

The 5 capacities we look for in candidates

1. Analytical problem solving with code

2. Technical communication (can I implement your
approach just from your explanation)

3. Engineering best practices and approach (Debugging,
code structure, patience and reference to documentation)

4. Non-technical communication (empathetic and
thoughtful communication)

5. Language and computer science experience

Our expectations

— Support each other - engineering empathy is the
critical value at Codesmith

— Work hard, Work smart

— Thoughtful communication

Frontend Masters - JavaScript the Hard Parts - Day 1

Part 1 – Principles of JavaScript – Thread, Execution
context and Call stack

Part 2 – Callbacks and Higher order functions

Part 3 – Closure

Frontend Masters - JavaScript the Hard Parts - Day 2

Part 4 – Asynchronous JavaScript

Part 5 - Object-oriented JavaScript – Approaches to
OOP

Principles of JavaScript

In JSHP we start with a set of fundamental principles

These tools will enable us to problem solve and
communicate almost any scenario in JavaScript

— We'll start with an essential approach to get
ourselves up to a shared level of understanding

— This approach will help us with the hard parts to
come

What happens when javascript executes (runs) my code?

const num = 3;
function multiplyBy2 (inputNumber){
 const result = inputNumber*2;
 return result;
}
const name = "Will"

What happens when javascript executes (runs) my code?

const num = 3;
function multiplyBy2 (inputNumber){
 const result = inputNumber*2;
 return result;
}
const name = "Will"

As soon as we start running our code, we create a global execution
context

— Thread of execution (parsing and executing the code line after line)

— Live memory of variables with data (known as a Global Variable
Environment)

The thread in JavaScript

— Single threaded (one thing at a time)

— Synchronous execution (for now)

Running/calling/invoking a function

This is not the same as defining a function

const num = 3;
function multiplyBy2 (inputNumber){
 const result = inputNumber*2;
 return result;
}

const output = multiplyBy2(4);
const newOutput = multiplyBy2(10);

When you execute a function you create a new execution context comprising:

1. The thread of execution (we go through the code in the function line by line)

2. A local memory ('Variable environment') where anything defined in the function is stored

We keep track of the functions being called in JavaScript
with a Call stack

Tracks which execution context we are in - that is, what
function is currently being run and where to return to
after an execution context is popped off the stack

One global execution context, multiple function contexts

Functional Programming

Functional programming core features

1. Pure functions (no side effects)

2. 'Higher order functions' - highly valuable tool &
often part of the Codesmith interview

Create a function 10 squared

Takes no input

Returns 10*10

How do we do it?

tensquared

function tensquared(){
 return 10*10;
}
tensquared(); // 100

Now let's create a function that returns 9 squared

function ninesquared(){
 return 9*9;
}
ninesquared(); // 81

Now 8 squared...and so on

...

We have a problem - it's getting repetitive, we're breaking our DRY principle

What could we do?

We can generalize the function

function squareNum(num){
 return num*num;
}
squareNum(10); // 100
squareNum(9); // 81

We’ve generalized our function

Now we're only deciding what data to apply our
multiplication functionality to when we run our
function, not when we define it

We're going to see later on that our higher order
functions follow this same principle - that we may not
want to decide exactly what our functionality is until we
run our function

Pair Programming

Answer these:

— I know what a variable is

— I've created a function before

— I've added a CSS style before

— I have implemented a sort algorithm (bubble, merge etc)

— I can add a method to an object’s prototype

— I understand the event loop in JavaScript

— I understand 'callback functions'

— I've built a project in React or Angular

— I can handle collisions in hash tables

Pair Programming

http://csbin.io/callbacks

Now suppose we have a function copyArrayAndMultiplyBy2. Let's diagram it out

function copyArrayAndMultiplyBy2(array) {
 let output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(array[i] * 2);
 }
 return output;
}
const myArray = [1,2,3]
let result = copyArrayAndMultiplyBy2(myArray)

What if want to copy array and divide by 2?

function copyArrayAndDivideBy2(array) {
 let output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(array[i] /2);
 }
 return output;
}
const myArray = [1,2,3]
let result = copyArrayAndDivideBy2(myArray);

Or add 3?

function copyArrayAndAdd3(array) {
 let output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(array[i] +3);
 }
 return output;
}
const myArray = [1,2,3]
let result = copyArrayAndAdd3(myArray);

What principle are we breaking?

We're breaking DRY

What could we do?

We could generalize our function so that we pass in our
specific instruction only when we run the
copyArrayAndManipulate function!

function copyArrayAndManipulate(array, instructions) {
 let output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

function multiplyBy2(input) {
 return input * 2;
}

let result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

Back to pairing

How was this possible?
Functions in javascript = first class objects

They can co-exist with and can be treated like any other
javascript object

1. assigned to variables and properties of other objects

2. passed as arguments into functions

3. returned as values from functions

Callback vs. Higher-order function

function copyArrayAndManipulate(array, instructions) {
 let output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

function multiplyBy2(input) {
 return input * 2;
}
let result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

Which is our callback function?

Which is our higher order function?

Callback vs. Higher-order function

function copyArrayAndManipulate(array, instructions) {
 let output = [];
 for (let i = 0; i < array.length; i++) {
 output.push(instructions(array[i]));
 }
 return output;
}

function multiplyBy2(input) {
 return input * 2;
}
let result = copyArrayAndManipulate([1, 2, 3], multiplyBy2);

The function we pass in is a callback function

The outer function that takes in the function (our callback) is a higher-order function

Higher-order functions

Takes in a function or passes out a function

Just a term to describe these functions - any function
that does it we call that - but there's nothing different
about them inherently

So callbacks and higher order
functions simplify our code and
keep it DRY

And they do something even more powerful

They allow us to run
asynchronous code

Frontend Masters - JavaScript the Hard Parts - Day 1

Part 1 – Principles of JavaScript – Thread, Execution
context and Call stack ✔

Part 2 – Callbacks and Higher order functions ✔

Part 3 – Closure

Frontend Masters - JavaScript the Hard Parts - Day 2

Part 4 – Asynchronous JavaScript

Part 5 - Object-oriented JavaScript – Approaches to
OOP

Closure

When our functions get called, we create a live store of data (local memory/
variable environment/state) for that function’s execution context.

When the function finishes executing, its local memory is deleted (except the
returned value)

But what if our functions could hold on to live data/state between executions? !

This would let our function definitions have an associated cache/persistent
memory

But it starts with returning us returning a function from another function

We just saw that functions can be returned from other
functions in JavaScript

function instructionGenerator() {
 function multiplyBy2 (num){
 return num*2;
 }
 return multiplyBy2;
}

let generatedFunc = instructionGenerator()

How can we run/call multiplyBy2 now?

Let's call (run) our generated function with the input 3

function instructionGenerator() {
 function multiplyBy2 (num){
 return num*2;
 }
 return multiplyBy2;
}

let generatedFunc = instructionGenerator()

let result = generatedFunc(3) //6

Pair up

Answer these:

— I know what a variable is

— I've created a function before

— I've added a CSS style before

— I have implemented a sort algorithm (bubble, merge etc)

— I can add a method to an object’s prototype

— I understand the event loop in JavaScript

— I understand 'callback functions'

— I've built a project in React or Angular

— I can handle collisions in hash tables

Pair Programming

http://csbin.io/closures

Calling a function in the same scope as it was defined

function outer (){
 let counter = 0;
 function incrementCounter (){
 counter ++;
 }
 incrementCounter();
}

outer();

Where you define your functions determines what variables
your function have access to when you call the function

But what if we call our function outside of where it was defined?

function outer (){
 let counter = 0;
 function incrementCounter (){
 counter ++;
 }
}

outer()

incrementCounter();

What happens here?

There is a way to run a function outside where it was
defined - return the function and assign it to a new
variable

function outer (){
 let counter = 0;
 function incrementCounter (){
 counter ++;
 }
 return incrementCounter;
}

var myNewFunction = outer(); // myNewFunction = incrementCounter

Now we can run incrementCounter in the global context
through its new label myNewFunction

function outer (){
 let counter = 0;
 function incrementCounter (){
 counter ++;
 }
 return incrementCounter;
}

let myNewFunction = outer(); // myNewFunction = incrementCounter
myNewFunction();

What happens if we execute myNewFunction again?

function outer (){
 let counter = 0;
 function incrementCounter (){
 counter ++;
 }
 return incrementCounter;
}

let myNewFunction = outer(); // myNewFunction = incrementCounter
myNewFunction();
myNewFunction();

Lexical Scope

When a function is defined, it gets a [[scope]] property that references the Local Memory/Variable
Environment in which it has been defined

function outer (){
 let counter = 0;
 function incrementCounter (){
 counter ++;
 }
 return incrementCounter;
}

let myNewFunction = outer(); // myNewFunction = incrementCounter
myNewFunction();
myNewFunction();

Wherever we call that incrementCounter function - it will always look first in its immediate local
memory (variable environment), and then in the [[scope]] property next before it looks any further up

JavaScript static/lexical scoping

This is what it means when we say JavaScript is lexically
or statically scoped

Our lexical scope (the available live data when our
function was defined) is what determines our available
variables and prioritization at function execution, not
where our function is called

What if we run 'outer' again and store the returned
'incrementCounter' in 'anotherFunction'

function outer (){
 let counter = 0;
 function incrementCounter (){
 counter ++;
 }
 return incrementCounter;
}

let myNewFunction = outer();
myNewFunction();
myNewFunction();

var anotherFunction = outer(); // myNewFunction = incrementCounter
anotherFunction();
anotherFunction();

Back to Pair-programming

The power of Closure

Now: Our functions get 'memories' - once, memoize

Advanced: We can implement the module pattern in
JavaScript

Frontend Masters - JavaScript the Hard Parts - Day 1

Part 1 – Principles of JavaScript – Thread, Execution
context and Call stack ✔

Part 2 – Callbacks and Higher order functions ✔

Part 3 – Closure ✔

Frontend Masters - JavaScript the Hard Parts - Day 2

Part 4 – Asynchronous JavaScript

Part 5 - Object-oriented JavaScript – Approaches to
OOP

Asynchronous JavaScript

Asynchronicity is the backbone of modern web
development in JavaScript

JavaScript is single threaded (one command executing at a time) and has a
synchronous execution model (each line is executed in order the code appears)

So what if we need to wait some time before we can execute certain bits of code?
We need to wait on fresh data from an API/server request or for a timer to
complete and then execute our code

We have a conundrum - a tension between wanting to delay some code execution
but not wanting to block the thread from any further code running while we wait

What do we do? Let’s see two examples

In what order will our console logs occur?

function printHello(){
 console.log(“Hello”);
}

setTimeout(printHello,1000);

console.log(“Me first!”);

No blocking!?

In what order will our console logs occur?

function printHello(){
 console.log(“Hello”);
}

setTimeout(printHello,0);

console.log(“Me first!”);

Our previous model of JavaScript execution is
insufficient

We need to introduce 3 new components of our platform

— Thread of execution

— Memory/variable environment

— Call stack

Adding

— Web Browser APIs/Node background threads

— Callback/Message queue

— Event loop

Let’s see the first of these (the Web Browser API) in action

function printHello(){
 console.log(“Hello”);
}

setTimeout(printHello,0);

console.log(“Me first!”);

Pair programming

But now we are interacting with a world outside of
JavaScript

We need a way of predictably understanding how this outside world will interact
with our JavaScript execution model. What would happen here?

function printHello(){
 console.log(“Hello”);
}

function blockFor1Sec(){
 //blocks in the JavaScript thread for 1 second
}

setTimeout(printHello,0);

blockFor1Sec()

console.log(“Me first!”);

We have two rules for the execution of our asynchronously
delayed code

1. Hold each deferred function in a queue (the Callback
Queue) when the API ‘completes’

2. Add the function to the Call stack (i.e. execute the
function) ONLY when the call stack is totally empty
(Have the Event Loop check this condition)

There are many things where waiting would block our
thread and we use Browser APIs for instead

— A timer to finish running

— New information from a server (Ajax)

— Indication that a portion of the page has loaded

— User interaction (clicks, mouseovers, drags)

— Writing/Reading to File system (Node)

— Writing/reading database (Node)

Some come back with data. The design of the Browser API
we are using determines how we access the returned data

That we were waiting on to run our deferred
functionality

function display(data){
 console.log(data.post);
}

$.get("http://twitter.com/willsen/tweet/1", display);

console.log(“Me first!”);

Asynchronous callbacks, Web APIs, the Callback Queue
and Event loop allow us to defer our actions until the
‘work’ (an API request, timer etc) is completed and
continue running our code line by line in the meantime

Asynchronous JavaScript is the
backbone of the modern web -
letting us build fast ‘non-
blocking’ applications

Frontend Masters - JavaScript the Hard Parts - Day 1

Part 1 – Principles of JavaScript – Thread, Execution
context and Call stack ✔

Part 2 – Callbacks and Higher order functions ✔

Part 3 – Closure ✔

Frontend Masters - JavaScript the Hard Parts - Day 2

Part 4 – Asynchronous JavaScript ✔

Part 5 - Object-oriented JavaScript – Approaches to
OOP

OOP - an enormously popular paradigm for structuring our
complex code

[EXPAND ON CORE FEATURES]

We're building a quiz game
with users

Some of our users

Name: Will
Score: 3

Name: Tim
Score: 6

Functionality
+ Ability to increase score

What would be the best way to store this data and
functionality?

Objects - store functions with their associated data!

let user1 = {
 name: "Will",
 score: 3,
 increment: function() {
 user1.score++;
 }
};

user1.increment(); //user1.score => 4

What alternative
techniques do we have for
creating objects?

Creating user2 user 'dot notation'

let user2 = {}; //create an empty object

user2.name = "Tim"; //assign properties to that object
user2.score = 6;
user2.increment = function() {
 user2.score++;
};

Creating user3 using Object.create

let user3 = Object.create(null);

user3.name = "Eva";
user3.score = 9;
user3.increment = function() {
 user3.score++;
};

Our code is getting repetitive, we're breaking our DRY principle

And suppose we have millions of users!

What could we do?

Solution 1. Generate objects using a function

function userCreator(name, score) {
 let newUser = {};
 newUser.name = name;
 newUser.score = score;
 newUser.increment = function() {
 newUser.score++;
 };
 return newUser;
};

//later

let user1 = userCreator("Will", 3);
let user2 = userCreator("Tim", 5);
user1.increment();
user2.increment();

Problems:

Each time we create a new user we make space in our
computer's memory for all our data and functions. But
our functions are just copies

Is there a better way?

Benefits:

It's simple!

Pair up

Answer these:

— I know what a variable is

— I know what an object is (in programming)

— I've added a method to an object’s prototype before

— I've added a CSS style before

— I understand 'callback functions'

— I can explain the event loop in JavaScript

— I've built a project in React or Angular

— I can explain closure in JavaScript

— I can handle collisions in a hash table

Pair Programming

http://csbin.io/oop

Solution 2:

Store the increment function in just one object and
have the interpreter, if it doesn't find the function on
user1, look up to that object to check if it's there

How to make this link?

Using the prototypal nature of JavaScript - Solution 2 in
full

function userCreator (name, score) {
 let newUser = Object.create(userFunctionStore);
 newUser.name = name;
 newUser.score = score;
 return newUser;
};

let userFunctionStore = {
 increment: function(){this.score++;},
 login: function(){console.log("You're loggedin");}
};

let user1 = userCreator("Will", 3);
let user2 = userCreator("Tim", 5);
user1.increment();

Problem

No problems! It's beautiful

Maybe a little long-winded

let newUser = Object.create(functionStore);
...
return newUser

Write this every single time - but it's 6 words!

Super sophisticated but not standard

Solution 3

Introduce magic keyword new

let user1 = new userCreator("Will", 3)

What happens when we invoke
userCreator("Will", 3) without the new
keyword?

When we call the constructor function with new in front
we automate 2 things

1. Create a new user object

2. return the new user object

The new keyword automates a lot of our manual work

function userCreator(name, score) {
 let newUser = Object.create(functionStore);
 newUser this.name = name;
 newUser this.score = score;
 return newUser;
};

functionStore userCreator.prototype // {};
functionStore userCreator.prototype.increment = function(){
 this.score++;
}

let user1 = new userCreator("Will", 3);

Complete Solution 3

function User(name, score){
 this.name = name;
 this.score = score;
}

User.prototype.increment = function(){
 this.score++;
};
User.prototype.login = function(){
 console.log("login");
};

let user1 = new User(“Eva”, 9)

user1.increment();

Benefits

— Faster to write

— Still typical practice in professional code

— 99% of developers have no idea how it works and
therefore fail interviews

Solution 4

We’re writing our shared methods separately from our
object ‘constructor’ itself (off in the User.prototype
object)

Other languages let us do this all in one place. ES2015
lets us do so too

The class ‘syntactic sugar’

class User {
 constructor (name, score){
 this.name = name;
 this.score = score;
 }
 increment (){
 this.score++;
 }
 login (){
 console.log("login");
 }
}

let user1 = new User("Eva", 9);

user1.increment();

[Side by side comparison slide - DONE]

Benefits:

— Emerging as a new standard

— Feels more like style of other languages (e.g. Python)

Problems

— 99% of developers have no idea how it works and
therefore fail interviews

You won't be one of them!

The Hard Parts Challenge Code

— 90% of accepted students attend JSHP

— We created the Hard Parts Challenge code to
guarantee an interview for the Hard Parts community
members

— It builds upon the OOP content you worked on today

— Drinks

