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fslr: Connecting the FSL Software with R
by John Muschelli, Elizabeth Sweeney, Martin Lindquist, and Ciprian Crainiceanu

Abstract We present the package fslr, a set of R functions that interface with FSL (FMRIB Software
Library), a commonly-used open-source software package for processing and analyzing neuroimaging
data. The fslr package performs operations on ‘nifti’ image objects in R using command-line
functions from FSL, and returns R objects back to the user. fslr allows users to develop image
processing and analysis pipelines based on FSL functionality while interfacing with the functionality
provided by R. We present an example of the analysis of structural magnetic resonance images,
which demonstrates how R users can leverage the functionality of FSL without switching to shell
commands.

Glossary of acronyms
MRI Magnetic Resonance Imaging/Image FSL FMRIB Software Library
PD Proton Density FAST FMRIB’s Automated Segmentation Tool

FLAIR Fluid-Attenuated Inversion Recovery FLIRT FMRIB’s Linear Image Registration Tool
MS Multiple Sclerosis BET Brain Extraction Tool

FMRIB Functional MRI of the Brain Group FNIRT FMRIB’s Nonlinear Image Registration Tool
MNI Montreal Neurological Institute

Introduction

FSL (FMRIB Software Library) is a commonly-used software for processing and analyzing neuroimag-
ing data (Jenkinson et al., 2012). This software provides open-source, command-line tools and a
graphical user interface (GUI) for image processing tasks such as image smoothing, brain extraction
(Smith, 2002), bias-field correction, segmentation (Zhang et al., 2001), and registration (Jenkinson and
Smith, 2001; Jenkinson et al., 2002). Many of these functions are used extensively in medical imaging
pipelines. According to a recent survey paper by Carp (2012), 13.9% of published neuroimaging
studies used FSL.

There exist a number of R packages for reading and manipulating image data, including Ana-
lyzeFMRI (Bordier et al., 2011), RNiftyReg (Clayden, 2015), and fmri (Tabelow and Polzehl, 2011)
(see the Medical Imaging CRAN task view http://CRAN.R-project.org/view=MedicalImaging for
more information). Although these packages are useful for performing image analysis, much of the
fundamental functionality that FSL and other imaging software provide is not currently implemented
in R. In particular, this includes algorithms for performing slice-time correction, motion correction,
brain extraction, tissue-class segmentation, bias-field correction, co-registration, and normalization.
This lack of functionality is currently hindering R users from performing complete analysis of image
data within R. Instead of re-implementing FSL functions in R, we propose a user-friendly interface
between R and FSL that preserves all the functionality of FSL, while retaining the advantages of using
R. This will allow R users to implement complete imaging pipelines without necessarily learning
software-specific syntax.

The fslr package relies heavily on the oro.nifti (Whitcher et al., 2011) package implementation of
images (referred to as ‘nifti’ objects) that are in the Neuroimaging Informatics Technology Initiative
(NIfTI) format, as well as other common image formats such as ANALYZE. oro.nifti also provides
useful functions for plotting and manipulating images. fslr expands on the oro.nifti package by
providing additional functions for manipulation of ‘nifti’ objects.

fslr workflow

The general workflow for most fslr functions that interface with FSL is as follows:

1. Filename or ‘nifti’ object is passed to fslr function.

2. FSL command is created within fslr function and executed using the system command.

3. Output is written to disk and/or read into R and returned from the function.

From the user’s perspective, the input/output process is all within R. The advantage of this
approach is that the user can read in an image, do manipulations of the ‘nifti’ object using standard
syntax for arrays, and pass this object into the fslr function without using FSL-specific syntax written
in a shell language. Also, one can perform image operations using FSL, perform operations on the
‘nifti’ object in R that would be more difficult using FSL, and then perform additional operations
using FSL by passing that object to another fslr command. Thus, users can create complete pipelines
for the analysis of imaging data by accessing FSL through fslr.

The R Journal Vol. 7/1, June 2015 ISSN 2073-4859

http://CRAN.R-project.org/package=AnalyzeFMRI
http://CRAN.R-project.org/package=AnalyzeFMRI
http://CRAN.R-project.org/package=RNiftyReg
http://CRAN.R-project.org/package=fmri
http://CRAN.R-project.org/view=MedicalImaging
http://CRAN.R-project.org/package=fslr
http://CRAN.R-project.org/package=oro.nifti


CONTRIBUTED RESEARCH ARTICLES 164

fslr setup

To use fslr, a working installation of FSL is required. The following code was run using FSL version
5.0.0. fslr must also have the path of FSL specified. If using R from a shell environment, and the
FSLDIR environment variable is set (which can be done when installing FSL), fslr will use this as the
path to FSL. If using R through a graphical user interface (GUI) such as RStudio (RStudio, Boston,
MA), environmental variables and paths are not explicitly exported. Therefore, FSLDIR is not set, and
the path to FSL can be specified using options(fsl.path = "/path/to/fsl").

fslr also requires an output type for the format of images returned from FSL. Some fslr functions
produce intermediate files that the user may want removed after the command is executed. When
the filename argument is passed to a fslr command, the extension of the file does not need to be
specified, but simply the prefix. When the command is executed, the FSL command appends an
extension, and to remove this file, using the R command file.remove, the extension for the file is
required. If working in a shell environment, fslr will use the environment variable for output type:
FSLOUTPUTTYPE. If working in a GUI, the default is given by NIFTI_GZ, which returns compressed NIfTI
images, ending in “.nii.gz”. This can be changed by setting the fsl.outputtype option. See http:
//fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/fsl/formats.html for a description of FSL output types.

The R code below is all that is needed to load the fslr package, set the path to FSL, and specify the
output type for files, respectively.

library(fslr)
options(fsl.path = "/usr/local/fsl")
options(fsl.outputtype = "NIFTI_GZ")

Image preprocessing with fslr

We present a complete analysis of structural magnetic resonance imaging (MRI) data performed using
fslr and R. Images were obtained from a patient with multiple sclerosis (MS) at 2 different visits
(Sweeney et al., 2013), located at bit.ly/FSL_Data. At each visit, the image modalities obtained were
T1-weighted (T1), T2-weighted (T2), fluid-attenuated inversion recovery (FLAIR), and proton density
(PD). In this example we will perform a MRI bias-field correction using FAST (FMRIB’s Automated
Segmentation Tool; Zhang et al. 2001), co-register scans within visits to the T1 image of that visit,
and register T1 images between visits. Once these operations have been performed, one can take
within-modality difference images to see the changes between visits. We will also register all images
to a common stereotaxic template, as this is common in population-based analyses.

Bias-field correction

MRI images typically exhibit good contrast between soft tissue classes, but intensity inhomogeneities
in the radio frequency (RF) field can cause differences in the ranges of tissue types at different spatial
locations. These inhomogeneities can cause problems with algorithms based on histograms, quantiles,
or raw intensities (Zhang et al., 2001). Therefore, correction for image inhomogeneities is a crucial step
in many analyses. FSL implements the bias-field correction from Guillemaud and Brady (1997) in its
FAST segmentation pipeline (Zhang et al., 2001).

The fsl_biascorrect command from fslr will create the corrected images. We pass in the filename
in the file argument, any additional options for FSL in the opts argument, such as -v for verbose
diagnostic outputs, and the output filename in the outfile argument, which is our inhomogeneity-
corrected image.

fsl_biascorrect(file = "01-Baseline_T1.nii.gz",
outfile = "01-Baseline_T1_FSL_BiasCorrect",
opts = "-v")

We can observe the difference in voxel values from the baseline T1 image compared to the bias-
corrected version in Figure 1. In Panel A we display the T1 image, and in Panel B we display the
bias-corrected T1 image. The T1 image is brighter in the middle of the image, while the bias-corrected
image is more uniform in white matter (brighter regions). As this difference may be hard to distinguish
visually, we present the scatterplot of these images in Figure 1C, using the ggplot2 package (Wickham,
2009). Note, both scales are in arbitrary units (a.u.).

The blue line in Figure 1C represents the 45◦ diagonal line, where the original and bias-corrected
image intensities are equal (X = Y), and the pink line represents a generalized additive model (GAM)
(Hastie and Tibshirani, 1990) scatterplot smoother estimate obtained using the mgcv package (Wood,
2011). We see that for values in the low range of the data (< 10), the T1 values and bias-corrected T1
values, on average, fall along the diagonal, but in the higher range the bias-corrected values are lower.
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Figure 1: Results of inhomogeneity correction. We present the original T1 image (A), bias-corrected
T1 image (B), and the scatterplot of the sampled values comparing the values from the T1 image to
the bias-corrected values (C). We see in Panel C for values in the low range of the data (< 10), the T1
values and bias-corrected T1 values, on average, fall along the diagonal (blue line), which is further
illustrated in Panel D, which plots values < 40. Values > 10 for the original T1 image are lower than
the bias-corrected T1 values shown by a generalized additive model (GAM) smoother (pink line,
Panel C).

Within-visit co-registration

All subsequent steps will be performed on the bias-corrected images. We will first co-register the
images within each separate visit to the T1 image from that visit. This operation overlays the images
on one another and allows us to investigate joint distributions of voxel intensities from different image
modalities. This is performed using FMRIB’s Linear Image Registration Tool (FLIRT; Jenkinson and
Smith 2001; Jenkinson et al. 2002). As the images are from the same individual, we may assume that
the overall shape of the brain has not changed, but each scan may have undergone a translation and/or
rotation in space. Therefore, we will use a rigid-body transformation, with 6 degrees of freedom (dof).

The fslr command flirt calls the FSL command flirt, taking the input image (infile) and the
reference image that serves as a template (reffile). Any additional options for FLIRT can be passed
using the opts argument. We will use the defaults (i.e. trilinear interpolation) and the -v option for
diagnostic messages to be printed. Since we are doing a rigid-body transformation, we set the degrees
of freedom (dof) to 6. Here we present the code for registering the baseline T2 image to the baseline T1
image; we will subsequently repeat this process for the baseline FLAIR and PD images and for the
follow-up scans.

flirt(reffile = "01-Baseline_T1_FSL_BiasCorrect",
infile = "01-Baseline_T2_FSL_BiasCorrect",
omat = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1.mat",
dof = 6,
outfile = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1",
opts = "-v")

The resulting image transformation is stored using the file name passed to the omat (output matrix)
argument. This matrix can be used to transform other images, that were in the same space as the input
image, to the reference image space. The fslr package will currently only return ‘nifti’ objects, and
not a list of objects, such as the output image, transformation matrix, etc. Thus, any transformation
files that are needed after the command is executed must be specified.

After co-registration, one could compare images of different modalities at the same voxels, such
as T1 versus FLAIR images, which is presented in Figure 2. The images are presented at the same
cross section for the baseline T1 (Panel 2A) and FLAIR (Panel 2B) images. The same brain areas are
presented in each modality, indicating adequate registration.

In the previous example, we presented a rigid-body transformation, using the default parameters.
flirt has options for different cost functions to optimize over, interpolation operators to estimate
voxel intensity, and additional degrees of freedom for performing affine transformations. These
options can be passed to the FSL flirt command using the opts argument in the fslr flirt function.

Note that each fslr function has a corresponding help function, which is the fslr command
appended with .help(), which prints out the FSL help page for that function. For example, users
can see which options can be changed in the FSL flirt command by executing the flirt.help()
function. Additional non-linear registration techniques are presented in Section “Registration to the
MNI template”.
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Figure 2: Results of within-visit co-registration. We present the bias-corrected T1 image (A) and the
co-registered bias-corrected FLAIR image (B).

Figure 3: Between-visit registration process. First, we registered all scans within a visit (baseline or
follow-up) to the T1 image. We then registered the follow-up T1 image to the baseline T1 image and
applied the transformation to the follow-up T2, FLAIR, and PD images previously co-registered to the
follow-up T1 image.

Between-visit co-registration

Though across-modality comparisons can be achieved by performing within-visit co-registration,
across-visit registration is required for assessing within-modality differences between longitudinal
scans. To compute difference images, we co-register follow-up images to the baseline images within
each modality. Similar to the within-visit co-registration, we use a rigid-body transformation. We will
register the T1 images from baseline and follow-up, and apply this transformation to the co-registered-
to-T1 images from above (see Figure 3 for illustration).

Though this registration involves two interpolations of the data and may not be optimal for within-
modality comparisons, we have already obtained the co-registered-to-T1 images in Section “Within-
visit co-registration” and must perform only one additional registration. This operation also demon-
strates how to apply transformation matrices in fslr. Here we register the follow-up T1 image to the
baseline T1 image, again using a rigid-body transformation (6 dof):

flirt(reffile = "01-Baseline_T1_FSL_BiasCorrect",
infile = "01-Followup_T1_FSL_BiasCorrect",
omat = "01-Followup_T1_FSL_BiasCorrect_rigid_to_BaseT1.mat",
dof = 6,
outfile = "01-Followup_T1_FSL_BiasCorrect_rigid_to_BaseT1",
opts = "-v")
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Figure 4: Results from FLIRT. The bias-corrected baseline T1 is presented in (A) and the registered
bias-corrected follow-up T1 is presented in (B), each displayed at the same intersection. We observe
that the observed images correspond to the same brain area, indicating a good registration.

Now, both T1 images are aligned in the space of the baseline T1 image. We present the results
in Figure 4: the bias-corrected baseline T1 image in Panel A and the co-registered bias-corrected
follow-up T1 in Panel B. The images displayed at the same cross section correspond to the same brain
area, indicating a good registration.

Using the flirt_apply function from fslr, we can apply the transformation matrix to the T2, PD,
and FLAIR images from the follow-up visit, previously co-registered to the T1 from follow-up, to
align them to the baseline T1 image space. The code below aligns the follow-up T2 image, previously
registered to the follow-up T1 image, to the baseline T1 image:

flirt_apply(reffile = "01-Baseline_T1_FSL_BiasCorrect", # register to this
infile = "01-Followup_T2_FSL_BiasCorrect_rigid_to_T1", # reg to Followup T1
initmat = "01-Followup_T1_FSL_BiasCorrect_rigid_to_BaseT1.mat", #transform
outfile = "01-Followup_T2_FSL_BiasCorrect_rigid_to_BaseT1" # output file
)

In Figure 5, we display each image after FLIRT has been applied. Each image is in the baseline
T1 image space, displayed at the same cross section. Each panel shows the same brain areas across
modalities, indicating adequate registration. We see that some areas of the brain are cropped from the
field of view, which may be problematic if relevant brain areas are removed. We have registered all
images with the skull and extracranial tissue included. A better method may be to perform registration
on brain tissues only, in which case we must perform brain extraction.

Brain extraction

The process of extracting brain tissue from the acquired image, referred to as brain extraction or skull
stripping, is a crucial step in many analyses. We will perform brain extraction using FSL’s brain
extraction tool (BET; Smith 2002; Jenkinson et al. 2005) using parameters recommended by Popescu
et al. (2012), which were derived from patients with MS. No other published R package on CRAN
(e.g. AnalyzeFMRI, RNiftyReg, or fmri) has brain extraction functionality for brain imaging. Other
neuroimaging software provide brain extraction, such as AFNI (Cox, 1996), SPM (Ashburner and
Friston, 2005), and Freesurfer (Fischl, 2012), and multi-atlas label fusion techniques (Doshi et al., 2013).

fslbet(infile = "01-Baseline_T1",
outfile = "01-Baseline_T1_FSL_BiasCorrect_Brain",
opts = "-B -f 0.1 -v", # from Popescu et al.
betcmd = "bet",
intern = FALSE)

We ran BET on the non-corrected T1 image as the -B option performs inhomogeneity correction
from FAST as part of the procedure. The option -f 0.1 denotes the fractional intensity (FI) parameter
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Figure 5: Between-visit registration results. The complete set of acquired images, first co-registered
within visit to the T1 image of that visit, then registered to the baseline T1 image using the follow-up
T1 to baseline T1 transformation matrix. All registrations performed rigid-body transformations.

Figure 6: Results from BET. In (A), we show the bias-corrected T1 image with the mask from BET
overlaid in red. In (B), we display the extracted brain. We see that the brain extraction performed well,
not including any areas of the skull or the neck while not discarding large areas of the brain.
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in BET: it varies between 0 and 1 and determines the location of the edge of the segmented brain
image; smaller values correspond to larger brain masks. In Figure 6, the bias-corrected T1 image is
shown with the brain mask overlaid in red (Panel A) and the resulting masked brain (Panel B). We see
that the brain extraction performed well, not including any areas of the skull or the neck while not
discarding brain tissue. Towards the back of the brain, some areas of the subarachnoid space remain,
which may be unacceptable for certain analyses, such as estimation of the volume of brain tissue.

Note that fslbet writes both a file containing the brain-extracted image and another image
containing the binary brain mask. As all other images are registered to the baseline T1 space, we can
use this mask to extract the brain from other images, such as the baseline T2 image, using the fslr
function fslmask. In this example, we mask the registered-to-T1, bias-corrected T2 image with the
binary brain mask, save the image to the filename specified in outfile, and also set the retimg option
to TRUE, indicating the fslmask command to return the image. The returned object is a ‘nifti’ object,
assigned to the R object mask:

mask <- fslmask(file = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1",
mask = "01-Baseline_T1_FSL_BiasCorrect_Brain_mask",
outfile = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1_Brain",
retimg = TRUE)

We now have all images in the same stereotaxic space with the brain extracted.

Registration to the MNI template

In many studies, information is aggregated across a population of images from different participants.
For the information to have the same interpretation spatially across participants, images from all
participants need to be aligned in the same stereotaxic space (“template” space), requiring registration
to a standard template image. A frequently used set of templates are provided by MNI (Montreal
Neurological Institute). We have registered the baseline T1 image to the MNI T1 template (Grabner
et al., 2006), included with FSL. As an individual’s brain does not necessarily have the same size as the
template, it is not appropriate to use rigid-body transformations. Instead, non-linear transformations
are needed. As these are patients with MS and have lesions, different non-linear registrations to
template space can have a large impact on the outcome of analysis (see Eloyan et al. 2014 for discussion).

We will first register the baseline T1 image to the T1 template using an affine registration, which
can perform scaling and shearing operations in addition to translation and rotation. Although an
affine transformation has more degrees of freedom than a rigid transformation, it may not provide a
registration sufficient for analysis. We will then use FNIRT (FMRIB’s Nonlinear Image Registration
Tool) to achieve better overlap of local brain structures (Jenkinson et al., 2012; Andersson et al.,
2007). As we are concerned with good overlap only in brain structures, and not in areas such as the
skull, we will register the brain-extracted brain images to the brain-only template. The fslr function
fnirt_with_affine will register using flirt with an affine transformation and then non-linearly
register this image to the template using fnirt. If this affine transformation is not executed before
fnirt, the image will not achieve the necessary scaling into the template space.

fnirt_with_affine(infile = "01-Baseline_T1_FSL_BiasCorrect_Brain",
reffile = file.path(fsldir(), "data", "standard",

"MNI152_T1_1mm_brain"),
flirt.omat = "01-Baseline_T1_FSL_BiasCorrect_Brain_affine_toMNI.mat",
flirt.outfile = "01-Baseline_T1_FSL_BiasCorrect_Brain_affine_toMNI",
outfile = "01-Baseline_T1_FSL_BiasCorrect_Brain_toMNI")

The results of the registration can be seen in Figure 7. Each panel represents a different axial slice
(z = 25, 45, 92, or 137) in the template space of the template image (A, C, E, G) or the registered T1
image (B, D, F, H). Each slice shows the registered T1 image has similar brain structure represented in
the same area as the template image, indicating good registration.

Applying transformations to co-registered data

Since all the data is represented in the same image space, we can apply the estimated affine transfor-
mation and non-linear warping coefficient field to each image to represent that image in template
space. The affine transformation must be applied with flirt_apply and the warping coefficient using
fsl_applywarp, which calls the FSL applywarp function.

Here we present the application of the transformations to the baseline T2 image, previously
registered to the baseline T1.
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Figure 7: Results from FNIRT. We present different axial slices of the template (A, C, E, G) and the
registered T1 image (B, D, F, H). The slices represented are 25 (A, B), 45 (C, D), 92 (E, F) and 137 (G, H).
We note that areas of the brain coincide between the template and registered image.

flirt_apply(infile = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1_Brain",
reffile = file.path(fsldir(), "data", "standard", "MNI152_T1_1mm_brain"),
initmat = "01-Baseline_T1_FSL_BiasCorrect_Brain_affine_toMNI.mat",
outfile = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1_Brain_toMNI")

fsl_applywarp(infile = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1_Brain_toMNI",
reffile = file.path(fsldir(), "data", "standard", "MNI152_T1_1mm_brain"),
warpfile = "01-Baseline_T1_FSL_BiasCorrect_Brain_affine_toMNI_warpcoef",
outfile = "01-Baseline_T2_FSL_BiasCorrect_rigid_to_T1_Brain_toMNI")

These two operations can also be performed in a single call to the fslr fnirt_with_affine_apply
function.

With multiple participants, this process yields a multi-person, multi-modal, longitudinal imaging
dataset that can be used for analyses.

Conclusion

The neuroimaging community has developed a large collection of tools for image processing and
analysis. R has a number of packages to perform operations on images; EBImage is one good example
(Pau et al., 2010). Much of the fundamental functionality of neuroimage processing is not currently
available in R, such as brain extraction and tissue segmentation. We present fslr to provide R users
functions for image processing and analysis that are based on FSL, an established image processing
and analysis software suite. Interfacing R with existing, powerful software provides users with
thoroughly-tested software and an additional community of users, which would not be available if the
functions were rewritten in R. fslr should be easy to use for any standard R user; the workflow allows
R users to manipulate array-like ‘nifti’ objects, pass them to fslr functions, which return ‘nifti’
objects. Moreover, as FSL and R are open-source and free, this software is readily available to all users.

There has been an increasing popularity of similar interfacing of tools within the Python commu-
nity such as Nipype (Gorgolewski et al. 2011; https://qa.debian.org/popcon.php?package=nipype).
As many users of R may not have experience with Python or bash scripting, we believe fslr provides a
lower threshold for use in the R community. Other packages provide R users additional neuroimaging
processing functionality such as AnalyzeFMRI, RNiftyReg, and fmri.

For example, other inhomogeneity correction methods exist, such as the popular N3 (Sled et al.,
1998) and N4 (Tustison et al., 2010), methods which are not implemented in fslr. ANTsR (Avants
et al., 2015) is an R package that interfaces with the ANTs (advanced normalization tools) software
suite (Avants et al., 2011). ANTs has implementations of these correction methods, an increased set of
registration techniques, and other methods for image processing. Other packages such as this, along
with fslr, can create a diverse set of tools for neuroimaging within R, building on preexisting and
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widely-accepted software.

Most importantly, as fslr is based on the R framework, all the benefits of using R are available,
such as dynamic documents, reproducible reports, customized figures, and state-of-the-art statistical
methods. These benefits provide unique functionality compared to other software packages for
neuroimaging.

All data and code processed here is located at https://github.com/muschellij2/FSLR_Data.

Supplemental material

Smoothing images

Let us show how to pass a Gaussian smoother over an image using fslsmooth (FSL fslmaths -s
function). First we will read in the registered-to-template baseline T1 brain image:

t1_to_temp <- readNIfTI("01-Baseline_T1_FSL_BiasCorrect_Brain_toMNI", reorient = FALSE)

We will smooth the image using a Gaussian smoother with σ = 3mm3:

smooth <- fslsmooth(t1_to_temp, sigma = 3, retimg = TRUE)

The result is presented in Figure 8A.

Thresholding images

The fslr fslbin function will binarize a ‘nifti’ image object: all values ≤ 0 are set to 0, and set to 1
otherwise. Let us binarize the registered image:

binned <- fslbin(t1_to_temp, retimg = TRUE)

The result is presented in Figure 8B.

The fslr fslthresh function provides more control for thresholding by setting a lower threshold
(thresh argument) and upper threshold (uthresh argument). These thresholds are inclusive, and will
set values less than (but not equal to) thresh or greater than (but not equal to) uthresh to 0. Voxels
with values between thresh and uthresh (inclusive) will be returned as their original value. Let us
threshold the smoothed image between 30 and 50:

thresh <- fslthresh(t1_to_temp, thresh = 30, uthresh = 50, retimg = TRUE)

The result is presented in Figure 8C.

Eroding and dilating images

In many applications, one wants to erode (i.e. shrink) an image mask. The fslr function fslerode
performs this operation. Note, if no options are specified for the kernel (in the kopts argument), the
default 3× 3× 3 voxel box kernel is used. Here we erode the binarized image from above and plot the
voxels eroded:

eroded <- fslerode(binned, retimg = TRUE)

The result is presented in Figure 8D. If one inverts the binary mask, performs erosion, and then
inverts the resulting erosion mask, this procedure is equivalent to dilation. The fslr function fsldilate
(version 1.4 and above) will also perform image dilation.

Extracting image information

Although most fslr functions provide an image as the designated output, one may wish to extract
image information from a NIfTI file on disk, without reading it into R. The fslr fslstats, fslval, and
fslhd functions are particularly useful and call functions of the same name from FSL.

For example, we can extract the number of slices in the third dimension of the bias-corrected T1
image using fslval:

fslval("01-Baseline_T1_FSL_BiasCorrect_Brain", keyword = "dim3")
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Figure 8: Results of fslr functions. We present the smoothed registered-to-template T1 image (A),
binarized image (B), thresholded image (C), and image of the eroded voxels after eroding the binarized
image (D).

[1] "124"

We could also extract the entire header using fslhd and assign it to an object:

img_hdr <- fslhd("01-Baseline_T1_FSL_BiasCorrect_Brain")

We can extract the mean of the image of non-zero voxels:

fslstats("01-Baseline_T1_FSL_BiasCorrect_Brain", opts = "-M")

[1] "51.264791"

Overall, there are many functions and options that allow the user to compute statistics or obtain
header information from an image on disk without having to load it into R, which can reduce
computation time.

Additional fslr functionality

Although the main goal of fslr is to interface R and FSL, there is a set of functions in fslr that are
not designed to interface with FSL, but rather provide helper functions for ‘nifti’ objects from the
oro.nifti package. We will display 2 example functions: cal_img and niftiarr. The cal_img function
resets the cal_min and cal_max slots on a ‘nifti’ object, which are used to determine colors when
plotting. The niftiarr function copies a ‘nifti’ object and replaces the .Data slot, which contains the
actual image intensity values, with a provided array.

Let us illustrate by discussing 2 ways to mask an image. We will read in the bias-corrected T1
image and the mask from BET:

base_t1 <- readNIfTI("01-Baseline_T1_FSL_BiasCorrect", reorient = FALSE)
base_t1_mask <- readNIfTI("01-Baseline_T1_FSL_BiasCorrect_Brain_mask",
reorient = FALSE)

One way to mask the T1 image is to multiply the image by the binary mask:

base_t1_1 <- base_t1 * base_t1_mask
class(base_t1_1)

[1] "array"

We see that the resulting object is an array and not a ‘nifti’ object (as of oro.nifti version 0.4.3).
This may be a problem when trying to plot or manipulate this object using methods for ‘nifti’ objects.
To address this problem, the niftiarr function in fslr inputs a ‘nifti’ object and an array, and returns
a ‘nifti’ object with the provided array in the .Data slot, copying over the image information from
the input ‘nifti’ object. As of oro.nifti version 0.5.0, the output from above will be a ‘nifti’ object,
but the function explained below, niftiarr, is still of use in cases when creating a new ‘nifti’ object.

base_t1_1 <- niftiarr(base_t1, base_t1_1)
class(base_t1_1)

[1] "nifti"
attr(,"package")
[1] "oro.nifti"
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Another way of masking the image is to subset the values of the image that are not in the mask
and setting those values to 0 (or some other value).

base_t1_2 <- base_t1
base_t1_2[base_t1_mask == 0] <- 0
class(base_t1_2)

[1] "nifti"
attr(,"package")
[1] "oro.nifti"

We see that this correctly returns an object of class ‘nifti’. One problem is that the we have
changed the data in the ‘nifti’ object base_t1_2 but did not reset the other slots in this object to reflect
this change.

In a ‘nifti’ object, the cal_min and cal_max slots equal the minimum and maximum values,
respectively, of the data. The orthographic function (from oro.nifti) uses these values for plotting;
also, if these slots do not equal the minimum and maximum, the writeNIfTI function (from oro.nifti)
will fail. The cal_img is a simple helper function that will set the cal_min and cal_max slots to the
correct values. Let us look at the range of the data and the cal_min and cal_max slots:

range(base_t1_2)

[1] 0.0000 409.3908

c(base_t1_2@cal_min, base_t1_2@cal_max)

[1] 0 0

An issue with the readNIfTI function from oro.nifti is that the cal_min and cal_max slots may be both
read as zero. Let us set these to the range using the cal_img command from fslr:

base_t1_2 <- cal_img(base_t1_2)
c(base_t1_2@cal_min, base_t1_2@cal_max)

[1] 0.0000 409.3908

We see that after these operations are done in different ways, the resulting ‘nifti’ objects are equivalent.

identical(base_t1_1, base_t1_2)

[1] TRUE

Additional helper functions such as these are included in fslr for plotting and image manipulation.
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