HTTP session considerations . 124
4.5.2 Security considerations . 124
4.5.3 System management considerations . 124
4.5.4 Performance considerations . 124

4.6 Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in 126

iv Building Multi-Tier Scenarios for WebSphere Enterprise Applications

4.6.1 HTTP session considerations . 127
4.6.2 Security considerations . 127
4.6.3 System management considerations . 127
4.6.4 Performance considerations . 127
4.6.5 Infrastructure considerations for configurations 3 and 4 129

4.7 Application considerations . 131
4.7.1 Application programming and assembly . 131

4.8 Trends and directions . 131

Part 2. Implementation guidelines. 133

Chapter 5. Implementing static Web content acceleration scenarios 135
5.1 Application development and deployment . 136

5.1.1 Analyzing the application . 136
5.1.2 Assembling the application . 138
5.1.3 Deploying the application . 138
5.1.4 Testing the application . 139

5.2 Infrastructure implementation . 140
5.2.1 Common elements of the configurations. 141
5.2.2 Configuration 1: Local IBM HTTP Server for static file handling 142
5.2.3 Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in 144
5.2.4 Configuration 3: Remote reverse proxy caching server 146
5.2.5 Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in . . . 149

Chapter 6. Implementing IIOP-based cross-platform scenarios. 153
6.1 Application development and deployment . 154

6.1.1 Analyzing the application . 154
6.1.2 Assembling the application . 158
6.1.3 Deploying the application into multiple tiers . 159

6.2 Importing the Java Pet Store Demo application into WebSphere Studio Application
Developer V4 . 167

6.2.1 Preparation of files . 167
6.2.2 Importing petstore.ear into WSAD . 168
6.2.3 Importing source code into WSAD . 168
6.2.4 Testing the application in WebSphere Studio Application Developer V4 170
6.2.5 Debugging Java Pet Store Demo . 171
6.2.6 Problems encountered while splitting Java Pet Store Demo 171
6.2.7 Processing a Unicode XML file in WebSphere Application Server Advanced Edition

Version 5. 173
6.2.8 Testing the application . 174

Part 3. Appendixes . 177

Appendix A. Integrated and multi-platform scenario sandbox 179
6.2.9 Our testing tools . 180

Related publications . 183
IBM Redbooks . 183
Other publications . 183
Online resources . 184
How to get IBM Redbooks . 184

Index . 185

 Contents v

vi Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.

© Copyright IBM Corp. 2003. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

™
AIX®
AS/400®
CICS Connection®
CICS®
DB2 Connect™
DB2®
DRDA®
Encina®
HiperSockets™
IBM®

IMS™
iSeries™
MQSeries®
MVS™
Net.Data®
OS/390®
OS/400®
Parallel Sysplex®
pSeries™
RACF®
Redbooks™

Redbooks(logo) ™
RMF™
SupportPac™
Tivoli®
xSeries®
z/OS®
z/VM®
zSeries®
WebSphere®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

viii Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Preface

This IBM® Redbook will help you build multi-tier scenarios for WebSphere® Enterprise
Applications. It applies to WebSphere Application Server V4.01 for z/OS® and OS/390®.

We cover the aspects of architectural, organizational, and technical issues that you need to
consider when selecting an application and runtime design. This book can be used in
conjunction with Patterns for e-business when you are faced with making decisions about
application patterns and are looking for supporting information.

Because our analysis is done from the perspective of the z/OS platform, we discuss
strategies for offloading Web applications from z/OS or from WebSphere for z/OS. We
provide ano overview of different scenarios and give guidance on platforms, security,
deployment, performance, scaling, and EIS integration.

Using this redbook will enable you to architect an infrastructure for seamless three-tier
integration by helping you to develop, deploy, and tool the application for interoperability, as
well as install and configure the different infrastructures.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, Poughkeepsie Center.

Figure 0-1 The team, from the left: Tomokuni, Russ, Diego, Holger and Dirk

Holger Wunderlich is a Project Leader at the IBM International Technical Support
Organization, Poughkeepsie. He writes extensively and teaches IBM classes worldwide on all
areas of e-business with IBM zSeries®. Before joining the ITSO in 2001, he was a
cross-server consulting IT Specialist in Germany. He worked for the IBM eServer Technical
Support Team. He also worked in the OS/390 area as a systems programmer, systems
engineer, and as technical support specialist in the USS and WebSphere world for three
years.

His areas of expertise include cross-server consulting, OS/390 UNIX System Services,
e-business infrastructure, e-business security concepts, large scale ISP architectures and

© Copyright IBM Corp. 2003. All rights reserved. ix

Java/390. He was involved in course development for the IBM OS/390 Web Server and z/OS
WebSphere performance classes. He has authored several Redbooks™ featuring large
systems and e-business topics.

Diego Cardalliaguet is an IT Specialist who works for IBM Spain with INSA-IBM Global
Services. He has three years of experience in the z/OS environment. Diego holds a degree in
Theoretical Physics from the University of Salamanca, Spain. His areas of expertise include
WebSphere Application Server for z/OS, IBM HTTP Server, and UNIX System Services in the
z/OS environment. He works for the Software Support Center in Madrid as a technical
support specialist.

Russ Heald is a Senior IT Specialist who works for the IBM Software Services for
WebSphere team based in Hursley, UK. He has worked for IBM for 14 years, gaining
experience as a software performance analyst, a field technical sales specialist, and most
recently as a services consultant. His areas of expertise include WebSphere Application
Server for z/OS, CICS® Transaction Server for OS/390, CICS Transaction Gateway, and
WebSphere Studio tools for z/OS services.

Tomokuni Shimizu is an IT Specialist in Japan. He has five years of experience in Advanced
Technical Support (AP/ATS). He has been involved in a WebSphere Application Server
project for z/OS for the last three years and is responsible for developing testing tools in IBM
Japan WebSphere for the z/OS team.

Dirk Ziesemann is an IT Specialist in Germany, currently working as a field technical sales
specialist for the IBM Software Group in Stuttgart. He has 13 years of technical experience
with IBM. His areas of expertise include the e-business infrastructure and the WebSphere on
z/OS platform.

Thanks to the following people for their contributions to this project:

Richard Conway
IBM Poughkeepsie, IBM International Technical Support OrganizationPoughkeepsie

Hilon Potter
IBM Poughkeepsie, IBM Design Center for e-transaction processing

Ivan Joslin
IBM Poughkeepsie

Thomas Hackett
IBM Poughkeepsie, Technical Marketing Support WebSphere Application Server

Michael Everett
IBM Poughkeepsie, WebSphere Application 390 Integration Test

Alfred Schwab
IBM International Technical Support Organization, Poughkeepsie Center

Viviane Anavi-Chaput
IBM Poughkeepsie, ITSO

Greg Geiselhart
IBM Poughkeepsie, ITSO

Franck Injey
IBM Poughkeepsie, ITSO

x Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Bob St. John
IBM Poughkeepsie, WebSphere Performance

Bart Steegmans
IBM Almaden Research Center, ITSO

Vicente Suarez
IBM Hursley, EMEA WebSphere Laboratory Services

Egide Van Aerschot
IBM Montpellier, New Technologie Center

Richard Johnson, Simon Knights, and Phil Wakelin for answering CICS Transaction Gateway
questions.

Curt Cotner, Sean Lee, Enzo Cialini, and Grant Hutchinson for answering DB2® Connect™
questions.

Cristina Bazal Periañez
EMEA BO, IBM Technical Support Center, Spain.

Vince Pedroza for providing the PetStore application.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xii Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Part 1 Integrated and
multi-tier solution
concepts

In Part 1, we introduce the basic architectural, organizational and technical issues involved in
hybrid deployment scenarios. We provide a high level view of e-business infrastructures, and
discuss the pattern approach with regard to e-business applications.

We also cover physical and logical tiers and topologies, application architecture, and
packaging, and discuss handling the Web components of a complex application in a different
way than the EJB components. Since we treat this topic from a zSeries perspective, we also
discuss when it may valid to take apart the application and move the Web content or the Web
container to a different platform than a zSeries server.

In the first two chapters, we provide a detailed view of a hybrid deployment scenario based on
our findings, including security, performance, availability, transaction integrity and systems
management aspects.

In Chapter 3, we cover interaction characteristics between the components of an e-business
application. We mention EJB access, database access and JCA access to backend systems,
also including security, availability and performance aspects.

In Chapter 4, we describe the possibilities for handling static Web content in an e-business
environment.

Part 1

© Copyright IBM Corp. 2003. All rights reserved. 1

2 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Chapter 1. Integrated and multi-tier
WebSphere application
deployment

Currently there are different methods in a WebSphere environment of serving static content of
Web sites or complete Web applications. You can do this either on one single platform, or split
up the application and deploy the parts to different platforms.

In this chapter we explain why you might want to split up the application and possibly host the
Web content or the Web container on a different platform than z/OS. (Although a
cross-platform scenario is not the only deployment choice for loosely coupled applications,
the Model-View-Controller architecture leads to this option.)

An overview is given of possible infrastructures and topologies, as well as the application
architecture and packaging.

1

© Copyright IBM Corp. 2003. All rights reserved. 3

1.1 Multi-tiered environment considerations
In the past, data centers of large enterprises grew more or less independently of the outside
world. The frontends to these data centers were mainly coaxial terminals or PC application
clients connected via SNA architectures. The applications either had a limited functionality, or
extended efforts were necessary to administer and maintain them.

Today, the e-business world has reached most companies, and dealing with such challenges
is one of the most important tasks facing enterprise IT departments.

1.1.1 Today’s e-business infrastructures
Today’s business needs, such as user-to-business or business-to-business relations, are
forcing organizations to open up their data centers to a certain extent and connect them to the
open Internet world, and new functionality must be provided to make these processes as
easy as possible.

� Standards are necessary in order to plug in the different environments from vendors,
business partners or customers, without additional effort.

� Enterprises have to deliver the same functions of existing enterprise information systems
(EIS), in combination with new business functionality that provides services to a broad
range of users.

� Pure green-screen applications are migrated to complex and high function graphical user
interface applications.

� Fat PC application clients become centralized and are represented to the user via an
easy-to-maintain standard Web browser.

To manage these challenges, a complete infrastructure layer is introduced which eliminates
the need for maintaining all the physical terminals and PC applications. A new kind of
software (called middleware) handles all the workload, data flow, and connectivity between
users and the traditional backends.

Figure 1-1 High level view of e-business infrastructures

Figure 1-1 represents a typical high level e-business infrastructure view. It shows the user tier
and the backend or EIS tier, connected by middleware, the so-called middle tier. Each of
these tiers handles a particular set of functions.

The middle tier handles security aspects; end-to-end connectivity between users and EIS
functions; serving Web content (with Web servers like the IBM HTTP Server); providing

Intranets
Extranets

Internet

E
d

ge
 S

er
ve

rs
E

dg
e

S
er

ve
rs

Web Web
PresentationPresentation

serversservers

Directory
& Security
Services

Web Web
ApplicationApplication

serversservers
Transaction

 Servers

Data
Servers

4 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

integration business logic (with Web application servers like the WebSphere Application
Server). We describe this new infrastructure layer in detail later in this book.

The EIS tier handles processing database transactions (transaction and database servers,
such as IMS™, CICS and DB2).

In the last few years, e-business has become one of the most rapidly growing business areas
in the world. Many enterprises have seen the possibility of reaching more potential customers
and the integration of vendors and partners, as well as the need to automate their processes.
But once an enterprise is opened up to the world, the IT department faces new challenges. To
have e-business infrastructures enabled means:

� Unpredictable and unlimited growth
� “Peaky” and unpredictable workload
� Once established, a direct affect on other businesses and processes

Furthermore, all these challenges must be handled in the face of constantly growing pressure
from competitors, higher user expectations, and tighter IT budgets. But because of the
economic downturn, and because people and organizations are becoming more familiar with
these technologies, e-business is now considered business as usual.

In the meantime, many enterprises have implemented architectures which rely on all the
components that a robust and flexible e-business is made of. These enterprises have to
reduce their costs and improve their business processes on one side, while on the other side
they have to extend their reach to customers, business partners and suppliers and have to
meet service level agreements.

Since this part of the outside world is unpredictable, the architecture and the infrastructure
needs to be flexible, highly reusable, well performing, reliable and scalable. To help
enterprises ensure the delivery of their EIS services, the Java 2 platform, Enterprise Edition
(J2EE) was introduced.

The J2EE platform helps to reduce the cost and complexity of developing applications that
deliver the EIS services. It is designed to provide solutions that can be rapidly deployed and
easily enhanced independent of the physical platform they are running on. Further details
about the J2EE architecture can be found in 1.3, “An introduction to tiers and architectures”
on page 14.

Now let’s examine overall considerations to keep in mind when implementing new e-business
solutions.

Chapter 1. Integrated and multi-tier WebSphere application deployment 5

1.1.2 Platforms to run e-business applications
Before we discuss why you might want to handle Web components of e-business applications
in different ways, let’s take a look at the advantages of different platforms.

IBM offers servers for all needs and all operating system platforms:

� zSeries - offers “mainframe” qualities of service with OS/390 and z/OS, z/VM® and Linux
� pSeries™ - offers fast UNIX servers with AIX®
� iSeries™ - offers integrated business application servers with OS/400®
� xSeries® - offers Intel-based Windows and Linux servers

Figure 1-2 Mapping infrastructure segments to different machine architectures

As a possible environment for handling hybrid applications, we envision zSeries machines in
combination with RISC or Intel servers, as represented by IBM pSeries or xSeries servers.

zSeries and z/OS
The “z” in zSeries stands for “zero downtime”, which is the goal of this platform. To provide
continuous availability, it differentiates from other server platforms in terms of hardware and
software reliability.

zSeries server architecture relies on redundant and self-healing components to prevent any
outage due to hardware failures. The z/OS operating system (like its predecessor MVS™)
was designed to ensure high availability to users. It is highly integrated with its underlying
hardware and takes advantage of all the features the zSeries server provides.

To obtain the highest continuous availability, many new functions were added to the operating
system, such as recovery services for operating system code, address space isolation, and
storage key protection. The availability of applications is ensured by functions such as

PortalsPersonalization Mobile Commerce Collaboration

Web
Presentation

Servers

Directory
and Security

Servers
E

d
g

e
S

er
ve

rs

WebSphere and eServers: a total solution

Web Web
Application Application

ServersServers

DataData
ServersServers

TransactionTransaction
ServersServers

Extranets

Service
Providers

Intranets

6 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Workload Manager (WLM), Resource Recovery Services (RRS), and Automatic Restart
Manager (ARM).

Figure 1-3 Advantages of the zSeries platform

The zSeries platform offers the following QoS:

� Lower total cost of ownership than competitors
� Higher availability than competitors
� Unmatched reliability
� Innovative technology (HiperSockets™, virtualization using z/VM)
� Outstanding flexibility and scalability for growth
� Simplified systems management
� System and transactional security
� Accounting

pSeries with AIX
The pSeries, with its AIX operating system, is IBM’s representative in the arena of RISC
processor-based systems. (Similar products are available from other vendors, and the
advantages of this architecture apply to their products as well.)

The “p” in pSeries stands for “performance”, which is the goal of this platform. It offers the
following qualities of service:

� Extremely powerful and reliable systems
� Logical partitioning - for flexibility and scalability
� Clustering technology - for high availability solutions
� Ease of installation, maintenance, and integration
� Large number of applications available
� Widespread skill base available

EESS

JJ

EESS

JJ

EESS

JJEESS

JJ

Coupling
Facility

z/OS

Workload Manager
Network

WAS
Servers

CICS
IMS
DB2

Locks CacheDirectory

z/OS
Sysplex services
Network services

Control Region Server Regions

WLM Queue

Containers

zSeries servers deliver:
Self-healing and redundant
hardware
Functions like Coupling Facilities,
logical partitioning, Intelligent
Resource Director and
HiperSockets
...and much more

OS/390 and z/OS offer:
Intelligent workload management
Resource recovery services
Parallel Sysplex and GDPS
Capacity on demand ("white
space")

WebSphere for z/OS:
Is fully sysplex-enabled
Relies on resource recovery services as
resource manager
WLM manages the replication of servers
for scalability, availability, dynamic
activation of address spaces, and
balancing of work across servers and
systems

Quality of service
 (QoS)

Chapter 1. Integrated and multi-tier WebSphere application deployment 7

As we mentioned earlier this book provides the perspective of a mainframe audience but
we’ve seen that for several reasons it can be valid to handle specific workload on other
platforms because of it’s advantages.

1.1.3 Basic architectural considerations
The infrastructure consists of hardware, software, and network components selected for their
ability to meet the needs of today and tomorrow. Following is an overview of general
considerations:

� Scalability
– Vertical and horizontal techniques, caching, workload segmenting
– Coordinate work and data

� Availability
– Eliminate single points of failure
– Ensure redundancy and reliability

� Security
– A rather closed system vs. complex infrastructures

� Cost aspects
– Hardware and software cost for a given infrastructure
– Complex infrastructure causes more infrastructure costs

In the following sections, we examine these considerations in more detail.

Scalability
Proper understanding and implementation of scalability is a key factor in improving the
availability and performance of your e-business infrastructure. Scaling techniques are
especially useful in multi-tier architectures when using different components in combination
like edge servers, web servers, web application servers, transaction servers and databases.

Scalability can be achieved using several techniques:

� Vertical scaling refers to having one large machine and if necessary, utilizing more
resources in the same machine. That is the case for WebSphere Application Server for
z/OS when the Workload Manager (WLM) starts new server regions within the same
LPAR.

� Horizontal scaling refers to having a number of small machines or LPARs and, if the
workload requires more resources, either an additional machine will be added or WLM will
spread the workload over more LPARs. (In that case, you will have one more problem to
solve: the coordination of work and data across multiple servers.)

� Caching is also a kind of scaling technique wherein the path length of an issued request
between the request time and resulting response is reduced. Different platforms provide
different availability features or functions. For your application, you have to determine the
probable demand to decide how scalable the infrastructure needs to be.

Availability
The most common way to achieve availability is to provide redundant components, with the
objectives being to avoid single points of failure and to provide correlating resources to handle
the maximum workload. Additionally, the platform itself provides individual solutions to
achieve availability. Before deploying an application to a specific platform, however, you need
to determine which availability requirements the platform must fulfill.

8 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Security
The most secure system is a single and isolated small system without any connections to the
outside world. Whenever you add more layers to the architecture, or implement redundancy
and failover structures to the infrastructure, the complexity of handling security problems
grows exponentially. The more new customers, vendors, or partners you have—each with its
own environment—the more complex the security infrastructure will be.

Cost
Regarding the issue of costs, you’ll face similar challenges. With an isolated small system,
you’ll have the lowest possible cost, but probably won’t be able to fulfill any user demands.
The more complex an infrastructure you are going to build, the more costs have to be
calculated. Higher complexity can necessitate integration of different building blocks,
specialized on certain functions, which can lead to further integration of different hardware
and software components. Additional and more highly skilled staff may also be needed to
implement and maintain such complex environments. And finally, there is a direct relationship
between costs and scalability, availability and security.

As these examples point out, when considering the general aspects of an architecture, you’ll
encounter unpredictable challenges such as growth and workload. When meeting these
challenges, you also must find the optimal balance between endless scalability and low
response times, between availability and outages, between total security and unrestricted
access to your data, and ultimately between an expensive, complex solution which will never
deliver a return on investment, and a very simple solution that nobody can use.

There are, of course, many other aspects to consider, but these items provide an outer
framework for all the other architectural considerations.

1.1.4 Separating Web components from business logic
Spreading an application over two different platforms is a process that requires careful
planning, development and deployment. For the development process, it means that you must
separate the Web components from the business logic and provide two applications. For the
deployment process, it means you have to run two independent deployment processes and
maintain two different runtimes.

So why would anyone want to separate Web components from the business logic?
Customers cite many different reasons; for example, they may need functionality available on
other platforms. They may have seen that they can handle some kind of workloads more
efficiently on non-z/OS platforms. From an organizational perspective, they may have existing
infrastructure to reuse, or have a dual vendor strategy that leads to two different runtimes.

In the following sections, we discuss these issues in more detail—and also examine other
possibilities for implementing a separated deployment configuration, including a hybrid
deployment model.

Performance
Meeting performance demands is an important criteria for successful e-business. Whenever
possible, functionality to gain performance increases should be implemented as soon as
possible. Depending on the type of application or the infrastructure, you will get different
performance characteristics by using mechanisms like caching or offloading the application
components from z/OS.

Performance considerations also take into account workload; for example, which platforms
are better at handling particular kinds of workload? If an application is focused on presenting
static content, the workload should be handled as close as possible to the user to reduce the

Chapter 1. Integrated and multi-tier WebSphere application deployment 9

pathlength of requests. It makes sense then to separate the Web application from the
business logic.

If the application focuses on business logic, uses transactions, or heavily accesses
databases, then these operations should take place as close as possible to the backend.
Tighter backend integration ensures the exploitation of qualities of service of the zSeries
platform. If the overhead of the Web content is not very significant, then there is less value in
separating the application, running two deployment processes, and maintaining two runtimes.
A good rule of thumb is probably the ratio of instruction consumption of the Web application
and the business components.

There is an ongoing user demand for new functionality. If there’s a demand for a piece of
functionality that is not supported on the z/OS platform, you may have to offload this part of
the application to another platform. (This scenario can occur when a framework is used or a
customer buys “off the shelf” software, and the software or the framework exploits APIs that
are not supported with WebSphere on z/OS.)

Flexibility

Separating the applications can lead to greater flexibility. The models and concepts used to
run hybrid applications lead to physical and logical independence of their components (see
1.2, “Concepts and building blocks for hybrid WebSphere solutions” on page 11).

The presentation layer requires changes more often than the business logic. When the Web
application runs on a separate platform, you can easily change the Web layout without
affecting backend structures and without redeploying the complete application.

Cost considerations
Whenever customers deploy new applications to their zSeries platform, it may increase the
workload so much that a machine upgrade will be necessary. Any processor upgrade directly
affects software costs, and therefore a Total Cost of Ownership (TCO) study needs to be
done.

On the other hand, the separation of Web components brings in new physical machines, and
probably they have to be redundant—so what will it cost to offload Web applications to a
separate platform, where new hardware and software will be needed? What does it mean to
your overall z/OS IT cost to handle the workload on this platform? Regarding quality of
service, you also need to determine—is it really necessary to apply to a Web application the
quality of service of the zSeries platform?

Existing infrastructure or organizational requirements
Existing infrastructure or organization requirements probably exert the most influence when
enterprises introduce e-business. Usually the structures in an enterprise’s data center have
existed for years and represent a significant investment; it would be very expensive to change
everything just to deploy a new kind of application.

Note: With regard to performance, keep in mind that specialized systems (caching server,
load balancer, transaction server, and so on) are available for all the different runtimes.
Because of this specialization, these systems are able to handle specific kind of workloads
more efficiently.

10 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Hybrid deployment scenarios offer greater flexibility in terms of geographical considerations in
separating data centers. The backend resides in a high security area, whereas the Web
components of an application do not need such an infrastructure.

Many customers also have a organizational structure that separates their IT shop into
“mainframe world” and a “distributed world” departments. And as mentioned earlier, they may
also favor a dual vendor strategy: on the mainframe side, IBM zSeries is dominant, while in
the distributed world, they rely on environments provided by other vendors. If applications are
developed to meet this requirement, it makes it easier for the responsible departments to
deploy and maintain their parts of these applications.

Security
The existing security infrastructure is also an important consideration. If an entire e-business
application runs on the zSeries platform, it means that the presentation layer is also located
there. This topology can result in direct access to the mainframe. Many enterprises have rules
that authentication must be handled in their demilitarized zone (DMZ) environment.
Furthermore, their policies do not allow any zSeries machines to be part of their DMZ. Again,
this automatically means that the application is a candidate for a hybrid deployment.

Summary
These are some of the main reasons why you might consider using a hybrid application
environment. Hybrid deployment scenarios offer greater flexibility in terms of geographical
considerations in separating data centers. The backend resides in a high security area,
whereas the Web components of an application do not need such an infrastructure.

1.2 Concepts and building blocks for hybrid WebSphere
solutions

There are several strategies you can use to run specific application components on specific
servers, such as caching static content, offloading static components, and offloading the Web
applications to another platform. In the following sections we provide an overview of methods
and concepts for developing hybrid WebSphere solutions which will help you build the
infrastructure and design the application.

1.2.1 Using the Patterns approach
We follow the “Patterns for e-business” approach, which is a proven method for implementing
e-business solutions through the exploitation of existing structures and the reuse of
components. These structures and components are modeled as levels of the “layered asset
model”, where each level builds upon the previous one; see Figure 1-4 on page 12.

We map our approach to the levels of the layered asset model. For a more detailed
description of the Patterns model, refer to the IBM Redbook series Patterns for e-business.

Chapter 1. Integrated and multi-tier WebSphere application deployment 11

Figure 1-4 The layered asset model of Patterns for e-business

This structure is very useful as a template for a roadmap for implementing new e-business
solutions. It shows how you can bind existing requirements, business processes, and
environment structures together as a base for making application, runtime, and product
decisions.

1.2.2 Mapping the patterns to our identified motivations
In 1.1.4, “Separating Web components from business logic” on page 9, we identify many
organizational and operational drivers for separating Web components from business logic.
Now we’ll map these drivers to the Patterns model, in order to determine at which step in the
process of introducing a new e-business application we will have to consider which issue.
Figure 1-5 on page 13 illustrates this mapping.

Most of the drivers fit into several layers, but when moving from the top levels downward, they
evolve from abstract description to specific solution. An example for this development is
security; in the Business patterns, general security policies should exist—while at the
Application and Runtime pattern levels, the policies become more granular with the
implementation methodology.

Note: Refer to the Patterns for e-business Web site for more detail about this structure,
and to learn how to navigate easily from the top down through the layered Patterns asset
model:

http://www.ibm.com/developerworks/patterns/

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns

12 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

http://www.ibm.com/developerworks/patterns/

Figure 1-5 Mapping patterns with reasons for hybrid deployment scenarios

Business patterns
Business patterns reflect relationships between users, business organizations or
applications, and the data to be accessed. This area is mainly influenced by existing
organizational and infrastructure requirements.

For example, what kind of customer business processes will have to be handled by this
application? Which service level agreements with users and partners will have to be handled?
Which security policies have to be considered?

Integration patterns
Integration patterns can integrate multiple Business patterns to solve a complex business
problem. They are represented by access or application integration, which means they
integrate either a number of businesses through one common entry point, or concentrate
multiple applications and data sources without direct user invocation.

This is where our example using existing applications like content management systems
fits—can we integrate such systems seamlessly into a new application?

Composite patterns
Composite patterns are combinations of several commonly used Business and Integration
patterns.

Application patterns
After identifying the Business and Integration patterns, we then define the high level logical
components that make up the entire application, and how these components interact. The
Application patterns split up the application into its basic components (such as presentation,
application, and backend tiers).

Customer
requirements

Product
mappings

Runtime
patterns

Application
patterns

Composite
patternsBusiness

patterns
Integration
patterns

Availability Scalability Security Costs

basic requirements

existing
applicationsexisting

infrastructures performance
topics

security
policies

flexibility functionality

Chapter 1. Integrated and multi-tier WebSphere application deployment 13

If existing infrastructures already provide asynchronous communication, they have to be
considered here (for example, when defining the method of communication between Web
applications and the backend. If customers use MQseries as their common way of
communication in the enterprise, then the application will exploit these capabilities, too).

Runtime patterns
Runtime patterns refine the Application patterns with more specific functions to be performed.
The focus of Runtime patterns is on the logical nodes required to run these functions, and
where they are placed in the overall network structure.

Currently, it is irrelevant which physical machines they exist on. In our example using existing
infrastructures, the issue is how to map the identified Application pattern with existing runtime
nodes in the existing network. Questions such as how to position the Application patterns to
meet security policies and their physical implementation will arise here.

Product mappings
Performing product mappings is the last step in defining the network structure for an
application. In this step, you correlate runtime nodes (from the previous step) with real
products. This allows you to find the products that best suit your e-business application.
Customer requirements such as dual vendor strategy should be addressed at this point, and
performance issues can be addressed with appropriate products.

Summary
This brief excursion into the world of Patterns should help you in identifying at which step of
an e-business application introduction process the decision to use a hybrid application can be
made. This decision can take place at a very early stage in this process or during the last
step, based on the customer’s motivation.

1.3 An introduction to tiers and architectures
In the following sections we introduce the logical and physical components that comprise an
e-business solution.

1.3.1 Introducing multi-tier architectures
In the past, many installations used two-tier application topologies; the user was directly
connected to the enterprise information systems (EIS) tier that was also running the
application, and the EIS services had to be delivered directly to each user.

Initially, these two-tier (also called client-server) application models promised functionality
and scalability. However, with increasing numbers of users, the complexity of delivering
services to each individual user led to major limitations.

The administrative overhead caused by installing and maintaining the business logic for each
user, or managing each user access within the EIS tier, demanded practical solutions. By
implementing enterprise services as multi-tier applications, these two-tier limitations can be
avoided; see Figure 1-6 on page 15.

14 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 1-6 Moving from two-tier to multi-tier application models

By implementing a middle tier, you gain tremendous flexibility. The direct impact to the EIS tier
is reduced by flexible and customizable middleware. The client can be reduced to a fairly
maintenance-free browser interface, while the middle tier takes care of services to the user.
With multi-tier architectures, you are able to deliver the necessary manageability, accessibility,
and scalability.

As previously mentioned, enterprises rely on the J2EE architecture when introducing new
e-business applications. J2EE is specially designed to support applications that implement
enterprise services for users, customers, vendors, and business partners.

If you follow Sun’s definition of the Java 2 Enterprise Edition (J2EE) application model, then
you automatically implement multi-tier applications.

Details of the individual tiers
In its architectural blueprint, Sun identifies the following tiers (these tiers are illustrated in
Figure 1-7 on page 16):

Client tier - Web client or Java client

� The Client tier can be represented by several types of clients. Many J2EE services are
designed to support Web browser clients. These clients communicate with the Web
application represented by servlets and JSPs via the HTTP protocol.

The other types of clients are Java clients. They can interact directly with EJBs through
Remote Method Invocation (RMI) over Internet Inter-ORB Protocol (IIOP).

Note: For detailed information about Sun’s definition of the J2EE architecture, refer to the
Simplified Guide to the Java2 Platform, Enterprise Edition; this and other relevant
documents can be found at:

http://java.sun.com/j2ee/

EIS Tier

Existing
data

Client

First tier

Business
logic

EIS Tier

Existing
data

Client

First tier
Business

logic

or
ServletServlet

JSPJSP

EJBEJB

Client

First tier Middle tier

Business
logic

EIS tier

Existing
transactions

Existing
data

Fat PC application client

Coaxial terminal

Chapter 1. Integrated and multi-tier WebSphere application deployment 15

http://java.sun.com/j2ee/

Web or Presentation tier - Servlets, JSPs, HTML pages

� The Web tier hosts static content (HTML, GIF, JPG), dynamic content (the presentation
layer, JSPs) and controller functions (servlets) for the application. The presentation of data
to the user can be done in different ways. In a Web-based presentation, this tier is
responsible for formatting the output of the EJB tier to a format the client is able to read.

EJB tier - business logic and data access

� The EJB tier hosts the business logic of the entire application. It contains all the logic
necessary to perform all the application’s functions.

EIS tier - databases and existing transaction systems

� The EIS contains databases and data used and produced by the application. The
transaction systems that are accessed by the EJB tier are also located here.

Figure 1-7 Tiers in a multi-tiered architecture

Keep in mind that even though four tiers are listed, you do not need to use or implement all of
them. However, you should understand the function of these tiers, and their relationships, in
order to design a proper application and its corresponding infrastructure.

1.3.2 Multiple logical and physical tiers
Tiers cannot exist alone in an IT infrastructure; you need to map the individual tiers to
e-business architectures. These are separated into logical and physical architectures using
multiple-tier topologies.

Why use multiple tiers
Many new e-business applications are designed by following the model-view-controller (MVC)
design pattern. This pattern separates an application logically into three parts (the model, the
view, and the controller), which represent different functionalities within this application:

� The model represents the business logic.
� The view is the page constructor to present data to users.
� The controller is responsible for all interactions.

This flexible application design represents multiple logical tiers. It is now a basic requirement
for separating applications on physical tiers, as well. For more information about the MVC
pattern, see 1.4, “Application architecture and packaging” on page 25.

This design pattern for the application offers several advantages:

� Looser coupling of application components

Web TierClient Tier EJB Tier EIS Tier

Client
Browser

Existing
Data or

Transaction
ServletServlet

JSPJSP

EJBEJB

16 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

– Easier reuse of components
– Easier to change parts of the application
– Separated and more granular defined responsibilities

� Different components can be deployed to different tiers

– Platform flexibility
– Different qualities of service requirements can be met
– Tiers can scale individually (horizontally and vertically)

Remember, however, that using the MVC pattern does not necessarily lead to a hybrid
deployment scenario. It simply provides the flexibility to decide on different runtime nodes,
based on given requirements.

Logical tiers
The Java 2 Enterprise Edition reference architecture is a three-tier architecture (or four-tier,
when including the client tier). Note that this is always a logical architecture, and does not tell
you anything about the physical implementation of the application.

Figure 1-8 Applications with different numbers of logical tiers

Note: We describe this as a three-tier application because we count the client tier in our
examples of logical architectures. We apply this method to all of the following examples
and discussions, as well.

Web TierClient Tier EIS Tier
Controller

Client
Browser

Existing
Data or Transaction

ServletServlet

JSPJSP

View

Client Tier EJB Tier EIS Tier

Model

JAVA
Client

Existing
Data or Transaction

EJBEJB

Logical 3-tier application without a web tier

Logical 3-tier application without a EJB tier

(RMI over IIOP)

(RMI over IIOP)

Chapter 1. Integrated and multi-tier WebSphere application deployment 17

When navigating from the top down through the pattern model, you first make decisions about
the logical structure of an application. By the time you reach the end of the Application
pattern, the logical layout is fixed.

The decisions you make should be based on business needs that you previously defined. The
dotted lines shown in Figure 1-7 on page 16 illustrate that tiers can be combined, or even
skipped; note the following examples:

� If it is impossible or unnecessary to implement a Web tier because of existing
requirements, be aware that clients can access the business logic directly.

� You also do not need the EJB tier with the business logic. If the purpose of an application
is to present database content only, be aware that the Web tier can handle this by itself.

Physical tiers
After you decide on the logical architecture, you can then plan the physical implementation.
There is great variety and flexibility available when mapping logical architectures to physical
topologies; again, this task depends on existing business needs and infrastructures.

In our case, we assume that a four-tier logical architecture exists, including a Web tier, an EJB
tier, and an EIS tier. Several constellations are possible, from a four-tier topology, (where all
four tiers will run separated on different servers) to a one-tier topology (where all tiers will be
combined on one server); see Figure 1-9.

Figure 1-9 Mapping of logical J2EE components to physical tiers

Client Tier
Server Tier

Web/EJB Tier EIS Tier

Web Tier EJB/EIS Tier

2-Tier Physical Architecture

3-Tier Physical Architectures

1

3

2

Existing
Data or

Transaction

Controller

ServletServlet

JSPJSP

Model

EJBEJB

View

ClientClient
BrowserBrowser

Controller

Model

ServletServlet

JSPJSP

EJBEJB

View e-Server

ClientClient
BrowserBrowser

ClientClient
BrowserBrowser

Client Tier

Client Tier

e-Server

Existing
Data or

Transaction

Controller

ServletServlet

JSPJSP

View e-Server e-Server

Existing
Data or

Transaction
Model

EJBEJB

e-Server

18 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 1-9 illustrates the following three configurations:

Two-tier architecture

1. This is the simplest architecture. When dealing with static content, pages, and pictures, it
is the easiest to implement and support. In a two-tier architecture for dynamic e-business
applications, the Web, EJB and EIS logical tiers reside on the same server.

This is the way WebSphere for z/OS applications are usually designed. This two-tier
architecture is almost never used on other platforms because only the WebSphere
Application Server for z/OS can reside on two images in a Parallel Sysplex®. This model
describes the overall structure of an integrated solution as an alternative to a hybrid
solution.

Three-tier architecture

In a three-tier architecture, there are at least two options:

2. Place the Web and EJB components on the same server, as a middle tier. The EIS
component would then reside on a third (or backend) tier/server.

3. Place the Web tier (servlets and JSPs) on the middle tier and the EJB and EIS tier on the
backend server. This option isolates the presentation layer from the business logic and
data access. This solution is sometimes referred to as a distributed application model; we
refer to it as a hybrid deployment scenario or hybrid solution.

When we map these options to our deployment scenarios, we are led to two different physical
architectures: the integrated deployment scenario with a physical two-tier topology, and the
hybrid solution with a physical three-tier topology. Both solutions represent a logical three-tier
architecture.

Possible topologies with logical and physical tiers
When developing and implementing applications, the choice in most cases is between
two-tier and three-tier architectures. Multi-tier e-business infrastructures provide opportunities
for improved flexibility, scalability, and performance. Unfortunately, along with these
advantages come increased complexities and challenges.

Chapter 1. Integrated and multi-tier WebSphere application deployment 19

Figure 1-10 Mapping multiple logical and physical tiers

Most modern application architectures require flexibility and thus are usually divided into
logical layers for presentation logic, business logic, and data serving. The infrastructure of
most large sites is comprised of two or more physical tiers, with application function
distributed among participating servers; see Figure 1-10.

Depending on the workload pattern, presentation and business logic may co-reside in one
tier, with data serving in a separate tier—or, each may have its own tier, thus creating a
three-tier infrastructure.

In some cases, it may make sense to consolidate all logical layers into a single large system
complex. At the highest level, this physical two-tier infrastructure is simple, performs well, and
is the easiest to maintain. In many two-tier implementations, customers place both
presentation logic and business logic on the backend tier.

In this implementation, there is usually an HTTP server in front of the WebSphere Application
Server. You can separate out the HTTP server (Web server) and locate it within an untrusted
network. The application server has to be placed behind a second firewall. This allows you to
integrate into a secure infrastructure to secure the business logic and data.

ISP

Internet

Browsers

Web Server EJB Container
(Business Logic)

Tier 3

ISP

Internet

Browsers

Web Container
EJB Container

(Business Logic)

Tier 2

Web Server

ISP

Internet

Browsers

EJB Container
(Business Logic)

Tier 3

Web Server
Web Container

Tier 2

Web Server
Web Container
EJB Container

(Business Logic)

Tier 2
Tier 1

Database
Server

Enterprise
Information

Systems

Tier 4

Tier 3

Database
Server

Enterprise
Information

Systems

Tier 3

Database
Server

Enterprise
Information

Systems

Database
Server

Enterprise
Information

Systems

Tier 4

ISP

Internet

Browsers

20 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 1-11 Physical two-tier implementation with WebSphere for z/OS

The three-tier architecture is the most commonly used infrastructure. However, as each tier is
added, there are scalability and performance considerations. In most cases the WebSphere
application is used to access existing data or transactions on a production z/OS system.

In our configuration, the middle-tier server is a WebSphere Application Server on a
non-zSeries platform; refer to Figure 1-12. (Of course, this tier could reside on an additional
z/OS system or on a Linux on zSeries system.)

Figure 1-12 Physical three-tier implementation with WebSphere for z/OS and WebSphere for
distributed platforms

Client

* IBM HTTP Server

Plugin

* IBM HTTP Server is serving as a passthru and not being counted as a tier.

z/OS
WebSphere for z/OS

WebContainer

EJBContainer

SRSRCR

httphttp

iiopiiop

CICS

DB2

An integrated WebSphere topology

A hybrid deployment WebSphere topology

Client

* IBM
HTTP
Server

Plugin

z/OS
WebSphere for z/OS

EJBContainer

SRSRCR

httphttp

iiopiiop

CICS

DB2

distributed platforms

WebSphere for
distributed platforms

Web
container

* IBM HTTP Server is serving as a passthru and not being counted as a tier.

Chapter 1. Integrated and multi-tier WebSphere application deployment 21

Figure 1-13 Three-tier physical implementation using WAS Linux on zSeries and WAS z/OS

� Balance Java processing and business logic between the Linux on zSeries image and
z/OS

– Use servlets or EJB session beans on Linux on zSeries
– Use z/OS CMP/BMP EJB entity beans, persisting data to z/OS

� Integration considerations

– It is possible to coordinate transactions with CICS and IMS
– Security integration is possible

� Topology considerations

– Interaction between the servlet/EJB and z/OS is a network call (that is, multi-tier
topology in one physical box); however, the zSeries functionality of HiperSockets can
be used

If a z/OS system is used for both the middle tier and backend tier and they are both in the
same Parallel Sysplex or even in the same LPAR, then you enjoy benefits such as better
security, support for two-phase commit, and higher quality of service (QoS).

The security model in this architecture is more in line with a traditional z/OS 3270 application.
The identity that the request is executing under can flow with the request from the WebSphere
application to the backend CICS, IMS, or DB2 without having to pass the userid/password in
the “conspec”. The request is running under one security context1. The application itself does
not need to take care of security constraints.

The overall security implications are identical to the two-tier architecture in terms of initial
authentication and authorization. The main difference with a three-tier architecture is that you
have to consider an additional connection between the second and third tier. This applies
especially when the presentation tier is located on a non-z/OS platform. You have to carry
security identities over the network.

1 A structure or an object within the operating system or application server which encapsulates the shared security
state between two entities.

Edge
servers

"Specialty"
servers WebSphere

Application
Servers

Transaction servers
Data servers

WebSphere Application Server - hybrid deployment scenario with zLinux and z/OS

z/VM or VIF

WAS
zLinux

servletservlet
CICSCICS
IMSIMS
DB2DB2

WAS for
z/OS

EJBEJBEJBEJBE
dg

e
se

rv
er

s

S
pe

ci
al

ty
 s

er
ve

rs

22 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Keeping the business tier on zSeries platform
In a scenario where an application needs to access CICS or IMS transactions or databases
on z/OS, it seems appropriate to keep the EJB tier on the zSeries platform for the following
reasons:

� The EJB container is closer to the data, which might already be on z/OS.
� A well-performing and reliable local two-phase commit can be used.
� The EJBs are using CICS or IMS connectors, which are available as local connectors.
� The z/OS sysplex can provide scalability modifications (new engine, new machine in the

sysplex, and so on) without a service interruption.
� Due to smart workload balancing and white space computing capabilities, peaks in the

workload are well managed in the z/OS system.

Therefore, it is especially rewarding for the business tier to reside on a z/OS platform, while it
might be acceptable to separate the presentation tier on a distributed system.

The optimal solution for your site depends on your workload characteristics and application
environment. For example, a publishing site such as weather.com has a great deal of
presentation logic and data, but not much business logic. In contrast, an online trading site
typically has moderate presentation logic and a great deal of business and data logic. The
flexibility of having multiple tiers and multiple servers creates opportunities, challenges, and
complexities. WebSphere is very well suited to provide the flexibility and robustness needed
for these multi-tier alternatives.

1.3.3 The network layer
When discussing environmental considerations, you also have to examine the network
structure itself. These considerations are part of the discussion about Runtime patterns as
well.

The network represents the boundary of an enterprise to the Internet, and is therefore
exposed first to any influence from the untrusted outside world. Most network security policies
in an enterprise are created to ensure protection against network attacks from outside; in
most cases, infrastructures already exist and they must be considered when you implement
applications.

Within a typical Runtime pattern, the logical network structure is divided into three segments:
the outside world, the Demilitarized Zone (DMZ), and the internal network. We will
concentrate on the DMZ since this is the part of the network structure where newly developed
e-business applications have to plug in.

The Demilitarized Zone (DMZ)
The DMZ is the second segment within the network tier. It is located between the outside
world and the internal network. It is the first zone within an enterprise network that can be
accessed from outside, and it is therefore exposed to possible attacks.

The DMZ is separated by firewalls from the outside world and the internal network. These
firewalls should only have open approved ports between the different tiers in the network.
Since the DMZ is considered a high-risk zone for attacks, it should not contain any business
logic, user data, or security information. It must be considered as the first barrier to an
enterprise network, and as a Denial of Service (DoS) buffer to protect internal data.

A DMZ topology fits into our integrated or hybrid environment considerations. When
discussing performance increases, the DMZ should be considered as a place for caching the
static and dynamic pages of a Web application.

Chapter 1. Integrated and multi-tier WebSphere application deployment 23

Figure 1-14 A typical network structure and its components mapped to an Application pattern

A general recommendation about where to cache static or dynamic Web content is to keep
the data as close as possible to the user to reduce the path length of requests. However, you
also you have to reach as many users as possible with this approach. Since the DMZ is the
point where all external users access the enterprise network first, it satisfies both
requirements.

Caching in the demilitarized zone has the following effects:

� It reduces the path length for requests, while minimizing network routes that must be
passed.

� It reduces the response time for client requests.
� It reduces the internal network load and bandwidth requirements between runtime nodes.
� It releases internal resources and achieves better scalability.

For an integrated solution, it means that the static content can be served by a Web server in
the DMZ. Furthermore, security processes can be handled in the demilitarized zone while
intercepting requests for authentication purposes.

For our hybrid environment, it means the DMZ can serve the static and dynamic pages as
well as the entire Web application of our solution. In this case we need an additional Web
application server installed in the DMZ.

The scenario shown in Figure 1-14 is applicable for business patterns like
Business-to-Customer and Business-to-Business, where the EJB tier of the enterprise is
accessed from the Internet.

Internal network topology
You can also implement applications to handle enterprise internal business processes
(backend access does not have to take place only from the outside world).

Firewalls are normally not utilized between users and the backend tier. Of course, individuals
users must identify themselves to the application, but the internal network is considered a
safe zone without the need for any additional zones to defend against attacks.

Demilitarized zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Existing
Applications

and Data

P
ro

to
co

l F
ir

ew
al

l

Internal network

D
o

m
ai

n
 F

ir
ew

al
l

WebSphere
Application

Server

Application pattern exploiting hybrid deployment

Presentation Application Application

Directory
and

Security
Services

WebSphere
Application

Server

Web Server
Redirector

Business
logic

Existing
transactions

Static
content
Web
applications

24 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

It is even easier to handle hybrid applications in the intranet because you have fewer security
constraints in terms of keeping internal data. Figure 1-15 shows that the same hardware and
software runtime components can be used for both topologies.

Figure 1-15 Combined network structure for backend access from Intranet and Internet

Note: To improve internal network performance, you need to integrate the same special
servers (such as load balancer or caching proxies). All the caching concepts introduced
previously with the DMZ apply to the internal network, as well.

1.4 Application architecture and packaging
Earlier, we described how to proceed from a business issue to a physical implementation of a
new e-business solution. Now we can take a closer look at the application itself and see how
it fits into that process.

When we talk about developing e-business applications, in most cases we follow the J2EE
application programming model, a standard programming model for developing multi-tier,
thin-client applications. The J2EE architecture is designed to support applications that
provide enterprise services to customers, suppliers, business partners or just simply users.
Such applications are normally very complex, realizing data access from a variety of sources
and distributing services to a variety of clients.

For better management of these applications, the business functions to support the various
users are conducted in the middle tier. Figure 1-16 on page 26 illustrates a sample J2EE
application and the interaction between its components.

Demilitarized zone (DMZ)Outside world

I
N
T
E
R
N
E
T

Domain Name
Server

Public Key
Infrastructure

User

Existing
Applications

and DataP
ro

to
co

l F
ir

ew
al

l

Internal network

D
o

m
ai

n
 F

ir
ew

al
l

WebSphere
Application

Server

Directory
and

Security
Services

WebSphere
Application

Server

Web Server
Redirector

Business
logic

Existing
transactions

Static
content
Web
applications

Web Server /
WebSphere
Application

Server

User

Intranet

Static
content
Web
applications

Chapter 1. Integrated and multi-tier WebSphere application deployment 25

Figure 1-16 Typical architecture of a J2EE application

The flow is as follows:

1. Clients send their requests to the middle tier.

2. The WebSphere Application Server receives the requests in the Web container, where
they will be handled by a servlet which acts as an interaction controller.

3. The servlet forwards this request to the appropriate EJB in the J2EE container.

4. The business logic processes the requests and sends back the request, with the retrieved
data, to the servlet.

5. The servlet passes the request forward to a JSP, which builds an HTML page.

6. The JSP presents the results as an HTML page to the client.

Most application designs follow certain documented patterns that have been proven in many
successful installations. Over time, the Model-View-Controller (MVC) design pattern has
become established as a powerful and well-tested design pattern for graphical user interface
(GUI) client/server applications. (It is quite similar to the previously introduced J2EE
architecture because it follows the J2EE application programming model.)

But isn't the J2EE architecture itself already a framework to solve complex e-business
application development problems? The answer is yes, in a certain way, it is. But the MVC
pattern refines the structures of this architecture even more and gives it a greater flexibility.
Many development organizations have successfully applied the mapping of J2EE APIs to the
roles in the MVC pattern.

DB2
CICS
Encina
MQSeries
IMS
SAP
CORBA
C++
4GL
Domino
PeopleSoft
JD Edwards
Oracle ERP

Tier 1 - client tier Tier 3 -
EIS tier

HTML
Results Web Service

Partner
System

WebSphere Application Server

Tier 2 - middle tier

JSP

J2EE container

Servlet

XML

Web
container

22

11

55

44

33

66

44

44

EJBEJB

26 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

1.4.1 Model-View-Controller (MVC) design pattern
As mentioned, the MVC design pattern has developed as a useful structure for e-business
applications. This pattern has three, distinct, separate forms of functionality within an
application: the model, the view, and the controller.

� The business logic is the model, and it accomplishes the goal of the interaction with
enterprise backends (this may be a query or an update to a database).

� The user interface logic is the view and contains the logic that is necessary to construct
the presentation.

� The servlet acts as the controller and contains the logic that is necessary to process user
events and to select an appropriate response.

Figure 1-17 The Model-View-Controller (MVC) design pattern

Let’s look at the individual functions of the components of the MVC pattern in more detail:

� Model - with JavaBeans and Enterprise JavaBeans (EJBs)

A model is a set of objects that represent the business logic of the application. This usually
includes classes to represent business abstractions (such as accounts, purchases, and so
forth), as well as real-world objects (such as employees and customers).

The business logic has to address a broad range of requirements, such as transactional
integrity, maintaining and accessing application data, and integrating new applications with
existing applications.

� View - with Java Server Pages (JSPs)

A view is a particular way of presenting a set of information to a user. The page
constructor is responsible for the generation of the HTML page that will be returned to the
client. Think of a view as a particular Web page or screen that displays a single set of
linked data to the user.

WebSphere supports both ways to display pages, with servlets or JSPs. JSPs allow
template pages to be developed directly as HTML pages, with inserted Java scripting logic
for the dynamic elements.

Logic that controls
the Model and View

View
page

construction

Constructs
page/document
returned to user

Model

business
logic

Implements
the business

model

Java Server Page
(JSP)

Controller interaction
controller

Java Servlet

Enterprise
JavaBean

(EJB)

Browser
client

Enterprise
backends

WebSphere Application Server

Chapter 1. Integrated and multi-tier WebSphere application deployment 27

� Controller - with Java Servlets

A controller is the layer in an application that handles the details of application flow and
navigation. The controller ties protocol-independent business logic to a Web application,
which means it maps HTTP-specific input into the input format required by the business
logic. Afterwards it translates information coming back from the model layer into a form the
view layer can understand.

The key here is that the model is kept separate from the details of how the application is
structured (the controller) and how the information is presented to the user (the view).

Benefits of the MVC design pattern
The most important aspect of this design pattern is the separation of components. This
separation into parts with individual functionality leads to the following advantages:

Increased flexibility
When the components of an application are developed in modular structure, these parts can
be easily deployed on different platforms. You can determine, for each part of the application,
which platform delivers the qualities of service the application needs.

Increased reusability, extensibility and maintainability
In a complex application, there are usually display pages that can be called by multiple
servlets. The business logic can also be reused by several Web applications and interactions.

If new application parts need to be plugged into the presentation layer, or user interfaces have
to be changed, this can be done without affecting the business logic.

Can support multiple user interfaces
A complex e-business application often supports various user interfaces, like HTML-based
Internet clients or thick application clients. Separating the presentation logic from the
business logic allows the reuse of the business components for these different types of
clients.

Leverage different sets of skills
Developing an e-business application, with all its various components, requires different skills
and tools. There is a great difference in the skill sets required to design HTML pages and to
code Java business logic. In order to effectively leverage these resources, the separate MVC
components let them fit nicely.

MVC architecture - summary
The MVC architecture provides flexibility, reusability, extensibility and clear design roles for
application components. The multi-tier design allows flexible choice of implementation
technologies as well as scalability, and the modular design decomposes application functions
into intuitive, loosely coupled subsystems.

Unfortunately, the MVC design, the differentiated job roles, and the resulting modular
application packaging often lead to the idea that application runtimes need to be separated.
Blueprints and patterns are often blindly adapted on a one-to-one basis to infrastructures—or,
even worse—the infrastructures are built up accordingly.

In fact, this design does not represent a “must-use” hybrid deployment process; it is simply a
possibility. The advantage of loosely coupled applications is an advantage for the
development process. Decisions regarding the deployment processes and the runtime nodes
are made in a different step of the navigation through the Pattern model.

28 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

1.4.2 Application packaging
A complete WebSphere application usually consists of three different modules: Web archives
(.war files), Java archives (.jar files), and a resource adapter archives (.rar files); see
Figure 1-18.

Figure 1-18 WebSphere application components and packaging

The Java archive can contain client modules with its client classes and deployment
descriptors, or it can contain EJB modules with its EJBs and the appropriate deployment
descriptors. The Web archive contains the presentation components of the application, the
Web module with servlets, JSPs, and the static content (such as HTML pages, JPEGs, and
GIFs).

These modules will be packaged, in the application assembly process, to an enterprise
archive known as the .ear file. This enterprise archive is a package which is ready to be
deployed into the application server.

Following the J2EE Application Programming Model, Figure 1-18 shows the components of a
WebSphere application. Looking at WebSphere Application Server structure, the EJB
modules will be deployed automatically into the J2EE container, and the Web modules will be
deployed automatically into the Web container.

EJB
DD

Web
DD

Client
DD

HTML,
GIF, etc.

Application
DD

Enterprise
Bean

Client
Class Servlet JSP

EJB
Module
.JAR file

Web
Module

.WAR file

Client
Module
.JAR file

DD = Deployment Descriptor

J2EE
Application

.EAR file

Chapter 1. Integrated and multi-tier WebSphere application deployment 29

Figure 1-19 Generic WebSphere Application Server component structure

Terminology
When we refer to a “WebSphere application” or a “J2EE application”, we mean all the
components of an e-business application. When we refer to a “Web application”, we mean the
part that contains only the Web components, such as servlets, JSPs, and HTML pages.

The application assembly process and the deployment process are different for a hybrid
deployment model as compared to an integrated solution:

� For an integrated solution, the application will be packaged as an entire .ear file that
contains all parts of that application. The .ear file has to be provided to the application
deployer, who deploys this application in one deployment process.

� In a hybrid model, different runtime nodes must be considered. That means, to the
assembly process, that two different .ear files are needed: one .ear file contains the
business logic, and the other .ear file contains the Web components.

Because of the deployment to two different runtimes (maybe WebSphere z/OS for the
business logic and WebSphere for Linux on zSeries for the Web components), these
enterprise archives must be deployed separately, using two deployment processes.

1.5 Decision guidelines for handling Web applications
At some point, you will have collected all your business needs and requirements, and will
have developed a flexible application using the MVC design pattern. Using the Pattern model,

Web Container EJB Container

Server-Side
Presentation

Server-Side
Business Logic

EJB Java Archive (JAR)Web Archive (WAR)

E
n

te
rp

ri
se

 In
fo

rm
at

io
n

S
ys

te
m

J2SE (SDK)

JN
D

I

JT
S

/J
TA

R
M

I/I
IO

P

JD
B

C
/J

C
A

Ja
va

M
ai

l/J
A

F

JM
S

Enterprise Archive (EAR)

JI
D

L

C
lie

nt
-S

id
e

P
re

se
nt

at
io

n
JSPJSP

ServletServletSS

JJ

E

EJBEJB

30 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

you will have now reached the phase where you will have to decide which deployment model
to use.

1.5.1 Deployment choices
A WebSphere solution may call for a variety of different operational requirements. Each of the
available platforms has attributes that make it unique; no architecture is the right choice 100%
of the time. When considering the zSeries platform as a runtime for at least the business logic
and the connected backend systems, you have a variety of development and deployment
choices.

� From the development and deployment perspective, three integrated solutions are
presented.

� When considering having several distributed platforms where you can deploy, more than
than three hybrid solutions are available.

Table 1-1 lists high-level development and deployment choices that are based on the
concepts we discussed and the available platforms. This table implies greater complexity if
you choose a hybrid solution.

Table 1-1 High-level development and deployment choices

In turn, the high-level deployment choices may have further variations; these are listed in
Table 1-2. As shown in this table, from the application developer’s perspective, the integrated
solution can be identical in all cases. Likewise, for the deployment process, an integrated
solution makes no difference. However, there is increased administrative and organizational
effort involved in an integrated solution.

Table 1-2 Integrated solutions

The situation is quite different for hybrid solutions; application developers have many choices
regarding how to split up the application. However, deployment efforts are doubled because
of the need to deploy to two different platforms, and the administrative and organizational
effort involved is also drastically increased.

We list only a few hybrid solution variations in Table 1-3, although others are undoubtedly
possible.

Application development perspective Deployment and platform perspective

Integrated application, Web application and
business logic packaged together

Integrated solution with deployment to only one
platform

Hybrid application, Web application and business
logic are packaged separately

Hybrid solution with two deployment processes to
two different platforms

Development Deployment Platform and administration

Integrated application Integrated solution One deployment process, no
additional changes

Integrated application Integrated solution with caching
on zSeries

One deployment process,
appropriate setup of HTTP
server environment

Integrated application Integrated solution with off
loading static content to a
different platform

One deployment process, off
loading of static content to a
distributed world considering
impacts to security,

Chapter 1. Integrated and multi-tier WebSphere application deployment 31

Table 1-3 Hybrid solutions

You can also consider the scenarios listed in Table 1-2 and Table 1-3 as steps into a hybrid
WebSphere environment, because the complexity grows with every step. In the following
chapters, we discuss this solution in more detail.

Solution Development Deployment Platform and
administration

Separate
deployment to two
platforms using IIOP

Develop two parts of
application which are
loosely coupled using
IIOP

Hybrid deployment to
z/OS and distributed
platform (Linux on
z/Series/ UNIX/NT)

Two different
deployment processes,
considering proper
environment setup

Separate
deployment to two
platforms using JMS

Develop two parts of
application which are
loosely coupled using
JMS

Hybrid deployment to
z/OS and distributed
platform (Linux on
z/Series/ UNIX/NT)

Two different
deployment processes,
considering proper
environment setup
including MQSeries®

Separate
deployment to two
platforms using
WebServices

Develop two parts of
application which are
loosely coupled using
WebServices

Hybrid deployment to
z/OS and distributed
platform (Linux on
zSeries/UNIX/NT)

Two different
deployment processes,
considering proper
environmental setup

32 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Chapter 2. Integrated and hybrid
WebSphere application
deployment scenarios

In this chapter, we explore the scenarios for Web component processing in more detail.

� In 2.1, “Static Web component relocation” on page 34, we describe the integrated
WebSphere deployment scenario, in which all of the programmatic application
components are deployed to a single J2EE application server. Optimizations to Web
component processing take the form of configuration adjustments to exploit caching, and
alternatives for the delivery of static HTTP content.

� In 2.2, “Dynamic component relocation” on page 36, we describe approaches to splitting
the application for deployment into two separate J2EE application servers. These
solutions involve making changes to the application architecture and programmed
components.

� In 2.3, “Evaluation criteria for remote component and EIS access” on page 58, we discuss
in detail some considerations to keep in mind when evaluating hybrid deployment options.

2

© Copyright IBM Corp. 2003. All rights reserved. 33

2.1 Static Web component relocation
Every Web application is structured in a tiered model. The presentation (or view) tier is
usually made of HTML and images, regardless of whether it is directly presented or
generated through a JSP. It is well worth taking the time to critically think about this content
and how best to manage it.

Because static content is always present in a Web application, it is good practice to get the
best possible management for it. It is very likely that this static content will be related to the
look and feel of your shop, or to the presentation layer created for your products, or both. With
the subsequent workload, then, requests to serve this content will be numerous and frequent.

The techniques and solutions for static content management discussed here are widely
applicable, independent of other infrastructure decisions you may make about your
application server architecture after reading this redbook. Static content optimization can and
should be done, regardless of which of our solutions you adopt.

2.1.1 Architectural elements for static Web content acceleration
There are different ways to serve static content. The most common is to have a Web server
that can work in different ways. This Web server can be embedded in another product (like
the Transport Handler in WebSphere Application Server), or it can be a different product (like
the IBM HTTP Server, or an equivalent).

When the Web server is embedded in the application server, you do not have many
configuration options; the Web server simply accepts requests and executes them in the
application server. So, the challenge is to use something more, in front of the application
server, to get inbound requests and add functional elements that will help you manage all
static content. In our case, we used the IBM HTTP Server.

This Web server can be configured in different working modes, as follows:

� Web content server

In this mode, the server takes care of the static content directly; the requests are not
forwarded to any other kind of server. However, it can have some added functionality
through the use of scripts.

� Proxy1 and reverse proxy2 modes

In this configuration, the Web server usually gets an inbound request, processes it to
decide how to manage it, and sends the request to the appropriate place. Responses are
also forwarded back to the client. Some added functions, like caching, may or may not be
present (refer to “Web server and application server: proxy mode” on page 35 for more
information).

� Web server working with an HTTP plug-in

In this case, the inbound requests are always forwarded to another product, like an
application server. The plug-in is specific for the product. Some added functions, like
caching, may or may not be present (refer to “Web server and application server. Plug-in
mode” on page 35 for more information).

1 A proxy server exists between a client (application) and a server. It intercepts all requests to the real server to
check if it can apply some processing at this point. Then it forwards the request to the real server. It can also be used
to hide the real server’s network address.
2 A reverse proxy server is an alternate configuration of a proxy server. It intercepts request and applies some
processing. This processing could be authentication, a rewriting of the request to add supplemental information, or
simply removing data to make the request more secure.

34 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Since we intend to discuss what to do with our WebSphere Application Server for z/OS and
OS/390, we will focus on specific solutions for applications working in this environment.

We do not use Web content server working mode, since we are working with an application
server. The Web server has to forward inbound requests to be executed in WebSphere
Application Server for z/OS and OS/390. This means that we can work with the IBM HTTP
Server in proxy mode or with the plug-in.

Figure 2-1 Web server and application server: proxy mode

With proxy mode, we can forward any incoming request without taking into account where it is
going; if the request matches the proxy rules, it gets forwarded. Though the request gets
rewritten, no other functionality is added. We may have several requests, forwarding them to
many different places; it is an all-to-all relationship.

Figure 2-2 Web server and application server. Plug-in mode

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

Control
Region

Web Server
Proxy

HTTP(S) HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

Control
Region

Web
Server

HTTP(S) HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

P
lu

g-
in

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 35

If we use the plug-in option, we will probably need a dedicated Web server for specific
application server inbound requests. In exchange, we get some added functionality that may
be useful for our applications:

� We may have session affinity among server regions of a J2EE server.
� The Web server may be used as an endpoint for SSL in intranets.
� We can address different URIs to different server instances in the same application server.
� Other functions may also be available (refer to WebSphere Application Server for z/OS

and OS/390 v4.0.1: Assembling Java™ 2 Platform, Enterprise Edition (J2EE™)
Applications, SA22-7836).

For details about infrastructure and implementation, refer to Chapter 4, “Static Web
component optimization” on page 101 and “Infrastructure implementation” on page 140.

2.2 Dynamic component relocation
The solutions discussed in 2.1, “Static Web component relocation” on page 34 involve no
changes to the application code; all the enhancements described can be implemented using
configuration parameters or the relocation of static Web content.

In a hybrid deployment configuration, however, we take the process a step further and
relocate some of the programmatic elements of the application. The application components
are divided between two different application server environments, with part of the application
being deployed to one application server, and the remainder deployed to another, separate
server. The components deployed within the two application servers communicate to provide
the total application solution.

In 1.1.4, “Separating Web components from business logic” on page 9, we discuss possible
reasons for separating the application into a hybrid deployment. After you decide that a hybrid
deployment could be a possible solution, the next step is to consider the options for the new
application architecture, and assess the implications for functional and administrative
capabilities.

2.2.1 Application elements
Figure 2-3 provides an overview of the various elements of the application architecture that
illustrates the relationships between the various types of J2EE component, servlets,
Enterprise Java Bean (EJB), and Java Server Page (JSP) files. It also shows the enterprise
information systems (EIS) tier.

Note: The application may be deployed over any number of servers, but for the sake of
simplicity we will restrict the discussion to a configuration consisting of two servers.

Important: Unless otherwise stated, when we refer to two separate J2EE servers, we
mean two distinct J2EE servers, with different applications installed.

The meaning is not that of two cloned application servers, both running the same
applications for scalability or availability reasons. We are not referring to “cloned” servers in
WebSphere Application Server Advanced Edition terms, or “server instances” in
WebSphere Application Server for z/OS and OS/390 terms.

36 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

EIS comprises existing corporate resources which the J2EE application may need to access,
such as databases, Enterprise Resource Planning (ERP) systems, or transaction processing
systems.

Figure 2-3 J2EE application components

This figure shows EIS being accessed from both enterprise beans and servlets. As discussed
in “Web-EJB separation option” on page 43, best practices dictate that EIS access should be
issued from enterprise bean components. However, there are many applications currently in
production which issue calls to EIS directly from the servlet. Where this is the case, there are
significant implications for moving the Web tier into a remote application server. For this
reason, servlet access to EIS is included in our study.

2.2.2 Overview of hybrid deployment assessment criteria
When we deploy an application into a hybrid environment, we introduce a topological
separation into the infrastructure. The application will be deployed across two platforms that
require some form of network communication to interact. The presence of the network and
the transformation from a local to a remote request will change some of the characteristics of
the interaction, and these effects need to be carefully evaluated when considering a hybrid
deployment solution.

Reference configuration
In order to assess the feasibility of a hybrid deployment, we need a reference or reference
configuration with which to compare. The configuration we use is a theoretical one, in which
all the application elements are hosted on a z/OS system.

The Web components and EJB components are packaged together in the same enterprise
application, and deployed to a WebSphere Application Server for z/OS and OS/390 J2EE
server. All databases and EIS resources are located on the z/OS system (which is where
many EIS resources will actually be found); this is illustrated in Figure 2-4.

Web TierClient Tier EJB Tier EIS Tier

Client
Browser Existing

Data or
Transaction

ServletServlet

JSPJSP

EJBEJB

Note: The topological separation could involve a physical separation if the application
servers are running on separate platforms or physical boxes. However, it could also involve
a virtual separation.

For example, if one of the servers is WebSphere Application Server for z/OS and OS/390,
and the other is WebSphere Application Server Advanced Edition running on Linux for
zSeries, both servers could reside on the same physical box, but there still needs to be a
network connection in order for them to communicate.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 37

Figure 2-4 Reference configuration with all application components on z/OS

The assessment criteria are described in detail in 2.3, “Evaluation criteria for remote
component and EIS access” on page 58. We provide an overview of them here so that we
can assess our reference configuration against them.

The criteria may be placed into two broad categories: those related to the functional
capabilities; and those related to usability and management issues.

Functional capability aspects
The functional capability aspects are those in which—by converting the application to a hybrid
deployment—it may not be able meet its original functional or service level specifications.
They are related to the characteristics of the technologies involved with the hybrid
deployment.

Performance
Consider how efficiently requests that flow across a networked communications channel get
serviced. In the reference configuration, the interaction between components will be
efficient.Their close proximity allows for communication optimizations to be implemented to
improve performance, whereas requests that flow across a network will incur additional path
length and delays as they pass through the network infrastructure.

Note: The EJB 2.0 specification introduces the concept of Local Interfaces for enterprise
beans, which will further improve the efficiency of bean interaction within an application
server which implements it. In WebSphere Application Server for z/OS and OS/390 V4.01,
a similar functionality is implemented by setting com.ibm.CORBA.iiop.noLocalCopies=true.

Client

Servlet

Application Server A

Web container

JSP file

Session
bean

Entity
bean

Entity
beanEntity

bean

EJB container

DB2

CICSJCA

z/OS or OS/390

JDBC

38 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

The potential for exploitation of the z/OS workload management capabilities should also be
considered. In the reference configuration, it is possible for there to be several server
instances of the application server in the Parallel Sysplex. Technologies exist which are able
to take advice from the Workload Manager for placement of the HTTP(S) request which has
been submitted from the user. Examples of such technologies are connection optimization
and WebSphere Edge Server workload distribution, and these are described in more detail
2.3.1, “Performance” on page 59. Providing that there are no impediments such as session
affinities3, the requests will be intelligently distributed around the server instances in the
Parallel Sysplex.

The z/OS Workload Manager also addresses scalability issues. When more application
server instances are required due to an increase in the workload, WLM will start them up for
us. A server instance possesses a Web container and an EJB container, so both the Web and
EJB application tiers benefit from this capability.

WLM routes requests around the system in a attempt to satisfy workload goals which have
been set up. In the case of a WebSphere Application Server for z/OS and OS/390 workload,
the goals would have been set in terms of request response times. The response time of a
request is managed through the use of an enclave, which stays with the request as it get
processed by different address spaces. For the reference configuration, the enclave is
assigned when the HTTP(S) request is delivered to a server for processing, so the goal which
has been defined covers both the Web component and the EJB component processing.

Availability
Examine whether or not the architecture and infrastructure is able to meet application
availability goals. The reference configuration provides reduced risk of failure when compared
to a hybrid deployment, because there are fewer points at which an error could occur as an
application request is processed. Network connections introduce more complexity into the
infrastructure, providing an additional risk of failure and increased difficulties in pinpointing
and fixing a possible failure.

In the reference configuration, both the Web tier and the EJB tier benefit from the zSeries
server architecture and infrastructure, which includes self-healing attributes to prevent
downtime caused by system crashes and non-disruptive hardware reconfiguration. The
application servers take advantage of Workload Manager and Automatic Restart Manager
(ARM) capabilities to ensure the availability of applications.

Security
The security requirements for J2EE applications are broadly the same as they have been for
years. You require a means of being certain that the user of the application is who he claims
to be (user authentication), and once you know who the user is, you want to restrict access to
those resources necessary for the user to complete the task.

Security management in the reference configuration is simplified by the fact that all elements
of the application will be working with the same security subsystem: RACF® (or an equivalent
SAF-based product). Within a single application server instance, once the end user has been
authenticated, the user identity may be propagated without further authentication on access
requests to other components, databases, and EIS resources.

If the requests traverses WebSphere Application Server for z/OS and OS/390 application
server boundaries, it is possible to set up trust between the servers and use a technique
called asserted identities to pass the client identity on with the request. In this way, end users

3 A session affinity exists when session data has been stored in-memory in a specific server instance. It is therefore
only available to requests which run in that server instance, so all requests that require access to that data must run
there.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 39

only need to authenticate once, and all downstream authorization checks will be against the
entered user identity.

Transaction integrity
An important aspect of any transaction system is that of transactional integrity. You have
transactional integrity when all updates that need to be kept synchronized are either all
committed or all rolled back together as a unit. There should be no circumstances which
could arise when only part of the transaction was completed.

WebSphere Application Server for z/OS and OS/390 uses Resource Recovery Services
(RRS) as the transaction coordinator. Resource managers such as DB2 and CICS register
with RRS, which enables them to be instructed to commit or roll back any updates which they
are holding as part of a transaction.

Remote Method Invocation (RMI) calls (which are used to issue calls to enterprise beans)
preserve transaction integrity, whether the call is to a local bean which is located in the same
application server as the caller, or to a physically remote bean in another application server.

If the application running in the reference configuration persists entity beans to DB2 or issues
JDBC calls to a DB2 database, then RRS is involved in the transaction coordination through
the Resource Recovery Services Attach Facility (RRSAF), a DB2 attachment facility. The
CICS Transaction Gateway for OS/390, which is used to issue calls from WebSphere
Application Server for z/OS and OS/390 to CICS, runs over a CICS protocol called the
External Call Interface (EXCI), which is also enabled for RRS. So in the reference
configuration, you have full transactional integrity across all enterprise bean and EIS
resources.

Infrastructure
Infrastructure considerations address a broad range of issues which are introduced by the
hybrid solution architecture. They include possible changes to component interaction protocol
and network implications for setting up the communication channels, including firewall
considerations.

In the reference configuration, with all the parts of the application located in the same physical
environment, communications are efficient and secure. Any firewall technologies protecting
the z/OS system will have had to permit passage for the HTTP(S) request from the client, so
there is no requirement to configure it to permit other types of protocol such as IIOP (which is
something that some organizations are reluctant to do).

Depending on the size of the installation, the total cost of ownership could be reduced. With
everything hosted on the z/OS system, license costs could be reduced; in particular, there will
be no license requirements for WebSphere Application Server Advanced Edition and EIS
connector images. A consolidated solution also offers opportunities to save in the people and
skills costs required to support the runtime.

Usability and systems management aspects
The usability and systems management aspects relate to the amount of extra effort and
process that is required to develop and run a hybrid deployment.

Development and deployment
When considering development and deployment, look at application design and programming
issues, application assembly, and application deployment. Keep in mind throughout the
degree of support that you obtain from tools which are available.

40 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

A hybrid solution will inevitably add complexity to all these aspects of application
development. In the reference configuration, you are dealing with a single, consolidated
application. The IBM tool for J2EE application development is the WebSphere Studio
Application Developer V4 family of products. This tool contains a built-in test environment that
performs unit testing on the application; the single application is published to the test
environment for testing. Enterprise bean components are all registered in the same JNDI
namespace under the same initial context, so no special processing has to be incorporated
into the application to cater for components located in different places.

When assembling the application, you are only packaging up a single .ear file for deployment.
And when deploying the application, because it is in a single file, you do not have to worry
about coordinating the deployment of multiple separate pieces. In addition, the deployment
tools for WebSphere Application Server Advanced Edition and WebSphere Application
Server for z/OS and OS/390 are completely different, whether the deployment is performed
manually or using automated scripts. Because you are only deploying to a single application
server, you only need a single tool.

Systems management
Systems management comprises the tasks and duties required to maintain the application
runtime. These tasks are considerably simplified when you are dealing with a single
application server, as with the reference configuration.

For performance monitoring and capacity planning, you need to capture performance metrics
which record how efficiently the user requests are being processed. WebSphere Application
Server for z/OS and OS/390 records its performance data to SMF 120 records. These
records include data for both the Web container and the EJB container, so you are able to
track the efficiency of both Web and EJB components using the same monitoring mechanism.

There is also data made available through WLM services. Even more important performance
monitoring information for WebSphere Application Server for z/OS and OS/390 actually
comes out in RMF™ (SMF records 70-79). If you set up your report classes correctly, you can
see the transaction rates, response times, and CPU consumption for each of your
applications in the RMF Monitor I Workload Activity Report.

When errors occur in the application, as well as providing a user friendly response to the
client request, certain error conditions may need to be raised as alerts so that corrective
action may be taken by automated operations or manual intervention. The infrastructure that
needs to be put in place to provide this function is simpler with all the application components
in the same place. You have fewer infrastructure elements (such as application servers,
network connections, and routers) to be monitored for error conditions.

In addition, once an error alert has been recognized, with the reference configuration you
have fewer logs and traces to analyze because you are only dealing with a single application
server.You do not have to coordinate and consolidate diagnostic data from multiple
application servers.

To recover from significant failures, backups should be taken of the application data, the
application code, and the application server configuration. In the case of the latter two, a
single application server makes this process relatively simple when compared with a hybrid
deployment, for which each application server will need to be backed up, and both backups
need to be coordinated to ensure that following a recovery you do not get mismatched
application or configuration components. This is not an issue with the backups of the
reference configuration.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 41

Strategic considerations
When thinking about a hybrid deployment, you have to consider whether the solution is
appropriate in the long term. How well does the solution align with the strategic and
marketplace developments of IBM and the industry?

These considerations are more relevant once a decision has been made to use a hybrid
solution. Once the application has been separated, there are a number of technologies
available to bridge the separation. A consolidated deployment of Web and EJB components
together in the same application server is the simplest option. In fact, the EJB 2.0
specification is introducing the concept of Local Interfaces to optimize the invocation of
methods on enterprise beans situated in the same application server. It therefore appears
that although application architects are thinking about taking the business logic of
applications and making it available as Web Services, local access from more tightly bound
and efficient clients will coexist with loosely bound Web Services clients.

2.2.3 Options for logical application separation
When evaluating the feasibility of a hybrid solution, one consideration should be how the
application is to be separated. Which components should be retained in the WebSphere
Application Server for z/OS and OS/390 environment, and which should be deployed
remotely? There are different ways to split the application, and some may prove to be more
favorable than others. Although the answer to this question would seem to be obvious (that is,
along the Web container and EJB container boundary), in this section we explore some of the
reasons why this should be the case.

Where should the application split occur
We are dividing the processing responsibilities of the application by locating components in
separate application servers. A component that needs to access another component, or a
resource in the other server, will need to do so across some form of network connection. The
introduction of the network will change some of the characteristics of the component
interaction.

As described in 2.2.2, “Overview of hybrid deployment assessment criteria” on page 37, the
reference configuration with a consolidated application deployed into a single server provides
many qualities of service. Interaction among components and to EIS resources is efficient,
reliable, secure, and you only have a single application server infrastructure to manage.

By separating the application and introducing network connections, you will compromise at
least some of these qualities.

The objective should therefore be to limit any adverse affects from separating the application.
One approach is to minimize the number of trips across a network connection that the
application has to make in order to process a client request. The implications of separating
the application for various types of resource access are presented in detail in Chapter 3,
“Component interaction characteristics” on page 75.

In many cases, a remote access to a resource across a network link loses some desirable
quality when compared to the equivalent local access. For example, the ability of the system
to handle concurrent calls might be reduced, or you might lose the security context of the end
user and have to substitute it with that of an application server, thus reducing the granularity
of resource authorization checks. Where such degradations in service occur, you should seek
to reduce their impact by avoiding such calls if possible.

One way to accomplish this is to keep together components that have many interactions and
dependencies on each other. In this way, the majority of the calls to other application

42 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

components and EIS resources are local; you only resort to a remote call when absolutely
necessary, and therefore only pay any penalty which the remote access entails when you
have to.

Web-EJB separation option
The model-view-controller design pattern, introduced in 1.3, “An introduction to tiers and
architectures” on page 14, describes how the application function could be distributed
between three design layers: model (for business logic); view (for presentation); and controller
(for application navigation). These layers in turn mapped to particular types of application
component, as shown in Figure 2-5.

Figure 2-5 Model-view-controller mapping to J2EE components

Designing according to the model-view-controller pattern helps to keep components of similar
function (and therefore, most interaction) together, and establish a clean interface between
the various tiers. The business logic (the model) is logically distinct from the work flow
(controller) and presentation (view) logic, and is only accessible through the use of well
defined interfaces. The business logic only needs to understand and interpret the call which
arrives through the architected interface; it does not need to concern itself with the nature or
the location of the calling application.

You can now place wrappers around the business logic to provide various means for a client
application to invoke it. Technologies could include, but are not limited to, using an RMI/IIOP
call; using a JMS message; or using Web Services. These are illustrated in Figure 2-6.

Web TierClient Tier EJB Tier EIS Tier
Controller

Model

Client
Browser

Existing
Data or

Transaction
ServletServlet

JSPJSP

EJBEJB

View

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 43

Figure 2-6 Business logic wrappers

You are able to change the technology, and therefore the characteristics, of the client access
without requiring any coding changes in the business logic itself. Some technology changes
introduce a physical separation between the EJB tier and the rest of the application, which
could change the nature of the client access.

Designing and coding according to the model-view-controller design pattern is therefore
conducive to a separation of the Web tier from the EJB tier in the physical implementation.
Such a separation minimizes the remote flows by keeping together components of similar
function, which will have the most interaction among themselves and to common
components.

The J2EE approach to application packaging also lends itself to this split. Servlets and JSP
files are both packaged in a Web archive (.war file), and deployed to the Web container.
Enterprise beans are packaged in a Java archive (.jar file) and deployed to the EJB container.
No extensive repackaging exercise is needed to prepare the application for deployment to this
hybrid infrastructure.

This approach, which we shall call the Web-EJB separation approach, is illustrated in
Figure 2-7 on page 45. In many cases, the business logic for the request will be encapsulated
within a single call to a session enterprise bean. The session bean will optionally orchestrate
calls to entity beans, before returning the result of its back to the Web component. There will
be a single interaction to flow across the network connection.

Business
Logic

IIOP
Wrapper

JMS
Wrapper

Web
Svcs
Wrapper

IIOP
Client

JMS
Client

Web Services
Client

W
eb

 T
ie

r

E
JB

 T
ie

r

44 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 2-7 Web-EJB separation: separation between the Web container and the EJB container

EJB container separation
A second alternative, which we shall call EJB container separation, would place the split
within the EJB components. In this approach, entity enterprise beans would represent the
corporate data for the application and be hosted on one of the application servers. In
Figure 2-8, this server would be Application Server B. The remainder of the application,
including some enterprise beans, would be hosted on a separate application server. In
Figure 2-8, Application Server A has a session enterprise bean in its EJB container, as well
as all the Web components in its Web container. Calls to access the entity bean from the
session bean would be remote.

Figure 2-8 EJB container separation: separation within the EJB container

The EJB container separation could be a viable option for requests with simple interactions
with the entity beans. If there are several calls to entity beans running in Application Server B,
then the network overhead is carried by each of the calls, adding to the total overhead of the
request.

Remote access to EIS resources
The requirement for connections to be made to remote resources across a network may not
be confined to J2EE component interaction. Servlets are also capable of accessing
enterprise information systems (EIS) resources, amongst them databases using the Java
Database Connectivity (JDBC) API, or transaction systems such as CICS or IMS using the
J2EE Connector Architecture (JCA) API. Unless the resources themselves are moved with

Client

Servlet

Application Server A Application Server B

Web container

JSP file

Session
bean

Entity
bean

Entity
bean

Entity
bean

EJB container

Client

Servlet

Application Server A Application Server B

Web container

JSP file

Session
bean

Entity
bean

EJB container EJB container

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 45

the Web container, local access to these resources will need to be converted to remote
access. Once again, the characteristics of the connection could be affected by this change.

In 2.2.2, “Overview of hybrid deployment assessment criteria” on page 37, we introduced our
reference configuration, with the entire application hosted on z/OS. This is once again
illustrated in Figure 2-9. For clarity, we omitted the connections from the EJB container to the
resources from the diagram.

Figure 2-9 Reference configuration with local access to z/OS resources

When both client and server components are located on z/OS, we can make use of Resource
Recovery Services (RRS) to provide a 2-phase commit transaction coordination service. The
local connections to both DB2 and CICS take advantage of this facility.

Figure 2-10 on page 47 illustrates the same application after the Web container has been
moved to another application server. In this example, the DB2 and CICS subsystems have
been retained on the z/OS system, so we have had to establish remote connections to them
from the Web components.

Client

Servlet

Application Server A

Web container

JSP file

Session
bean

Entity
bean

Entity
beanEntity

bean

EJB container

DB2

CICS

JDBC

JCA

z/OS or OS/390

Local
connections

46 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 2-10 Hybrid solution with remote access to z/OS resources

As with the communication between the J2EE components, the replacing of local connections
with remote connections could have implications for the characteristics of the call. These are
examined in detail in Chapter 3, “Component interaction characteristics” on page 75, but the
performance, security, transactional integrity, and systems management procedures could all
be affected. For example, RRS is only available to transaction participants that are running in
z/OS. The components running in Application Server A have to find some other means of
transaction coordination with the resources that they access across remote connections. The
J2EE Connector Architecture does not mandate a two-phase commit protocol, so there is no
guarantee that transactional integrity across JCA local connections that existed in the
reference configuration is preserved for the remote connections in the hybrid configuration.

The model-view-controller design pattern could again assist us, as it could be argued that
databases and enterprise information systems (EIS) are all part of the “model”, or business
logic. If the application was designed with this in mind, all EIS resource access may originate
from business logic components running in the EJB container. If this is the case, there will be
no direct resource access from the Web tier, thus avoiding the problem of remote resource
access entirely.

2.2.4 Options for physical application separation
In 2.2.3, “Options for logical application separation” on page 42, we described how the
application could logically be separated to run across two application servers. In this section,
we explore some of the physical implementation options. Suggestions are proposed to
illustrate how a hybrid solution might be physically deployed.

Client

Servlet

Application Server A

Web container

JSP file

Session
bean

Entity
bean

Entity
beanEntity

bean

EJB container

DB2

CICS

JDBC

JCA

z/OS or OS/390

Remote
connections

Application Server B

non-z/OS or OS/390

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 47

EJB container location
The mission-critical part of the application resides in the business logic. This is where we
require the best qualities of service. It is where transactional integrity is vital, where the most
complex processing in the application needs to be executed efficiently, and where resources
and applications need to be protected from unauthorized access. The business logic may
include a requirement for access to existing corporate data or transaction applications. In
many cases, these resources are hosted on the z/OS platform, and relocating or
reimplementing these resources is not an available option.

The runtime environment and infrastructure provided by WebSphere Application Server for
z/OS and OS/390 has been designed to provide these qualities of service. In addition,
resources accessed from WebSphere Application Server for z/OS and OS/390 use local
connection technologies. Local connections on z/OS provide fast and secure access to
legacy resources. For example, the platform makes use of Resource Recovery Services
(RRS) to ensure transactional integrity between WebSphere Application Server for z/OS and
OS/390 and other data and transaction subsystems. Access across a local connection is
“within the box”, so we do not have to worry about the management of the network
infrastructure across which a resource request from a remote application server would have
to travel. Local access also presents fewer security concerns, because all the participating
subsystems have been designed to use the same security infrastructure, and there are no
network physical security concerns to worry about.

If the model-view-controller design pattern has been followed, the business logic will be
implemented as enterprise bean components running in the EJB container. These
components may require access for existing data of transaction subsystems using
appropriate connectors. There is a good match between the qualities of service typically
demanded by business logic and the capabilities of the WebSphere Application Server for
z/OS and OS/390 and its runtime infrastructure. In a hybrid deployment, WebSphere
Application Server for z/OS and OS/390 is a good choice for hosting the EJB container.

WebSphere Application Server Advanced Edition on a non-zSeries
platform

One possible hybrid topology involves a WebSphere Application Server Advanced Edition
running on a non-zSeries platform. The solution involves the following assumptions:

� We have adopted the Web-EJB separation approach described in “Web-EJB separation
option” on page 43.

� We are using RMI over IIOP as the communications vehicle between Web components
and EJB components.

� We want to exploit the traditional qualities of service offered by the z/OS infrastructure to
run the application business logic.

� All access to EIS resources using the JDBC and JCA APIs is issued from enterprise bean
components running in the EJB container in WebSphere Application Server for z/OS and
OS/390.

Figure 2-11 on page 49 illustrates the topology.

48 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 2-11 WebSphere Application Server Advanced Edition on non-z/OS topology

The various elements of the topology are:

1. The client submits the HTTP request.

2. The request passes through an outer firewall to enter the demilitarized zone (DMZ).

3. The request is intercepted by the Network Dispatcher component of WebSphere Edge
Server, which routes the request to one of the IBM HTTP Servers. The Web servers will
have been set up as a cluster with a network address which the client will have used to
submit his request. The Network Dispatcher has been configured with a standby server to
provide high availability.

4. The Web servers have been configured with the WebSphere Web server plug-in to route
the requests to the Web container for processing. These requests travel over HTTP or
HTTPS. The plug-in performs workload balancing among the application servers based on
a round-robin or a random algorithm, while observing any session affinity requirements.

5. The request passes through the inner DMZ firewall into the secure network, where it is
picked up and processed by the Web container running in WebSphere Application Server
Advanced Edition.

6. The Web component requires access to an EJB component, which it accomplishes using
IIOP. The IIOP request is delivered to a second Network Dispatcher.

7. The Network Dispatcher works with the z/OS Workload Manager to route the request to an
instance of the WebSphere Application Server for z/OS and OS/390 server.

8. The application server services the IIOP request.

9. EIS resources such as DB2 and CICS are accessed by the enterprise beans using
appropriate connection technologies.

For more information on the concepts referred to in this section, refer to:

� IBM WebSphere V4.0 Advanced Edition: Scalability and Availability, SG24-6192.

� Enabling High Availability e-business on e-server zSeries, SG24-6850.

IBM HTTP Server

Plugin

IBM HTTP Server

Plugin

* Network
DispatcherNetwork

Dispatcher

Client

WebSphere AE

Web
Container

* Network
DispatcherNetwork

Dispatcher
WebSphere AE

z/OS

WebSphere for z/OS

SRSRCR

iiopiiop

CICS

DB2

z/OS

EJB
Container

SRSRCR

iiopiiop

CICS

DB2

Sysplex

DMZ

1 2 3 4 5 7 86 9

Firewall Firewall

Web
Container

WebSphere for z/OS

EJB
Container

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 49

WebSphere Application Server Advanced Edition on Linux on a zSeries
platform

There is a version of WebSphere Application Server Advanced Edition which runs on Linux
for zSeries. Under certain circumstances, hosting the Web container of a hybrid solution on
an instance of WebSphere Application Server Advanced Edition for Linux for zSeries could be
an appropriate solution.

Linux for zSeries benefits from the qualities offered by the hardware platform, which is the
most reliable hardware platform available. Possessing features such as memory chip sparing
and processor sparing, it offers a mean-time-to-failure measured in decades rather than
months. The hardware infrastructure may even be upgraded or repaired nondisruptively.

Virtualization
Linux operating system images may be run on a zSeries processor in several modes:

� Native mode

Linux is run natively on the zSeries processor. This is not a very efficient or effective use of
zSeries processor resources.

� In a logical partition (LPAR)

A zSeries processor may be divided into 15 logical partitions, each of which behaves as
an independent operating system image and is allocated dedicated or shared resources.

� As a z/VM guest

Linux can run as a guest operating system in a VM virtual machine. In this mode,
hundreds or literally thousands of Linux images may be configured.

The third option could be an appropriate solution for server consolidation. Application server
images that would otherwise be run on separate physical servers are virtualized on a single
zSeries server, as illustrated in Figure 2-12 on page 51.

50 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 2-12 WebSphere Application Server Advanced Edition server consolidation on Linux for zSeries

There are a number of reasons why this might seem an attractive proposition:

� Resource utilization

A zSeries processor benefits from an Intelligent Resource Director (IRD), which means
that processing resources such as CPU, memory, and I/O capability are dynamically
adjusted to service the workload based on application priorities. Server images that on
average are relatively under-utilized can be consolidated to optimize usage of the
processing capabilities. Resources will be made available to handle workload peaks when
the demand arises.

� Central point of control

Instead of having to administer a large number of physical servers, all the “virtual” servers
are located on one physical infrastructure. This could realize cost savings due to reduced
physical floor space and support personnel. Linux may also play multiple roles in a
network topology, so elements such as firewalls may be hosted on the same physical box
as the application servers.

� Flexibility

Linux images may be created and destroyed much more easily and cheaply than it is to
manage physical servers running non-z/OS operating system images. This may be
beneficial in an environment where there is a volatile demand for server images, such as
might be the case with a development organization that requires different server
configurations for the various test phases of a project.

� Skills

Once the z/VM infrastructure has been set up, no z/OS-specific skills are required to
manage the WebSphere AE images running in Linux for zSeries. The skills required are
the same as for Linux running on any other platform.

z/OS

Middle-tier application servers
surrounding corporate resources

z/OS

OS/390

VTAM TCP/IP

Data Managers

Transaction Managers

CICS IMS
TM TSO

Batch

IMS DB DB2 VSAM Oracle Adaplex IDMS Datacom

WebSphere AE

ConsolidateConsolidate

z/VM

Appl Appl Appl Appl Appl. . .

HiperSockets

FF
II
RR
EE
WW
AA
LL
LL

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 51

� Horizontal scaling

Linux for zSeries benefits from the physical horizontal scaling capabilities of the zSeries
hardware, which is capable of creating a very large processor configuration. In addition,
there is a logical horizontal capability provided by the ability to create more Linux images
on demand.

� Hipersockets

When communicating with WebSphere Application Server for z/OS and OS/390, the IP
flows across Hipersockets, a network connection that is internal to the zSeries server.
Hipersockets provides simplified network management, with no additional network
hardware required. Network security is improved because the flows never leave the
zSeries box, and because a Hipersockets network requires fewer moving parts or wires to
trip over, the connection is more reliable. The data is being transferred across memory
between participants that are physically located close together, so the performance of
Hipersockets communication is also very good.

� License costs

License costs could be reduced due to the “sub-CPU granularity” of resource usage.
Instead of an application server spending a large part of its time idle on a dedicated
server, it is one of any number of servers sharing common resources.

Virtualization workloads
Not all application servers and workloads are appropriate for Linux for zSeries virtualization.
The “sweet spot” for virtualization is a server that possesses the following attributes:

� Lower qualities of service demands

WebSphere AE for Linux for zSeries has inferior qualities of service to WebSphere
Application Server for z/OS and OS/390, because it has not been integrated with z/OS
subsystem features. For example, it does not exploit RRS, and so is not capable of
2-phase commit interaction with CICS.

� Low average utilization

Virtualization consolidates multiple servers to share processing resources. The benefits
will be most evident for servers with a low average utilization. Servers with high utilization
will consume larger quantities of processing resources, reducing the potential for resource
sharing.

� Spikey workloads

Application servers on dedicated server boxes need to be configured for capacity. They
have to be capable of handling the maximum workload which, irrespective of what the

Important: Note that WebSphere Application Server Advanced Edition for Linux for
zSeries is not an alternate configuration for WebSphere Application Server for z/OS and
OS/390; they are different products. WebSphere AE for Linux on zSeries benefits from the
hardware attributes of the zSeries server, but it has not been integrated with z/OS features
such as Workload Manager, Resource Recovery Services, and the security infrastructure.
WebSphere AE for Linux for zSeries does not possess the highest qualities of service
provided by WebSphere Application Server for z/OS and OS/390.

Note: One of the possible motivations for a hybrid solution was to save zSeries
resources by offloading the Web component processing. If this was the case,
presumably the Web components consumed a significant amount of processing
resources, so Linux for zSeries may not be an appropriate solution.

52 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

average workload is. In a Linux for zSeries environment, when the peak workload arrives,
more processing resources may be made available to accommodate the increased
demand. Thus, the expense of dedicated servers standing idle waiting for a workload peak
is avoided. This solution is therefore appropriate for workloads with seasonal peaks.

� Uncoordinated workloads

Virtualization is not a good solution for running multiple clones of the same application
server. This is because when the workload peaks, it will be for all the clones at the same
time, so just when we most need it, we lose the benefit of dynamically reallocating
resources to where they are required. It is more appropriate for a collection of disparate
application servers, running different workloads that peak at different times.

� Test servers

Servers used for application development and testing are typically low utilization and have
a volatile usage pattern. They are therefore a good candidate for virtualization on Linux for
zSeries.

For more information on Linux for zSeries and virtualization solutions, refer to the following
publications:

� Linux for S/390, SG24-4987.

� Linux on IBM zSeries and S/390: ISP/ASP Solutions, SG24-6299.

Hybrid deployment involving Linux for zSeries
A possible configuration for a hybrid solution would involve the EJB components running in
WebSphere Application Server for z/OS and OS/390, and the Web components running in
WebSphere Application Server Advanced Edition for Linux for zSeries. This is illustrated in
Figure 2-13.

Figure 2-13 Hybrid deployment involving WebSphere AE on Linux for zSeries

With this configuration, the incoming client requests may be distributed amongst Web Servers
running in Linux for zSeries using workload balancing technologies that are either on- or
off-platform. The WebSphere HTTP plug-in balances work between the application servers

Existing
Data or

Transaction

Model

EJBEJB

zSeries

z/OS

Hipersockets

z/Linux

Controller

ServletServlet

JSPJSP

View

WebSphere
plug-in

HTTP Server

* Network
Dispatcher
WSES
CSS
LVS

off/on
plattform

WebSphere Edge
Server
Linux Virtual Server
Cisco Content
Service Switch

N

WebSphere
plug-in

HTTP Server Controller

ServletServlet

JSPJSP

View

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 53

running Web components, and requests to the EJB components are submitted across
Hipersockets connections.

2.2.5 Options for J2EE inter-component communication
When separating the J2EE application into two parts, there are a number of mechanisms that
may be used to provide intercomponent communication.

RMI/IIOP
Remote Method Invocation (RMI) over Internet Inter-ORB Protocol (IIOP) is the method by
which enterprise bean methods are invoked. It is used by both standalone client programs
and Web components when enterprise bean functionality is required.

RMI APIs allow developers to build distributed applications in the Java programming
language. They enable an object running in one Java Virtual Machine to access another
object running in a different Java Virtual Machine.

IIOP is a protocol used for communication between CORBA object request brokers. An object
request broker is a library that enables CORBA objects to locate and communicate with one
another.

RMI/IIOP is an implementation of the RMI API over IIOP that allows developers to write
remote interfaces in the Java programming language. It is required to be supported by an
application server in order to achieve compliance with the J2EE 1.2 specifications. When
development tools generate enterprise bean access code, RMI/IIOP is the technique used.
The protocol supports global transactions, even if the client and server participants are
remotely located.

For a detailed investigation of the characteristics of an RMI/IIOP connection and the
implications of accessing an enterprise bean from a remote client, refer to 3.2, “RMI/IIOP
access to remote enterprise beans” on page 76.

Java Messaging Service (JMS)
One possible factor for considering a hybrid deployment solution is a re-architecting of the
application. This could be due to a number of reasons, but one of them might be a
requirement to make the business logic available to new client applications whilst retaining
the Web interface. One possible solution would be: the client application sends its request for
business logic execution in an IBM WebSphere MQ message.

IBM WebSphere MQ overview
IBM WebSphere MQ (WMQ) provides an asynchronous messaging infrastructure that is
capable of integrating applications spanning more than 25 different platforms. It provides
messaging functions for both servers and clients, ensuring once-only delivery of messages.

It is because of its ubiquity that it is a popular choice for connecting applications running on
different platforms. The nature of the connections over which the messages flow depends on
the WMQ components involved.

A WMQ server running on z/OS may be accessed from another server across a peer-to-peer
connection. In this case, the messages are transferred asynchronously, so a client application
will write a message to the sending server and will have control returned as soon as the
operation is complete. The message will be held by the sending server until the receiving
server is ready. In addition, a WMQ server on z/OS may also receive messages directly from
a client, but in this case the WMQ server must be available for the client to connect to in order
for the message to be written.

54 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

JMS Listener
J2EE applications access messages using Java Messaging Service (JMS). JMS provides a
generic API for access to messaging services, one of which is WMQ.

In order for enterprise beans to process WMQ messages, a session bean must be
instantiated. To do this with no directly connected Web client application, we must make use
of a JMS Listener. Application servers that support the EJB 2.0 specification will be able to
make use of Message Driven Beans (MDBs). MDBs provide an infrastructure that listens for
incoming messages and initiate an appropriate session bean to execute the business logic.

WebSphere Application Server V4.01 for z/OS and OS/390 only supports the EJB 1.1
specification, so an alternative technique must be used.

The JMS Listener is a long-running task, typically an auto-started servlet, that waits for
messages to arrive. A problem with running the servlet in the WebSphere Application Server
V4.01 for z/OS and OS/390 Web container is that the servlet cannot create client threads to
access managed objects. The workaround is to move the servlet to run in the HTTP Server
plug-in. This solution is described in full in the Overcoming a Problem Running Simulated
Message Driven Beans, WP100301 whitepaper, which is available from the TechDocs library
at:

http://www-1.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs

Although this solution is possible, and may be considered strategic for future exploitation of
MDBs when support is available, it does involve not only reinstating Web component
processing on the z/OS platform, but also the introduction of the IBM HTTP Server in order to
run the servlet in its WebSphere plug-in.

Performance and availability
To ensure performance and availability, a number of WMQ servers running on z/OS would
have access to a shared queue. A queue is a repository for storing messages, and a shared
queue is one that makes use of sysplex facilities to make itself available to a number of WMQ
servers running in different z/OS images.

Each WebSphere Application Server for z/OS and OS/390 server would talk to a WMQ server
in its own operating system image. The message listeners would issue a get for a message
against the shared queue, and wait for one to arrive. The message gets would be serviced on
a first come, first served basis, so the first message to arrive would be presented to the first
listener that issued a get; the second message to the second listener; and so on. Failed
servers will not be targeted with messages, because they will not have a get request
outstanding. This first come, first served processing will also ensure that the work is
distributed among the application servers.

Client application connectivity
The client applications will be connected to the z/OS WMQ servers using MQ channels. The
client could be a Web application running in WebSphere AE, or it could be a rich client. The
clients could connect directly to the z/OS WMQ servers, or they could connect to a WMQ
server running locally on its own platform. Either way, the connection to WMQ on z/OS will be
either LU6.2 or TCP/IP.

Note: At the time of writing, WebSphere Application Server V5 for z/OS and OS/390 was
not available. Today, WebSphere Application Server V5 for z/OS and OS/390 enables
dynamic application interaction through native, high performance Java Messaging Service
(JMS), J2EE 1.3 Message Beans, and container-managed messaging. Therefore, all the
JMS Listener problems discussed have been solved by the product implementation.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 55

If the connection is TCP/IP, then the possibility of the connection flowing through a firewall has
to be considered. The firewall will need to enable access for the relevant port numbers. There
is a WMQ SupportPac™, MS81: WebSphere MQ Internet Pass-Thru (MQIPT), which can be
used to simplify the passage of WMQ channel protocols through firewalls, by wrapping the
flows as HTTP requests. This SupportPac may be downloaded from:

http://www-3.ibm.com/software/integration/support/supportpacs/individual/ms81.html

When connections are established to WMQ servers, their placement may be subject to
workload balancing using technologies such as Sysplex Distributor. However, the connection
will be established with a single instance of the WMQ server, and it persists until it is closed.
Once a client server has established a connection, all its messages are transmitted to the
same WMQ server on z/OS. However, this would not pose too much of a problem, because
once the message is on the shared queue, it would be processed by whichever server was
next in line with a get for a message.

Development
Redesigning a J2EE application to provide a JMS-based interface between the Web
components and the EJB components is a significant undertaking. It would likely have to be
justified by a requirement to expose the business logic to other client applications in addition
to the Web application.

The Web application could be designed to perform a synchronous operation with the EJB
components, even though it is operating across an asynchronous transport. The Web
component would put a message on a queue, either directly to the WMQ server running on
z/OS or to a local WMQ, which would then forward the request on to WMQ on z/OS. It would
then wait for a reply message to be returned once processing had been completed, and
construct some appropriate response to be sent to the end user. Such a design needs to take
account of the fact that the processing of the message could be delayed indefinitely.

The WMQ servers will look after the message to ensure it is not lost, but because messaging
is an asynchronous operation, the message could get held up due to the unavailability of
some aspect of the infrastructure, such as WMQ servers or WebSphere application servers.
Under such circumstances, the message will eventually get processed when the
infrastructure is fully operational, and a response message sent back to the client application.
The problem is that the client application may still be awaiting the response, or could have
timed out and gone away. The application design needs to accommodate this possibility, as
follows:

� Place a limited shelf-life on the original request message, so that after a specified period
of time the message is no longer “valid” and will not be processed.

� Adopt a “fire and forget” approach, in which WMQ is trusted to ensure that the request
message will not be lost, and the client application does not wait for a response message
but continues processing in the knowledge that the message will be delivered. The
application has to include some form of compensation processing should errors occur
while the message is being processed.

Strategic aspects
The J2EE implementation of MDBs is available with application servers that support the EJB
2.0 specification. WebSphere Application Server V5 supports J2EE 1.3, which includes this
specification, providing support that has been architected into the product.

Web Services
An alternative approach to loosely coupling the Web and EJB components is Web Services.
Web Services is one aspect of a service-oriented architecture (SOA) approach to application

56 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

development, the goal of which is to provide support for the connection and sharing of data
and resources in a flexible and standardized manner.

Service-oriented architecture
Each component in a service-oriented architecture can play one (or more) of three roles:
service provider, broker, and requestor, which perform the operations shown in Figure 2-14.

Figure 2-14 Web services roles and operations

� The service provider creates a Web service and possibly publishes its interface and
access information to the service registry. Each provider must decide which services to
expose, how to make trade-offs between security and easy availability, how to price the
services (or, if they are free, how to exploit them for other uses). The provider also has to
decide what category the service should be listed in for a given broker service and what
sort of trading partner agreements are required to use the service.

� The service broker (also known as service registry) is responsible for making the Web
service interface and implementation access information available to any potential service
requestor. The implementers of a broker have to decide about the scope of the broker.
Public brokers are available all over the Internet, while private brokers are only accessible
to a limited audience, for example users of a company-wide intranet.

Furthermore, the width and breadth of the offered information has to be decided. Some
brokers will specialize in breadth of listings. Others will offer high levels of trust in the listed
services. Some will cover a broad landscape of services and others will focus within a
given industry. Brokers will also arise that simply catalog other brokers. Depending on the
business model, a broker may attempt to maximize look-up requests, number of listings, or
accuracy of the listings.

� The service requestor locates entries in the broker registry using various find operations,
and then binds to the service provider in order to invoke one of its Web services. One
important issue for users of services is the degree to which services are statically chosen
by designers compared to those dynamically chosen at runtime. Even if most initial usage

Service
Requestor Internet Service

Provider

Legacy
system

Service
Broker

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 57

is largely static, any dynamic choice opens up the issues of how to choose the best
service provider and how to assess quality of service. Another issue is how the user of
services can assess the risk of exposure to failures of service suppliers.

Web Services is an implementation of a service-oriented architecture designed to provide
access to application services using standard protocols and tools that are independent of the
service’s implementation. When a Web service has been published, the service provider may
never have had any previous interaction with the service requester. However, it is also
possible to make a service available internally within an organization, and make use of it as
an in-house application. In this case, the service requestors may not need the service broker,
because they could have been provided with details of how to access the service by some
other means, such as e-mail.

Access to Web services
The service-oriented architecture has flexibility built into it to enable services to be invoked by
any standard communications infrastructure. As the concept evolves, a broader range of
options will appear, but initially the most common access mechanism is through the use of
Simple Object Access Protocol (SOAP) messages. SOAP is a network-, transport-, and
programming language-neutral protocol that allows a client to call a remote service. The
message format is Extensible Markup Language (XML), a generic language that can be used
to describe any kind of content in a structured way, separated from its presentation to a
specific device. HTTP provides the runtime transport.

The WebSphere Studio Application Developer Integration Edition V4.1.1 tool provides
support for developing applications that follow a service-oriented architecture approach. They
also provide wizards for generating most of the documents and code required to produce a
Web service. The Web service may be made available either as a session enterprise bean or
as a SOAP service (or both).

Use of Web services for a hybrid solution
If an application is to be exposed as a Web service, then it is possible that one of the client
applications for accessing the service is a Web application with a browser as the user
interface. In this instance, it is possible that Web components could invoke enterprise bean
logic as a Web service. However, this mechanism carries a large performance overhead
compared to RMI/IIOP. The development tools provide wizards to wrapper an enterprise bean
as a Web service, so it is more likely that the RMIRI/IIOP access and the Web services
access will coexist to provide access to common business logic from different client
applications.

2.3 Evaluation criteria for remote component and EIS access
As part of assessing the feasibility of a hybrid deployment, consideration needs to be given to
the effect that the separation will have on the application when request execution needs to
cross the divide between the two (or more) parts of the application. When access to
components and enterprise information systems (EIS) resources changes from a local
connection to a remote connection, the characteristics of the connection could change.

Chapter 3, “Component interaction characteristics” on page 75 examines the implications of a
local to remote conversion for some specific connection examples. In this section, we discuss
in general terms the criteria for comparing the differences between local and remote access.
The evaluation criteria presented may be applied to any type of connection that has not been
included in our collection of examples.

58 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

A hybrid solution will require some component access, and possibly some EIS access, to be
converted from local to remote. Assessing each type of access against these criteria will
assist with determining whether a hybrid solution is appropriate. It may also assist with
determining the most appropriate place to insert the separation in a hybrid deployment.
Different points of separation may require different remote connections to be established.
Following an evaluation of the remote connections against the criteria, different solutions may
incur different degrees of service degradation or compromise. This information will influence
where the application separation is implemented.

2.3.1 Performance
Separating the application increases the overall instruction path length for all requests that
require processing by components in both parts of the application. Local requests are fast
because the transport is through a program call. It avoids the overhead of the network and
data transformations, simplifies the marshalling of requests, and is able to use optimized
RACF facilities for security. From remote clients, more heavyweight security mechanisms
such as SSL and Kerberos have to be employed. An assessment has to be made as to
whether the cost of this increased overhead is worth the intended benefits.

Capacity
One of the possible motives for a hybrid solution is to maximize the benefit of WebSphere
Application Server for z/OS and OS/390 processing capacity. By relocating the Web
components on another platform, we free up valuable processing resources and focus them
on the kind of processing that the z/OS platform has historically been used for:
mission-critical business logic. A consideration might be: what are the relative amounts of
resource consumption between the Web container components and the EJB container
components?

If the bulk of the application processing is spent in the Web components, then some benefit
may be obtained from performing this activity on a cheaper platform that does not require
such high qualities of service. This benefit must of course be weighed against the overhead of
remote component and/or EIS access that has been introduced.

There are a number of performance monitoring products which may be used to investigate
the CPU consumption of various application components. These include:

� WebSphere Studio Application Monitor

� IBM Tivoli® Monitoring for WebSphere Application Server on z/OS

� IBM Resource Measurement Facility (RMF)

� Other vendors’ monitoring products

For more information on these products and their capabilities, refer to Monitoring WebSphere
Application Peformance on z/OS, SG24-6825.

Bear in mind that performance monitoring and capacity planning will be more complex with a
hybrid deployment. Although performance monitoring tools for WebSphere application
servers on all platforms exist, resource consumption statistics now originate from multiple
sources for the same application. Performance metrics may need to be merged or correlated
to provide a complete picture. It could also be difficult to relate changes in workload volume to
changes in the WebSphere Application Server for z/OS and OS/390 application server
performance, particularly if the EJB container is configured as an EJB “repository” for a
number of hybrid applications, each with Web components deployed to different servers, as
shown in Figure 2-15.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 59

Figure 2-15 Common EJB components for multiple Web applications

Scalability
With a consolidated application running in WebSphere Application Server for z/OS and
OS/390, we can take advantage of the scalability features of z/OS. As the demands of the
incoming workload volume vary, z/OS is capable of starting and stopping application server
instances. This provides an effective horizontal scaling solution. As the workload increases,
more replica servers are made available to process the client requests.

This is illustrated in Figure 2-16 on page 61. Work is directed to the Queue Manager Address
Space, which is a Control Region in WebSphere Application Server for z/OS and OS/390
terms. The Control Region works with the z/OS Workload Manager to queue the work. Any
number of Queue Server Address Spaces (or Server Regions) pull work off the queues and
process it. Workload Manager adjusts the number of Server Regions available to cope with
the incoming workload.

App Svr A

WebSphere for z/OS

Servlet

Web App A

JSP file

EJB container

App Svr C

Servlet

Web App C

JSP file

App Svr B

Servlet

Web App B

JSP file

Common EJB components
for all Web apps

60 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 2-16 Horizontal scalability for WebSphere Application Server for z/OS and OS/390

With a consolidated application deployed to a single server, both the Web components and
EJB components reside in a WebSphere Application Server for z/OS and OS/390 server. If
the z/OS Workload Manager decides that more server regions need to be spawned in order
to handle the incoming workload, then additional containers for both the Web components
and the EJB components are created.

In a hybrid solution, not all of the application resides in WebSphere Application Server for
z/OS and OS/390. Part of it has been installed in another application server running outside
of the z/OS environment. Although the WebSphere Application Server for z/OS and OS/390
components will benefit from the scalability afforded by the z/OS Workload Manager, the
off-platform components and the intervening network infrastructure do not. We have more
layers in a hybrid solution for which we need to figure out a scalability solution.

Assuming that in a hybrid solution the Web container is located on a non-z/OS platform,
consider whether the Web container and the network infrastructure between the application
servers can scale. WLM can only dynamically control the number of available servers running
EJB components. The infrastructure for the Web container and network connection may have
to be configured for sufficient capacity to handle any anticipated workload. This may not be an
efficient use of resources if the workload volumes can vary by significant amounts, because
during quiet periods the server resources will remain idle.

Workload distribution
An application is deployed to a WebSphere Application Server for z/OS and OS/390 J2EE
server. The J2EE server is comprised of a number of server instances, where each server
instance may run on a different operating system image in the sysplex. The application
servers running on several physical systems are collectively known as a host cluster, and are
viewed by the outside world as a single system with a single Daemon IP name. This
configuration assures application availability, but to make the best use of available resources,
some means of distributing work across the running servers is required.

There are a number of technologies available for distributing work that arrives over an IP
connection around the sysplex.

Q ueue Manager
Address Space

Q ueue Server
Address Spaces

W LM Address Space

Application
Environment

Normal Hot

W ork Queues

insert work
request

select work
request

In itialize subsystem
and establish it as a
queuing it as
queueing manager

Transaction starts:
create enclave

Transaction ends;
delete enclave

Rem ove subsystem
as a queueing
manager and
term inates it

(a)

In itialize server and
connect to application
environment

Server Instances
(=parallel_eu)

Process work request

(b)

Disconnect from
application

environment and
term inate server

Transaction ends;
delete enclave

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 61

� Round robin DNS

This solution makes use of a Domain Name Server (DNS) to resolve the host name
attached to the client request to one of a number of alternate IP addresses. This provides
a primitive load balancing solution, but takes no account of servers that may be offline.

� Connection optimization

Connection optimization also makes use of a DNS, but this time it runs on z/OS. It
dynamically resolves the host name of requests to a specific server, and does so by taking
advice from the z/OS Workload Manager as to the best place to route the request based
on current CPU, memory, and I/O activity.

� IBM WebSphere Edge Server Network Dispatcher

Network Dispatcher is a router with the host name associated with its address. It takes
requests and forwards them on to an appropriate server. It is capable of taking advice from
the z/OS Workload Manager regarding the placement of requests. It also supports
content-based routing, so it can handle any HTTP session affinity requirements that
require the request to be directed to a specific server.

� Cisco Multi-Node Load Balancer (MNLB) and Cisco Content Services Switch (CSS)

Cisco’s Multi-Node Load Balancing (MNLB) solution is also a router that is capable of
routing requests according to advice provided by the Workload Manager.

� Sysplex distributor

Sysplex distributor is a technology for routing work into a sysplex. It also works with
Workload Manager to determine the target server. It may be used in conjunction with other
solutions, such as WebSphere Edge Server or Cisco’s load balancers.

� WebSphere HTTP plug-in

If the workload consists of HTTP(S) requests, then they may be directed to a Web server
running the WebSphere Application Server Advanced Edition Web server plug-in. The
plug-in can then distribute requests to the application server instances on a round-robin
basis, or more intelligently with sysplex distributor assistance. It also handles HTTP
session affinities.

For a consolidated application that was installed in its entirety into a WebSphere Application
Server for z/OS and OS/390 J2EE server, it is the client’s HTTP(S) requests which will need
to be distributed amongst the sysplex for processing. The above solutions are capable of
providing this function, although the first two DNS solutions are not strategic. For a hybrid
solution, the client’s HTTP(S) request will already have been intercepted by the application
server running the Web components. Depending on how the hybrid solution has been
architected, requests for EJB container function or EIS access could arrive over a variety of
protocols, for example IIOP, or a JMS message, or as a SOAP request over HTTP(S), or
some other protocol. Some may have more flexible workload distribution capabilities than
others, so each connection and protocol will need to be evaluated on its own merit.

Workload distribution inhibitors
The ability to effectively distribute work may be affected by the manner in which the
application was designed. It could contain coding practices that require workload distribution
algorithms to be bypassed. For example, to look up and instantiate an enterprise bean is an
expensive operation, so a common practice is to cache the object reference (or handle) once
these operations have been completed. The object reference may then be reused on
subsequent requests to save the cost of repeating the lookup and instantiation.

Note: A more lengthy description of these technologies and their capabilities is provided in
Enabling High Availability e-business on e-server zSeries, SG24-6850.

62 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

This tactic improves the performance of the application, but it means that every access to the
subject of the cached reference will be directed to the same server. The object reference
includes information about the specific server in which the object was originally located, so all
requests are directed there, bypassing any workload distribution intervention.

Workload management
As well as providing routing advice for directing work around the sysplex, the z/OS Workload
Manager is responsible for managing workload performance by optimizing the use of
resources required to complete client requests. It assigns processing resources such as
CPU, memory, and I/O to address spaces processing the workload in an attempt to satisfy the
performance goals that have been set.

Address spaces themselves may have performance goals, but work requests entering the
z/OS system may also be assigned a workload manager enclave. An enclave determines the
performance service class of the request, and the level of service and priority that the request
should receive. Figure 2-17 shows two work requests that have been assigned different
enclaves with different service classes, which results in their running in different server
regions.

Figure 2-17 WebSphere Application Server for z/OS and OS/390 workload classification

There are some considerations regarding the allocation and use of enclaves with hybrid
solution work requests that arrive from a remote Web container. We first have to determine
how it is possible to assign an enclave when the request arrives at the z/OS platform. For
client HTTP(S) requests, there are three options:

1. The service class may be assigned based on the user ID under which the work is running.

2. The service class may be assigned based on the server name.

3. The service class may be based on the URI of the request, either in the Web server or in
the HTTP Handler.

In a hybrid solution, it is more likely that an IIOP request rather than an HTTP(S) request will
arrive at the z/OS platform. For remote IIOP requests, we lose option 3 from the above list. So
by adopting a hybrid solution, we may lose some flexibility for managing the workload.

2

1

J2EE Server

IIOPIIOP

CR

HTTPHTTP

SR1

SC=CB01SC=CB01

1

SR2

SC=CB02SC=CB02

2

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 63

Another consideration is that the workload goals will now only apply to the EJB piece or the
EIS access piece of the application. The Web components are located on another platform
over which workload manager has no jurisdiction. The performance goals for the request
have to be set for EJB processing only, which will not map so well to service level
requirements that may have been agreed to with the user community.

2.3.2 Availability
When we are dealing with a hybrid application, we introduce an additional application server
and intervening communication channels into the infrastructure when compared to the
reference configuration. There are more components that need to be configured for fault
tolerance to ensure that availability requirements are met.

Each of the additions that the hybrid solution introduces into the infrastructure should be
configured such that we do not compromise availability objectives. Things to consider include:

� Ensure that there is no single point of failure. Replicate or clone infrastructure components
in a configuration that enables surviving components to assume the workload of a failed
component to preserve application availability. This could be a hot standby or failover
configuration, when a secondary backup of the component is normally idle but ready to
take over processing responsibilities if the primary copy fails; or it could be a configuration
in which multiple copies of a component process work requests all the time and merely
take on the additional load when a component fails.

� If a workload balancing mechanism is used to distribute requests across a set of cloned
components, ensure that any component failure is recognized such that no further
requests are routed in that direction. Only functioning instances of the infrastructure
component should be considered by the workload balancing mechanism.

� When a failed component is recovered, check whether it is automatically reinstated into
the decision-making algorithm for workload balancing, or if manual intervention is
required.

� Beware of any component “affinity” considerations that need to be accounted for. After an
initial client request has been serviced, subsequent requests need to be routed to the
same instance of the component. Such a condition might be imposed by the infrastructure,
such as a connection to a CICS server over which an extended unit of work is in place; or
it might be imposed by application design, such as a cached lookup to an enterprise bean.
In these cases, following a failure and recovery it may not be possible to immediately
resume a balanced distribution of requests across the component instances.

2.3.3 Security
Within the confines of a sysplex environment, everything runs under a RACF (or equivalent
product) identity. All resource authorizations are performed using a RACF identity, either
explicitly (such as access to DB2 data) or implicitly (such as J2EE EJBROLE checking). A
work request running on z/OS needs to be assigned a RACF identity.

When the entire application is hosted on the z/OS platform, there are a variety of techniques
for authenticating the end user:

� Basic authentication

� Client certificates or mutual authentication

� Form-based login

� Off-platform authentication (Trust Association Interceptor or Custom User Registry)

More options are described in z/OS WebSphere and J2EE Security Handbook, SG24-6846.

64 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

All these methods will result in a RACF identity being established for the end user. Once we
have a verified identity, it may travel around with the request so that it may be used for
authorization checks. In the reference configuration described in “Reference configuration” on
page 37, the request never leaves the confines of the WebSphere Application Server for z/OS
and OS/390 application server, so the authenticated user identity is available for the lifetime of
the request in the sysplex (unless configured not to do so4). In addition, we can propagate the
authenticated user’s identity on calls to the EIS resources.

In a hybrid solution, the user authentication would have taken place in the Web container of a
WebSphere Application Server Advanced Edition server. z/OS will not trust the remote
platform by default, and will in most cases not just accept a propagated user identity to run a
request with. For IIOP requests, currently the only means of authentication with a WebSphere
Application Server for z/OS and OS/390 EJB container for a non-z/OS client request is a
client certificate. (The EJB container could assign a default user identity to the request, but
these typically have been configured with very little processing authority.) The client certificate
may be mapped to a RACF user identity, but this represents the identity of the remote
WebSphere AE server, not the end user. Authorization checks now have to be set up to
permit access for the remote server, rather than individual users.

Other solutions for the communications channel between Web components and EJB
components in a hybrid deployment (JMS, Web Services) will likely suffer from a similar loss
of granularity for authorization checks.Today, a good method for userid propagation would be
a HTTP protocol implementation.

When accessing z/OS EIS resources from outside of the sysplex, we again lose the ability to
propagate the identity of the authenticated user. Typically, these requests carry with them a
user ID and password that are authenticated against RACF by the resource subsystem. The
user identity once more represents the remote server or application rather than a specific
user, leading to less granular resource authorization controls than those of the reference
configuration.

Password protection issues for remote clients
Another aspect of remote client authentication for z/OS EIS access is the introduction of a
password in order to be able to run work. Connection technologies usually flow a user identity
and password with their requests. (In the z/OS-only environment of the reference
configuration, only the user ID needs to be flowed; no password is required because the user
has already been authenticated against RACF.) This existence of the password presents a
possible security exposure.

The password may be hard-coded in a program, or stored in a properties file, or set up as part
of the application server or connector configuration. Wherever it is stored, it will need to be
protected in the remote client environment from unauthorized use.

2.3.4 Transaction integrity
In transactional applications, the integrity of resource updates is vital. When a client submits a
request that involves updates to corporate resources, we must be certain whether or not the
updates were successfully applied. In addition, we need to ensure that updates that form part
of the same unit of work are either applied or not applied in their entirety. When a business
transaction involves several update operations, they must all be committed or rolled back
together. Failure to do so could result in the data being left in an inconsistent state, a condition
which could have serious implications for the business operations.

4 It is possible for the original user context to be “lost” if the application deployment descriptor specifies a RunAs
mode of anything other than “Caller”.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 65

When a transaction involves multiple updates, the unit of work may be qualified as one of two
types: and extended unit of work, or a distributed unit of work. In both cases, update requests
to the resource manager would need to be held in a pending state until instructions were
received to either commit or roll back. The means or communication with the resource
manager, as well as the connector technology and the capabilities of the resource manager
itself, could all have a bearing on whether such transactional behavior is supported. When
contemplating a hybrid solution, we need to assess whether or not the communications
infrastructure for component interaction and EIS access will support the required levels of
transactional integrity.

Extended unit of work
An extended unit of work involves multiple updates to the same resource manager. All the
updates comprise the same unit of work, which means that they must all be committed or all
rolled back. In Java terms, this situation is referred to as a local transaction.

The remote resource manager might be the EJB container running in a WebSphere
Application Server for z/OS and OS/390 server. If the user request only involves a single
update to an entity bean, then the update may be committed upon return from the call. If the
user request involves updates to several entity beans, then an extended unit of work is
required. The resource manager defers committing any updates until it receives an instruction
to commit or roll back from the client part of the application (referred to as syncpoint time).

All the updates for the transaction are owned by a single resource manager. At syncpoint time
the client may simply ask the resource manager to commit the updates, and the resource
manager decides whether it is capable of committing them or needs to roll them back.
Transaction integrity is maintained whatever decision the resource manager makes, because
all the updates for the transaction are acted on in this one operation.

In summary, to support extended units of work, the resource manager needs to be able to
defer committing updates until syncpoint time, but does not necessarily have to support a
two-phase commit protocol.

Distributed unit of work
A distributed unit of work involves updates to multiple resource managers in order to complete
a user transaction. As with an extended unit of work, all the requests must be committed or
rolled back together. In Java terms, this is a global transaction.

The resource manager involved in the unit of work could include a WebSphere Application
Server for z/OS and OS/390 EJB container, or database subsystems, or any subsystem
accessed through J2EE Connector Architecture (JCA) connectors. It could also include the
client subsystem itself—if an EJB container applies updates to an entity bean and then uses a
JCA connector to run an update in CICS, we have a distributed unit of work, even though the
EJB container is the client to the CICS call.

A distributed unit of work requires its participant resource managers to defer committing
updates until syncpoint time. It also requires a transaction coordinator to ensure that all
participant resource managers take the same syncpoint action (either commit or roll back). To
accomplish this, the transaction coordinator must make use of a two-phase commit protocol
to ensure data integrity.

1. Phase one asks all the participant resource managers if they are ready to commit. Each
resource manager replies yes or no.

2. Phase two tells the resource managers what action to take based on the responses from
phase one. If any resource manager is unable to commit, then a rollback instruction is
issued. Otherwise, a commit instruction is issued.

66 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

If the application involves distributed units of work, then the participant resource managers
need to be able to defer updates until syncpoint time, and support a two-phase commit
syncpoint.

2.3.5 Infrastructure criteria
In the reference configuration described in “Reference configuration” on page 37, the
application is pretty much self-contained. There will be some network infrastructure to direct
the client request into the z/OS system, but once it has arrived, all intra-application
communication is over secure, local connections until the response is sent back to the client.

When creating a hybrid solution, more elements need to be added to the infrastructure.
Principally these elements are the extra application server for the Web components, and the
network channels to permit communication with the EJB components in WebSphere
Application Server for z/OS and OS/390. Additional elements may be required if access is
required to EIS hosted on the z/OS system, or if communication with the EJB components is
accomplished using Java Messaging Services (JMS), Web Services, or some other non-IIOP
protocol.

When evaluating a hybrid solution, there are a number of considerations related to the
additional infrastructure that need to be introduced.

Total cost of ownership
Adding elements into the infrastructure will increase the complexity and total cost of the
solution. Additional costs incurred could include, but are not limited to, the following:

� License costs for the additional application servers, and associated maintenance
contracts

� License costs for connector technologies to EIS resources

� License costs for additional systems management infrastructure, such as monitoring tools

� Hardware costs for additional server platforms

� Additional network infrastructure costs

� Additional skills required to support the infrastructure now that it spans multiple platforms

� Increased application development and testing costs

Note that a possible motivation for a hybrid solution could be to make more effective use of
z/OS processing resources, the benefits of which should be offset against any additional
costs.

Firewall considerations
In a hybrid solution, we are moving elements of the application off the z/OS platform. Some
installations place a firewall in front of their sysplex through which all IP traffic must flow. We
have to consider where to place the WebSphere Application Server Advanced Edition server
which is hosting the Web components.integration and security considerations

If the infrastructure is configured with the firewall between the Web components and the EJB
components, the following considerations apply:

Note: WebSphere Application Server Enterprise V5 provides Last Participant Support.
With this you can coordinate the use of a single one-phase commit capable resource with
any number of two-phase capable resources in the same global transaction.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 67

� We must have some means of permitting requests to the WebSphere Application Server
for z/OS and OS/390 and to z/OS EIS to reach their destination. This means that for
connections that use an IP protocol, the firewall must be configured to let them through.
For example, we may have to permit IIOP requests.

� There is a problem when routing IIOP requests through a firewall that operates using
Network Address Translation (NAT). A request is originally submitted to the public IP
address of the firewall, which then converts the destination address to that of the target
server. The problem is that when a JNDI lookup request for an EJB component is issued
by the client, the returned IOR contains the IP address of the target server. This address is
useless to the client because it cannot access the server directly; what it needs is the
public firewall address. The ideal solution would be for the firewall to perform the
appropriate translation within the IOR as it flows back to the client, but currently there are
no firewalls with this capability. A workaround is to configure the servers to use an
unqualified symbolic host name instead of the IP address.

� If any services on the z/OS system need to be accessed using an IP protocol from the
WebSphere Application Server Advanced Edition server, they need to have a
predetermined port number. Some port numbers are generated dynamically, with the
client being advised of the actual number when it needs to use it.

An example of this is the port numbers used to service IIOP calls by the WebSphere
Application Server for z/OS and OS/390 name server. In this case, the port number may
be locked down using the IIOP Firewall Port and the SSL Firewall Port properties of the
server instance. However, there may be other instances, possibly involving EIS resources,
where the ability to lock down the port number is not available. In these cases, the firewall
will need to be reconfigured to the generated port number every time it changes.

Given the inherent problems with driving IIOP requests through a firewall, it is worth
considering placing the WebSphere AE server together with the z/OS system behind all the
firewalls.

2.3.6 Development and deployment criteria
A hybrid solution requires the application to be packaged into two or more deployable
artifacts, each of which is installed into a different application server. This makes the
processes of application development, testing, packaging, and deployment more complex
than they would be for a consolidated application targeted for a single application server. This
section identifies some of these implications.

Application development
This section addresses issues that arise with the application design and development. An
assessment of the feasibility of a hybrid solution should consider the amount of additional
complexity which the solution will add to the development process.

Lookup namespace
When developing a hybrid deployment, the fact that we need communication between
components in separate servers affects the application code. Consider the example of a
hybrid deployment where EJB components are accessed from Web components using the
RMI over IIOP. The Web components will need to perform a JNDI lookup in order to determine
the location of the target enterprise bean.

A lookup is issued against an InitialContext object, which is used to identify the namespace to
be used. In a single consolidated application, InitialContext is created using a default set of
properties, which equates to the namespace of the same application server that the Web
component is running in. When access is required to a component located in a remote

68 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

application server, the lookup needs to be directed to the namespace of the remote
application server (the one hosting the EJB components). In this case, the InitialContext is
instantiated with the javax.naming.Context.PROVIDER_URL property to point to the correct
namespace.

In order to support the migration of the application through its test environments, each of
which may have the enterprise beans located in a different server, the PROVIDER_URL
property should not be hard-coded into the program. One possible solution would be to
specify it as an environment property, the value of which may be set appropriately at
application assembly time.

com.ibm.CORBA.iiop.noLocalCopies
The com.ibm.CORBA.iiop.noLocalCopies JVM property determines whether objects passed
to enterprise beans are passed by reference or passed by value. This support is not part of
the J2EE 1.1 specs. It is within the J2EE 1.3 specification and therefore supported by
WebSphere Application Server V5 for OS/390 and z/OS and implemented with the “local”
interface support.

In a hybrid deployment, the ability to pass by reference (noLocalCopies=true) is lost, because
the JVM boundary is crossed. Pass by reference enables the calling object to see changes
made by the called object to the object passed as an argument. Therefore, the removal of
pass by reference could change the behavior of the calling object.

In addition, there may be occasions when the client program is expecting to handle a
particular exception, and the removal of noLocalCopies changes the exception that will be
raised for a particular error condition. For example, in WebSphere Application Server V4.01
for z/OS and OS/390, the default configuration (noLocalCopies disabled) will return
java.rmi.RemoteException for non-user exceptions. However, with noLocalCopies=true,
specific exceptions may be returned to the client without having them wrapped in the
java.rmi.RemoteException. If the program originally ran as a consolidated application with
noLocalCopies=true, and it contained code to catch the specific exceptions, it may need to be
amended once it has been converted to a hybrid application to catch the
java.rmi.RemoteExceptions that may replace the original exceptions.

Code shared by an application’s artifacts
An application that is being converted from a single to a hybrid deployment may make use of
common utility classes which are shared between the Web and EJB components. In the
hybrid solution, each application will need to be packaged with its own copy of the common
code.

If the shared code has some dependency on the topology of the application, then
consideration should be given creating separate copies of the common code. For example,
there could be a common class to perform an EJB lookup that is used by both Web and EJB
components. In a consolidated application, both sets of components perform their lookup in
the same namespace. In a hybrid application, the Web components will need to look up in a
remote namespace (that of the EJB container’s application server), but any EJB components
that look up other enterprise beans will look up in their local (default) namespace. The hybrid
utility class needs to provide a different behavior to the Web and EJB components.

Modern J2EE applications are developed using tools that provide an integrated test
environment in which code may be run. IBM’s WebSphere Studio Application Developer V4

Note: APAR PQ57189, Service Level W401019 is required to provide this support. Refer to
Assembling Java™ 2 Platform, Enterprise Edition (J2EE™) Applications, SA22-7836 for
more information.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 69

set of products provide such a facility. It is conceivable that early unit testing of a hybrid
application will be performed using such an environment. This poses a problem for testing
applications that use common classes with a topology dependency, such as a lookup utility.
The tool’s test environment only provides a single server, so the different behavior for the
common class required by the Web and EJB components needs to be accommodated
somehow.

Possible solutions involve adjusting the classloader options for the server so that the Web
components locate their own copy of the class (packaged in the Web application), and the
EJB components locate their own (different) copy of the class (packaged in the EJB
application); or creating a separately named version of the class for each of the application
packages to use.

Application assembly
Assessment of a hybrid deployment should include a review of the complexity of the
application assembly, and the tools required for it. The IBM WebSphere Studio Application
Developer V4 is gradually removing the need for a separate Application Assembly tool
(though the tools will continue to be provided for those who do not have the benefit of the
Studio tools). However, at the time of writing, the Application Assembly Tool for z/OS and
OS/390 is still required to manipulate z/OS-specific parameter settings, namely:

� SyncToOSThread

� Connection Management Policy

If use is made of these parameters for the application components deployed to WebSphere
Application Server for z/OS and OS/390, then separate tools are required to assemble each
part of the application.

Application deployment
The processes and tools required for the deployment of a hybrid application should be
considered.

Deployment coordination
Application deployment in an integrated single server configuration deploys the whole
application in one process. We do not have to worry about incompatibilities between the Web
components and the EJB components.

With a hybrid deployment, the Web components and EJB components are deployed
separately. When application updates are being implemented, the two sides may get out of
step. If the EJB components are deployed first, workload distribution mechanisms would
typically detect that the EJB application was back online, and start routing work to it. The
original Web components will attempt to access the new EJB components.

If the enterprise bean remote interfaces have not changed, such that the Web and EJB
components are still compatible, this may be an acceptable state of affairs; it depends on the
nature of the application. However, if they are incompatible, the application could encounter
numerous failures. Worse still, if the incompatibilities are more subtle and exist at the level of
application functionality, corruptions and inconsistencies in the corporate data could be
introduced.

The only way to ensure that this does not occur is to take the application offline. This could
compromise availability requirements for the application.

Note: WebSphere Application Server V5 for z/OS and OS/390 eliminates the need for
z/OS-specific tooling.

70 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Deployment tools
WebSphere Application Server Advanced Edition V4 and WebSphere Application Server
V4.01 for z/OS and OS/390 use different deployment tools. Manual deployments are
performed using the Administration Client for WebSphere AE, and using the Systems
Management End User Interface for WebSphere on z/OS. The functions they perform are
almost the same, but they are completely incompatible.

Similarly, automation tools with WebSphere Version 4 of the products are incompatible.
WebSphere Application Server for z/OS and OS/390 used REXX and the Systems
Management API; WebSphere AE uses XMLConfig and WSCP (the WebSphere Control
Program).

With a hybrid deployment, we have to consider the extra complexity that is introduced into the
application deployment process, whether deploying manually or using automated tools.

HTTP session data
In many Web applications, users dynamically collect data as they move through the site
based on a series of selections on pages they visit. Where the user goes next, and what the
application displays as the user's next page (or next choice) may depend on what the user
has chosen previously from the site. For example, if the user clicks the checkout button on our
site, the next page must contain the user's shopping selections.

In order to do this, a Web application needs a mechanism to hold the user's state information
over a period of time. However, HTTP alone does not recognize or maintain a user's state.
HTTP treats each user request as a discrete, independent interaction.

The Java servlet specification provides a mechanism for servlet applications to maintain a
user’s state information. This mechanism, known as a session, addresses some of the
problems of more traditional strategies such as a pure cookie solution. It allows a Web
application developer to maintain all user state information at the host, while passing minimal
information back to the user via cookies.

The accessibility of HTTP session data is not a problem in a hybrid solution. Session data is a
resource that is associated with the Web container; the APIs to access session data are only
available to Web components. So when the Web container is moved, the resource for storing
the session data moves with it.

Session data may be maintained in-memory or persisted to a database. When an application
is split into a hybrid solution, both types may be migrated with the Web container to another
platform.

From a performance perspective it is expensive to persist HTTP session data to DB2. z/OS’s
Parallel Sysplex implementation of DB2 makes it possible to share DB2 data between
multiple operating systems. This takes a lot of pain away when one needs to implement a
highly available infrastructure for HTTP session data, but it also adds some more pathlength
for data sharing. We recommend that this kind of HTTP session implementation backs the
sessions within DB2, but still keeps them in memory. This can be done by coding
session.persistenceversion=2 in the webcontainer.conf file.

DataSource references
Although accessibility to session data should not be a problem when converting a
consolidated application to a hybrid application, care should be taken with the content of
session data. For example, it is possible for a servlet to perform a lookup on a DataSource
and store the returned handle for subsequent reuse in the session data. Where the Web

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 71

container and the EJB container are co-resident in the same application server, the
DataSource handle may be extracted from the session data by the servlet and passed to a
session EJB, which may then use it for its own purposes. This would save the enterprise bean
the cost of performing a lookup for the EIS DataSource. This is possible because the same
DataSource is available to both the Web container and the EJB container.

When the Web and EJB containers have been separated, their separate application servers
each have their own DataSource defined. The handle passed from the servlet to the session
bean (which was provided by the remote application server to the Web component) will be
meaningless in the EJB container environment. The session bean will need to look up its own
DataSource.

2.3.7 Systems management
Systems management involves a broad range of activities. Many of these will be rendered
more complicated by the conversion of an application to a hybrid deployment. When
evaluating a hybrid solution, the cost of this added complexity should be assessed.

Performance monitoring
Performance monitoring is required to ensure that service levels are being maintained, and to
detect possible problems with the infrastructure, such as a server going offline. If the
application is deployed to a single server, an overall picture of the application performance,
such as request response times and resource consumption, may be easily obtained. A hybrid
deployment requires the consolidation of performance data from each of the application
server platforms.

Capacity planning
As with performance monitoring, with a hybrid deployment, capacity planning data will need
to be collected from all the relevant application platforms. An additional capacity planning
concern is the communication channels between the application servers and EIS resources.

Failure alerts
The application needs to be monitored for failures, and alerts raised so that automatic or
manual intervention may be taken to address the problem. With the application running on a
single platform, errors from all components can be reported in the same place. However, with
a hybrid deployment, errors may occur in either part of the application, so both platforms have
to be monitored for error alerts.

In addition, once an error alert has been raised, problem determination will be more complex,
with multiple logs and traces needing to be consolidated in order to obtain the end-to-end
diagnostics.

Backup coordination
With a hybrid application being deployed over multiple application servers, the backing up and
restoring of application code and server configurations needs to be coordinated. Failure to do
so could result in an incompatibility between the application’s components or infrastructure.

Server maintenance
When applying application server maintenance in a hybrid deployment, we have to ensure
that the servers remain compatible and that all corequisite updates are applied. This might
compromise application availability requirements, because the servers may have to be taken
offline in order to avoid exposing the application on incompatible servers.

72 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Operations
A hybrid deployment will introduce another platform, which may require additional skills to
support it.

2.3.8 Strategic considerations
When evaluating the options for a hybrid solution, attention should be paid to current strategic
trends in the Web application server industry. Some solutions may be better positioned than
others to take advantage of emerging technologies. Conversely, technologies with a declining
popularity or importance should be avoided.

As an example, consider the connection technologies to EIS resources. IBM originally
developed the Common Connector Framework (CCF) to provide a generic programming
model for access to EIS resources. More recently, the J2EE Connector Architecture (JCA)
has evolved to provide the same function. JCA is based on the CCF, and although at first
glance there seem to be many similarities between the two, the programming models are
incompatible. The strategic direction, which modern application servers and development
tools support, is the JCA.

Chapter 2. Integrated and hybrid WebSphere application deployment scenarios 73

74 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Chapter 3. Component interaction
characteristics

When an application is deployed into separate application servers, communication between
some of the components and EIS resources could change form local to remote. In this
chapter we investigate the implications of this change by examining the characteristics of
different types of connection within the application.

We first describe the connection technologies to be investigated in 3.1, “Connection types” on
page 76. Each of these connection types is then subjected to a detailed study of the changes
that will be introduced by a conversion from a consolidated application to a hybrid
deployment. The changes have been categorized into the various qualities of service which
were described in 2.3, “Evaluation criteria for remote component and EIS access” on
page 58. A summary table is provided in 3.1.1, “Cross-reference table” on page 76 to provide
a quick reference to each of the evaluation criteria for each of the connection types.

3

© Copyright IBM Corp. 2003. All rights reserved. 75

3.1 Connection types
When you have an application that has been deployed across two separate application
servers, a number of communication channels may exist between the two servers, or
between the platforms on which the servers have been installed. This chapter examines the
characteristics of some of these types of connections, but those discussed should not be
considered to be a definitive list. They are described here for illustrative purposes. Other
types of connections may need to be set up, and they should each be given careful
consideration from the perspective of each of the characteristics described in 2.3, “Evaluation
criteria for remote component and EIS access” on page 58.

The types of connection which will be considered are:

� RMI/IIOP access in 3.2, “RMI/IIOP access to remote enterprise beans” on page 76.

� JDBC access in 3.3, “JDBC access to DB2” on page 82.

� JCA access to CICS in 3.4, “JCA access to CICS” on page 90.

3.1.1 Cross-reference table
Table 3-1 provides a reference of connection characteristics for each connection type.

Table 3-1 Cross-reference table

3.2 RMI/IIOP access to remote enterprise beans
This section outlines the considerations for a “default” separation of the Web container from
the EJB container, using Remote Method Invocation (RMI) over Internet Inter-ORB Protocol
(IIOP) as the communications medium between Web and EJB components. This is the
means by which methods on enterprise beans are invoked.

Connection RMI/IIOP JDBC JCA

Performance 3.2.1, “Performance” on
page 77

3.3.2, “Performance” on
page 83

3.4.2, “Performance”
on page 92

Availability 3.2.2, “Availability” on
page 78

3.3.3, “Availability” on
page 84

3.4.3, “Availability” on
page 93

Security 3.2.3, “Security” on
page 78

3.3.4, “Security” on
page 84

3.4.4, “Security” on
page 94

Transaction
integrity

3.2.4, “Transaction
integrity” on page 79

3.3.5, “Transaction
integrity” on page 87

3.4.5, “Transaction
integrity” on page 95

Infrastructure 3.2.5, “Infrastructure” on
page 79

3.3.6, “Infrastructure” on
page 87

3.4.6, “Infrastructure”
on page 96

Development and
deployment

3.2.6, “Development
and deployment” on
page 80

3.3.7, “Development
and deployment” on
page 87

3.4.7, “Development
and deployment” on
page 96

Systems
management

3.2.7, “Systems
management” on
page 81

3.3.8, “Systems
management” on
page 90

3.4.8, “Systems
management” on
page 99

Strategic
considerations

3.2.8, “Strategic
considerations” on
page 81

3.3.9, “Strategic
considerations” on
page 90

3.4.9, “Strategic
considerations” on
page 99

76 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

3.2.1 Performance
RMI/IIOP is used for all access to enterprise beans, but optimizations are available to reduce
the overhead of the call when the enterprise bean and its client are located in the same JVM.
WebSphere Application Server for z/OS and OS/390 automatically optimizes calls from
clients to enterprise beans to local program calls, but there are also explicit controls. One
example is the com.ibm.CORBA.iiop.noLocalCopies JVM property, which if set to “true” (or
actually any non-null value) causes arguments on the call to be passed by reference rather
than by value.

Another example is introduced by the EJB 2.0 specification with the concept of a Local
interface to a bean (in addition to the conventional Home and Remote interfaces). This
optimizes the call to the enterprise bean by circumventing some of the inter-ORB processing,
which is not required because the components involved are running in the same ORB.

In a hybrid deployment, components could be running in separate application servers, which
means they are also in separate JVMs. The capability for any of the RMI/IIOP call
optimizations has been removed.

Workload Manager
In a hybrid deployment, there is a loss of flexibility in the way that the z/OS Workload Manager
can manage the WebSphere Application Server for z/OS and OS/390 workload. The reason
for this is as follows.

The way by which work requests are managed in a z/OS environment from a performance
perspective is determined by the enclave which is associated with the request. An enclave
represents a workload manager service class, and when associated with a request it
determines the priority of the server to which the request should be dispatched.

WebSphere Application Server for z/OS and OS/390 has a set of rules for associating an
enclave with a work request. One such rule applies to HTTP and HTTPS requests that arrive
at the J2EE server. These rules are defined in the environment file current.env, with the
following relevant parameters:

� BBOC_HTTPALL_TCLASS_FILE=file name - identifies a file containing rules for
classifying HTTP and HTTPS requests.

� BBOC_HTTP_TRANSACTION_CLASS=transaction class - defines the default class for
HTTP requests.

� BBOC_HTTP_SSL_TRANSACTION_CLASS=transaction class - defines the default class
for HTTPS requests.

The format of an entry in the BBOC_HTTPALL_TCLASS_FILE file is:

TranClassMap <host>:<port> <uritemplate> <tclass>

where:

<host> The host name of the request header

<port> The port number to which the request was submitted

<uritemplate> The URI of the request

<tclass> The workload manager transaction class used for the enclave

From this we can see that we have a lot of flexibility for classifying HTTP and HTTPS requests
that arrive at the system.

Chapter 3. Component interaction characteristics 77

When the request arrives in the EJB container, it will not be subject to these rules, because it
will travel over IIOP rather than HTTP or HTTPS. This limits our ability to assign a workload
manager service class to the request; the only tools we have left are the classification rules
which we can define in the workload manager ISPF configuration panels. These classification
rules may only classify work based on the J2EE server or the user identity on the request. So
by submitting the request over IIOP we have lost some granularity for classifying work
requests.

3.2.2 Availability
With an integrated application deployed to a single application server, the consequences of a
server failure are simplified, because all J2EE application components reside in the same
server. The WebSphere Application Server for z/OS and OS/390 infrastructure and workload
manager cooperate to maintain an available service. Servers are started when required, and
may be distributed across z/OS images in the sysplex. When a server fails, work requests are
routed to surviving servers. When the failed server is recovered, it is reinstated into the
routing algorithm.

When the application is separated, and application server failure will only render part of the
application unavailable, we have to think about the fate of any inter-component relationships
which may have been set up. For example, a Web component may have performed a lookup
on an enterprise bean. The lookup will resolve to a specific instance of the bean running in a
specific server. We have the possibility of a failure in the EJB container application server,
which will result in an error being returned to the Web component when it attempts to use its
bean.

If the application remains consolidated in a single WebSphere Application Server for z/OS
and OS/390 server, then both the Web and EJB containers will have failed. Workload
manager will route the request to an alternate server, where it may run successfully if session
data has been configured to tolerate a server failure.

This is why it is a good idea to minimize the number of remote calls between the application
servers. Not only do we minimize the calls that carry the extra performance overhead of being
remote instead of local, but we also minimize the number of opportunities for such errors to
occur.

3.2.3 Security
J2EE authorization checks are performed against enterprise bean methods according to a
specification in the deployment descriptor. The subject of the authorization check is an
EJBRole, which is a logical representation of the capabilities of the user. In the z/OS
environment, the way to associate a user with an EJBRole is to grant the user identity access
to the RACF EJBROLE or GEJBROLE profile.

In a consolidated solution, the user will have authenticated in the WebSphere Application
Server for z/OS and OS/390 Web container, and a RACF user identity will have been
associated with the user request. The associated user identity is carried with the request
when an enterprise bean method is called. The enterprise bean method may be run under
one of three user identities, depending on the specification of the RunAs parameter (which is
also in the application deployment description):

� RunAs(Caller) - the identity of the authenticated user.

� RunAs(Server) - the identity associated with the application server in which the request is
running.

� RunAs(Role) - the identity associated with an EJBROLE RACF profile.

78 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

RunAs(Caller) is the default setting, and while this option is selected, all downstream
processing within the EJB container will run under the identity of the authenticated user.
Additionally, when the deployment descriptor indicates that EJBRole authorization checks
should take place, it is the authenticated user identity which needs to have been granted
access to an appropriate RACF EJBROLE/GEJBROLE profile.

In a hybrid deployment, the user will have been authenticated in the Web container of the
WebSphere Application Server Advanced Edition running on a non-z/OS platform. The
authentication would have been against a security respository that is external to the sysplex.
Unlike the integrated WebSphere Application Server for z/OS and OS/390 solution, it is
impossible to propagate the user identity because the request flows from the Web container
to the EJB container. The EJB container will need to authenticate the remote Web container,
and with WebSphere Application Server V4.01 for z/OS and OS/390 the only means to
accomplish this is by using a client certificate. The implication of this is that the request will
run under the identity that has been associated with the remote application server certificate;
the request is no longer running under the authenticated user identity.

The loss of the authenticated user identity on the request means that authorization checks
are less granular. Resource access has to be granted to the identity of the Web container’s
application server. All invocations of EJB methods from the Web container will run under the
same identity, so the loss of granularity of authorization checks extends to enterprise bean
methods. It is the common user identity of the Web container which needs to be granted
access to EJBROLE profile in order to permit execution of a bean method.

3.2.4 Transaction integrity
RMI/IIOP supports transactional integrity, so remote calls to enterprise beans are able to
participate in distributed units of work.

3.2.5 Infrastructure
By creating a hybrid solution, a network connection has to be established over which the
RMI/IIOP requests may flow. This process is more complex if a firewall is situated between
the J2EE components.

Some firewall environments use Network Address Translation (NAT). NAT receives packets
for one IP address and translates the headers of the packet so it can be sent to a second IP
address. RMI/IIOP contains IP addresses embedded in the body of the IP packet, which are
not translated, making the packet useless. Where this problem exists, some form of IIOP
tunnelling must be implemented that permits the IIOP requests to flow over an HTTP
transport.

IIOP tunnelling involves:

1. Wrapping the IIOP packet inside an HTTP request.

2. Sending the HTTP request to a tunnelling servlet on WebSphere Application Server for
z/OS and OS/390.

3. Unwrapping the IIOP packet from the HTTP request, and forwarding the IIOP request to
the target EJB server.

4. The servlet waits for the EJB component’s reply and sends the reply to the client.

There are some trade-offs in using this feature. The obvious one is that we have reinstated
Web container functionality in the WebSphere Application Server for z/OS and OS/390
server. Another is performance. The HTTP protocol is not a guaranteed persistent

Chapter 3. Component interaction characteristics 79

connection, as is the case for a TCP/IP (socket) connection. Therefore, a new HTTP
connection is established for each request. This results in slower performance.

Using HTTP requests to send data between the plug-in and the application server through the
firewall requires opening only one port. Opening firewall ports to permit the IIOP protocol is
less desirable, as they are often more complex to set up, and the protocol switching overhead
can impact performance.

3.2.6 Development and deployment
The tool we shall consider is WebSphere Studio Application Developer V4 (WSAD V4).
WSAD V4 supports end-to-end development, testing, and deployment of e-business
applications. The new WebSphere Studio products are designed from the ground up to meet
the requirements for all new types of applications. These requirements include open
standards, Java, XML, Web services, testing, varying levels of integration with other
components and ISV products, pluggability, expandability, role-based development, increased
usability for all users, enhanced team support, as well as increased speed to market. It
provides integrated development tools for all e-business development roles, from Web
developers to Java developers to business analysts to architects to enterprise programmers.

Application development
WSAD V4 provides facilities to develop and test all aspects of a J2EE application, including
Web components and EJB components. WebSphere Studio Application Developer
Integration Edition V4.1.1 adds the capability to develop and test applications that make use
of EIS connectors. They both include a built-in test environment to which the application may
be deployed and unit tested.

Enterprise beans are located by means of a lookup issued against a JNDI namespace. By
default, the initial context for the lookup is in the namespace of the application server in which
the component is running. When our Web component needs to access an enterprise bean in
another application server, we need to steer it to the namespace in which the bean has been
registered. This is done by passing a property table (java.util.Properties class) into the
constructor for the InitialContext. The property javax.naming.Context.PROVIDER_URL is set
to a string that identifies the location of the JNDI namespace we should be searching.

To avoid having to make program changes as the application is migrated through its test
environments, we recommend that the value for this property is not hard-coded, but is
retrieved from a variable which may be set at application assembly time, such as an
environment variable.

Application assembly
When J2EE applications are developed, they are created in an Enterprise Application Project.
Within the Enterprise Application Project, other projects may be created to contain the J2EE
components. For example, an EJB project stores EJB components such as session
enterprise beans and entity enterprise beans, and a Web Project stores Web components
such as servlets and JSP files. When an application is being developed for a single server
deployment and is ready for testing, the Enterprise Application Project will contain all of the
application component projects, and the whole thing will be published to the built-in test
environment. Unit testing may be performed. Then, when the application is ready, the
application is packaged into an enterprise archive (.ear) file ready to be deployed to the next
stage of testing.

For a hybrid deployment, we need separate packages. For the Web components, we have a
choice of creating a Web archive (.war) file or an enterprise archive (.ear) file. When only one
.war file is involved, there is not much to choose between the two options. However, when

80 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

there are multiple .war files involved, these would require multiple installs, whereas they could
all be packaged into a single .ear file and installed in one operation.

In WSAD V4, we can create additional Enterprise Application projects to reflect the
separation of the application. We do not have to dispense with the original Enterprise
Application project that contained the complete application; they can coexist. This is shown in
Figure 3-1.

Figure 3-1 Combined and separated enterprise applications

3.2.7 Systems management
A hybrid deployment requires a more controlled process of application deployment. When
deploying a single consolidated application, the Web components, the EJB components, and
all the stubs and ties required to enable the enterprise bean access are deployed at the same
time. A hybrid solution consists of two applications, the deployment of which needs to be
coordinated in order to avoid incompatibilities between the application parts.

3.2.8 Strategic considerations
Application development tooling and infrastructure are geared up towards producing
applications to be deployed to a single (cloned) server. Several compromises and additional
development activities need to be introduced for a hybrid application, particularly if the
RMI/IIOP calls are required to flow through a firewall. An alternative means if inter-component
communication that does not present so many infrastructure problems might be considered.

EJB only Enterprise Application

Web only Enterprise Application

Combined Enterprise Application

Chapter 3. Component interaction characteristics 81

RMI/IIOP itself is a well-established protocol, and forms part of the J2EE specification. In fact,
the more loosely coupled solutions, such as JMS or Web Services, will still be using RMI/IIOP
under the covers when the enterprise bean logic is invoked.

3.3 JDBC access to DB2
Database resources are accessed using the Java Database Connectivity (JDBC) API. Web
components are capable of issuing JDBC and SQLJ calls to the same databases that the EJB
components use. If the Web container and the EJB container are separated, then the
database will be remote from at least one of them. (It may of course already be remote from
both of them if it is hosted on a separate server.)

For the purpose of discussion, we shall make the following assumptions:

� In the original configuration, the Web container and the EJB container resided in the same
application server, and the DB2 database ran on the same machine.

� In the new configuration, the Web container has been moved to a remotely located
application server.

� The database remains in its original location, on the same machine as the EJB container.

The solutions that were considered for accessing the DB2 database from a Web container
component were:

� Move or copy the database to a location which the Web container could access locally.
This solution would work and give you the best performance, but is really only applicable if
only the Web container requires access to this data. If the EJB components need access
to the same data, then all we have succeeded in doing is to move the problem from the
Web container to the EJB container. This consideration applies not only to the present day,
but future requirements for enterprise bean access to this data need to be anticipated.

� Use DB2 Connect to provide a Distributed Relational Data Architecture (DRDA®)
connection to DB2. The database remains in its original location, and a remote connection
to it is established from the Web container. This is the recommended approach.

� Make use of a federated database. A federated database is a multi-database configuration
that provides access to data resources which reside on multiple different platforms. All the
data may be viewed as though it were local. A federated database uses DB2 Connect
under the covers, and so offers no real advantages over option Ê.

� Use the new Universal JDBC Driver that comes with DB2 UDB Version 8, which is a Type
4 JDBC driver. A Type 4 driver is pure Java and requires no other client product software
to be installed in order to establish a JDBC connection to a database. At the time of
writing, this driver does not support the Java Transaction API (JTA), which means that it
does not possess two-phase commit capability to participate in distributed units of work.
For this reason, the Universal JDBC Driver was not considered a viable solution at this
time.

The option that we selected to study, and implement in our laboratory exercises, was to use
DB2 Connect.

3.3.1 DB2 Connect
Three editions of DB2 Connect are available:

� DB2 Connection Personal Edition

82 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

DB2 Connect Personal Edition makes host data available directly to a workstation. It is
well suited for:

– Typical two-tier design applications

– Environments where native TCP/IP support is available, and an intermediate server is
not desirable due to lack of administration skills

– Situations where very large result sets are expected by an application

� DB2 Connect Enterprise Edition

Connects LAN-based workstations and their desktop applications to mainframe and
minicomputer host databases. It is well suited for:

– Environments where the host system does not support native TCP/IP

– Applications that need support for Java Applets

– Web applications (for example, Microsoft IIS, Net.Data®, WebSphere, and
NetDynamics)

– TP Monitor applications (for example, CICS, Encina®, Microsoft, Transaction Server,
and MQ Series)

– Multitier applications

� DB2 Connect Unlimited Edition

This edition is functionally equivalent to DB2 Connect Enterprise Edition, but with a
different licensing agreement.

DB2 Connect Enterprise Edition is the version recommended for use with WebSphere
Application Server Advanced Edition. For more information on DB2 Connect, refer to one of
the Quick Beginnings guides such as IBM DB2 Connect Enterprise Edition for UNIX V7 Quick
Beginnings, GC09-2952.

3.3.2 Performance
Applications that issue JDBC calls on WebSphere Application Server for z/OS and OS/390
communicate with a local instance of a DB2 server running in the same z/OS image.
Scalability is accomplished by cloning application servers across z/OS images, and
configuring DB2 in data sharing mode. The z/OS workload manager takes care of distribution
of the work across the application servers.

For JDBC calls issued from a remote application server to a DB2 server running on z/OS, the
entry point of the work into the sysplex is different. It arrives directly into DB2 via DB2
Connect. DB2 Connect Enterprise Edition supports integration with the Parallel Sysplex
facilities workload balancing and fault tolerance functions. It accomplishes this by connecting
at the level of the DB2 data sharing group.

Whenever a connect request is completed, DB2 for OS/390 sends the network addresses of
all of the participants in the data sharing group to the DB2 connect server. The list is either a
list of SNA LU names or a list of IP addresses depending on whether the initial connect was
for a TCP/IP node or an APPC node. Each entry in the list also includes priority information
based on advice received from the z/OS workload manager. Whenever further connect
requests are received, DB2 Connect tries each of its cached network addresses in turn, in
descending order of priority. In this way, connections may be distributed across the DB2
instances according to recommendations from the workload manager.

Chapter 3. Component interaction characteristics 83

3.3.3 Availability
On z/OS, if the DB2 server in the same image as the application server fails, then the
application server itself fails. The z/OS workload manager will route work away from the failed
server to the surviving images.

The DB2 Connect Enterprise Edition support for the Parallel Sysplex feature described in
3.3.2, “Performance” on page 83 also provides availability services. When determining which
DB2 for OS/390 instance in the data sharing group to target for a connect request, DB2
Connect examines its cached list of prioritized addresses. If a server is not available, then it
tries the next one on the list. It continues this process until a successful connection is
established. Connect errors will only be returned to the client application if all possible
connections are unavailable.

Once a failed server has been recovered, it is automatically reincorporated into the
connection decision process.

3.3.4 Security
When WebSphere Application Server for z/OS and OS/390 applications issues JDBC calls to
DB2 from a servlet, all access is performed under one of two identities:

� The identity of the user ID which was provided on the getConnection() call. The code to
accomplish this is illustrated in the code fragment in Example 3-1. For this identity to be
recognized, the resource reference must specify a resource authentication of “Container”.

� Under all other circumstances, the request is issued under the identity of the application
server region.

Example 3-1 Code and deployment descriptor requirements for application authentication on a
DataSource

Code fragment:

String userid = “thomas”;
String password = “matthew”;

ctx = new IntialContext();
DataSource ds = (DataSource)ctx.lookup(“java:comp/env/jdbc/DB390”);
Connection conn = ds.getConnection(userid, password);

Deployment Descriptor web.xml snippet:

<resource-ref id=”ResourceRef_1”>
<description>no description</description>
<re-ref-name>jdbc/DB390</ref-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>SERVLET</res-auth>

</resource-ref>

The second option is recommended; it avoids the problems of managing and securing the
user ID and password details in the application code. With this option, the request runs under
the identity of the WebSphere Application Server for z/OS and OS/390 J2EE server region.
This identity could have been assigned to the region as a result of the STARTED class in
RACF. This facility enables a user ID to be associated to a z/OS started procedure. If this is
the only use of this particular user ID, there may be no password associated with it.
Association with a started task is the only way that anything can run under this identity.

84 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

When the DB2 on OS/390 system is being accessed remotely using DB2 Connect, a user ID
and password must be provided. Again, we have choices for the location of their specification:

1. As with WebSphere Application Server for z/OS and OS/390, a user ID and password can
be supplied by the application code on the getConnection() call.

2. The user ID and password may be supplied on the DataSource definition, as shown in
Figure 3-2.

Figure 3-2 User credentials defined on a DataSource

3. The user ID and password may be supplied on the DB2 Connect DataSource definition, as
shown in Figure 3-3 on page 86.

Chapter 3. Component interaction characteristics 85

Figure 3-3 User credentials on a DB2 alias

Any of these three sources of user credentials may be employed when the resource reference
in the Web application deployment descriptor specified application authentication. The order
of preference for which credentials are actually used is as shown here: the credentials
specified on getConnection(user, password); if getConnection() is coded with no user
credentials, then the DataSource credentials are used; if the DataSource credentials are not
specified, then the DB2 Connect alias credentials are used.

However, all three options require both a user identifier and a password to be defined, so that
they can be flowed on the request and authenticated by DB2 for OS/390. If the access
privileges to DB2 data are to remain unchanged, the user identity to be flowed must be that of
the WebSphere Application Server for z/OS and OS/390 application server region. But we
also need to flow an accompanying password, which could mean assigning a password to the
server region user profile where it previously did not have one.

The application server user identity could potentially have access to significant amounts of
production data. Relaxing its security by assigning it a password and storing it in a J2EE
application, or a WebSphere Application Server Advanced Edition configuration, or a DB2
Connect configuration, is not recommended.

Without a password, the only way to run work under the server identity is to associate it with a
started procedure. The ability to start procedures is usually well controlled, and the
association of a runtime identity needs to be configured by security administrators, so the use
of this user identity is well controlled and secure. With a password, any party who acquires
the user ID and password credentials could submit work into the system, so we have an
increased security exposure. In addition, we have increased systems management concerns
to protect the password from unauthorized access and deal with any expired password and
revoked user concerns.

The approach we recommend is to define a separate user and password for the JDBC
connection to use, and authorize the appropriate DB2 resources for access by this new
userid.

86 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

3.3.5 Transaction integrity
The JDBC driver installed into WebSphere Application Server for z/OS and OS/390 supports
global transactions. These are transactions that are coordinated using a two-phase commit
protocol, and are defined within servlets using the Java Transaction API (JTA). By using this
API the servlet is able to demarcate its transaction boundaries, and at syncpoint time
coordinate its updates to all resource managers that support an XAResource interface. DB2
supports this interface, so it can participate in global transactions.

When the Web components are moved to another platform with DB2 Connect introduced into
the configuration, the servlet and JDBC driver capabilities remain the same; they both
support the JTA. DB2 Connect also support JTA, so we retain the capability to participate in
global transactions.

3.3.6 Infrastructure
DB2 Connect requires a connection between the remote client (the Web components running
in a WebSphere Application Server Advanced Edition server) and the DB2 subsystem. DB2
Connect uses Distributed Relational Data Architecture (DRDA) to access distributed data
across a network.

For versions of DB2, 5.1 or higher, the DRDA may be flowed across an SNA connection or a
TCP/IP connection.

DB2 Connect will require licensing on the WebSphere Application Server Advanced Edition
platform.

3.3.7 Development and deployment

Database connections
Connections to the database are provided by a JDBC DataSource. The DataSource is
obtained as the result of a JNDI lookup. Example 3-2 illustrates a code snippet to accomplish
this.

Example 3-2 Obtaining a connection from a DataSource

InitialContext ic = new InitialContext();
datasource = (DataSource) ic.lookup(“java:comp/env/jdbc/EstoreDataSource”);
Connection dbConnection = datasource.getConnection();

The lookup string is prefixed with “java:comp/env”, which means that there is a resource
reference in the deployment descriptor for the application. The resource reference is resolved
at application deployment time to bind the reference used in the application code to a real
database. The location of the database is specified in a DataSource configuration. A
DataSource may be defined on WebSphere Application Server for z/OS and OS/390,
WebSphere Application Server Advanced Edition, and WebSphere Studio Application
Developer V4. In each case, the definition resolves to the appropriate database for the
application server environment. There will be no changes required to the application code
when porting the application from the test environment built into WebSphere Studio
Application Developer V4 through to production implementation on WebSphere Application
Server for z/OS and OS/390.

In WebSphere Application Server for z/OS and OS/390, the DataSource points to the DB2
database on the z/OS image. Some of the DataSource attributes are shown in Figure 3-4 on
page 88. On WebSphere Application Server for z/OS and OS/390, the identity of the target
database is determined by the DataSource Location Name field.

Chapter 3. Component interaction characteristics 87

Figure 3-4 DataSource on z/OS attributes

The resource reference for /jdbc/DB390DataSource is resolved to this DataSource during
application installation. This is illustrated in Figure 3-5.

Figure 3-5 Resource reference for a DataSource on z/OS

When the Web component is moved to a WebSphere Application Server Advanced Edition
server, a similar DataSource needs to be defined for the resource reference to be resolved to,
as shown in Figure 3-6 on page 89.

88 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 3-6 DataSource on WebSphere Application Server Advanced Edition

In this case, the databaseName parameter refers to a database alias entry which DB2
Connect is able to map to the original DB2 database on z/OS. In this case, the alias name is
the same as the name of the target database. This mapping is shown in the DB2 Client
Configuration Wizard screen capture of Figure 3-7.

Figure 3-7 DB2 Connect alias definition

During application installation, the resource reference is resolved to the DataSource; see
Figure 3-8 on page 90.

Chapter 3. Component interaction characteristics 89

Figure 3-8 Resource reference for a DataSource on WebSphere Application Server Advanced Edition

The difference here is that when the Web component is moved to a WebSphere Application
Server Advanced Edition server, a similar DataSource needs to be defined for the resource
reference to be resolved to.

3.3.8 Systems management
DB2 Connect Enterprise Edition provides a database system monitor to monitor database
activity and performance. It may be used for:

� Activity monitoring, to observe the status of database connections and table access
activity. It is also possible to track the progress of a query or application using information.

� Problem determination, to collect data for diagnosis of problems caused by application or
system performance.

� Performance monitoring, to analyze the performance of individual applications or SQL
queries.

� System configuration, to evaluate and tune the effectiveness of the database
infrastructure.

For further information, refer to the System Monitor Guide and Reference in the DB2 online
information.

3.3.9 Strategic considerations
It is possible that in the future, the DB2 Connect functionality will be replaced by that of a Type
4 JDBC driver. Type 4 drivers are Java-only drivers. The change will not necessitate any
application program changes. The driver will need to be configured into the application server
DataSource.

3.4 JCA access to CICS
It has been said that with Java, you can “write once, run anywhere”. It has also been said that
with COBOL, you “write once, run forever”. The world’s IT installations are full of existing
applications and data which need to be integrated into the latest application developments

90 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

and initiatives. Such resources are referred to as enterprise information systems (EIS). They
are existing corporate resources which the J2EE application may need to access. They may
comprise databases, Enterprise Resource Planning (ERP) systems, or transaction
processing systems. Rewriting such business logic to implement its function in a J2EE
application would usually be too expensive and time-consuming an exercise to undertake. We
need to have access to these EIS resources with minimum disruption to them.

In many cases, these resources will already be located on z/OS. Where this is the case, they
will be accessed using local call technologies. Local calls are generally efficient, secure, and
maintain transactional integrity. If a part of the application that accesses EIS resources is
moved away from the z/OS environment, then some of these qualities of service may be
compromised.

The J2EE Connector Architecture (JCA) defines a standard API for accessing a variety of EIS
resources. The technology that provides the physical connection to the resource is usually
provided by the resource vendor. The characteristics of the connection are therefore
determined by the capabilities which the vendor builds into the connector product. Not all of
the qualities of service are mandated by the JCA specifications; for example, it is not a
requirement for a JCA connector to support global transactions (two-phase commit).

The number and range of EIS connectors will continue to grow, and the JCA specification will
evolve. The connection described in this book should be considered to be a point-in-time
assessment. When assessing the viability of other EIS connectors, they should be subject to
a similar review of the various aspects of connection characteristics, as listed in 2.3,
“Evaluation criteria for remote component and EIS access” on page 58.

The first consideration for accessing an EIS resource is to determine whether it is possible at
all from a remote location. Does any form of technology or connector exist to provide the link
from a J2EE application running in a remote container to the EIS resource?

An example of such a resource might be a shared log to which audit records are recorded. It
is a conceivable requirement for both Web components and EJB components to record audit
data to the same shared log. If the Web components are moved away, then the ability to retain
the shared log poses a problem.

If no means of connection to the resource exists, then the options are:

� To develop some form of connector

This could be a costly and difficult task, particularly if qualities of service such as
transactional integrity and security need to be maintained. However, it may be an option
for simple applications.

� To relocate or replicate the resource

If the only components to access the resource are in the remote application server, an
option might be to physically move or copy the resource so that it is co-located with those
components. Copying resources that are subject to real time updates could pose a
problem if both copies need to be kept synchronized. There may also be additional
systems management procedures that need to be introduced; for instance, using the
example of a shared log, the log files recorded in the separate environments would need
to be merged once they had been closed.

In general, though, there will be a robust and reliable means of access from the resource
vendor.

Chapter 3. Component interaction characteristics 91

3.4.1 CICS Transaction Gateway
The connection we investigated was that required to access CICS. Java client connectivity to
CICS servers has been evolving for a number of years now. It originally provided a set of base
APIs, which evolved into the Common Connector Framework (CCF). The CCF provided a
common approach to coding connections to multiple EIS resources such as CICS and IMS.
The CCF principles were then adopted to form a large part of the JCA. This brings us to
today, when the JCA is part of the J2EE 1.3 specification, but many applications coded to the
CCF conventions still exist.

JCA is, however, the strategic direction. It is the means by which the application server is able
to provide us with a managed connection to take care of connection pooling, transaction
integrity, and security. For this reason, this chapter only considers the JCA connector, and
does not discuss CCF application implications.

In order to submit JCA requests to CICS, two options are available.

1. Make use of a CICS JCA connector. The CICS connector we consider is the CICS
Transaction Gateway (CICS TG). At the time of writing, the latest version is IBM CICS
Transaction Gateway V5.0. This connector may be installed on Windows, AIX, Linux,
Solaris, HP-UX, and z/OS itself. It conforms to the Java 2 Enterprise Edition (J2EE)
Connector Architecture, and provides a means for J2EE applications to issue requests to
run CICS programs.

2. IBM CICS Transaction Server for z/OS V2 (CICS TS V2) is an EJB server capable of
running EJB 1.1 enterprise beans. As such, existing COBOL/CICS programs may be
“wrappered” by a session enterprise bean, which may be invoked using normal EJB client
techniques.

The installation and migration of a CICS server to CICS TS V2 is a significant undertaking
compared with the installation and configuration of a CICS TG. We shall therefore focus on
the CICS TG as our mechanism for integrating a J2EE application with heritage CICS
applications.

For more information on the CICS TG, refer to:

� Java Connectors for CICS Featuring the J2EE Connector Architecture, SG24-6401.

� CICS Transaction Gateway V5 The WebSphere Connector for CICS, SG24-6133.

� http://www-3.ibm.com/software/ts/cics/library/cicstsforzos22.htmlh

3.4.2 Performance
The CICS TG for z/OS communicates to CICS servers running on z/OS using the External
Call Interface (EXCI), a protocol available to non-CICS clients to issue calls to CICS programs
within an MVS image. EXCI takes advantage of a platform’s Resource Recovery Services
(RRS) to implement a two-phase commit capability between the client application (in this
case the CICS TG) and the CICS servers. The use of RRS imposes a restriction that the
client and the server applications must both be running on the same operating system image.
In other words, the WebSphere Application Server for z/OS and OS/390, the CICS TG, and
the CICS server must all be in the same image. There is no capability to route work to CICS
regions located in other images in the sysplex while keeping the transactional context.

The typical solution to this problem is to use the local CICS region as a gateway. Once it
receives a request, it can dynamically route the request to any other CICS region to which it
can communicate. CICS is capable of taking z/OS workload manager advice into account
when making the routing decision. This solves the workload problem, but leaves the local

92 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

CICS region as a single point of failure. This problem is addressed in 3.4.3, “Availability” on
page 93.

Another common solution for cross-system CICS communication would be CICS listener
based. Using EXCI over XCF as a sysplex-enabled protocol, it allows WebSphere Application
Server to communicate to any CICS Transaction Server living within one Parallel Sysplex.
Therefore, one needs to implement an CICS listener (CICS TS having remote definitions for
transactions and programs) that connects to the target CICS transaction servers using the LU
6.2 (TCP62 or APPC) protocol. No transactional context would be supported in this setup.

The requests between a client and a CICS server flow across EXCI pipes. CICS interregion
communication limits the number of pipes on an EXCI connection to 100. If more pipes are
required, then the only solution is to replicate the client address space, which in this case is
the application server.

The distributed version of CICS TG contains a workload manager function. (This is not to be
confused with the workload manager that is used to schedule resources allocated to work on
the z/OS platform.) The workload balancing algorithms available are:

� Round-robin - All the CICS regions available are dispatched work in turn.

� Biasing algorithm - “Weights” are assigned to regions such that some are more favored
than others when requests are dispatched.

The regions available for selection to the CICS TG workload manager are not constrained to
those within a single MVS image. They may be dispersed throughout the sysplex.

3.4.3 Availability
Client applications have a number of options for connecting to the CICS TG. The CICS TG on
z/OS may be run as a separate daemon process that is configured to receive requests over
TCP/IP, SSL, HTTP, or HTTPS connections. However, none of these are supported when the
client application is WebSphere Application Server V4.01 for z/OS and OS/390.

Here we use a special network configuration of “local:”, which means that the CICS TG code
is run within the application server; there is no requirement for a separate daemon process to
be started. In order to provide failover and scalability, from the perspective of the CICS TG all
we have to do is run multiple application servers. By doing so, we implicitly run multiple copies
of the CICS TG itself. The architecture of WebSphere Application Server for z/OS and
OS/390 inherently provides this for us.

The CICS TG for z/OS, running within the WebSphere Application Server for z/OS and
OS/390, needs its partner CICS server running in the same MVS image. This presents a
single point of failure. CICS does provide an exit for EXCI clients called DFHXCURM. This
exit may be coded to distribute the connections amongst two (or more) target CICS servers. It
is only invoked when the connection is first established; once created, the connection to the
CICS server that was selected persists. The exit is able to detect when a request is unable to
reach its CICS server, and take action to mark that server as unreachable so that subsequent
requests bypass the failed server.

However, some algorithm needs to be coded into the exit such that it resumes sending work
to the server once it has been restarted. One approach would be to resume sending requests
to the server after a fixed period of time has elapsed to allow for server recovery. This
addresses the issue of the CICS region being a single point of failure.

Chapter 3. Component interaction characteristics 93

As with WebSphere Application Server for z/OS and OS/390, WebSphere AE accesses the
CICS TG in “local:” mode. So the CICS TG inherits its availability characteristics from the
application server. Like the z/OS solution, we need to provide failover by running multiple
versions of the application server.

The CICS TG for distributed platforms workload manager is capable of distributing to a
number of target CICS servers according to a biasing algorithm. Each CICS server has a
weight assigned to it, which is used to bias the amount of work sent to it. When a request fails
to reach the target CICS server, the server is removed from consideration by the algorithm. It
is reinstated after a period of time determined by the Region timeout(s) parameter, which may
be set using the CICS TG configuration tool.

3.4.4 Security
The security characteristics of CICS TG will change as a result of moving the application from
WebSphere Application Server for z/OS and OS/390 to another application server. In
particular, the means of determining the user context under which the CICS transaction is
executed will change.

A property of the connection between the CICS TG and CICS is Attachsec, which is defined
on the CICS Connection® resource definition. For a connection to CICS TG for z/OS, the
options for this parameter value are Local and Identify. Neither of these settings requires a
password to be flowed with the request. CICS makes the assumption that the user ID flowed
on the request has already been authenticated.

When a CICS TG running on another platform submits requests, the only valid value for
Attachsec on the CICS Connection is Verify, which means that both a user ID and password
must be flowed on the request. No assumption about the authenticity of the user ID is made,
so CICS needs both values to check its validity.

The Application Assembler determines whether the application or the runtime container has
responsibility for supplying the authentication credentials to the EIS system. This information
is recorded in the <res-auth> element for the resource reference in the deployment descriptor.
The value for the <res-auth> element may be set to “Application” if the application code is to
provide authorization credentials, or “Container” if the container is to provide authorization
credentials.

One possible scenario is a J2EE application running in WebSphere Application Server for
z/OS and OS/390 that submits requests to CICS using a resource reference to identify the
DataSource that defines the connection to CICS. The resource reference could specify a
<res-auth> of Container, with the Attachsec parameter on the CICS Connection definition set
to Identify. If requests to CICS are being submitted from an enterprise bean, then the RunAs

Attention: Note that this is not a solution for workload balancing, because the connections
between the CICS TG and the CICS server (the EXCI pipes) are persistent; once
established, they remain until the EXCI connection is closed. Following a CICS server
failure, all the pipes will be established to the surviving CICS. After the recovery time has
expired, the DFHXCURM exit is only called during Allocate_Pipe processing when a new
pipe is being created, and there is no non-disruptive way to redistribute the pipes across
two CICS servers.

Note: Depending on the level of specification and tool support, when specifying <res-auth>
for servlets, the options may be “Servlet” for application authentication and “Container” for
container authentication. “Servlet” is equivalent to “Application”.

94 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

setting for the bean could be set to Caller. This configuration will result in the CICS
transaction running under the user identify of the user who was authenticated in the
application server.

If this application is migrated away from the WebSphere Application Server for z/OS and
OS/390, then the requirement to run the CICS transaction under the user ID of the application
user becomes more difficult to implement. The user ID is no longer flowed automatically on
the request, but must be provided with a valid password. The only way that this can be
accomplished is by setting <res-auth> to Application and programmatically providing the user
ID and password. This will require changes to the program code, and will introduce extra
security concerns to protect the user ID and password values that need to be flowed on the
requests to CICS.

3.4.5 Transaction integrity
J2EE applications running in WebSphere Application Server for z/OS and OS/390 are
capable of issuing calls through a local CICS TG to a CICS server with full transactional
integrity. This is because the connection to CICS exploits Resource Recovery Services
(RRS), a feature exclusive to the z/OS platform. RRS uses a two-phase commit mechanism
to ensure that updates applied to multiple resource managers within the same transaction are
either all committed together or all backed out together. In our case, updates submitted to
CICS through the CICS TG will be coordinated with other resources updated by the J2EE
application running in WebSphere Application Server for z/OS and OS/390.

RRS is not available to a CICS TG running on any other platform than z/OS, so calls issued
from a WebSphere Application Server Advanced Edition J2EE application cannot exploit its
function. Neither is there a two-phase commit protocol used across the connection to CICS.
Figure 3-9 shows the commit capabilities for requests to CICS from distributed and
mainframe versions of the CICS TG.

Figure 3-9 CICS Transaction Gateway commit capabilities

Note: WebSphere Application Server Enterprise V5 provides Last Participant Support.
With this you can coordinate the use of a single one-phase commit capable resource with
any number of two-phase capable resources in the same global transaction. IBM CICS
Transaction Gateway V5.0 is the resource that can take advantage of this function.

z/OS or OS/390 image

CICS

RRS

WebSphere

CTG

2-phase commit

1-phase commit
WebSphere

CTG

non-z/OS or OS/390

Chapter 3. Component interaction characteristics 95

What this means is that a J2EE application hosted entirely in WebSphere Application Server
for z/OS and OS/390 will have full integrity between update requests submitted to CICS and
updates to other resource managers (providing that they also are two-phase commit
capable). If the part of the application that issues the calls to CICS is moved to another
platform, then we lose this guarantee of data consistency.

3.4.6 Infrastructure
A network connection will need to be established between the non-z/OS platform and the
CICS. Prior to CICS TS V2, the options available for the connection were SNA or TCP62 (an
SNA connection configured over a TCP/IP link). With CICS TS V2, the connection may be
native TCP/IP.

If TCP62 is selected as the link technology, then the firewall needs to permit UDP packets on
the TCP62 port (397).

3.4.7 Development and deployment
The recommended way of accessing EIS systems is to wrapper the calls in a stateless
session enterprise bean, rather than by issuing the call directly from a servlet. If the
application has been designed according to the MVC programming model, then the calls will
have been coded into the “model” part of the application, which will have been implemented in
the EJB container. The user authentication and unit of work issues that are raised when
migrating the CICS TG calls to another platform provide compelling arguments for retaining
the EJB container in WebSphere Application Server for z/OS and OS/390.

� Requests to CICS may be issued with full transaction integrity.

� The mechanisms for setting the user ID under which the CICS transaction will run are
more robust and secure.

However, there are many applications that issue EIS calls directly from Web components
such as servlets, so this section addresses issues with those components.

Application architecture
EIS resources would normally form part of the “model” of a model-view-controller design
pattern. They represent business data and processes. A possible solution would be to code
the EIS calls directly into the servlet, but this is starting to introduce business logic into the
“controller” piece of the application. A best practice is to encapsulate any calls to CICS
programs in a stateless session bean, rather than coding the call directly into a servlet. This
improves the prospects for reuse of the CICS interaction because session beans may be
invoked from a wider variety of client applications than servlets, which may only be driven by
a client connected over HTTP. Enterprise beans also have more flexibility in the way that their
runtime characteristics may be specified at application assembly and deployment time.

If the CICS calls are encapsulated in a stateless session bean, then the client for the
connector will reside in the EJB container rather than the Web container. By following the
model-view-controller design pattern, there should be no issue with regard to establishing a
CICS connection from a client servlet running in the remote Web container.

Note: One such benefit is the attribute to determine which identity a bean method runs
under, which is the RunAs attribute. The servlet 2.3 specification permits RunAs support
for servlets that is similar to that for enterprise beans.

96 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Tools
WebSphere Studio Application Developer Integration Edition V4.1.1 contains tools for building
and testing J2EE applications that submit JCA requests to CICS. It provides wizards that
enable the developer to take a COBOL copybook of the CICS COMMAREA storage layouts
and generate all the code and supplementary files required to create a CICS service. The
CICS service may then be deployed as a session enterprise bean, which will of course live in
the EJB container. When these development wizards have been used as designed, there
should be no issue with trying to establish a connection between a remote Web component
and a CICS server, because the connections will all originate in the EJB container.

JCA connections
J2EE application components such as servlets and enterprise beans need a connection
factory object in order to be able to obtain a connection to an EIS. The J2EE Connector
Architecture Specification V1.0 suggests that applications should use JNDI lookups to access
their connection factory instance.

The applications use a resource reference to identify the particular connection factory they
wish to access. The resource reference is stored as part of the deployment descriptor. When
the application is installed into the application server, the resource reference is resolved by
the deployer to a real JNDI name, which is able to make the appropriate connection factory
instance available.

This level of indirection means that there are no coding changes required to move the
application through its various test systems. At each stage of testing, the resource reference
is resolved to the appropriate back-end resource. Figure 3-10 on page 98 shows the resource
reference “eis/CICS_ECI” being bound during application deployment to WebSphere
Application Server Advanced Edition V4.

Note: WebSphere Application Server for z/OS and OS/390 requires APAR PQ65206 PTF
UQ90051 to provide runtime support for CICS and IMS J2EE connector applications
developed using WebSphere Studio Application Developer Integration Edition V4.1.1.

Chapter 3. Component interaction characteristics 97

Figure 3-10 Resolving a resource reference on WebSphere Application Server Advanced Edition

Figure 3-11 shows the same resource reference in the same application being bound during
deployment to WebSphere Application Server V4.01 for z/OS and OS/390.

Figure 3-11 Resolving a resource reference on WebSphere Application Server for z/OS and OS/390

This capability to bind a resource reference to a real resource at deployment time is extended
to WebSphere Studio Application Developer Integration Edition V4.1.1, so unit testing of the
application in the development tool is possible.

98 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 3-12 shows a resource reference being bound in the test environment of WebSphere
Studio Application Developer Integration Edition V4.1.1.

Figure 3-12 Resolving a resource reference in WebSphere Studio Application Developer Integration
Edition V4.1.1

3.4.8 Systems management
The CICS TG element of the infrastructure is required whether the application is deployed to
WebSphere Application Server for z/OS and OS/390 as a single integrated application or to
several application servers as a hybrid solution. There is therefore not much difference in the
systems management overhead between the two configurations that has not already been
incurred by the addition of the remote WebSphere AE server. From the perspective of the
CICS TG, many of the systems management tasks are common to both scenarios.

3.4.9 Strategic considerations
The CICS TG APIs used by application program clients to CICS have been evolving. Recent
versions of CICS TG provide support for the J2EE Connector Architecture (JCA). Programs
should be developed according to this API so that they can take advantage of the managed
connections which modern application servers that support the JCA provide. Utilizing
managed connections enables qualities of service such as transaction integrity, connection
pooling, and security to be taken care of by the application server so that the developer does
not have to worry about them.

In addition, the JCA APIs provide a common programming model for accessing any backend
resource, so only one set of skills needs to be obtained. The JCA is a strategic initiative for
the industry, so modern development tools and their built-in wizards generate code to this
specification.

Chapter 3. Component interaction characteristics 99

100 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Chapter 4. Static Web component
optimization

This chapter describes how static and selected dynamic content can be served outside the
WebSphere Application Server for z/OS and OS/390. It discusses various possible scenarios
and describe how to implement them.

4

© Copyright IBM Corp. 2003. All rights reserved. 101

4.1 Overview
Almost all Web applications have mixed static and dynamic content. Before the use of
dynamic content in applications, when the Web was made mostly of static content consisting
of HTML, graphical images in binary formats, and other non-dynamic elements embedded
into the HTML structure. Web servers were in charge to serve this static content.

Today, as the application servers take more and more work to manage business logic, it
seems a good idea to continue using the Web servers for the work they do best: static page
serving, file caching, and proxying requests.

When serving this content plain out of an WebSphere Application Server it will always be
delivered by the Web container. The Web container will always use a Java program
(SimpleFileServlet) to access the content. The Web components will not be cached by
default. If you have an application that is rich in static content, you would finally end up with a
lot of servlet activity within your Web container. To avoid this overhead of static content
processing in the WebSphere Application Server, you need to architect your infrastructure in
such a way that other specialized products and functions can give the Web container a
helping hand.

Application component interaction
Components discussed here are either totally static HTML-based or JSP-generated
semi-dynamic content.

HTML pages usually consist of HTTP code and embedded (or referenced) binary objects (gif,
jpg, wav, mp3 files). These pages are often dynamically composed by a JSP function within
the Web application running in the Web container. Dynamically generated HTML files also
have the possibility of adding (referencing) any objects to their structure. That means that the
ensemble, wherever it is, has to maintain its logical structure.

If the binary objects are not created dynamically by the application, they are usually stored
inside the .war file of the application’s .ear file as components of the application and are
managed, as Web content, by the Web container.

Web components interact using the HTTP protocol and HREF statements. HTML forms can
also be used to trigger dynamic content creation of information from the client/customer. The
information must be sent to the application server to be processed, stored or manipulated by
the Web container. Forms use the HTTP GET or POST method.

Architectural building blocks and configurations
A Web server as a front end for WebSphere Application Server is most likely used for the
following functionality:

� Workload distribution, using specialized plug-ins

� Security front-end to interact with registries and the ability to forward private security
headers to the WebSphere Application Server

Important: If your main motivation for a hybrid infrastructure is to relieve the J2EE server
on z/OS from some Web container work, static file offloading and dynacaching could be a
solution for you. It is easy to implement, does not confront you with the complexity of a
splitted J2EE application, and in most cases gives a significant relief for your WebSphere
Application Server. Nevertheless, you can combine the offloading techniques described
here with hybrid deployment approaches. Therefore, we will discuss static content
offloading solutions for hybrid and integrated infrastructures.

102 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

� HTTP session handling by maintaining the session state when distributing content
(session affinity)

� Serving static content, caching static content

� Caching dynamic content (dynacaching)

� Proxy or reverse proxy configuration

To architect some valid Web content offloading configurations that support integrated and
hybrid infrastructures, we decided to work only with the most common infrastructure
elements.

This chapter describes four different configurations, though there are many more ways to
architect an appropriate solution.

We kept our application server on the z/OS environment with dynacaching activated (see 4.2,
“Dynamic fragment caching concepts” on page 105) and we used the IBM HTTP Server in
two platforms, z/OS and distributed.

For the architectures that use distributed components one can use almost any platform of
choice. To avoid additional boxes (and the problems related to this) you can run your Web
server on a Linux for zSeries image. To follow our configuration guidelines more easily, we
document the configuration steps based on the settings in a Windows operating system:

� 4.3, “Configuration 1: Local IBM HTTP Server for static file handling” on page 109

� 4.4, “Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in” on
page 115

� 4.5, “Configuration 3: Remote reverse proxy caching server” on page 122

� 4.6, “Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in” on
page 126.

The generic scenarios are depicted in Figure 4-1 on page 104 and Figure 4-2 on page 105.

Interesting variations develop according to the placement of the Web server—that is, on z/OS
or on a distributed platform.

Chapter 4. Static Web component optimization 103

Figure 4-1 Generic caching scenario (configurations 1 and 3)

Deciding which of these configurations you should use depends on the overall infrastructure
architecture you are going to plug into. If, for example, the decision in your enterprise has
been made that all Web Servers have to be run on Linux, then logically you do not need to
think about the z/OS Web server scenario. Other major influencers on the scenario selection
are security, availability, and HTTP session aspects.

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

Control
Region

Web Server
Proxy

HTTP(S)
HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

FRCA

html, gif, jpg, txt...

104 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 4-2 Generic WebSphere plug-in scenario (configurations 2 and 4)

4.2 Dynamic fragment caching concepts
The idea of dynamic fragment caching (also servlet caching or dynacaching) is to store the
output of servlets and JSP procession within the server region’s JVM. For all subsequent calls
of the same servlet or JSP, the server region checks whether the response can be delivered
from the JVM’s cache instead of running the servlet or JSP again to recreate the result.

Depending on the type of application running in the WebSphere Application Server, dynamic
fragment caching can improve the performance and response time of the application
significantly. It also caches some other servlet products such as:

� Content types

� Character encodings

� Setting cookies

� Including and forwarding to other servlets

Dynacache gives better performance when the J2EE application has a suitable design for
caching. A good way for dynamic caching would be to have page designs that are built from
several “subpages”. These fragments can be reused along the application presentation layer.

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

Control
Region

Web
Server

HTTP(S) HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

FRCA

html, gif, jpg, txt...

P
lu

g-
in

Chapter 4. Static Web component optimization 105

Figure 4-3 Dynamic fragment caching. Different server regions have different dynamic caches

This Dynamic Fragment Caching can be set in combination with an external cache server that
can increase the offload (see Figure 4-4).

Figure 4-4 Dynamic Fragment caching with external caching proxy

Important: Dynamic fragment caches live in each server region, and no attempt to
synchronize caches among server regions is made. This means that each server region
has its own dynacache and the same content can use up JVM heap sizes in different
server regions, as shown in Figure 4-3. It makes sense to direct dynamic fragment cached
requests always to the same server region to save some memory within the JVM heap.

The technique to use is an HTTP session for the JSP or servlet and session affinity
support in a front-end workload distributor or Web server running the WebSphere HTTP
plug-in. The control region distributing the requests to the individual server regions
supports session affinity by default. Note that JSPs automatically enable HTTP sessions,
so you should not manually turn this feature off. If you are not exploiting session data, you
can improve performance by disabling session data in your JSPs (session=”FALSE").

S erv le t

W e b S p h e re A p p lic a tio n
S e rve r fo r z /O S

C o n tro l R e g io n

J S P fi ledy
na

ca
ch

e

W e b
S e rv e r

F R C A

W e b c o n ta in e r

S erv le t

J S P fi ledy
na

ca
ch

e

W e b c o n ta in e r

S erv le t

J S P fi ledy
na

ca
ch

e

W e b c o n ta in e r

tr
an

sp
or

t

ha
nd

le
r

W eb
Server

FRCA

Servlet

W ebSpher Application S erver for z/O S

W eb container

JSP filedy
na

ca
ch

e

Cach ing
proxy

Cache

106 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

When the external caching proxy is enabled, eligible pages are stored in the external cache
and are served from there instead of the application server. A caching proxy has the ability to
store and manage cached data on an external device. Be aware that if the caching ability of
an Web server itself is used, the cached data would stay in the Web servers address space or
in the address space of the supporting TCP/IP stack.

4.2.1 Configuring dynamic fragment cache support
To use the benefits of dynamic caching you have to set up the necessary files: dynacache.xml
and servletcache.xml (see “Dynamic fragment caching” on page 141 for setup details).

The presence of the dynacache.xml file is sufficient to enable caching. The file is read at
application server startup. If you make changes to any of the files, the J2EE server has to be
recycled to activate the changes.

In this file you can define the global properties you want for your cache. You can get a list of
the configured properties by looking at the dynacache.dtd shipped with your application
server, located in <install-root>/dtd (see Assembling Java™ 2 Platform, Enterprise Edition
(J2EE™) Applications, SA22-7836, chapter 8).

It is also in the dynacache.xml file where you can define the external cache groups that will be
managed by the external caching proxy. The commented part of Example 4-1 shows what a
definition for external caching could be. This example is the sample file shipped with the
application server for z/OS.

Example 4-1 The dynacache.sample.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cacheUnit SYSTEM "dynacache.dtd">

<cacheUnit>
 <cache size="1000" priority="1" />

<!--
<externalCacheGroups>
 <group id="afpa" >
 <member address="9081" adapterBeanName="com.ibm.servlet.dynacache.Afpa"/>
 </group>
 </externalCacheGroups>
-->
</cacheUnit>

The second file you need to enable Dynamic Fragment Caching is servletcache.xml (see
“Dynamic fragment caching” on page 141 for setup details); this file defines which and how
servlets and JSPs are to be cached: this is where you define your cache policies.

Note: Dynamic Fragment Cache policies can be defined via the servletcache.xml file or
using an XMI file attached to a .war file; to use this option the Web application developer
has to create the file and put it in the application. The Application Assembly Tool (AAT) for
z/OS and OS/390 will preserve these definitions (390fy will also preserve them). If an entry
is found in both, the XML file takes precedence.

Chapter 4. Static Web component optimization 107

You may use the servletcache.xml file to have custom definitions for each of your servlets or
JSPs, specifying:

� The class file or the URI of the servlet to be cached
� Unique entries for different requests
� Variables to determine which pieces of information are associated with the unique ID
� Time to keep the entry in the cache
� Priority
� ...

The servletcache.dtd is available from your application server in <install-root>/dtd. To
illustrate all this, see Example 4-2; it is the sample file shipped with the WebSphere
Application Server.

Example 4-2 The servletcache.sample.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE servletCache SYSTEM "servletcache.dtd">

<servletCache>
 <servlet>
 <timeout seconds="0" />
 <servletimpl class="SnoopServlet.class" />
 </servlet>

<!--

 <servlet>
 <invalidateonly/>
 <path uri="/inv.jsp" />
 <path uri="/status/inv.jsp" />
 <request>
 <parameter id="invalidate" invalidate="arg1" />
 <parameter id="invalidate" invalidate="arg2" />
 </request>
 </servlet>
 <servlet>
 <timeout seconds="0" />
 <path uri="/status/calc.jsp" />
 <request>
 <parameter id="arg1" data_id="arg1" />
 <parameter id="arg2" data_id="arg2" />
 <parameter id="invalidate" invalidate="arg1" />
 <parameter id="caching" >
 <exclude value="off"/>
 </parameter>
 </request>
 </servlet>
 <servlet>
 <timeout seconds="10" />
 <path uri="/frontpage.jsp" />
 <externalcache id="afpa" />
 </servlet>

-->
</servletCache>

To know whether your cache policy is working as desired, WebSphere Application Server
provides a dynamic fragment caching monitor, aka servlet cache monitor. It is delivered as an

108 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

.ear file, ServletCacheMonitor.ear, that you have to deploy. For more information about this
monitor, go to the WebSphere v4.x Infocenter. You can also refer to (specifically for z/OS):

� WebSphere Application Server for z/OS and OS/390 v4.0.1: Migration, GA22-7860

� WebSphere Application Server for z/OS and OS/390 v4.0.1: Installation and
Customization, GA22-7834

� Assembling Java™ 2 Platform, Enterprise Edition (J2EE™) Applications, SA22-7836

You can find a description of the cache API package at:

ibm.com/software/webservers/appserv/doc/v40/aee/wasa_common/apidocs/index.html,

4.3 Configuration 1: Local IBM HTTP Server for static file
handling

This configuration describes how to use an IBM HTTP Server for z/OS configured as a
reverse proxy (see Figure 4-5 on page 110) and as a static content server. All the requests
flow through this IBM HTTP Server, so it needs to decide which requests can be served
directly, and which ones need to be forwarded to the Web container.

By placing the IBM HTTP Server on the same z/OS image as the Web container, you gain
direct access to the static content that is deployed to the local Hierarchical File System (HFS).
In addition you can exploit platform-specific static content accelerators, such as Fast
Response Cache Accelerator (FRCA) in the TCP/IP stack, or the caching mechanisms that
live in the Web server itself. All this can be combined with dynamic fragment caching.

It is supported to have the plug-in forward requests to the IBM HTTP Server on z/OS if you
need a WebSphere HTTP plug-in off platform.

The implementation guidelines for this configuration can be found in 5.2.2, “Configuration 1:
Local IBM HTTP Server for static file handling” on page 142.

Chapter 4. Static Web component optimization 109

Figure 4-5 Configuration 1. IBM HTTP Server for z/OS as a local proxy

4.3.1 HTTP session considerations
If you have HTTP sessions in memory and multiple server instances, your infrastructure
needs to maintain session affinity. This configuration, as it is, does not support session
affinity. You should rather look at the WebSphere HTTP plug-in configurations described in
4.4, “Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in” on page 115
and 4.6, “Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in” on
page 126.

4.3.2 Security considerations
You need to understand that Web container security is treated differently than Web server
security. Web server security is triggered by protection setups, Web container security by
deployment descriptors. Basically you have access to almost the same authentication
models:

� Basic authentication
� Certificate-based authentication
� Form-based authentication
� Unauthenticated processing

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

port 8081

Control
Region

Web
Server
Proxy

HTTP(S)
port 8085

HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

FRCA

html, gif, jpg, txt...

z/OS

110 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

All of these are valid and can be set up in different ways according to the needs of the
application. For a detailed discussion about security, see z/OS WebSphere and J2EE
Security Handbook, SG24-6846. Chapter 14 in that book provides detailed information about
the flow and setup of authentication; chapter 15 has a flow chart that will help you make the
decisions for your security needs.

The problem now is that you have to configure exactly the same authentication model in the
Web server and in the Web container. You also need to make sure that the client is not asked
for his credentials several times.

Usually the static content does not contain security-relevant information, it often consists of
corporate logos and design elements. Our recommendation is to use the static file offloading
capabilities of this configuration when you do not need to protect your static content. For our
configuration we did not protect the static content delivered by the IBM HTTP Server.

During our tests we worked with HTTP basic authentication. When you use basic
authentication, the authentication information is present in the HTTP authorization header.
Basically, the authenticated USERID and PASSWORD are in there. Because IHS and
WebSphere Application Server on z/OS share the same security repository, the
authentication information generated by the Web server could be reused by the Web
container. In this case you need to make sure that the ServerID value in the httpd.conf
matches the <realm-name> in the deployment descriptor or web.xml. This technique allows
you to have the static and the dynamic application elements secured using the same policy.

4.3.3 System management considerations
This configuration is transparent to the deployment process. The only thing the administrator
has to do is to configure the IBM HTTP Server accordingly. The PASS directives in the
httpd.conf need to point to the proper path where the application is deployed (see details in
5.2.2, “Configuration 1: Local IBM HTTP Server for static file handling” on page 142).

After setting up this configuration, double-check that the static content is now served by the
IBM HTTP Server and not by the application server. You can disable static content
management in the Web container as described in “Integrated scenario” on page 138, so you
will immediately see an error page if the setup is not working correctly.

You can also check the Web server’s access and FRCA logs.

4.3.4 Performance considerations
Intelligent file caching itself means to deliver the content from fast and expensive memory
rather than from slow and cheap physical I/O devices. Intelligent caching also means using
the expensive memory resources carefully and applying good algorithms to hold memory
consumption low. Generally caching improves the overall response time and allows a higher
throughput rate. Be aware that if you exploit caching technologies without having the
necessary resources in place, you could even suffer performance penalties.

When a static document is cached in a caching hierarchy, less requests are travelling through
the network and some network bandwidth can be saved. The rule of thumb is to cache as
close as possible to the client. This allows the best bandwidth consumption reduction.

To illustrate this, we ran some tests that consisted of capturing all the information travelling
from and to the client. The information included response times, amount and size of headers,
and total serving times.

Chapter 4. Static Web component optimization 111

For our tests, dynamic fragment caching was enabled in the application server. We ran two
performance measurements, one with and one without additional FRCA caching in the IBM
HTTP Server on z/OS. As a test case we measured the welcome page of our sample
application.

Reference data
Figure Figure 4-6 shows the measurements without static offloading, serving the content
directly through the Transport Handler. When you compare this data with the following
measurements, keep in mind that these are no scientific performance measurements or
benchmarks. We took these measurements to get a feeling of how our configurations behave.
We did not make any measurements regarding the path length reduction on the z/OS side. If
your target is to avoid CPU cycles, you need to look at RMF reports.

Figure 4-6 Welcome page processing of our sample application: reference data

For the proxy server with FRCA disabled, we had the following results for the main page of the
sample application (see Figure 4-7 on page 113).

112 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 4-7 Welcome page processing of our sample application with FRCA off

In this diagram, the bars are scaled and show the time to load all elements of the welcome
page. The different colors represent parts of the overall response time spent in different
locations. The overall response time spent to load individual components is the total length of
the bar adding all colors. The color coding is as follows:

� Yellow describes the time needed to open a socket.

� Blue describes the server response time.

� Green describes delivery time. If some additional data has been sent from the server
because it couldn’t be sent in the initial reply, it is measured here.

This bar diagram is also translated to numerical data. We put an example for the largest gif
image in Example 4-3.

Example 4-3 Times and sizes for logo-topbar.gif (without FRCA)

Item: logo-topbar.gif
 Type: image/gif
 URL: http://wtsc59.itso.ibm.com:8085/estore/images/logo-topbar.gif
 Date: 03/28/2003 09:25:56

Y ellow . Tim e n eeded to
open a socke t

B lue . S erver
response tim e.

G reen. D e liv ery tim e.

Chapter 4. Static Web component optimization 113

 Page Offset: 0.287 seconds
Previous Offset: 0.001 seconds

Response Times:
 0.011 seconds Total Time
 0.009 seconds Server Response Time
 0.002 seconds Delivery Time
 0.001 seconds Delivery Idle Time

Item Sizes: Sent Received Total
 HTTP Headers: 458 251 709
 Application Data: 0 0 0
 Total Bytes: 458 251 709
 Overhead Data: 458 251 709

Communication:
 Socket ID: 1452
 Remote Address: 9.12.6.16 : 8085

For the same configuration, but now with FRCA enabled, the results are shown in Figure 4-8.

Figure 4-8 Welcome page processing of our sample application with FRCA on

114 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

The numerical data for logo-topbar.gif is shown in Example 4-4.

Example 4-4 Times and sizes for logo-topbar.gif with FRCA on

Item: logo-topbar.gif
 Type: image/gif
 URL: http://wtsc59.itso.ibm.com:8085/estore/images/logo-topbar.gif
 Date: 03/28/2003 09:35:32
 Page Offset: 0.275 seconds
Previous Offset: 0.001 seconds

Response Times:
 0.003 seconds Total Time
 0.003 seconds Server Response Time
 0.011 seconds Local Closed Socket Offset

Item Sizes: Sent Received Total
 HTTP Headers: 419 189 608
 Application Data: 0 0 0
 Total Bytes: 419 189 608
 Overhead Data: 419 189 608

Communication:
 Socket ID: 1572
 Remote Address: 9.12.6.16 : 8085

These measurements were not done in a strictly controlled scientific benchmarking
environment. We followed some guidelines for the measurements, like restarting the servers
and clearing all caches. Comparing the results, it is obvious that you can get additional
throughput enhancements with FRCA for your static content. Note that the bar diagrams
cannot be compared directly because they are scaled to the longest bar in each case, but you
can look at the times beside the bars to compare.

4.4 Configuration 2: Local IBM HTTP Server with WebSphere
HTTP Plug-in

This configuration exploits the IBM HTTP Server for z/OS running with the new WebSphere
HTTP Plug-in for WebSphere Application Server for z/OS and OS/390 (see Figure 4-9 on
page 116).

Chapter 4. Static Web component optimization 115

Figure 4-9 IBM HTTP Server for z/OS with WebSphere HTTP Plug-in

The plug-in is shipped with service level W401500, APAR PQ68250. For more info about
setting up this plug-in, see 5.2.3, “Configuration 2: Local IBM HTTP Server with WebSphere
HTTP Plug-in” on page 144.

With this configuration, the IBM HTTP Server is able to forward requests to J2EE server
instances configured in the plug-in’s configuration file. This configuration supports multiple
server instances, even multiple server instances on other systems within the scope of one
WebSphere node.

With some configuration effort it is possible to get static content served directly from the Web
server (see 5.2.3, “Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in”
on page 144) with no additional overhead for the application server, while dynamic requests
are forwarded to the Web container. It is also possible to enable the Fast Response Cache
Accelerator (FRCA) for this configuration.

The difference with 4.3, “Configuration 1: Local IBM HTTP Server for static file handling” on
page 109 is that, using the plug-in, we can distribute selected traffic to specific server
instances in WebSphere Application Server for z/OS and OS/390 by using different <Server>
and <Transport Hostname> statements in the plugin-cfg.xml file. The workload distribution is
based (depending on the plug-in version) on weighting and, of course, session affinity. The
plug-in adds some additional front-end functionality for the WebSphere Application Server
into IBM HTTP Server (certificate handling, request sanitation, and more).

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

port 8081

Control
Region

Web
Server

HTTP(S)
port 8085

HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

FRCA

html, gif, jpg, txt...

z/OS

P
lu

g-
in

116 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

4.4.1 HTTP session considerations
The WebSphere HTTP Plug-in supports session affinity and also allows forwarding to IP
sprayers (like Sysplex Distributor) that live between the plug-in and the Web container. This
configuration fully supports HTTP session affinity. If you distribute workload from this plug-in
to a remote Web container you will lose (with the configuration described here) the ability to
serve static content in the IBM HTTP Server. You can solve this problem by sharing the
content HFS and configuring the Web server accordingly.

4.4.2 Security considerations
See 4.3.2, “Security considerations” on page 110. Same considerations apply for both
configurations.

4.4.3 System management considerations
This configuration does not require special management, other than the usual for WebSphere
Application Server for z/OS and OS/390.

To be sure that static content is served by the IBM HTTP Server and not by the application
server, you can disable static content management in the Web container as described in
“Integrated scenario” on page 138.

4.4.4 Performance considerations
The same generic rules apply as described in 4.3.4, “Performance considerations” on
page 111.

For our tests, dynamic fragment caching was enabled in the application server. We ran two
performance measurements, one with and one without additional FRCA caching in the IBM
HTTP Server on z/OS. As a test case we measured the welcome page of our sample
application.

With FRCA disabled, the results we experienced are shown in Figure 4-10 on page 118.

Chapter 4. Static Web component optimization 117

Figure 4-10 Welcome page processing of our sample application with FRCA off

For an explanation of the color codes refer to 4.3.4, “Performance considerations” on
page 111.

In Example 4-5 we also present some numerical data, as a sample, for one of the several gif
images in the application.

Example 4-5 Times and sizes for logo-topbar.gif with FRCA off

Item: logo-topbar.gif
 Type: image/gif
 URL: http://wtsc59.itso.ibm.com:8085/estore/images/logo-topbar.gif
 Date: 03/29/2003 16:08:51
 Page Offset: 1.000 seconds
Previous Offset: 0.009 seconds

Response Times:
 0.050 seconds Total Time
 0.044 seconds Server Response Time
 0.006 seconds Delivery Time
 0.002 seconds Delivery Idle Time
 0.050 seconds Local Closed Socket Offset

118 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Item Sizes: Sent Received Total
 HTTP Headers: 419 292 711
 Application Data: 0 732 732
 Total Bytes: 419 1024 1443
 Overhead Data: 419 292 711

Communication:
 Socket ID: 1264
 Remote Address: 9.12.6.16 : 8085
 Local Address: 127.0.0.1 : 2435

For a plug-in configuration with FRCA enabled, we had the results shown in Figure 4-11.

Figure 4-11 Welcome page processing of our sample application with FRCA on

Again, if you want to compare the results, look at the times, because the bars are scaled
differently in each picture.

In numerical data, for the same graphical element, we get the results shown in Example 4-6.

Example 4-6 Times and sizes for logo-topbar.gif with FRCA on

Item: logo-topbar.gif
 Type: image/gif

Chapter 4. Static Web component optimization 119

 URL: http://wtsc59.itso.ibm.com:8085/estore/images/logo-topbar.gif
 Date: 03/29/2003 16:21:38
 Page Offset: 0.390 seconds
Previous Offset: 0.015 seconds

Response Times:
 0.001 seconds Total Time
 0.001 seconds Server Response Time

Item Sizes: Sent Received Total
 HTTP Headers: 419 194 613
 Application Data: 0 0 0
 Total Bytes: 419 194 613
 Overhead Data: 419 194 613

Communication:
 Socket ID: 1264
 Remote Address: 9.12.6.16 : 8085
 Local Address: 127.0.0.1 : 2490

Comparing the results, it is again clear that additional throughput enhancements can be
achieved with FRCA for your static content. You can also see, and this is most important, that
you can use FRCA together with the plug-in if you architect accordingly.

4.4.5 Infrastructure considerations for configurations 1 and 2
Architecting an infrastructure means considering many operational, organizational, and
application-related aspects. Availability, workload distribution, scalability, and integration
aspects are some of them.

High availability considerations
Architecting for high availability is to select and combine bullet proof components. It is also the
elimination of single point-of-failure components. zSeries servers and the z/OS operating
system make things a lot easier, because many of these characteristics are built into the
platform. Anyhow, you still need to think and architect a nice solution to really avoid possible
outages. Many of the techniques you can use are described in Enabling High Availability
e-business on e-server zSeries, SG24-6850.

Because of its tight integration, WebSphere Application Server for z/OS and OS/390 takes
advantage of the availability features provided by z/OS and the zSeries platform.

The most common way to achieve high availability is redundancy of components, as shown in
Figure 4-12 on page 121. This is a very simple starting point and for simplicity assumes that
an integrated topology was selected.

120 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 4-12 Simple high availability scenario for configurations 1 & 2

This example shows redundancy for hardware and software components. Static offloading is
made by properly configuring both application servers and both HTTP servers. Any of the
possibilities discussed in 4.3, “Configuration 1: Local IBM HTTP Server for static file handling”
on page 109 or 4.4, “Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in”
on page 115 fits into this availability scheme since the structure and relationship among
application servers and HTTP servers described there are preserved.

We can benefit from the WebSphere Edge Server components for several tasks. Using the
Network Dispatcher we may improve the availability by clustering application servers and
Web servers.

In Figure 4-12, one of the WebSphere Edge Servers has to be configured as primary and the
other one as backup so that the backup will take over in case of failure. That’s why both of
them have to communicate with both HTTP servers.

Scalability and workload distribution
Scalability can be achieved on the z/OS operating system with features like Workload
Manager (WLM) support for the whole WebSphere infrastructure and the IBM HTTP Server.
The z/Series platform adds features like Capacity Backup to cope with peak loads. The
sysplex implementation lets your operating system images scale horizontally.

Horizontal scalability is always very closely connected to high availability topics, such as
clustering, cloning, sharing, and workload distribution. These topics are entirely covered in
Enabling High Availability e-business on e-server zSeries, SG24-6850.

Networking considerations
Configuration 1 and 2 have no specific requirements on the networking topology and should
fit on almost all common TCP/IP networks.

DMZ integration and security considerations
Component interaction in configuration 1 and 2 is completely HTTP based. HTTP is nicely
flowed through all known firewalls, so this configuration would fit seamlessly into any DMZ

WebSphere
Application
Server

WebSphere
Application
Server

IHS

IHS

z/OS

z/OS

non
z/Os

WebSphere
Edge
Server

Chapter 4. Static Web component optimization 121

environment. Often, corporate security policies do not allow to connect an IBM HTTP Server
on z/OS directly into a perimeter network. In this case a reverse proxy within the DMZ can
forward the request to the IBM HTTP Server behind the second firewall.

Other DMZ integration options are:

� The enablement of z/OS firewall technologies

� Connecting a z/OS LPAR, with only an IBM HTTP Server for z/OS running, to the DMZ.

Figure 4-13 Firewall technologies enabled within z/OS

Figure 4-13 shows a possible setup with an LPAR running IBM HTTP Server on z/OS directly
connected to the DMZ. Requests from this server are routed through a firewall that is installed
on the system that is hosting the WebSphere Application Server for z/OS.

4.5 Configuration 3: Remote reverse proxy caching server

Configuration 3 and 4 (4.6, “Configuration 4: Remote IBM HTTP Server with WebSphere
HTTP Plug-in” on page 126) are implementing the WebSphere Application Server front end
on a distributed platform exploiting either proxy or plug-in functionality. This configuration uses
a reverse proxy setup. In a standard proxy cache configuration, the proxy acts as a proxy for
the client. In this reverse proxy configuration, the reverse proxy server acts as a proxy and
front end for the server. As a reverse proxy cache it can store specific content, whereas proxy
and transparent caches store frequently requested content (and maintain their caches
automatically).

The major difference from the local configurations is that in this remote configuration the static
content is not locally available. To make it locally available to the Web server, you can copy it

Firewall z/OS

z/OS

Firewall

IBM
HTTP
Server

P
lu

g-
in

 o
r

re
ve

rs
e

pr
ox

y

HTTPs

HTT
P

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

port 8081

Control
Region

Entity
beanEntity

bean

122 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

after the deployment process or export it to the Web server using, for example, a Network File
System (NFS) implementation.

Apart form this, the configurations won’t differ too much from the local configurations 1 and 2.
Also, for the remote configurations we still use all available performance facilities. Dynamic
fragment caching is activated in our application server, and proxy caching is used in the IBM
HTTP Server. For more details about dynacache, refer to 4.2, “Dynamic fragment caching
concepts” on page 105.

This configuration supports Adaptive Fast Path Architecture (AFPA), a static file caching
architecture available on distributed platforms. AFPA is a software architecture for
high-performance network servers. It is specifically designed to be general purpose.
However, most implementations are focussed on Web servers.

The implementation guidelines for this configuration are described in 5.2.4, “Configuration 3:
Remote reverse proxy caching server” on page 146.

Figure 4-14 Configuration 3: remote IBM HTTP Server as a proxy server

Another possible configuration is to run IBM HTTP Server as forwarding proxy server. A
forwarding proxy would have caching functions but no capability to serve local files. Instead, a
reverse proxy is able to manage static content and serve it itself while it sends all other
requests to the application server.

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB container
dy

na
ca

ch
e

Server Region

HTTP
Transport
Handler

port 8081

Control
Region

HTTP(S)
port 8085

HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

AFPA

z/OS

Web
Server
Proxy

Distributed
platform

application.war

html, gif, jpg, txt...

Chapter 4. Static Web component optimization 123

4.5.1 HTTP session considerations
If you have HTTP sessions in memory and multiple server instances, your infrastructure
needs to maintain session affinity. This configuration, as it is, does not support session
affinity. You should rather look at the WebSphere HTTP plug-in configurations described in
4.4, “Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in” on page 115
and 4.6, “Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in” on
page 126.

4.5.2 Security considerations
See 4.3.2, “Security considerations” on page 110.

Usually you do not have the same user registry on a distributed platform as you do on z/OS
(though it is possible to export the RACF database to an LDAP server that can be used in the
DMZ for authentication).

Based on this fact it is obvious that it is difficult for this kind of configuration to synchronize the
authentication setups. We really recommend that the quality of the static content is such that
it can be served in an unprotected fashion.

4.5.3 System management considerations
To allow the IBM HTTP Server to serve static content, it needs to be made locally available to
the Web Server.

There are a couple of ways to do this. One is to use NFS or any other kind of network sharing
system to make the necessary content available to the HTTP Server. You can also copy the
content from the Web container where it is deployed to the Web servers file system.

For this simple setup we unpacked the application.war file into the Web server’s Document
Root directory.

To be sure that all static content was served by the IBM HTTP Server, we disabled static
managing in the Web container (see “Disabling file serving in the Web container” on
page 138).

4.5.4 Performance considerations
The same generic rules apply as described in 4.3.4, “Performance considerations” on
page 111.

For our tests, dynamic fragment caching was enabled in the application server. As a test
case, we measured the response time of the welcome page of our sample application; see
Figure 4-15 on page 125.

124 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

.

Figure 4-15 Welcome page processing of our sample application with AFPA on

For an explanation of the color codes, refer to 4.3.4, “Performance considerations” on
page 111.

Some numerical data for one of the several gif images in the application explains the
performance behavior of individual elements in detail, as shown in Example 4-7.

Example 4-7 Times and sizes for logo-topbar.gif

Item: logo-topbar.gif
 Type: image/gif
 URL: http://wtsc59.itso.ibm.com:8085/estore/images/logo-topbar.gif
 Date: 03/31/2003 21:21:15
 Page Offset: 0.786 seconds
Previous Offset: 0.008 seconds

Response Times:
 0.046 seconds Total Time
 0.006 seconds Connect Time
 0.026 seconds Server Response Time
 0.014 seconds Delivery Time
 0.001 seconds Delivery Idle Time

Chapter 4. Static Web component optimization 125

 0.051 seconds Local Closed Socket Offset

Item Sizes: Sent Received Total
 HTTP Headers: 437 227 664
 Application Data: 0 0 0
 Total Bytes: 437 227 664
 Overhead Data: 437 227 664

Communication:
 Socket ID: 1656
 Remote Address: 10.1.15.3 : 80

As in other figures, if you want to compare results, look at the times column because the bars
are differently scaled in each picture. Of course, these results can’t be regarded as
exhaustive, but are useful to get an idea of the behavior of each configuration. If you compare
these numbers with the measurements for the integrated scenarios, you will see that the
integrated scenarios perform slightly better.

Again, our performance measurements were done to get a feeling of how the scenarios
behave, but no scientific rules were applied. Anyhow, as a platform on the distributed side, we
used high-end PC servers.

4.6 Configuration 4: Remote IBM HTTP Server with WebSphere
HTTP Plug-in

This setup is almost similar to the one described in 4.4, “Configuration 2: Local IBM HTTP
Server with WebSphere HTTP Plug-in” on page 115: we have an IBM HTTP Server with the
WebSphere HTTP Plug-in enabled sending requests to the active Web container.

As shown in Figure 4-16 on page 127, for this setup the HTTP server needs the application’s
static content available locally. Therefore, the Web application’s content needs to be copied or
exported using a network file system into the Web server’s file system.

The implementation guidelines for this scenario can be found in 5.2.5, “Configuration 4:
Remote IBM HTTP Server with WebSphere HTTP Plug-in” on page 149.

126 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 4-16 IBM HTTP Server for Windows with WebSphere HTTP Plug-in

Figure 4-16 depicts the components of configuration 4.

4.6.1 HTTP session considerations
Distributed WebSphere HTTP plug-ins have the same functionalities as the ones for z/OS.
Refer to 4.4.1, “HTTP session considerations” on page 117.

4.6.2 Security considerations
The same security considerations as for scenario 3 apply. See 4.5.2, “Security
considerations” on page 124.

4.6.3 System management considerations
See 4.5.3, “System management considerations” on page 124.

4.6.4 Performance considerations
The same generic rules apply as described in 4.3.4, “Performance considerations” on
page 111.

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

port 8081

Control
Region

HTTP(S)
port 80

HTTP(S)

application.ear

application.war

servlet, JS
P

Entity
beanEntity

bean

Plug-in

z/OS

Web Server

Distributed
platform

application.war

html, gif, jpg, txt...

plugin-cfg.xml

Chapter 4. Static Web component optimization 127

For our tests, dynamic fragment caching was enabled in the application server. FRCA or
AFPA caching could not be enabled in our configuration. As a test case, we measured the
response time of the welcome page of our sample application; see 4.3.4, “Performance
considerations” on page 111.

Figure 4-17 Welcome page processing of our sample application

For an explanation of the color codes, refer to 4.3.4, “Performance considerations” on
page 111. As in other figures, if you want to compare the results, look at the time column
because the bars are scaled differently in each picture.

And the numerical data for one of the gif images (same as in other examples) is shown in
Example 4-8.

Example 4-8 Times and sizes for logo-topbar.gif with WebSphere Plug-in

Item: bkg-topbar.gif
 Type: gif
 URL: http://tot134.itso.ibm.com/estore/images/bkg-topbar.gif
 Date: 03/31/2003 12:22:14
 Page Offset: 1.364 seconds
Previous Offset: 0.038 seconds

Response Times:
 0.044 seconds Total Time
 0.044 seconds Server Response Time

128 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Item Sizes: Sent Received Total
 HTTP Headers: 408 203 611
 Application Data: 0 0 0
 Total Bytes: 408 203 611
 Overhead Data: 408 203 611

Communication:
 Socket ID: 1220
 Remote Address: 10.1.15.3 : 80
 Local Address: 127.0.0.1 : 2450

Of course, these results cannot be considered exhaustive, but are useful for getting an idea of
the behavior of the configuration. And again, comparing the data with the integrated
configurations shows interesting views.

4.6.5 Infrastructure considerations for configurations 3 and 4
Architecting an infrastructure means considering many operational, organizational and
application-related aspects. Availability, workload distribution, scalability, and integration
aspects are some of them.

High availability considerations
Architecting for high availability is to select and combine bullet proof components. It also
means the elimination of single point-of-failure components. zSeries servers and the z/OS
operating system make things a lot easier, because many of these characteristics are built
into the platform. Anyhow, you still need to architect a nice solution to really avoid possible
outages. Many of the techniques that you can use are described in Enabling High Availability
e-business on e-server zSeries, SG24-6850.

Due to its tight integration, WebSphere Application Server for z/OS and OS/390 takes
advantage of the availability features provided by z/OS and the zSeries platform.

For the components that are not living in the zSeries server, you need to take some extra
steps to make them reliable and to ensure that they won’t disrupt your valuable service on the
WebSphere Application Server for z/OS and OS/390.

The most common way to achieve high availability is redundancy of components, as shown in
Figure 4-12 on page 121. All components that are involved in passing the request forward to
the Web container need to be redundant. Takeover and distribution mechanisms need to take
care that in case of a failure the alternate element is immediately selected.

Some architectural elements, such as WebSphere Edge Server, have built-in high availability
mode (hot stand-by, MAC takeover), as shown in Figure 4-18 on page 130. It is easier to
architect highly available topologies if you can use servers that deliver built-in high availability.

Chapter 4. Static Web component optimization 129

Figure 4-18 High availability for configurations 3 & 4

For specific discussions about availability, refer to Enabling High Availability e-business on
e-server zSeries, SG24-6850.

Scalability and workload distribution
Scalability can be achieved on the z/OS operating system with features such as Workload
Manager Support for the whole WebSphere infrastructure and the IBM HTTP Server. The
z/Series platform adds features like Capacity Backup to cope with peak loads. The sysplex
implementation lets your operating system images scale horizontally.

Horizontal scalability is always very closely connected to high availability topics, such as
clustering, cloning, sharing, and workload distribution. All these topics are entirely covered in
Enabling High Availability e-business on e-server zSeries, SG24-6850.

WebSphere Edge Server or another third-party IP sprayer plays a central role for workload
distribution to the distributed Web servers. We may add Web servers as the need increases
for dispatching more requests.

The Web Servers with the plug-in then are in charge of forwarding requests to other intelligent
workload distribution mechanisms, or directly to the Web container.

Networking considerations
See “Networking considerations” on page 121.

DMZ integration and security considerations
Using standard Web servers on distributed platforms an purely HTTP(S), it is very easy to
plug into existing DMZ zones.

Figure 4-19 on page 131 depicts this DMZ integration.

WebSphere
Application
Server

z/OS

WebSphere
Application
Server

z/OS

non
z/OS

WebSphere
Edge
Server

non z/Os

non z/Os

IHS

IHS

(Proxy or
Plug-in)

(Proxy or
Plug-in)

130 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 4-19 DMZ with a WebSphere Edge Server and a couple of IBM HTTP Servers

Adapt this example according to how your tiers and network structure are divided.

4.7 Application considerations
Static content response time acceleration is not described in the J2EE standards. There are
development and application assembly aspects to support static content off-loading
sufficiently.

4.7.1 Application programming and assembly
Most programming models used today are dynamic; presentation layers are managed by
JSPs.

A Web site today has a consistent look and feel. Design elements such as banners,
navigation bars, and buttons are constantly replayed. The corporate identity is represented by
consistent images and colors on every page.

All this content is static and should be delivered accordingly. Application architects need to
consider this when designing new applications.

4.8 Trends and directions
We discussed and tested four different scenarios, but many more are suitable. These
configurations are particularly suitable for Linux, either in a distributed flavor or Linux for
zSeries.

zLinux is particularly interesting because you can have different servers in a logical partition
together with WebSphere Application Server for z/OS and OS/390 in a different LPAR inside

z/OS

Firewall
Firewall

IBM
HTTP
Server

P
lu

g-
in

 o
r

re
ve

rs
e

pr
ox

y

IBM
HTTP
Server

P
lu

g-
in

 o
r

re
ve

rs
e

pr
ox

y

Internet

DMZ

WebSphere
Edge
Server

Network
dispatcher

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

EJB container

dy
na

ca
ch

e

Server Region

HTTP
Transport
Handler

port 8081

Control
Region

Entity
beanEntity

bean

Chapter 4. Static Web component optimization 131

the same box; this allows communication integrity between the Web server and the
application server.

It is possible to have the whole infrastructure needed inside one box. Proxy servers, DNS
servers, Web servers, and workload distributors can live here together with your z/OS system
hosting the WebSphere Application Server and backend systems.

Figure 4-20 depicts a complex mix and match environment that also incorporates static
offloading in zLinux, as explained in 4.6, “Configuration 4: Remote IBM HTTP Server with
WebSphere HTTP Plug-in” on page 126.

Figure 4-20 Static offloading using IBM HTTP Server with WebSphere Plug-in on Linux for zSeries

Another kind of offload is available when you use the new features and functions offered by
WebSphere Edge Server. Application offload can work moving the presentation layer and
some business logic to the WebSphere Edge Server. The applications have to be prepared
for that and we talk about “edgified applications”. There are also special deployment tools. For
further information, refer to WebSphere Edge Server: New Features and Functions in Version
2, SG24-6511.

zSeries
z/VM Linux

Controller

View

ServletServlet

JSPJSP

z/OS active SD

Sysplex Sysplex
DistributorDistributor

* Network
Dispatcher
WSES
CSS
LVS

Controller

View

ServletServlet

JSPJSP

View Model

Controller

View

ServletServlet

JSPJSP

EJBEJB Existing
Data of

Transaction

z/OS

View Model

Controller

View

ServletServlet

JSPJSP

EJBEJB Existing
Data of

Transaction
WebSphere

plug-in

HTTP
Server

WebSphere
plug-in

HTTP
Server

WebSphere
plug-in

HTTP
Server

z/OS

View Model

Controller

View

ServletServlet

JSPJSP

EJBEJB Existing
Data of

Transaction
WebSphere

plug-in

HTTP
Server

132 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Part 2 Implementation
guidelines

This part of the book introduces the method of separation in Web-tier, and the method of
separation on IIOP boundary between Web-tier and EJB-tier using a sample application (Java
Pet Store Demo). It covers how to analyze an application, how to configure and modify this
specific application, how to set up the infrastructure, and how to deploy the application into a
multi server environment.

In Chapter 5, “Implementing static Web content acceleration scenarios” on page 135, we
introduce four configuration s about offloading static Web contents. These configurations are
mainly aimed at optimization of the performance of the application.

In Chapter 6, “Implementing IIOP-based cross-platform scenarios” on page 153, we aim at
the modification of the application so that it will be useful when you separate real applications.

Part 2

© Copyright IBM Corp. 2003. All rights reserved. 133

134 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Chapter 5. Implementing static Web content
acceleration scenarios

In this chapter, the following topics are discussed:

� How to analyze the application to search for static and dynamic contents (5.1.1,
“Analyzing the application” on page 136)

� How to set up the application for optimum management from the static, and sometimes
dynamic, point of view (5.1.2, “Assembling the application” on page 138, and 5.1.3,
“Deploying the application” on page 138)

� What possible infrastructure is needed (5.2, “Infrastructure implementation” on page 140)

� How to set up that infrastructure (5.2, “Infrastructure implementation” on page 140)

We show, with examples, how you can implement the solutions discussed in Chapter 4,
“Static Web component optimization” on page 101.

5

© Copyright IBM Corp. 2003. All rights reserved. 135

5.1 Application development and deployment
Various aspects need to be considered when you are preparing a given application for hybrid
deployment. Application inspection and analysis, development, assembly and deployment are
covered here.

5.1.1 Analyzing the application
For optimized management of the static and semi-static contents (or semi-dynamic,
depending on how we understand the behavior of the JSPs), an analysis of the application is
recommended. It is important to differentiate contents because the resources available from
the system are different for completely static contents, like HTML files, than those for JSPs or
servlets. Some resources will be provided by the IBM HTTP Server, others by WebSphere
Application Server for z/OS and OS/390, or WebSphere Application Server Enterprise V5.
However, for the z/OS platform, we had to restrict our tests with the application server to
WebSphere Application Server for z/OS and OS/390.

Static contents
You need to know how many static contents there are in your application, and their paths, to
have a picture of the configuration changes you will have to make. There are several ways to
do this if you can’t ask the developers of the application; the most common three are (in order
of difficulty):

� Unpack the application into one of the directories of your PC and then go to Start ->
Search -> Files or Folders, and search for the HTML, GIF and JPG files under the
directory where the Java Pet Store Demo has been unpacked.

� Open the .ear file containing the application with a compression tool. Inside the .ear file
there are the .war files with the Web applications; open them again with the compression
tool and order them by type.

� The last possibility is to start the Application Assembly Tool (AAT) and import the
applicationName.ear file to be deployed (if it isn’t already). To view the application
contents, it is necessary to expand the tree and select Application name -> Web Apps ->
Web Tier; in the Files tab, click Filter, then add the extensions of the files you want to look
at (Figure 5-1 on page 137). In this way, we get a list (Figure 5-2 on page 137) with all the
static contents for this Web application and the relative paths under the
applicationName.war file.

136 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 5-1 Filtering static contents with AAT

Of course, this list will not give you any idea of the percentage of static content you have in
your application, but you will have the URIs to create the necessary directives for the HTTP
Server or to find your way through the application paths, if you don’t have the developers at
hand.

Figure 5-2 Static content filtered list

Dynamic content
Enabling caching for the dynamic contents is not as straight orward as for the static. First you
have to get a good understanding of the application architecture and workflow for the servlets
and JSPs.

What we found is that most of the screens in our sample application are built using several
JSPs. There are a couple of xml files used to bind the URIs to the screens and the screens to
the JSPs taking part in each of them. The file for binding of the URIs to the screen is
requestmappings.xml, and the one defining which JSPs build each screen is
screendefinitions.xml. This is quite normal in the JSP tag standard.

Chapter 5. Implementing static Web content acceleration scenarios 137

After this we had to check the JSPs, one by one, to know if we needed to code cache
variables for any of the JSPs. This can be very time consuming for large applications with
many JSPs. There were a number of JSPs that had attributes depending on the language
used for the application (English or Japanese were available). Since we were just working
with the English version, we could simplify the coding. Other JSPs needed parameters
(Example 5-2 on page 141) that had to be coded to avoid unexpected effects, such as
selecting a product and getting a different one on your screen.

For further information about dynacache parameters, see Assembling Java™ 2 Platform,
Enterprise Edition (J2EE™) Applications, SA22-7836.

5.1.2 Assembling the application
No special assembling is necessary for this topic. The only recommendation would be to keep
all static contents under one path, if possible, to reduce the number of pass directives (if using
the proxy approach), and the search time for the contents.

5.1.3 Deploying the application
There are some recommended practices and tasks for deploying the static and semi-static
contents to the infrastructure we are using.

Generally, there are no changes to the normal deployment process. What we have done to
get better management of our contents is to give the IBM HTTP Servers we were using
access to the contents that should be served by them. Therefore, we can differentiate, once
more, between the integrated and the cross-platform scenario.

Integrated scenario
This is the easiest way from the deployment point of view. Since all the application
components remain in the same platform (z/OS environment for us), there are not many
changes in the configuration (see 5.2.2, “Configuration 1: Local IBM HTTP Server for static
file handling” on page 142, and 5.2.3, “Configuration 2: Local IBM HTTP Server with
WebSphere HTTP Plug-in” on page 144), and few changes also for the deployment process.

When we deploy an application to the WebSphere Application Server for z/OS and OS/390, it
resides entirely in the HFS structure, including the .ear file used for that deployment. We can
decide whether the static contents are managed by the Web container or not. This decision
depends on the infrastructure we are using. If somebody else, such as an HTTP server or the
WebSphere Edge Server, is taking care of these contents, we can disable them; if not, then of
course we cannot.

Disabling file serving in the Web container
To disable static contents managing in the Web container, you have to look for the file
ibm-web-ext.xmi in the .war file of the application (which is also in the .ear file) and change
the parameter fileServingEnable to “false”. The usual path is:
<install-path>/applicationname/webapplication.war/WEB-INF/ibm-web-ext.xmi.

To activate this change, you have to recycle the J2EE server.

Note: If static content serving is disabled in the Web container, be sure that these files will
be served by the Web server. If you use this, neither image nor HTML files will be sent from
the Web container to the client.

138 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

This can also be done during the process of creating the .ear file. In WebSphere Studio
Application Developer V4 (WSAD) go to the project where the application is,
project/webapplication/web-inf/ibm-web-ext.xmi.

If you try to execute the application using the port given to the Transport Handler (TH), you
will notice that no images are sent to your browser, but if you try to execute the application
server through the IBM HTTP Server configured as in 5.2.2, “Configuration 1: Local IBM
HTTP Server for static file handling” on page 142, you will see that the application’s visual
elements are composed.

Cross-platform scenario
These considerations about handling static contents in the Web container are also applicable
in this one scenario.

The same parameter with the same function is used in WebSphere Application Server
Enterprise V5 for distributed platforms, and the way to activate and deactivate it is the same
as in the previous section.

Anyway, if you choose a cross-platform model with the IBM HTTP Server in a platform other
than z/OS, you have to do some additional steps after the deployment to WebSphere
Application Server for z/OS and OS/390 has been done.

You have to move all the static contents to the platform where the IBM HTTP Server is
working. This is considered here as part of the deployment process, though we don’t use any
of the specific tools for that task, because the application will not be fully working in the model
we have chosen till these steps are done.

To implement this, after the deployment of the .ear file, we had to follow the path till we got
into the applications (/petstore.war) directory. Then we had to move or copy this folder and all
its contents to the place where the IBM HTTP Server is, and finally configure the Web server
to tell it where the static contents were. For this configuration, see 5.2.4, “Configuration 3:
Remote reverse proxy caching server” on page 146.

5.1.4 Testing the application
To test the functionality of the application and the infrastructure supporting it, we usually
performed three tests.

� The first one was to navigate across the application manually, checking all the screens
and transactions.

� For the second one we used the IBM WebSphere Studio Workload Simulator. With this
tool we recorded some scripts navigating through the application and executed them over
a long time period.

� For the last test, we used the same scripts but executed them with a big workload, with
several users and repetitions.

We show a portion of a script as example (Example 5-1) of the tests we performed. Of
course, the tool allows options such as setting the think time, selecting the number of clients,
or the use of dynamic cookies. See WebSphere Studio Workload Simulator Programming
Reference, SC31-6308 and WebSphere Studio Workload Simulator User’s Guide,
SC31-6307 for further information about the options and possibilities of this tool.

Example 5-1 Part of a script used to test the application

//HTTPServer Plugin on z/OS
startpage(1);

Chapter 5. Implementing static Web content acceleration scenarios 139

thinktime(0);
getpage("wtsc59.itso.ibm.com:8085","/estore/control/main",1,close,0,start,"",
"Accept: */*",
"Accept-Language: en-us",
"Accept-Encoding: gzip, deflate",
"User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)",
"Host: wtsc59.itso.ibm.com:8085",
"Connection: Keep-Alive",
"Authorization: Basic ZGllZ286ZGllZ28=",
"Cookie: JSESSIONID=0000aOMziJ9OBZqgu3Wapy5RtU4:BBOHYB.BBOHYBA1");

get("wtsc59.itso.ibm.com:8085","/estore/images/help.gif",1,close,130,start,"",
"Accept: */*",
"Referer: http://wtsc59.itso.ibm.com:8085/estore/control/main",
"Accept-Language: en-us",
"Accept-Encoding: gzip, deflate",
"If-Modified-Since: Thu, 13 Mar 2003 20:52:51 GMT",
"User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)",
"Host: wtsc59.itso.ibm.com:8085",
"Connection: Keep-Alive",
"Authorization: Basic ZGllZ286ZGllZ28=",
"Cookie: JSESSIONID=0000aOMziJ9OBZqgu3Wapy5RtU4:BBOHYB.BBOHYBA1");

5.2 Infrastructure implementation
To manage the static contents of an application and serve them out of the Web container of
the WebSphere Application Server for z/OS and OS/390, you can benefit from the IBM HTTP
Server (either in z/OS or distributed). We tested two possibilities (see Chapter 4, “Static Web
component optimization” on page 101): Use the HTTP server as a reverse proxy to forward
requests to the HTTP Transport Handler (TH), and use the IBM HTTP Server with the
WebSphere HTTP Plug-in.

We always used the same scenario with different configurations: An IBM HTTP Server
processing and sending requests to our sample application deployed in the WebSphere
Application Server for z/OS and OS/390.

Taking this into account, we have four configurations for our infrastructure as conceptually
explained in Chapter 4, “Static Web component optimization” on page 101:

� 5.2.2, “Configuration 1: Local IBM HTTP Server for static file handling” on page 142

� 5.2.3, “Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in” on
page 144

� 5.2.4, “Configuration 3: Remote reverse proxy caching server” on page 146

� 5.2.5, “Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in” on
page 149

All were set up and used as a means for offloading some work from the Web container.

Tip: Even if all our scenarios are based on WebSphere HTTP Plug-in architecture, be
aware that not implementing the Plug-in will give the best performance for your application.
Then you will lose functionality that is delivered by the Plug-in.

140 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

5.2.1 Common elements of the configurations

IBM HTTP Server for z/OS
The HTTP Server we used on the z/OS platform for our test was installed and configured
almost by default except for the necessary directives needed for the different functionalities
we wanted to get. As a rule, we made as few changes as possible to the original
configuration.

IBM HTTP Server for distributed paltforms
The same considerations as for the previous paragraph apply to the IBM HTTP Server for
distributed paltforms.

WebSphere Application Server for z/OS and OS/390
The application server we used was accessed using the Transport Handler listening on port
8081. All the accesses from the different IBM HTTP Servers we described till now were using
this port because the protocol used by the HTTP servers is HTTP in both modes, proxy and
Plug-in (we used the WebSphere HTTP Plug-in for z/OS and for distributed platforms).

This also gave us the opportunity to test the application server by sending requests to the
Transport Handler directly from our browsers.

Dynamic fragment caching
We used dynamic fragment caching functions provided by the application server. These
functions can be used independently of the HTTP Server and are quite useful when the
application has many servlets and JSPs, as is the case with the sample application we used.

In real-life applications, the complexity and amount of the JSPs could be greater than the
examples we are showing here. A deeper analysis of each JSP and servlet of the application
should be necessary to get better dynamic caching policies. For example, some of the JSPs
in this application need a parameter as an argument when they are invoked; those JSPs need
special coding in the servletcache.xml file (see Example 5-2 on page 141). In this sample file
there are two JSPs with parameters coded, productcatergory.jsp and product.jsp.

For more details about parameters, see Assembling Java™ 2 Platform, Enterprise Edition
(J2EE™) Applications, SA22-7836.

Example 5-2 dynacache.xml and servletcache.xml files for the sample application

dynacache.xml:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cacheUnit SYSTEM "dynacache.dtd">

<cacheUnit>
 <cache size="8000" priority="1" />
</cacheUnit>

servletcache.xml:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE servletCache SYSTEM "servletcache.dtd">

<servletCache>
 <servlet>
 <path uri="/estore/index.jsp" />
 </servlet>

Chapter 5. Implementing static Web content acceleration scenarios 141

 <servlet>
 <path uri="/estore/petfooter.jsp" />
 </servlet>
 <servlet>
 <path uri="/estore/topindex.jsp" />
 </servlet>
 <servlet>
 <path uri="/estore/signin.jsp" />
 </servlet>
 <servlet>
 <path uri="/estore/signinsuccess.jsp" />
 </servlet>

 <servlet>
 <path uri="/estore/signoff.jsp" />
 </servlet>

<servlet>
 <path uri="/estore/productcategory.jsp" />
 <request>
 <parameter id=”category_id”>
 </request>
 </servlet>

 <servlet>
 <path uri="/estore/product.jsp" />
 <request>
 <parameter id=”product_id”>
 </request>
 </servlet>

</servletCache>

To activate the dynamic caching, you have to create the files in Example 5-2 and set a couple
of properties in the jvm.properties file for the corresponding J2EE server; see Example 5-3.

Example 5-3 dynacaching properties in the jvm.properties file.

com.ibm.ws390.wc.config.dynxmlfilename=/WebSphere390/CB390/
 controlinfo/envfile/OPPLEX/BBOHYBA1/dynacache.xml

com.ibm.ws390.wc.config.dynsrvxmlfilename=/WebSphere390/CB390/
 controlinfo/envfile/OPPLEX/BBOHYBA1/servletcache.xml

Note that the properties listed here are each contained on a single line in the
jvm.properties file.

For further information about how to activate and configure dynamic caching in WebSphere
Application Server for z/OS and OS/390, seeAssembling Java™ 2 Platform, Enterprise
Edition (J2EE™) Applications, SA22-7836.

5.2.2 Configuration 1: Local IBM HTTP Server for static file handling
The first configuration we considered to manage the static contents of the sample application
was to use the IBM HTTP Server for z/OS configured as a proxy (see Figure 5-3). With this
infrastructure we gain the advantages of caching the static contents and avoiding sending
unnecessary requests to the Web container, since these contents are managed directly by
the IBM HTTP Server. We use the Fast Response Cache Accelerator (FRCA) and, as

142 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

described in “Integrated scenario” on page 138, you can even disable the Web container
static file serving capabilities.

Figure 5-3 Configuration 1. Using the IBM HTTP Server for z/OS and OS/390 as a proxy

The directives used to get this behavior from the IBM HTTP Server for z/OS are shown in
Example 5-4 on page 143.

Example 5-4 IBM HTTP Server httpd.conf file directives; caching proxy configuration

Basic directives
Port 8085

Pass rules
Pass /estore/*.html /WebSphere390/CB390/apps/BBOHYB/petstore/petstore.war/*
Pass /estore/images/*.gif /WebSphere390/CB390/apps/BBOHYB/petstore/petstore.war/*
Pass /estore/images/*.jpg /WebSphere390/CB390/apps/BBOHYB/petstore/petstore.war/*

Proxy directives
Proxy /estore/* http://wtsc59.itso.ibm.com:8081/estore/*

EnableFRCA directive
EnableFRCA on

Web
Server
Proxy

FRCA

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

Entity
beanEntity

bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP Transport
Handler
 port 8081

Control
Region

HTTP(S)
port 8085

HTTP(S)

application.ear

application.war

html, gif, jpg, txt...

servlet, JS
P

z/OS

Chapter 5. Implementing static Web content acceleration scenarios 143

To get better performance from the ensemble (IBM HTTP Server + WebSphere Application
Server), we enabled the TCP/IP caching possibilities by setting the EnableFRCA to on. To get
caching of the static elements, the Pass directives are necessary.

Of course, it is also recommended to review logging and caching policies. We activated and
deactivated them as needed (for information about logging policies in the IBM HTTP Server
for z/OS and OS/390, see HTTP Server Planning, Installing and Using, SC31-8690). You can
get useful information about the caching behavior from those logs.

5.2.3 Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in
The IBM HTTP Server Plug-in is the component responsible for dispatching the requests to
available J2EE servers. In our sandbox we used the WebSphere HTTP Plug-in for z/OS. To
use this plug-in you have to apply PTF UQ74160 for APAR PQ68250, service level W401500.
For a complete description and further documentation, see the documentation for the APAR.

Figure 5-4 Configuration 2. Using the IBM HTTP Server for z/OS and OS/390 Plug-in

To realize the configuration of the WebSphere HTTP Plug-in for z/OS, there are some
directives for using the plug-in (see Example 5-5).

Example 5-5 IBM HTTP Server httpd.conf directives

===========================
*** WAS directives ***
===========================

Web
Server

FRCA

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

Entity
beanEntity

bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP Transport
Handler
 port 8081

Control
Region

HTTP(S)
port 8085

HTTP(S)

application.ear

application.war

html, gif, jpg, txt...

servlet, JS
P

P
lu

g-
in

z/OS

144 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/ihs390WASPlugin_http.so:init_exit
/web/hyb/plugin-cfg.xml
ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/ihs390WASPlugin_http.so:term_exit

service /estore/*
/usr/lpp/WebSphere/WebServerPlugIn/bin/ihs390WASPlugin_http.so:service_exit

Note that the directives listed here are each contained on a single line in the
httpd.conf file.

In addition to the directives needed to activate the plug-in, it must be configured to route
requests to the correct J2EE servers where we want to dispatch the work. To do this we had
to look for the plug-in.xml file template and make the necessary changes. This template
should be in the /usr/lpp/WebSphere/WebServerPlugIn/bin directory (for further information,
see APAR PQ68250).

Our configuration xml file is shown in Example 5-6.

Example 5-6 WebSphere HTTP Plug-in for z/OS configuration file

<Config>
 <!-- The LogLevel controls the amount of information that gets written to
 the plugin log file. Possible values are Error, Warn, and Trace. -->
 <Log Name="/web/hyb/logs/plugin.trace" LogLevel="Trace"/>

 <!-- Server groups provide a mechanism of grouping servers together. -->
 <ServerGroup Name="WTSC59">
 <Server CloneID="BBOHYBC.BBOHYBA1" Name="BBOHYBA1">
 <Transport Hostname="9.12.6.38" Port="8081" Protocol="http"/>
 </Server>
 </ServerGroup>

 <!-- Virtual host groups provide a mechanism of grouping virtual hosts together. -->
 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="wtsc59.itso.ibm.com:8081"/>

<VirtualHost Name="wtsc59:8081"/>
 </VirtualHostGroup>

 <!-- URI groups provide a mechanism of grouping URIs together. Only
 the context root of a web application needs to be specified unless
 you want to restrict the request URIs that get passed to the application
 server. -->

 <UriGroup Name="default_host_URIs">

 <Uri Name="/estore/*"/>

 </UriGroup>

 <!-- A route ties together each of the above components. -->
 <Route ServerGroup="WTSC59" UriGroup="default_host_URIs"
VirtualHostGroup="default_host"/>
</Config>

In the <Server CloneID> statement we point to the physical server instances, where the
application that we want to send requests to is contained.

Chapter 5. Implementing static Web content acceleration scenarios 145

The <Transport> statements contain the IP address and port of the J2EE server where the
application we want to execute is. The port is the one specified by the environment variable
BBOC_HTTP_PORT of the J2EE server, that is, the Transport Handler port.

The virtual host definitions set in the webcontainer.conf file of our J2EE server are also set in
the <VirtualHost> statements.

The <UriGroup> identifies the part of the URI that will be routed through the plug-in to the
application server. We just coded the one used for our test application, but others could be
added.

And finally, the <Route> sentence associates the server instances in the ServerCloneID
statements with the URIs reflected in the <UriGroup>, so that the requests are routed where
we want them.

If you have been using the WebSphere HTTP Plug-in for distributed platforms and want to
use it for z/OS, you can easily use the same xml configuration file. There are only minor
changes from one file to another. See 5.2.5, “Configuration 4: Remote IBM HTTP Server with
WebSphere HTTP Plug-in” on page 149.

Example 5-7 Using FRCA with the WebSphere HTTP Plug-in

Pass /estore/*.html /WebSphere390/CB390/apps/BBOHYB/petstore/petstore.war/*
Pass /estore/*.gif /WebSphere390/CB390/apps/BBOHYB/petstore/petstore.war/*
Pass /estore/*.jpg /WebSphere390/CB390/apps/BBOHYB/petstore/petstore.war/*

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/ihs390WASPlugin_http.so:init_exit
 /web/hyb/plugin-cfg.xml
ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/ihs390WASPlugin_http.so:term_exit

service /* /usr/lpp/WebSphere/WebServerPlugIn/bin/ihs390WASPlugin_http.so:service_exit

EnableFRCA on

Note that the directives listed here are each contained on a single line in the httpd.conf
file.

There is a way to use the benefits of FRCA together with the WebSphere HTTP Plug-in on
z/OS. To use it you have to set the EnableFRCA directive to “on” and add pass directives
before the ServerInit and service rules (see Example 5-7).

5.2.4 Configuration 3: Remote reverse proxy caching server
With this configuration we wanted to get the same behavior and functionalities as with the
IBM HTTP Server for z/OS. We still want to get all static content managed by the HTTP
Server and relieve the application server of this task.

We can choose between a forwarding proxy and a reverse proxy. We get the most
advantages, for our purpose, from the reverse proxy (for a discussion, see 4.5, “Configuration
3: Remote reverse proxy caching server” on page 122).

146 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 5-5 Configuration 3: IBM HTTP Server as a proxy on W2K platform and WebSphere Application
Server for z/OS and OS/390

We used different versions of the IBM HTTP Server for Windows; for 1.3.x versions there are
no differences in the configuration files when using the necessary directives to get proxy
functions; for 2.0.x versions there are changes in the configuration directives for proxying and
within the modules used for caching (see 4.5, “Configuration 3: Remote reverse proxy
caching server” on page 122).

For a direct proxy in 1.3.x versions, the httpd.conf file needs the directives shown in
Example 5-8.

Example 5-8 httpd.conf directives to get a forwarding proxy in IBM HTTP Server 1.3.x versions

LoadModule proxy_module modules/ApacheModuleProxy.dll

AfpaEnable
AfpaCache on
AfpaLogFile "C:/IBM HTTP Server/logs/afpalog" V-ECLF

ProxyRequests On

Note: The proxy configurations shown here are basic examples showing the functionality.
You will need further directives to make your environment more secure and reliable. See
the product documentation for further information.

Web
Server
Proxy

Proxy
Cache

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

Entity
beanEntity

bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP Transport
Handler
 port 8081

Control
Region

HTTP(S)
port 8085

HTTP(S)

application.ear

application.war

Windows
2000 z/OS

application.war

servlet, JSP

html, gif, jpg, txt...

Chapter 5. Implementing static Web content acceleration scenarios 147

<Directory proxy:*>
Order deny,allow
Allow from all
</Directory>

NOTE: Afpa directives are not required to get the proxy function, but don’t forget our aim
is to get the fastest way for static content to be served.

And to get a reverse proxy you just have to add ProxyPass directives with the URIs for your
applications after the proxy definitions. Our case is shown in Example 5-9.

Example 5-9 ProxyPass for our example application

ProxyPass /estore/control/ http://wtsc59.itso.ibm.com:8081/estore/control/

For IBM HTTP Server, though the concept is the same, there are some changes for the proxy
directives, as shown in Example 5-10.

Example 5-10 httpd.conf directives to get a forwarding proxy in IBM HTTP Server 2.0.x versions

LoadModule proxy_module modules/mod_proxy.so
LoadModule ibm_afpa_module modules/mod_afpa_cache.so

<IfModule mod_afpa_cache.c>
AfpaEnable
AfpaCache on
AfpaPort 80
AfpaLogFile "C:/Program Files/IBM HTTP Server 2.0/logs/afpalog" V-ECLF
</IfModule>

<IfModule mod_proxy.c>
ProxyRequests On

<Proxy *>
 Order deny,allow
 Allow from all
</Proxy>
</IfModule>

In the documentation for IBM HTTP Server 2.0.x, it is stated that the caching functions have
been split and are not present in mod_proxy. These functions were set in mod_cache. This
means that we have to pay special attention to configure caching because the IBM HTTP
Server 2.0.x proxy doesn’t do that job.

To get a reverse proxy, you just have to add ProxyPass directives for your applications, as
shown in Example 5-9.

To avoid sending static requests to the Web container, we extracted the .war file from the .ear
file and copied it into the htdocs directory for the HTTP Server so that all content was locally
available (see Figure 5-5 on page 147).

Another solution is to share all static content from the system where it is by using NFS or any
other kind of network sharing.

Tip: We also deactivated static content management in the Web container, as explained in
“Integrated scenario” on page 138.

148 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

5.2.5 Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in
Support for Web server plug-ins was introduced in WebSphere Application Server for z/OS
and OS/390 with Fix level 4 (W401400). With this configuration we used the WebSphere
HTTP Plug-in on distributed platforms to dispatch requests to WebSphere Application Server
for z/OS and OS/390. In Figure 5-6 we show how it was set up.

Figure 5-6 Configuration 4: IBM HTTP Server as with WebSphere HTTP Plug-in on W2K platform and
WebSphere Application Server for z/OS and OS/390

The configuration file, httpd.conf, was modified as shown in Example 5-11.

Example 5-11 IBM HTTP Server httpd.conf file directives. Plug-in configuration.

ServerName tot134.itso.ibm.com

LoadModule expires_module modules/ApacheModuleExpires.dll
LoadModule ibm_app_server_http_module
C:/WebSphere/AppServer/bin/mod_ibm_app_server_http.dll

Port 80

WebSpherePluginConfig C:\WebSphere\AppServer\config\plugin-cfg.xml

Web
Server

Plug-in

Application
Server

Servlet

Web
container

JSP file

Session
bean

Entity
bean

Entity
beanEntity

bean

EJB
container

dy
na

ca
ch

e

Server Region

HTTP Transport
Handler
 port 8081

Control
Region

HTTP(S)
port 80

HTTP(S
)

application.ear

application.war

Windows 2000 z/OS

application.war

servlet, JSP

html, gif, jpg, txt...

plugin-cfg.xml

Chapter 5. Implementing static Web content acceleration scenarios 149

With these directives, the plug-in is initialized when the Web server starts. We also have to
configure the plug-in; for this task we used the same plugin-cfg.xml file shown in Example 5-6
on page 145, modified to specify a new virtual host for the IBM HTTP Server for Windows.
This virtual host must be defined in the webcontainer.conf file of the corresponding J2EE
server, shown in Example 5-12.

Example 5-12 WebSphere HTTP Plug-in for the Windows configuration file

<Config>
 <!-- The LogLevel controls the amount of information that gets written to
 the plugin log file. Possible values are Error, Warn, and Trace. -->
 <Log Name="c:\WebSphere\AppServer\logs\plugin.trace" LogLevel="Trace"/>

 <!-- Server groups provide a mechanism of grouping servers together. -->
 <ServerGroup Name="WTSC59">
 <Server CloneID="BBOHYBC.BBOHYBA1" Name="BBOHYBA1">
 <Transport Hostname="9.12.6.38" Port="8081" Protocol="http"/>
 </Server>
 </ServerGroup>

 <!-- Virtual host groups provide a mechanism of grouping virtual hosts together. -->
 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="tot134.itso.ibm.com:80"/>
 </VirtualHostGroup>

 <!-- URI groups provide a mechanism of grouping URIs together. Only
 the context root of a web application needs to be specified unless
 you want to restrict the request URIs that get passed to the application
 server. -->

 <UriGroup Name="default_host_URIs">

 <Uri Name="/estore/control/*"/>

 </UriGroup>

 <!-- A route ties together each of the above components. -->
 <Route ServerGroup="WTSC59" UriGroup="default_host_URIs"
VirtualHostGroup="default_host"/>
</Config>

As you can see, the only difference between these files is the <VirtualHost> sentence.

In this case, we cannot get the benefits of caching static content, but there are some ways for
it to be offloaded. From a general point of view, you need to remove from the plugin-cfg.xml
file all URIs you don’t want to be forwarded to the application server. This can be a delicate
task because sometimes URIs containing static content cannot be properly separated from
those that invoke dynamic activity.

In our sample application, all images are invoked under /estore/image/imageName.gif. Taking
this into account, the proper policy would be to code all other URIs in the configuration file,
p.e. /estore/control/* so that every request matching that pattern will be sent to the application
server, and any other request, like /estore/images/*, will be discarded by the plug-in and must
be managed by the Web server. In this example, we learn that a clear relative path policy may
make it easier setting up the environment when we have both local and remote requests in
the same application.

150 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

This structure requires all static content to be made available to the IBM HTTP Server by
copying the application .war structure into the Web server box or by sharing it as a Network
File System (NFS).

You can even deactivate static content management in the Web container as described in
“Integrated scenario” on page 138.

Chapter 5. Implementing static Web content acceleration scenarios 151

152 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Chapter 6. Implementing IIOP-based
cross-platform scenarios

This chapter describes how to split one J2EE application into two independent components or
artifacts: one that contains only EJB modules, and one that contains only Web modules—and
how to deploy them to the different platforms.

We use the IBM version (not Sun’s original version) of Java Pet Store Demo Version 1.1.2 as
an example, which is supplied as sample with WebSphere Application Server Advanced
Edition. For more details, refer to the following URL:

http://www-3.ibm.com/software/webservers/appserv/zos_os390/doc/v401/pstore/petstore.html

For development, we use WebSphere Studio Application Developer V4 (WSAD). Initially,
there is one J2EE application project, Java Pet Store Demo. There are also seven EJB
projects and one Web project in WSAD workspace. All of these EJB and Web modules are
included in Java Pet Store Demo J2EE application project (Table 6-1lists each EJB setting on
WSAD).

Table 6-1 Each EJB Web module setting

6

EJB/Web Displayname module jar/war file name

Account TheAccount Customer Component customerEjb.jar

Customer TheCustomer

Order TheOrder

Inventory TheInventory Inventory Component inventoryEjb.jar

Mailer TheMailer Mail Component mailerEjb.jar

ProfileMgr TheProfileMgr Personalization
Component

personalizationEjb.jar

ShoppingClientController TheShoppingClientController Petstore EJB
Component

petstoreEjb.jar

Catalog TheCatalog ShoppingCart
Component

shoppingcartEjb.jar

© Copyright IBM Corp. 2003. All rights reserved. 153

We use WebSphere Application Server V4.01 for z/OS and OS/390 for the EJB-tier, and
WebSphere Application Server Advanced Edition (WebSphere AE) for the Web-tier. We use
DB2 Universal Database for OS/390 and z/OS (DB2 for OS/390 and z/OS) as DBMS.

6.1 Application development and deployment
In this section, we describe how to split one J2EE application into two independent
components. We use Java Pet Store Demo Version 1.1.2, but the contents described here
would be applicable to other real applications.

If you want to follow the steps we performed with our sample application, then also follow the
steps descibed in 6.2, “Importing the Java Pet Store Demo application into WebSphere Studio
Application Developer V4” on page 167.

6.1.1 Analyzing the application
In the J2EE design, applications are split on the IIOP boundary between Web-tier and
EJB-tier. Therefore, it should be easy to split one J2EE application into two independent
parts: one that contains only EJB modules, and one that contains only Web modules.

To do this, however, there are some considerations, as follows:

� Accessing EIS from Web modules

� Accessing EJB from Web modules

� Calling EJB modules’ classes in Web modules

� Calling Web modules’ classes in EJB modules

Each balloon in Figure 6-1 on page 155 shows the point to consider in splitting a J2EE
application.

ShoppingCart TheCart SignOn Component signonEjb.jar

SignOn TheSignOn

petstore WebTier WebTier petstore.war

EJB/Web Displayname module jar/war file name

154 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 6-1 Possible split points for a J2EE application

Access to EIS from Web modules
Java Pet Store Demo Version 1.1.2 does not strictly follow the MVC design pattern because it
incorporates database access into a servlet. Therefore, you need to set up the application
environment in order to access the database from the J2EE server where the Web module
runs. In the case of DB2 for OS/390 and z/OS, you need to set up Distributed Relational Data
Architecture (DRDA) to connect to DB2 for OS/390 and z/OS from a Web module, and to
define to the J2EE resource on the J2EE server where the Web module runs.

The following authorities for the J2EE resource definition are required:

� Authority to perform SELECT from SYSIBM.SYSTABLES in order to confirm whether all
required tables are complete in the Populate servlet.

� Authority to perform SELECT from two application tables, PRODUCT and ITEM.

The following SQL is an example used in Java Pet Store Demo:

SELECT PRODUCTID, NAME, DESCN FROM PRODUCT WHERE CATEGORY = 'FISH' ORDER BY NAME FOR
FETCH ONLY

Since the High Level Qualifier (HLQ) is not specified in the program of Java Pet Store Demo,
you must specify the HLQ of the tables used in Java Pet Store Demo. You can specify the
HLQ in Client Configuration Assistant of DB2 Universal Database for Windows by taking the
steps shown in “Setting up the DRDA environment on Windows” on page 163.

Of course you can modify the source code of Java Pet Store Demo in order to add the HLQ to
the table name. In this case, you should modify only one method, getTableName() in

J2EE Server EIS

Web

class1

EJB

class2

access to EISaccess to EJB
by IIOP

local call to
classes

J2EE ServerJ2EE Server EIS

EJB

class2

class1

Web

class1

class2

access to EISaccess to EJB
by IIOP

Splitting
Application

Chapter 6. Implementing IIOP-based cross-platform scenarios 155

com/sun/j2ee/blueprints/shoppingcart/util/DatabaseNames.java class. Just add your
HLQ before the returned variable.

Specify the user ID and password that are used by the database connection. You can choose
between three methods to specify them. We chose to specify them with DB2 connect in this
chapter. For more details about the methods, refer to 3.2.3, “Security” on page 78.

See 6.1.3, “Deploying the application into multiple tiers” on page 159 about setting DRDA.

Accessing EJB from Web modules
You need to consider the following:

� In order to get the Interoperable Object Reference (IOR) of the EJBs’ home objects, the
EJB clients (that is, Web modules) need to get access to the JNDI naming service.
Because EJB modules and Web modules are separated physically, Web modules must
get access to the remote naming service in WebSphere Application Server for z/OS and
OS/390. Therefore, it is necessary to explicitly set property values and pass them to the
InitialContext constructor in order to get access to the remote naming service. Usually you
let these default—you only need them for remote naming service access:

javax.naming.Context.INITIAL_CONTEXT_FACTORY
javax.naming.Context.PROVIDER_URL

� In order to get access to the remote methods of EJBs, Web modules make use of the
EJBs’ stub classes included in the EJB .jar. When the Web container is in a separate
application server from the EJB containers, Web modules cannot use these stub classes
in the EJB .jar file. Therefore, you have to add these stub classes to CLASSPATH of the
Web container, or include them in the Web modules.

For packaging classes, see “Calling EJB modules’ classes in Web modules” on page 158.

In the Pet Store application, modify the following two parts:

� In order to get access to the remote naming service of WebSphere Application Server for
z/OS and OS/390, you need to modify the source code to pass the remote naming
server's URL as an argument to the constructor of the InitialContext, although originally
the constructor doesn't have any arguments.

Look-up for EJB by servlet is performed by only one class,
com/sun/j2ee/blueprints/petstore/util/EJBUtil.java. You need to modify the source
code as shown in Example 6-1.

Example 6-1 Addition of properties as argument for the constructor of InitialContext

String provider_url = "iiop://wtsc59oe.itso.ibm.com:900" ;
String factory_class = "com.ibm.websphere.naming.WsnInitialContextFactory" ;
Properties prop = new Properties() ;
prop.put(javax.naming.Context.PROVIDER_URL, provider_url) ;
prop.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, factory_class) ;
InitialContext initial = new InitialContext(prop) ;

Of course, hard-coding of specific host names reduces the portability of the application.
It's better to get these strings from outside of the application with an environment naming
entry as shown in Example 6-2.

Example 6-2 Use of an environmental context

InitialContext _init = new InitialContext() ;
String provider_url = (String)_init.lookup("java:comp/env/string/url390") ;
String factory_class = (String)_init.lookup("java:comp/env/string/factory390") ;

156 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

In this case, you need to set the values string/url390 and string/factory390 in the web.xml
editor at J2EE Perspective in WSAD as shown in Figure 6-2.

Figure 6-2 The web.xml editor

Or simply add the entries to web.xml as shown in Example 6-3.

Example 6-3 Addition of new entries to web.xml

<env-entry>
 <env-entry-name>string/url390</env-entry-name>
 <env-entry-value>iiop://wtsc59oe.itso.ibm.com:900</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>
<env-entry>
 <env-entry-name>string/factory390</env-entry-name>
 <env-entry-value>com.ibm.websphere.naming.WsnInitialContextFactory</env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>

� As described in the J2EE specification, it is recommended to use the java:comp/env
context for JNDI lookup. However, if you use WebSphere AE Version 4.0.1, you may need
to modify the source code so that the Web module doesn’t use the java:comp/env context
because WebSphere AE Version 4.0.1 cannot process this context for remote JNDI
service of WebSphere Application Server V4.01 for z/OS and OS/390.

In this case, the class you need to modify is:
com/sun/j2ee/blueprints/petstore/util/EJBUtil.java

If the JNDI name specified in SMEUI may change, you should specify from outside the
application which environment naming context for the JNDI name should be used by JNDI
lookup. For example, we modified EJBUtil.java as follows:

Example 6-4 Modification of EJBUtil.java

//Object objref = init.lookup(JNDINames.CUSTOMER_EJBHOME); // original code
String homename = (String)_init.lookup("java:comp/env/string/Customer") ;
Object objref = init.lookup(homename) ;

We then added the following entry to web.xml.

Example 6-5 Addition of web.xml

<env-entry>
<env-entry-name>string/Customer</env-entry-name>
<env-entry-value>OPPLEX/BBOHYB/petstore/Customer
Component/TheCustomer/CustomerHome</env-entry-value>
<env-entry-type>java.lang.String</env-entry-type>

</env-entry>

Chapter 6. Implementing IIOP-based cross-platform scenarios 157

Calling EJB modules’ classes in Web modules
Because EJB modules and Web modules are split, Web modules cannot make use of the
classes in EJB .jars. For example, Web modules use EJBs’ stub classes in order to call
remote methods of EJBs, so you need to pack these stub classes into Web modules since
they are only included in EJB jars.

In the IBM version of Java Pet Store Demo, the following class in the shoppingcartEjb EJB .jar
file is also used by Web modules:

com/ibm/j2ee/blueprints/shoppingcart/catalog/dao/CatalogDAOIDBImpl.java

These classes, stub classes, and the CatalogDAOIDBImpl.java class, are contained in each
EJB .jar file. Therefore, the easiest way to include these classes in Web modules is to use the
EJB .jar file without change. The following procedure shows how to include EJB .jar files in
Web modules with WSAD:

1. If there are EJB jar files in the petstore/webApplication/WEB-INF/lib folder on Web
Perspective, delete them by right-clicking them and selecting Delete from the pop-up
menu.

2. Move to J2EE Perspective and open J2EE View.

3. Right-click Petstore EJB Component in the EJB Modules folder, and select Export EJB
Jar... from pop-up menu.

4. Confirm that petstoreEjb is chosen in the What resources... selection box.

5. Specify the directory and filename to export, and press Finish. The petstoreEjb.jar file is
exported to the directory.

6. Export all other EJB components in the same way.

7. Move to Web Perspective and open Navigator.

8. Click the webApplication/WEB-INF/lib folder in the petstore project, and select File ->
Import.

9. Select File system and press Next.

10.Specify the same directory name as in 5.

11.Select all EJB .jar files displayed in the right pane.

12.Confirm that the petstore/webApplication/WEB-INF/lib folder is set in the Folder input
form and press Next.

Calling Web modules’ classes in EJB modules
In almost all cases, EJB modules don’t use any classes of Web modules.

In Java Pet Store Demo, there is no such case.

6.1.2 Assembling the application
Now we are ready to split Java Pet Store Demo into two independent components capable of
being deployed in separate containers. First, the following procedure shows the way to create
a J2EE project that only contains EJB modules:

1. Move to J2EE Perspective.

2. Right-click the Enterprise Application folder in J2EE View, and select New -> Enterprise
application project.

3. Type petstoreEJBonly in the Enterprise application project name form.

158 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

4. Uncheck all check boxes of Application Client project name, EJB project name, and Web
project name.

5. Press Finish.

6. Confirm that the petstoreEJBonly project is added in the Enterprise Application folder.

7. Right-click the petstoreEJBonly project, and Select Open With -> Application Editor.
Then application.xml is opened.

8. Click the Modules tab in the application.xml editor.

9. Press Add, select customerEjb, and press OK.

10.Do the same for inventoryEjb, mailerEjb, personalizationEjb, petstoreEjb, shoppingcartEjb,
and signonEjb.

11.Press Ctrl+S to save it.

12.Right-click the petstoreEJBonly project in the Enterprise applications folder, and select
Export EAR File...

13.Specify the directory and file name, for example, c:\temp\petstoreEJBonly.ear.

14.Press Finish.

The procedure that creates a J2EE project which only contains Web modules is as follows:

1. Move to J2EE Perspective.

2. Right-click the Enterprise Application folder in J2EE View, and select New -> Enterprise
Application Project.

3. Type petstoreWebonly in the Enterprise application project name form.

4. Uncheck all check boxes of Application Client project name, EJB project name, and Web
project name.

5. Press Finish.

6. Confirm that the petstoreWebonly project is added in the Enterprise Application folder.

7. Right-click the petstoreWebonly project, and select Open With -> Application Editor.
Application.xml is opened.

8. Click the Modules tab in the application.xml editor.

9. Press Add, select petstore and press OK.

10.Press Ctrl+S to save it.

11.-Right-click the petstoreWebonly project in the Enterprise applications folder, and select
Export EAR File...

12.Specify the directory and the file name which you want to name petstoreWebonly
Enterprise Application Archive file, for example, c:\temp\petstoreWebonly.ear.

13.Press Finish.

6.1.3 Deploying the application into multiple tiers
The outline for deploying Java Pet Store Demo into multiple tiers is as follows:

� Deploy the petstoreEJBonly .ear file exported previously into WebSphere Application
Server V4.01 for z/OS and OS/390.

� Set up the DRDA environment on Windows that WebSphere AE runs.

� Deploy the petstoreWebonly .ear file exported previously into WebSphere AE.

Chapter 6. Implementing IIOP-based cross-platform scenarios 159

Deploying the petstoreEJBonly .ear file
The following procedure shows how to deploy the petstoreEJBonly.ear file that is exported in
6.1.2, “Assembling the application” on page 158 into WebSphere Application Server V4.01 for
z/OS and OS/390.

First, you need to use Application Assembly Tool for z/OS and OS/390 (AAT).

Do the following:

1. Start Application Assembly Tool for z/OS and OS/390 (AAT).

2. Right-click the Applications folder and select Import.

3. Press Choose, and specify the directory and name of the petstoreEJBonly.ear file that you
exported in 6.1.2, “Assembling the application” on page 158, for example,
c:\temp\petstoreEJBonly.ear.

4. Press OK to import the petstoreEJBonly.ear file into AAT (see Figure 6-3).

Figure 6-3 Inporting the petstoreEJBonly.ear file into AAT

5. Right-click petstoreEJBonly in the Applications folder, and select Validate.

6. Right-click petstoreEJBonly in the Applications folder, and select Deploy.

7. Right-click petstoreEJBonly in the Applications folder, and select Export.

8. Specify the directory and file name, for example, c:\temp\petstoreEJBonly.ear.

9. Press OK to export it.

Next you need to use System Management End User Interface (SMEUI). As an example, a
conversation name is set to Installing petstoreEJBonly, the server in which
petstoreEJBonly.ear is installed is BBOHYBC, and the J2EE resource definition name on
SMEUI is EstoreDataSource here. We don’t introduce the procedure how to create the J2EE
server here. Refer to WebSphere Application Server for z/OS and OS/390 v4.0.1: Installation
and Customization, GA22-7834 for the procedure.

160 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

1. Start SMEUI on Windows.

2. Right-click the Conversations folder, and select Add.

3. Specify the conversation name, Installing petstoreEJBonly, and click the diskette icon
in the upper left to save it.

The following procedure is for defining a J2EE data source in SMEUI:

1. Expand Conversations -> Installing petstoreEJBonly -> Sysplexes -> your sysplex
name -> J2EE Resources.

2. Right-click the J2EE Resources folder, and select Add.

3. Type EstoreDataSource in the J2EE Resource name input form.

4. Select DB2datasource as J2EE Resource type.

5. Click the diskette icon in the upper left to save it.

6. Expand EstoreDataSource, right-click the J2EE Resource Instances folder under
EstoreDataSource, and select Add.

7. Specify EStoreDataSource_Instance in the Datasource instance name input form.

Figure 6-4 Defining J2EE Resource Instances

Chapter 6. Implementing IIOP-based cross-platform scenarios 161

8. Specify the location name of your DB2 for OS/390 and z/OS in the Location Name input
form.

9. Specify the HLQ of the tables that Java Pet Store Demo uses in the DB2 SQLID input
form.

10.Click the diskette icon in the upper left to save it.

Next, install the petstoreEJBonly .ear file with the following steps:

1. Expand Conversations -> Installing petstoreEJBonly -> Sysplexes -> your sysplex
name -> J2EEServers -> BBOHYB.

2. Right-click BBOHYB, and select Install J2EE Application.

3. Specify the filename you exported from AAT, and press OK (see Figure 6-5).

Figure 6-5 Specifying petstoreEJBonly.ear file exported from AAT

4. Expand petstoreEJBonly -> Customer Component.

5. Select TheAccount under Customer Component, and select the EJB tab on the right
pane.

6. Click Set Default JNDI Path & Name, and remove the package name from the JNDI
Name input form (see Figure 6-6 on page 163).

Note: If you don’t know the configuration of DB2 for OS/390 and z/OS, you can see it in
the z/OS system log after DB2 initialization:

DSNL004I -DB7A DDF START COMPLETE 902
 LOCATION DB7A
 LU USIBMSC.SCPDB7A
 GENERICLU -NONE
 DOMAIN wtsc59oe.itso.ibm.com
 TCPPORT 33700
 RESPORT 33701

You can also query it by using the ./DIS DDF command.

162 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 6-6 Removing the package name from JNDI Name

7. Click the J2EE Resource tab.

8. Select EstoreDataSource added above.

9. Repeat steps 5-8 for all EJBs.

10.Press OK.

11.Right-click Installing petstoreEJBonly in the Conversations folder, and select Validate.

12.Right-click Installing petstoreEJBonly again, and select Commit.

13.Right-click Installing petstoreEJBonly again, and select Complete -> All tasks.

14.Right-click Installing petstoreEJBonly again, and select Activate.

Setting up the DRDA environment on Windows
Following is the procedure to set up DRDA on Windows. We assume that DB2 Connect has
been installed in Windows.

1. Click Start -> Programs -> IBM DB2 -> Client Configuration Assistant.

2. Press Add. The Add Database Wizard window is displayed.

3. Choose Manually configure a connection to a database under the “1. Source” tab, and
press Next.

4. Choose TCP/IP and check The database physically resides on a host or AS/400®
system under the “2. Protocol” tab. Choose Connect directly to the server and press
Next.

5. Fill in the host name and port number of your DB2 for OS/390 and z/OS under the “3.
TCP/IP” tab, and press Next.

6. Fill in the Database name field in the “4. Database” tab and press Next.

7. Check Register this database for ODBC and click As a system data source in the “5.
ODBC” tab, and press Next.

Chapter 6. Implementing IIOP-based cross-platform scenarios 163

8. Click Finish.

Next, the procedure to specify the HLQ of tables that Java Pet Store Demo uses is as follows:

1. Start Client Configuration Assistant.

2. Select the database alias that is used by Java Pet Store Demo, and click Properties.

3. Press Setting on the Database Properties window. If the DB2 Message window appears,
press No.

4. The CLI/ODBC Settings window appears (see Figure 6-7). If you want to specify the user
ID and password that are used by datasource connection here, fill in User ID and
Password.

Figure 6-7 CLI/ODBC Settings

5. Press Advanced.

6. Select the Enterprise tab.

7. Specify the HLQ value in the Value input form (see Figure 6-8 on page 165).

8. Press OK and close the Client Configuration Assistant window.

164 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 6-8 Specifying the HLQ that Java Pet Store Demo uses

Deploying the petstoreWebonly .ear file
The following procedure shows how to deploy the petstoreWebonly .ear file which is exported
in 6.1.2, “Assembling the application” on page 158 into WebSphere Application Server
Advanced Edition V4 for Windows.

First, you need to define the datasource of , as follows:

1. Start WebSphere Administrative Console on Windows.

2. Expand the Resources folder.

3. Right-click the JDBC Providers folder under the Resources folder.

4. Select New.

5. Fill in the Name field with the name; for example, Petstore.

6. Select COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource as Implementation class.

7. Click the Nodes tab.

8. Click Install New. The Install Driver window is displayed.

9. Press Specify Driver. The Specify the Driver Files window is displayed.

10.Press Add Driver, and specify the DB2_INSTALL_PATH\SQLLIB\java\db2java.zip file.

11.Press Set to close the Specify the Driver Files window.

12.Press Install in the Install Driver window.

13.Press OK in JDBC Provider Properties.

Chapter 6. Implementing IIOP-based cross-platform scenarios 165

14.Expand the Petstore under JDBC Providers.

15.Right-click the Data Source folder under Petstore, and select New.

16.Fill in Name, JNDI name, databaseName, user, and password (see Figure 6-9).

17.Press OK.

Figure 6-9 Data Source Properties

Next, you need to deploy the petstoreWebonly .ear file into WebSphere Application Server
Advanced Edition V4, as follows:

1. Expand the Enterprise Applications folder in WebSphere Administrative Console and
right-click it.

2. Select Install Enterprise Application. The Install Enterprise Application Wizard window
is displayed.

3. Choose Install Application(*.ear) and fill in the Path form with the path of
c:\temp\petstoreWebonly.ear exported in 6.1.2, “Assembling the application” on page 158,
and press Next.

4. Press Next four times to skip Mapping Users to Roles, Mapping EJB RunAs Roles to
Users, Binding Enterprise Beans to JNDI Names, and Mapping EJB References to
Enterprise Beans.

5. Click jdbc/EstoreDataSource -> Select Resource in Mapping Resource References to
Resources. The Select Resource window is displayed.

6. Select petstoreDatasource and press OK -> Next.

7. Press Next three times to skip Specifying the Default Datasource for EJB Modules,
Specifying Data Sources for Individual CMP Beans, and Selecting Virtual Hosts for Web
Modules.

8. Press Finish.

166 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

6.2 Importing the Java Pet Store Demo application into
WebSphere Studio Application Developer V4

We now introduce how to import Java Pet Store Demo Version 1.1.2 into WebSphere Studio
Application Developer V4 (WSAD). We strongly recommend that you understand the license
attached in Java Pet Store Demo Version 1.1.2 well and follow it, before any modification or
redistribution of it.

6.2.1 Preparation of files
You need to use the IBM version of Java Pet Store Demo Version 1.1.2. The name of this file
is petstore.ear, and can be acquired from the following directories:

� The installableApps\petstore directory in WebSphere Application Server Advanced
Edition

� The plugins\com.ibm.etools.websphere.runtime\installableApps\petstore directory in
WebSphere Studio Application Developer V4

Copy the petstore.ear file to a working directory, for example, c:\temp.

This file doesn’t include source code. Download the source code of Java Pet Store Demo
from the following URL:

http://java.sun.com/blueprints/code/index.html

From this site, get the zip file jps-1_1_2.zip and extract the code. For this book, we assume
that the files are put in the c:\temp directory, and that the jps-1_1_2.zip is extracted into
c:\temp (see Figure 6-10).

Figure 6-10 Extracting jps-1_1_2.zip into the c:\temp directory

Chapter 6. Implementing IIOP-based cross-platform scenarios 167

6.2.2 Importing petstore.ear into WSAD
The following procedure imports the petstore.ear file into WSAD:

1. Start WSAD.

2. Select File -> Import. The Import window appears.

3. Select EAR file, and press Next.

4. Type c:\temp\petstore.ear in the .ear file input form.

5. Type petstoreEAR in the Enterprises Application project name input form (see
Figure 6-11).

6. Press Finish.

Figure 6-11 Import window

6.2.3 Importing source code into WSAD
The procedure to import the source code in jps-1_1_2.zip is as follows.

1. Move to the Web perspective.

2. Expand customerEjb.

3. Click the ejbModule folder under customerEjb, and select File -> Import. The Import
window appears.

4. Select File system, and press Next.

5. Press Browser and specify the c:\temp\src\components\customer\src directory (see
Figure 6-12 on page 169).

6. Check the com directory under the src directory.

7. Confirm that customerEjb/ejbModule is selected as Folder.

8. Press Finish.

9. Click the ejbModule folder under customerEjb, and select File -> Import. The Import
window appears.

10.Select File system, and press Next.

11.Press Browser and specify the c:\temp\src\components\util\tracer\src directory.

12.Check the com directory under the src directory.

168 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

13.Confirm that customerEjb/ejbModule is selected as Folder.

14.Press Finish.

Figure 6-12 Importing the source directory of Java Pet Store Demo

15.Repeat steps 2-14 for inventoryEjb, mailerEjb, personalizationEjb, shoppingcartEjb,
signonEjb, and petstoreEjb. That is, you need to import the valid source code directory
shown in Table 6-2, and the c:\temp\src\components\util\tracer\src directory into the
ejbModule folder under each EJB project.

Table 6-2 .Petstore source code directories

EJB module Directory including source code

customerEjb c:\temp\src\components\customer\src

inventoryEjb c:\temp\src\components\inventory\src

mailerEjb c:\temp\src\components\mail\src

personalizationEjb c:\temp\src\components\personalization\src

shoppingcartEjb c:\temp\src\components\shoppingcart\src

signonEjb c:\temp\src\components\signon\src

petstoreEjb c\temp\src\petstore\src

Chapter 6. Implementing IIOP-based cross-platform scenarios 169

16.For Web component, import the C:\temp\src\petstore\src and
c:\temp\src\components\util\tracer\src directories into the petstore/source folder. It’s not
necessary to check docroot and the lib directory under the src directory.

17.(Optional) See 6.1.1, “Analyzing the application” on page 154 and 6.1.2, “Assembling the
application” on page 158 for splitting into EJB modules and Web modules.

6.2.4 Testing the application in WebSphere Studio Application Developer V4
The Web module petstore.war, and the EJB module petstoreEjb.jar, contain the exact same
classes as the procedure in 6.2, “Importing the Java Pet Store Demo application into
WebSphere Studio Application Developer V4” on page 167. This fact may affect your testing
in WSAD.

If you follow the above procedure and split Java Pet Store Demo into two EAR projects, you
should have three EAR projects in WSAD, petstore, petstoreWebonly, and petstoreEJBonly.
And you modify the source code of the Web module in order to access a remote (probably
390s) JNDI server. When you now start the petstore project, which includes all modules in the
WSAD test environment, would this Web module be able to access the remote JNDI server?

Of course, if the class you modified is used by the WSAD test environment, the module will be
able to access the remote server. However, the class in petstoreEjb.jar may be used instead
of the class in petstore.war. In that case, the module won’t be able to access the remote
server. By default, the class loader visibility mode is Application, and modules are able to
access any other classes in the same .ear file. Therefore, if the visibility mode is set to
Module, the Web module will be able to access the remote JNDI server. However, in this
case, each EJB module in petstore.ear won’t work well because of the dependencies on each
other.

The following figure shows this situation. Even if yo modify any classes in Web module, the
classes may not be used in petstore.ear because the same classes are included in EJB
module, petstoreEjb.jar, and it may be used instead of modified classes.

Figure 6-13 Java Pet Store Demo imported into WSAD

EJB module
EJB module

EJB module

module J2EE projectsource

EJB module

EJB module

EJB module

Web module

petstore.war

EJB module

petstoreEjb.jar

code

Web module

EJB module

Web module

 petstoreWebonly.ear

 petstore.ear

modify some logic

Which is used?
modified class
 or original class?

170 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

This fact suggests two important consideration points. One is that the same classes must not
be included into two modules. If the same classes are included into two or more modules, the
behavior of the application becomes uncertain when these classes have inconsistency by
partial modification. Another is that it’s important to decide the application’s granularity at the
design phase of the application. Even if the design of J2EE application is divided into Web-tier
and EJB-tier on the concept, it’s not so easy to actually split the existing application physically.

6.2.5 Debugging Java Pet Store Demo
TheJava Pet Store Demo application is a good J2EE reference application, but it’s not good
for debugging because almost all exceptions are replaced with GeneralFailureException or
ServletException. These exceptions tell us only where the exceptions occur.

In Java Pet Store Demo, each module (EJB modules and Web modules) has the
com.sun.j2ee.blueprints.util.tracer.Debug class. If you need more debug information for
running Java Pet Store Demo, set the debuggingOn variable in the debug class to true, as
follows:

public static final boolean debuggingOn = true;

However, this debug class is included in all modules, so you need to confirm which debug
class is used in your WSAD test environment.

6.2.6 Problems encountered while splitting Java Pet Store Demo

This is a record of our experience in splitting Java Pet Store Demo Version 1.1.2. We hope it
can serve as a useful reference.

Hangup of EJB client (lookup failure of EJBHome)
When we ran the EJB client of Java Pet Store Demo in the WebSphere Application Server
Advanced Edition for the first time, the client hung up and displayed nothing.

Investigation showed that the client had stopped during lookup of EJBHome for the
InitialContext object. In the initialization process of InitialContext, there are some GIOP
interactions between WebSphere Application Server V4.01 for z/OS and OS/390 and the
client in order to get the reference of the JNDI server. Then the client sends queries about the
EJBHome object for the JNDI name. In this case, however, the result of a TCP/IP trace
showed that the second GIOP reply message from WebSphere Application Server for z/OS
and OS/390 was inaccurate.

GIOP messages consist of a pair of a request message and the reply message. The reply
message must have the same ID as the request ID in the request message. In this case, the
second GIOP reply message had the same ID as the first request message. Therefore, the
client had to continue waiting for a reply message with the valid ID until time-out.

We found this problem using Ethereal, which is a tool for capturing TCP/IP packets, like
sniffer. The result of a TCP/IP trace showed the following (see Figure 6-14 on page 172):

� The ID of the second reply message was inaccurate.

� There was no exchange on TCP/IP between WebSphere Application Server for z/OS and
OS/390 and the client after that.

Chapter 6. Implementing IIOP-based cross-platform scenarios 171

Figure 6-14 Mismatch of the request ID between the No. 57 and No.58 packets

NamingNotFoundException for EJBHome lookup
After the above trouble was fixed, we got NamingNotFoundException in EJBHome lookup.
We tried to execute this EJB client on WebSphere Application Server Advanced Edition and
WebSphere Application Server Client Version 4, which can be downloaded from
/usr/lpp/WebSphere/bin/J2EEClient_NT.zip on HFS, but the result was the same exception.
Next, we found that the client was executed successfully with the Java Technology Client.

We compared two TCP/IP traces of WebSphere Application Server Advanced Edition and
the Java Technology Client, and found that two backslashes were added before a dot
character in the case of WebSphere Application Server Advanced Edition (see Figure 6-15
on page 173). On the other hand, no backslash was added in the case of the Java Technology
Client (see Figure 6-16 on page 173).

We avoided this by removing dot characters from each JNDI name that was specified in
SMEUI.

Attention: This problem is now addressed by APAR PQ71503. For your reference, we still
document how to debug and solve this kind of problem.

Note: The Java Technology Client used to be available at
http://www6.software.ibm.com/dl/websphere20/zosos390-p. Now it is no longer available as a
download because its function has been added to the code as of PTF version UQ72838.
Apply service level UQ72838 to obtain the Java Technology Client.

172 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 6-15 The case of WebSphere Application Server Advanced Edition

Figure 6-16 The case of the Java Technology Client

6.2.7 Processing a Unicode XML file in WebSphere Application Server
Advanced Edition Version 5

There are some XML files in Java Pet Store Demo that are for the Japanese version. One
XML file uses Unicode as character encoding in order to be written in Japanese. But our
WebSphere Application Server Advanced Edition Version 5 couldn’t process this Unicode

Chapter 6. Implementing IIOP-based cross-platform scenarios 173

XML file. So we had to convert the character encoding from Unicode to Shift_JIS using the
native2ascii tool, as follows:

> ren screendefinitions.xml screendefinitions.xml.bak

> native2ascii -encoding Unicode screendefinitions.xml.bak | native2ascii -encoding
Shift_JIS -reverse > screendefinitions.xml

This XML file works In WebSphere Application Server Advanced Edition Version 4 without
any modification.

6.2.8 Testing the application
You can check the application by manually accessing the WebSphere Application Server
Advanced Edition which is assigned to the Web-tier. Therefore, you can make use of the
methods described in 5.1.4, “Testing the application” on page 139.

Ethereal
If you want to confirm its behavior excepting application logs, you can do so by capturing
TCP/IP packets. You will see the following packets in the TCP/IP trace:

� GIOP packets

� LDAP packets

� Packets connecting to DB2 for OS/390 and z/OS

The following procedure is a brief method for capturing TCP/IP packets with Ethereal.

1. Start Ethereal on Windows.

2. Fill in the bottom input form as follows:

ip.src==hostname || ip.dst==hostname

You need to replace hostname with the hostname that is assigned to the host on which
WebSphere Application Server V4.01 for z/OS and OS/390 runs.

3. Click Capture -> Start.

4. Check all items on the Capture Preferences window (see Figure 6-17 on page 175).

5. If your PC has two or more network interfaces, select the network interface that you want
to sniff from the Interface pulldown.

Note: Ethereal is an open source product and can be downloaded freely from
http://www.ethereal.com/. Refer to the site for details about installation and operation.

174 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Figure 6-17 The Ethereal Capture Preferences window

6. Press OK. TCP/IP packet capturing starts.

7. Trigger the application to trace.

8. Press Stop on the Capture window.

9. The result of capturing is displayed on the Ethereal window.

10.Click the line you want to see.

GIOP parser
In the TCP/IP trace you can find the GIOP datastream. You will need to format this data with a
GIOP parser to interpret it.

The document “Under the hood: IORs, GIOP and IIOP” describes the appropriate techniques
for GIOP parsing. It is available at:

http://www-106.ibm.com/developerworks/webservices/library/ws-underhood/

Chapter 6. Implementing IIOP-based cross-platform scenarios 175

176 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Part 3 Appendixes

Part 3

© Copyright IBM Corp. 2003. All rights reserved. 177

178 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Appendix A. Integrated and multi-platform
scenario sandbox

In this appendix, we describe the hardware, software, and network infrastructure we used to
run our test and deployment scenarios.

Environment used for development and deployment
For development and deployment purposes, we used the following software:

� Base operating system Windows 2000 Workstation with fixpack 3

� WebSphere Studio Application Developer V5

� WebSphere Application Server for z/OS System Administration User Interface V4.01.023

� Application Assembly Tool for WebSphere z/OS V4.00.32

� WebSphere Studio Workload Simulator Client, level 02302

For an overview of the physical layout, the mapping of names and addresses, and how these
workstations are tied into the network, refer to Figure A-1 on page 180.

WebSphere Application Server distributed test environment
At the distributed site, we used the software components listed here:

� Base operating system Windows 2000 Server with fixpack 3

Table A-1 Different software setup

A

Server Usage Database HTTP server

tot127 WebSphere HTTP plug-in N/A IBM HTTP Server V1.3.26

tot134 WebSphere Application
Server Enterprise Edition
V4.0.4

IBM DB2 UDB Version 7.2
with fixpack 7

IBM HTTP Server V1.3.19

tot148 WebSphere Application
Server Enterprise Edition
V5.0.0

IBM DB2 UDB Version 7.2
with fixpack 7

IBM HTTP Server V1.3.26

© Copyright IBM Corp. 2003. All rights reserved. 179

For an overview of the physical layout, the mapping of names and addresses, and how these
servers are tied into the network, refer to Figure A-1 on page 180.

WebSphere on z/OS environment
We used the following software environment on the z/OS side:

� Two LPARs with the z/OS 1.3 base operating system

� WebSphere Application Server V4.01 at build level W401408

� WebSphere Studio Workload Simulator Engine at build level 02280Z

For an overview of the physical layout, the mapping of names and addresses, and how the
mainframe is tied into the network, refer to Figure A-1.

Physical network structure

Figure A-1 Physical network structure

6.2.9 Our testing tools
To generate load to our application and to analyze the impact of changes to the application
and its environment, we used the IBM WebSphere Studio Workload Simulator. In the
following sections, we provide a brief introduction to the Workload Simulator and show the
setup of our test environment. We choose Workload Simulator because it is an easy-to-install,
easy-to-handle, and highly scalable test tool.

9.12.6.xxx

10.1.15.xxx

tot133
9.12.6.142
10.1.15.8

tot140
9.12.6.200
10.1.15.2

tot142
9.12.6.145
10.1.15.7

tot149
9.12.6.210
10.1.15.6

WAS V5
tot148

10.1.15.5

HTTP Server
tot127

10.1.15.4

WAS V4
tot134

10.1.15.3

WTSC59OE
OSA21E0
9.12.6.38

WTSC59
OSA2800
9.12.6.16

WTSC59A
OSA2260
10.1.15.1

WTSC58OE
OSA21E0
9.12.6.39

WTSC58
OSA2800
9.12.6.17

WTSC58A
OSA2260
10.1.15.10

L
P
A
R

1

L
P
A
R

2

180 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

IBM WebSphere Studio Workload Simulator
The Workload Simulator and generates Web traffic to analyze the performance of the
Web-serving environment when confronted with production-level loads while simulating large
numbers of virtual users. Workload Simulator can also be used to perform quality assurance
on Web applications and to test the functionality of Web servers.

Workload Simulator consists of two components: a controller and an engine. The controller is
the user interface with the engine, which in turn generates the Web traffic. All test functions
are accessible through the controller. This component resides on a Windows workstation and
offers a Windows graphical user interface (GUI) for managing all aspects of the load-testing
process: test scripts can be created and edited, simulation runs can be set up, executed and
monitored, and test results can be analyzed without leaving the Windows GUI.

For further flexibility you can set up a so-called Web Monitor, which is an optional component
of Workload Simulator. It allows you to monitor server performance and Workload Simulator
engines from a Web browser. This option requires an already installed and functioning Web
server on the z/OS system running the Workload Simulator engines.

The load-testing process can be differentiated in three steps, capture, playback, and analysis,
as follows:

� Capture

While the user navigates through a Web session, test scripts are automatically generated.
The capture function records the session’s Web traffic and turns it into a test script ready
for immediate playback. If needed, you can add more complexity to the test script with an
editor function, in order to have the testing process provide a better simulation of the
actions of a group of real users.

� Playback

This function executes the previously captured and edited scripts. For a flexible execution,
several runtime parameters can be set: number of repetitions, or should run until manually
stopped, or should run a certain period of time; and the number of virtual users to be
simulated. Many more options to simulate real-life conditions are possible.

� Analysis

After a test script is defined and the simulation launched, the test can be monitored in
real-time during execution. You can monitor a test either through the controller’s Windows
GUI or through a Web browser. The remote monitoring capability is helpful for extended
runs (for example, over a weekend), as it obviates the need for the presence of test
personnel at the test site.

In addition to its real-time monitoring and analysis tools, Workload Simulator also provides
a graphing tool to help you create more in-depth analyses of your Web applications.
Response time, data throughput, throughput of page elements, and CPU or memory
utilization are available for plotting. For in-depth analysis of test results, different levels of
logging of the test activity are possible, and the HTTP activity of each simulated client can
be traced.

To maintain the same level of security you may have in a production environment, Workload
Simulator supports Secure Sockets Layer (SSL) security protocol and handles capture and
playback through a SOCKS firewall.

Appendix A. Integrated and multi-platform scenario sandbox 181

Figure A-2 Workload simulation and performance measurement environment

Our Workload Simulator setup
In order to obtain more realistic performance numbers, we installed Workload Simulator in a
different LPAR from where the WebSphere Application Server for z/OS was running. We used
a similar environment (both partitions with 2 GB main storage, base operating system z/OS
V1.3, except the processors).

To be able to provide a constant and comparable workload, we assigned the two processors
as dedicated to the LPAR where the Workload Simulator Engine was running. We assumed
that our environment was located behind the second firewall. For further details, refer to
Figure A-2.

10.1.15.xxx

tot133

10.1.15.8

tot140

10.1.15.2

WAS V5
tot148
10.1.15.5

HTTP Server
tot127
10.1.15.4

WAS V4
tot134
10.1.15.3

WTSC59A
OSA2260
10.1.15.1

WTSC58A
OSA2260
10.1.15.10

L
P
A
R

1

L
P
A
R

2

Workload
Simulator

Engine
lvl. 02280Z
z/OS 1.3

2 GB stor.

WAS V4.01
lvl. W401500

z/OS 1.3
2 GB stor.

load
gene-
rator

stressed
app-
lication,
business
logic,
back end

IBM 9672 - X77

Workload Simulator controller
level 02302

stressed application, web application

182 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 184.
Note that some of the documents referenced here may be available in softcopy only.

� CICS Transaction Gateway V5 The WebSphere Connector for CICS, SG24-6133

� Java Connectors for CICS Featuring the J2EE Connector Architecture, SG24-6401

� From code to deployment: Connecting to CICS from WebSphere for z/OS, REDP0206

� z/OS WebSphere and J2EE Security Handbook, SG24-6846

� Enabling High Availability e-business on e-server zSeries, SG24-6850

� Linux for S/390, SG24-4987

� Linux on IBM zSeries and S/390: ISP/ASP Solutions, SG24-6299

� IBM WebSphere V4.0 Advanced Edition: Scalability and Availability, SG24-6192

� Monitoring WebSphere Application Peformance on z/OS, SG24-6825

� z/OS WebSphere and J2EE Security Handbook, SG24-6846

� WebSphere Edge Server: New Features and Functions in Version 2, SG24-6511

Other publications
These publications are also relevant as further information sources:

� WebSphere Studio Workload Simulator User’s Guide, SC31-6307

� WebSphere Studio Workload Simulator Programming Reference, SC31-6308

� WebSphere Studio Workload Simulator User’s Guide, SC31-6307

� WebSphere Application Server for z/OS and OS/390 v4.0.1: Migration, GA22-7860

� WebSphere Application Server for z/OS and OS/390 v4.0.1: Installation and
Customization, GA22-7834

� Assembling Java™ 2 Platform, Enterprise Edition (J2EE™) Applications, SA22-7836

� HTTP Server Planning, Installing and Using, SC31-8690

� IBM DB2 Connect Enterprise Edition for UNIX V7 Quick Beginnings, GC09-2952

� Understanding HTTP Session Management, WP100316, TechDocs whitepaper

� Overcoming a Problem Running Simulated Message Driven Beans, WP100301,
TechDocs whitepaper

© Copyright IBM Corp. 2003. All rights reserved. 183

Online resources
These Web sites and URLs are also relevant as further information sources:

� TechDocs, a source for technical white papers

http://www.ibm.com/support/techdocs/atsmastr.nsf/Web/Techdocs

� API docs for IBM application servers

http://www.ibm.com/software/webservers/appserv/doc/v40/aee/wasa_common/apidocs/i
ndex.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

184 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Index

Symbols
 116
"java

comp" 87

Numerics
3270 application 22

A
Adaptive Fast Path Architecture (AFPA) 123
Administration Client 71
AIX 7
APARs & PTFs

PQ57189 69
PQ65206 97
PQ68250 116, 144–145
UQ72838 172
UQ74160 144
UQ90051 97

APPC 83
application analysis 136

dynamic content 137
static content 136

application assembly 40, 70, 138
Application Assembly Tool (AAT) 136, 179
application deployment 40, 138

cross-platform scenario 139
integrated scenario 138

application design 40
application development

JNDI lookup 68
loosely coupled artifacts 68
splitting 153

application packaging 25
application separation 42
application split 42
application test 174
asserted identities 39
assessment criteria 38

availability 39
infrastructure 40
performance 38
security 39
strategy 42
systems management 41
transaction integrity 40

asynchronous messaging 54
authentication 39
automated deployment 41
Automatic Restart Manager (ARM) 7, 39
availability 8

© Copyright IBM Corp. 2003. All rights reserved.
B
BBOC_HTTP_PORT 146
BBOC_HTTP_SSL_TRANSACTION_CLASS 77
BBOC_HTTP_TRANSACTION_CLASS 77
BBOC_HTTPALL_TCLASS_FILE 77
best practices

EIS access 37
initial context 156

C
caching 8
caching proxy 107
capacity planning 41, 59, 72
CICS 40, 45–46, 52, 64

COMMAREA 97
interregion communication 93
JCA access 90
workload manager 93

CICS Transaction Gateway 40, 92
Attachsec 94
availability 93
commit capabilities 95
infrastructure 96
performance 92
Region timeout(s) 94

CICS Transaction Server for z/OS 92
Cisco Content Services Switch (CSS) 62
Cisco Multi-Node Load Balancing (MNLB) 62
classloader 70
Client Tier 15
client-server application 14
cloned servers 36
clustering technology 7
COBOL 90
com.ibm.CORBA.iiop.noLocalCopies 69, 77
Common Connector Framework (CCF) 73, 92
communication optimization 38
component affinity 64
component interaction 75

availability 78
Connection types 76
development 80
development and deployment 80
infrastructure 79
performance 77
transaction integrity 79

Connection Management Policy 70
connection optimization 39, 62
content delivery time 113
CORBA 54
current.env 77
Custom User Registry 64
 185

D
Daemon IP name 61
DataSource 84, 90
DB2 40, 46

DB2 Connect 82
JDBC access 82
location name 162

DB2 Connect 82–83
DB2 Connect Enterprise Edition 83
DB2 Connect Unlimited Edition 83
DB2 Connection Personal Edition 82
Demilitarized Zone (DMZ) 11, 23, 49
Demilitarized zone (DMZ) 24
DFHXCURM 94
Distributed Relational Data Architecture (DRDA) 82, 87,
155
distributed unit of work 66
downstream identity propagation 40
dynacache.xml 107
dynamic component relocation 36
dynamic content caching 137
dynamic fragment caching 103, 105, 141

caching meta-data 105
configuration 107
dynacache.xml 107
HTTP sessions 106
JSP caching 105
JVM heap 106
mesurement 112, 117, 124, 128
servlet caching 105
session affinity 106

E
e-business Patterns

see Patterns for e-business 11
edgified applications 132
EIS Tier 16
EJB 2.0 specification 38

local interfaces 38, 42
EJB container separation 45
EJB lookup 62
EJB Tier 16
EJBUtil.java 157
EnableFRCA 144
Enterprise Application Project 80
enterprise archive 80
enterprise information systems (EIS) 4, 36, 45, 47, 58,
62, 66–67, 91
Enterprise Java Bean (EJB) 36
Enterprise Resource Planning (ERP) 37, 91
Ethereal 174
extended unit of work 66
Extensible Markup Language (XML) 58
External Call Interface (EXCI) 40

F
Fast Response Cache Accelerator (FRCA) 109, 116, 142

enablement 144
FRCA logs 111

federated database 82
file caching 111
firewall 40, 67

port numbers 68
forwarding proxy 123

G
GET method 102
getConnection 84
gif files 102
GIOP packet tracing 174
GIOP parsing 175
global transaction 91
graphical images 102

H
HiperSockets 52
horizontal scalability 61
horizontal scaling 52
host cluster 61
hot stand-by 129
HREF 102
HTTP GET method 102
HTTP POST method 102
HTTP rewrite 35
HTTP session affinity 36, 39
HTTP session data 71

DataSource references 71
HTTP sessions 103, 106, 110
httpd.conf 111

EnableFRCA 144
PASS directive 111
protection directive 111
ServerID 111
ServerInit directive 145
service directive 145

hybrid deployment 37

I
IBM eServer platforms 6
IBM Tivoli Monitoring for WebSphere Application Server
on z/OS 59
IBM WebSphere MQ

overview 54
IBM WebSphere MQ (WMQ) 54
ihs390WASPlugin_http.so 145
IIOP tunnel 79
IMS 45
IMS Transaction Manager 92
initial context 41, 68
Intelligent Resource Director (IRD) 51
Internet Inter-ORB Protocol (IIOP) 54
Interoperable Object Reference (IOR) 156
Inter-ORB Protocol (IIOP) 76

J
J2EE 1.3 specification 92
J2EE application components 37

186 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

J2EE components 36
J2EE Connector Architecture (JCA) 45, 66, 73
J2EE Connector Architecture Specification V1.0 97
J2EE Resource Instances 161
Java Database Connectivity (JDBC) 45, 82

availability 84
DataSource 87
performance 83
remote calls 83
security 84
Type 4 driver 82
universal driver 82

Java Messaging Service (JMS) 43, 55
JMS Listener 55
listener 55
shared queue 55

Java Messaging Services (JMS) 67
Java Pet Store Demo 153, 167

debugging 171
deployment problems 171
obtaining the source 167
unicode processing 173

Java Server Page (JSP) 36
Java Technology Client 172
Java Transaction API (JTA) 87
javax.naming.Context.PROVIDER_URL 69
JDBC 40
JMS Listener 55
JNDI lookup 68, 80, 87
JNDI namespace 41
jpg files 102
JVM heap 106

K
Kerberos 59

L
last participant support 67
LDAP packet tracing 174
legacy data 48
license costs 10, 40, 52, 67

sub-CPU granularity 52
Linux for zSeries 37, 50, 53

in a LPAR 50
native mode 50
static content offloading 131
virtualization 50, 52
z/VM guest 50

local connection 48
local interfaces 69
local request 37
local transaction 66
location name 162
logical partition (LPAR) 50
logical tiers 17
LPAR 8

M
MAC takeover 129
Message Driven Beans (MDB) 55
model-view-controller (MVC) 16
model-view-controller design pattern 43, 47–48

benefits 28
controller 28
model 27
view 27

mp3 files 102
multi-tier architectures 14
MVS 6

N
NamingNotFoundException 172
native2ascii 174
Network Address Translation (NAT) 68, 79
network bandwidth 111
network delays 38
Network Dispatcher 49, 62
Network File System (NFS) 123
network path length 38
network sniffer 174
network tier 23
noLocalCopies=true 69

O
object handle 62
object reference cache 62
one-phase commit 67
operations 73
overall response time 113

P
Parallel Sysplex 39
pass by reference 69
pass by value 69
password 65

protection 65
storing 65

path length 59
Patterns for e-business 12

application patterns 13
business patterns 13
composite patterns 13
integration patterns 13
product mappings 14
runtime patterns 14

Performance 83
reference data 112

performance monitoring 41, 72
physical server separation 37
physical tiers 18
plug-in.xml 145

Route 146
Server CloneID 145
UriGroup 146
VirtualHost 146

 Index 187

plugin-cfg.xml 116
POST method 102
PROVIDER_URL 69
proxy 34

caching 122
forwarding 123
reverse 122, 146

proxy server 34, 103

Q
quality of service (QoS) 22, 48

R
realm-name 111
Redbooks Web site 184

Contact us xi
redundancy 129
redundancy of components 120, 129
reference configuration 37
remote authentication 65
remote EIS access 65
remote interface 70
Remote Method Invocation (RMI) 40, 54, 76
remote request 37
request encapsulation 44
request response time 39
res-auth 84, 94
Resource Access Control Facility (RACF) 39, 64

EJBROLE 64, 78
GEJBROLE 78
resource authorization 64

resource manager 66
resource managers 40
Resource Measurement Facility (RMF) 59, 112
Resource Recovery Services (RRS) 7, 40, 46, 48, 92
Resource Recovery Services Attach Facility (RRSAF) 40
resource reference 90
response time 39
reverse proxy 34, 103, 122
RISC processor 7
RMF reports 112
Round robin DNS 62
RunAs 78, 96

RunAs(Caller) 78
RunAs(Role) 78
RunAs(Server) 78

S
scalability 8
screendefinitions.xml 174
Secure Socket Layer (SSL) 36
security 8–9
security context 22
self-healing 39
server consolidation 50

low average utilization 52
spiky workloads 52

server instances 36

server response time 113
ServerID 111
service level

W401500 116, 144
Service Oriented Architecture (SOA) 56

broker 57
requestor 57
roles 57
service provider 57
service registry 57

service registry 57
servlet 36
servlet caching

see dynamic fragment caching 105
servletcache.xml 107, 141
shared code 69
Simple Object Access Protocol (SOAP) 58
SimpleFileServlet 102
single point of failure 120, 129
single point of failure elemination 64
SMF records 41
SNA 4
SNA LU names 83
sniffer 174
socket open time 113
software costs 10
splitting J2EE application

application analysis 154
application assembly 158
application deployment 159
application test 174
EIS access 155
EJB modules 154
possible split points 155
Web modules 154

static content 34, 102
acceleration 34
filtering 137
optimization 34

static content offloading
for hybrid infrastructures 102
for integrated infrastructures 102
JSP generated 102
overhead 102
SimpleFileServlet 102

syncpoint 66
SyncToOSThread 70
SYSIBM.SYSTABLES 155
Sysplex Distributor 62, 117
System Authorization Facility (SAF) 39
systems management 41, 72, 111

alerts 72
backup 72
capacity planning 72
maintenance 72
operations 73
performance monitoring 72

Systems Management End User Interface (SMEUI) 71

188 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

T
TCP/IP tracing 174
TCP62 96
three-tier architecture 19
topological separation 37
total cost of ownership 67
Total Cost of Ownership (TCO) 10
TranClassMap 77
transaction coordinator 40, 66
transaction integrity 40, 65

commit 65
extended unit of work 66
role back 65
syncpoint 66
transaction coordinator 66
two-phase commit 66
unit of work 66

transaction processing systems 37
Trust Association Interceptor 64
trust relationship 39
two-phase commit protocol 47, 66
two-tier architecture 19

U
unit of work 66

V
virtual server separation 37

W
wav files 102
Web archive 80
Web content server 34
Web or Presentation Tier 16
Web Services 56, 67
web.xml 111
Web-EJB separation 44
WebSphere Edge Server 39, 49, 129, 132
WebSphere HTTP plug-in 34, 36, 53, 62
WebSphere Studio Application Developer 179
WebSphere Studio Application Developer V4 41
WebSphere Studio Application Monitor 59
WebSphere Studio Workload Simulator Client 179
WLM goals 39
workload distribution 61

Cisco CSS 62
Cisco MNLB 62
connection optimization 62
inhibitors 62
Network Dispatcher 62
round robin DNS 62
sysplex distributor 62
WebSphere HTTP plug-in 62

Workload Manager (WLM) 8, 39, 61, 63
enclave 39, 63
performance goals 63
resource assignment 63
resource optimization 63

service class 63
workload classification 63

workload virtualization 52
wrapper 43

Z
z/VM 50
zSeries

central point of control 51
flexibility 51
HiperSockets 52
license costs 52
resource utilization 51
scaling 52

 Index 189

190 Building Multi-Tier Scenarios for WebSphere Enterprise Applications

(0.2”spine)
0.17”<->

0.473”
90<->

249 pages

Building M
ulti-Tier Scenarios for W

ebSphere Enterprise Applications

®

SG24-6956-00 ISBN 0738499525

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Building Multi-Tier Scenarios
for WebSphere Enterprise
Applications

Architecting an
infrastructure for
seamless 3-tier
integration

Developing,
deploying, and tooling
for interoperability

Security,
performance, cost,
and management
views

This IBM Redbook will help you build multi-tier scenarios for
WebSphere Enterprise Applications. It applies to WebSphere
Application Server V4.01 for z/OS and OS/390.

We cover the aspects of architectural, organizational, and
technical issues that you need to consider when selecting an
application and runtime design. This book can be used in
conjunction with Patterns for e-business when you are faced with
making decisions about application patterns and are looking for
supporting information.

Because our analysis is done from the perspective of the z/OS
platform, we discuss strategies for offloading Web applications
from z/OS or from WebSphere for z/OS. We provide an overview
of different scenarios and give guidance on platforms, security,
deployment, performance, scaling, and EIS integration.

Using this redbook will enable you to architect an infrastructure
for seamless three-tier integration by helping you to develop,
deploy, and tool the application for interoperability, as well as
install and configure the different infrastructures.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Integrated and multi-tier solution concepts
	Chapter 1. Integrated and multi-tier WebSphere application deployment
	1.1 Multi-tiered environment considerations
	1.1.1 Today’s e-business infrastructures
	1.1.2 Platforms to run e-business applications
	1.1.3 Basic architectural considerations
	1.1.4 Separating Web components from business logic

	1.2 Concepts and building blocks for hybrid WebSphere solutions
	1.2.1 Using the Patterns approach
	1.2.2 Mapping the patterns to our identified motivations

	1.3 An introduction to tiers and architectures
	1.3.1 Introducing multi-tier architectures
	1.3.2 Multiple logical and physical tiers
	1.3.3 The network layer

	1.4 Application architecture and packaging
	1.4.1 Model-View-Controller (MVC) design pattern
	1.4.2 Application packaging

	1.5 Decision guidelines for handling Web applications
	1.5.1 Deployment choices

	Chapter 2. Integrated and hybrid WebSphere application deployment scenarios
	2.1 Static Web component relocation
	2.1.1 Architectural elements for static Web content acceleration

	2.2 Dynamic component relocation
	2.2.1 Application elements
	2.2.2 Overview of hybrid deployment assessment criteria
	2.2.3 Options for logical application separation
	2.2.4 Options for physical application separation
	2.2.5 Options for J2EE inter-component communication

	2.3 Evaluation criteria for remote component and EIS access
	2.3.1 Performance
	2.3.2 Availability
	2.3.3 Security
	2.3.4 Transaction integrity
	2.3.5 Infrastructure criteria
	2.3.6 Development and deployment criteria
	2.3.7 Systems management
	2.3.8 Strategic considerations

	Chapter 3. Component interaction characteristics
	3.1 Connection types
	3.1.1 Cross-reference table

	3.2 RMI/IIOP access to remote enterprise beans
	3.2.1 Performance
	3.2.2 Availability
	3.2.3 Security
	3.2.4 Transaction integrity
	3.2.5 Infrastructure
	3.2.6 Development and deployment
	3.2.7 Systems management
	3.2.8 Strategic considerations

	3.3 JDBC access to DB2
	3.3.1 DB2 Connect
	3.3.2 Performance
	3.3.3 Availability
	3.3.4 Security
	3.3.5 Transaction integrity
	3.3.6 Infrastructure
	3.3.7 Development and deployment
	3.3.8 Systems management
	3.3.9 Strategic considerations

	3.4 JCA access to CICS
	3.4.1 CICS Transaction Gateway
	3.4.2 Performance
	3.4.3 Availability
	3.4.4 Security
	3.4.5 Transaction integrity
	3.4.6 Infrastructure
	3.4.7 Development and deployment
	3.4.8 Systems management
	3.4.9 Strategic considerations

	Chapter 4. Static Web component optimization
	4.1 Overview
	4.2 Dynamic fragment caching concepts
	4.2.1 Configuring dynamic fragment cache support

	4.3 Configuration 1: Local IBM HTTP Server for static file handling
	4.3.1 HTTP session considerations
	4.3.2 Security considerations
	4.3.3 System management considerations
	4.3.4 Performance considerations

	4.4 Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in
	4.4.1 HTTP session considerations
	4.4.2 Security considerations
	4.4.3 System management considerations
	4.4.4 Performance considerations
	4.4.5 Infrastructure considerations for configurations 1 and 2

	4.5 Configuration 3: Remote reverse proxy caching server
	4.5.1 HTTP session considerations
	4.5.2 Security considerations
	4.5.3 System management considerations
	4.5.4 Performance considerations

	4.6 Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in
	4.6.1 HTTP session considerations
	4.6.2 Security considerations
	4.6.3 System management considerations
	4.6.4 Performance considerations
	4.6.5 Infrastructure considerations for configurations 3 and 4

	4.7 Application considerations
	4.7.1 Application programming and assembly

	4.8 Trends and directions

	Part 2 Implementation guidelines
	Chapter 5. Implementing static Web content acceleration scenarios
	5.1 Application development and deployment
	5.1.1 Analyzing the application
	5.1.2 Assembling the application
	5.1.3 Deploying the application
	5.1.4 Testing the application

	5.2 Infrastructure implementation
	5.2.1 Common elements of the configurations
	5.2.2 Configuration 1: Local IBM HTTP Server for static file handling
	5.2.3 Configuration 2: Local IBM HTTP Server with WebSphere HTTP Plug-in
	5.2.4 Configuration 3: Remote reverse proxy caching server
	5.2.5 Configuration 4: Remote IBM HTTP Server with WebSphere HTTP Plug-in

	Chapter 6. Implementing IIOP-based cross-platform scenarios
	6.1 Application development and deployment
	6.1.1 Analyzing the application
	6.1.2 Assembling the application
	6.1.3 Deploying the application into multiple tiers

	6.2 Importing the Java Pet Store Demo application into WebSphere Studio Application Developer V4
	6.2.1 Preparation of files
	6.2.2 Importing petstore.ear into WSAD
	6.2.3 Importing source code into WSAD
	6.2.4 Testing the application in WebSphere Studio Application Developer V4
	6.2.5 Debugging Java Pet Store Demo
	6.2.6 Problems encountered while splitting Java Pet Store Demo
	6.2.7 Processing a Unicode XML file in WebSphere Application Server Advanced Edition Version 5
	6.2.8 Testing the application

	Part 3 Appendixes
	Appendix A. Integrated and multi-platform scenario sandbox
	6.2.9 Our testing tools

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

