
Fronts and Frontogenesis



Definition

• The definition of a front varies:

* from classical polar-front theory, and in 

popular usage, it is the boundary between 

two air masses.  Media people often talk 

about “clash” between air masses; indeed, 

usage of term “front” was likely influenced by 

WWI being contemporary with its 

development (Bjerknes 1919).  This idea 

suggests the front approaches a 

“discontinuity” in some atmospheric property



* Other treatments have tended to view the 

front as a broader zone of transition, or as 

a finite region of strong gradients.  The 

implication here is that the front does NOT 

approach a discontinuity.

• In fact, it is observed that fronts may fit 

into either of these models.  Some fronts 

have been observed as near-

discontinuities while others have not.  A 

front may evolve through a life cycle from 

a broad baroclinic zone to a near-

discontinuity and then decay



Frontogenesis

• Terminology:  frontogenesis – creation or 

intensification of a front (front + genesis, 

birth, creation, formation, Genesis, gene, 

generate….)

frontolysis- destruction or weakening of a 

front (front + lysis, dissolution, destruction, 

paralysis, analysis….)



Structure of fronts

• We observe that fronts slope with height, 

and that they almost always slope toward 

the cold air.  We can derive a simple 

formula that does a reasonable job of 

representing this slope

• First, we note that pressure must be 

continuous across the front.  For the 

typical case of cold air to the north, and 

warm air to the south, the gradients are in 

the y-direction.
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cold



Structure (cont)

The reason the pressure must be 

continuous is that for a discontinuity, the 

pressure gradient would be infinite, that 

is…

dp/dy ≈ Δp/ Δy; for Δy0 is Δp = ∞

If the pressure gradient were infinite, the 

corresponding accelerations in the eqns of 

motion would be infinite, leading to an 

infinitely strong wind, which of course is 

not observed.



• Since pressure is continuous, then both temperature and 

density must be discontinuous, or neither temperature 

and density are discontinuous….if the ideal gas law 

applies  p=ρRT

• For the continuous pressure field, we can express the 

pressure differential as

dp = ∂p/∂y dy + ∂p/∂z dz

(This is just the equation of a line).  We recognize ∂p/∂z as 

physically meaningful and can apply the hydrostatic 

approximation…
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temperature and 

thus higher density



∂p/∂z = -ρg   to get

dp = ∂p/∂y dy – ρgdz

This equation must apply on both sides of 

the front. Then on the cold side we have

dp=(∂p/∂y)cold dy – ρcold g dz

and on the warm side,

dp=(∂p/∂y)warm dy – ρwarm g dz

Equating the rhs of both eqns:

(∂p/∂y)c dy – ρc g dz = =(∂p/∂y)w dy – ρw g dz

Collecting terms in dy and dz gives



[(∂p/∂y)c – (∂p/ρy)w]dy = (ρc-ρw)gdz

Or dz/dy = [(∂p/∂y)c – (∂p/ρy)w]/g (ρc-ρw)

We thus see that non-zero dz/dy requires 

that [(∂p/∂y)c – (∂p/ρy)w] also be non-zero.

That is, if the front slopes, then there must 

be a discontinuity of the pressure gradient.  

This is the reason why fronts should be 

analyzed with a kink in the isobars!



• Let us now assume that the component of the 

wind parallel to the front is in geostrophic 

balance:

• u=ug = -1/ρf ∂p/∂y

• Solving for the pressure gradient, ∂p/∂y=-ρfug

• Substitute into our eqn for frontal slope:

• dz/dy = [(ρfug)w – (ρfug)c]/g (ρc-ρw)

• For a narrow frontal zone, we observe that the 

proportional difference in the Coriolis parameter 

is very small; e.g., for a frontal zone 10 km wide 

at 40 N, we have (fw-fc)/f ≈ 0.002 (0.2%)

• Similarly, density differences are small (≈ 1%)



• But the differences in the geostrophic wind 

can be of similar magnitude to the wind 

itself, i.e., 

(ugc – ugw )/ 0.5*(ugc+ugw) ≈ 0.1 – 1

Then the number in the numerator in the 

frontal slope eqn is dominated by the 

change in geostrophic wind, so we can 

rewrite the eqn as:

dz/dy ≈ ρf(ugw – ugc)/g(ρc-ρw)



• By the ideal gas law, p=ρRT.  Then for 

p≈constant (continuous across front), the 

discontinuous step increase (or decrease) 

of ρ must be balanced by a corresponding 

step decrease (or increase) of T; that is, 

Δρ/ρ ≈ ΔT/T   or in terms of our problem,

(ρc-ρw)/ρ ≈ (Tw – Tc)/T    Then we can rewrite 

our frontal slope eqn as:

dz/dy ≈ fT/g (ugw – ugc)/(Tw-Tc)



Insights from the equation

• Velocity difference (ugw – ugc) across a frontal 

zone of width Δy can be expressed as (ugw –

ugc)/Δy

• Recall the vertical component of vorticity is

ζ = ∂v/∂x - ∂u/∂y

Then, if u decreases northward (i.e., u decreases 

as y increases), the front is a zone of positive 

geostrophic vorticity, ugw – ugc  >0  so

This is consistent with the observed kink in the 

isobars.
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U>0



• Strong fronts (large temperature contrast) 

do not necessarily slope more than weak 

ones, since (ugw – ugc) also is likely to 

increase for a strong front

• If the shear is cyclonic (ugw – ugc) > 0, then 

dz/dy > 0.  So for cold air to the north, the 

front slopes toward the cold air.



Typical evolution of sea breeze

• Assume atmosphere at rest, early in the 

morning

Just after sunrise, land heats up.  Initially the 

perturbations are small so the response is linear.

Contour of 

wind speed

Once perturbations become large, the 

nonlinear effects cause a front to form (we will 

study this in detail) on the inland side.



• Sea breeze is deeper on the inland side 

because stable stratification over the water 

suppresses the vertical extent.

Strong narrow 

updraft

Extensive region of weak 

subsidence

Antitriptic flow (Jeffreys, 

1922 QJRMS)



Frontogenesis in the sea breeze

• We will begin with a 2D framework, and try 

to create an equation for ∂θ/∂t =

*If we define the front as ∂θ/∂x, we can get

∂/∂t(- ∂θ/∂x) = - ∂/∂x(∂θ/∂t) = -(∂u/∂x)(∂θ/∂x) –

(∂ω/∂x) (∂θ/∂p) -1/cp(p0/p)k ∂/∂x(dQ/dt)

• We could also define the front in other 

ways such as with the convergence of 

wind.  In that case, we start with u-

momentum equation



∂u/∂t = -1/ρ ∂p/∂x -u ∂u/∂x -w ∂u/∂z +fv - ∂/∂z(u’w’)

If we put a minus sign in so that positive values give us a 

stronger front, then..

∂/∂t(-∂u/∂x)=1/ρ ∂2p/∂x2 + ∂u/∂x ∂u/∂x + u ∂2u/∂x2 + ∂w/∂x 

∂u/∂z +w ∂2u/∂z∂x -f ∂v/∂x + ∂/∂x( ∂/∂zu’w’)  =

[-u ∂/∂x (-∂u/∂x) - w ∂/∂z(-∂u/∂x)]  adv. of frontal character 

+ 1/ρ ∂2p/∂x2 requires non-constant PGF (2nd derivative 

curvature)

+ ∂u/∂x ∂u/∂x  convergence (nonlinear)

+ ∂w/∂x ∂u/∂z tilting of vertical shear into horizontal 

-f ∂v/∂x  differential coriolis force – this becomes frontolytic 

later in day

+ ∂/∂x (∂/∂z u’w’)   differential friction (usually frontolytic) 



Frontogenesis

• The classical definition of the 

frontogenetical function is

F = D/Dt |▼θ|

This is just a generalization of our earlier 

expression used in discussion of sea 

breeze frontogenesis.  Here we consider 

gradients in any direction (i.e., ▼θ = ∂θ/∂x 

+ ∂θ/∂y) and of any sign (as per the 

absolute value). 



Isentropes along front

• Consider a case with frontal zone along x 

axis and isentropes parallel to front, with 

no wind variations along front.  Also, 

temperature decreases toward north 

(increasing y).

• Then F=D/Dt (-∂θ/∂y) = (∂v/∂y)(∂θ/∂y) + 

(∂ω/∂y)(∂θ/∂p) – 1/cp(p0/p)k ∂/∂y(dQ/dt) 

• Here – the gradient is in y-direction (not x) 

and vertical coordinate is pressure



Role of deformation

• Pure deformation flow is defined as:

∂u/∂x + ∂v/∂y = 0 (non-divergent)

Or equivalently, ∂u/∂x = -∂v/∂y 

• Therefore, if we have divergence in x-

direction, it has to be exactly balanced by 

convergence in y-direction, and vice-versa

Axis of dilatation



• In this case, the x-axis would be called the axis 

of dilatation and the y-axis the axis of 

contraction.

• Qualitatively, we can diagram the effect of 

deformation on the gradient as follows:

• Consider a control area defined as a rectangle.  

If the long edge of the rectangle is aligned with 

the axis of dilatation, the rectangle gets 

stretched out longer : since there is no 

divergence, area is unchanged

θ1

θ2

θ1

θ2



• If we assume the long sides of the rectangle 

correspond to isotherms (or adiabats), then 

the effect of deformation in this case is 

frontogenetic.

• Conversely if the long edge of the rectangle 

is along the axis of contraction, the 

rectangle becomes more of a square, and if 

the long sides are isotherms, the 

deformation is frontolytic.

• For other orientations, the effect of 

deformation will depend on the relative 

angle of the axis of dilatation and the 

isotherms



• The effect of horizontal convergence, as 

we have seen, is frontogenetic; conversely 

divergence is frontolytic.  Combining the 

effects of deformation and divergence in 

the along wind direction,

• F=|▼θ|/2 (Dcos2b – δ) where b= angle 

between axis of dilatation and isotherms.

b=0, cos2b=1 (frontogenetic)

b = 90, cos 2b=-1 (frontolytic)

b=45, cost2b = 0



tilt












