FT 5105 Food Microbiology

Instructors

Professor Terrence Madhujith (Coordinator) <u>tmadhujith@gmail.com</u>

Dr. Niranjan Rajapakse n_rajapakse@yahoo.com

Department of Food Science & Technology University of Peradeniya

Course Description

- No. of units: 02
- Mode of delivery: Lectures (30 h) and practical (04h)

Day, Time & Venue

- Day: Saturday
- Time: 4.00-6.00 p.m.
- Venue : Auditorium, PGIA old Building

Assessment Strategy

Component	Percentage
 Mid term examination 	40
• Quizzes	10
 End term examination 	40
 Assignment on practical 	10

Course Content

- Introduction TM
- Major groups of microorganisms in food & primary sources TM
- Factors affecting their growth TM
- Microbiology of different foods TM
- Spoilage microorganisms & Food Spoilage TM
- Fermentation, Fermented Foods TM
- Food borne diseases NR
- Detection and enumeration of microorganisms NR
- Indices of sanitary quality and microbial standards NR
- Molecular biology or microorganisms in food NR

 $\mathbf{TM}-\mathbf{Terrence}$ Madhujith; $\mathbf{NR}-\mathbf{Niranjan}$ Rajapakshe

INTRODUCTION

Lesson Aims

- To introduce
 - the importance of Food Microbiology
 - Different applications of Food Microbiology

INTRODUCION

- Food safety is one of the biggest concern
- Food- borne diseases are reported almost daily
- Food-borne diseases sicken many people and affect the health and well being and productivity of a population
- Expenditure on healthcare

Common Food-borne Outbreaks


- Common food-borne outbreaks
 - Salmonella
 - Shigella outbreaks
 - Cholera outbreaks
 - *E. coli* outbreaks
 - Listeria outbreaks

Food Spoilage

- Preservation of food is challenged by microorganisms
- Heavy losses of food in the world due to microbial action
- By controlling the factors necessary for their growth it is possible to control their growth and reproduction and thereby control spoilage

Beneficial Microorganisms

- Some microorganisms are beneficial
- Fermentation helps preserving and fabricating foods
- From the standpoint of environment, spoilage of food is beneficial

Some Fermented Products

- Yoghurt, cheese, curd, pannier
- Alcoholic beverages: beer, wine
- Vinegar
- Fermented vegetables
- Tofu
- Fermented cereals
- Vitamins, Antibiotics, Amino acids Hormones

Knowledge on microorganisms becomes helpful

- Food preservation
- Food processing
- To achieve high production
- To achieve high quality
- To develop new foods
- In functional food industry
- Novel uses

Highlights in Microbiology

- 1674 van Leeuwenhock discovered MO
- 1796 Jenner made a vaccine for smallpox
- 1859 Pasteur disproved the theory of spontaneous generation of mo
- 1865 Lister introduced antiseptic techniques
- 1876 Koch proved that specific mo cause specific diseases
- 1892 Iwanowski discovered viruses

- 1929 Fleming discoverd penicillin
- 1977 smallpox was eradicated from world
- 1982 Stanely Prusiner presented evidence that prions causes neurological disorder in animal and human
- 1983 Luc Montaigner and Robert Gallo discover HIV, the cause of AIDS
- 1995 Sequence of bacterial genome is completed by Craig Venter and colleagues

Historical Developments in Food Microbiology

- 1782 canning of vinegar is introduced by a Swedish chemist
- 1810 food canning is patented by Appert in France
- 1813 use of sulfur dioxide for preservation
- 1835 patent for canning condensed milk
- 1855 powdered milk is introduced by Grimwade
- 1880 pasteurization of milk is introduced in Germany
- 1928 First commercial use of controlled atmospheric storage for apples

Subgroups

- MOs are divided into six subgroups
 - Bacteria
 - Archaea
 - algae
 - Fungi
 - Protozoa
 - viruses
- These subgroups are not closely related to each other
- The main similarity is the size

Cell Structure

- Mos are divided into two subgroups again based on cellular structure
 - Prokaryotics
 - Eukaryotics

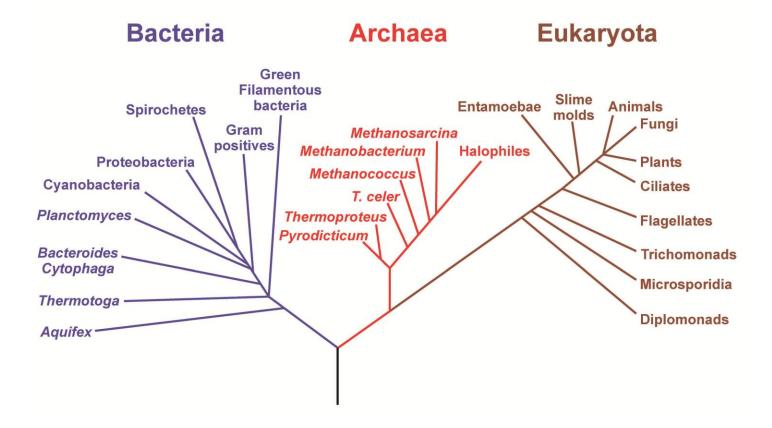
Characteristics of microbial subgroups

Subgroup	Cell type	macroscopic	photosynthetic
Bacteria	prokaryote	no	Yes
Archaea	prokaryote	No	Yes
Algae	eukaryote	Yes	All are
Fungi	eukaryote	Yes	No
protozoa	eukaryote	No	No
viruses	Acellular	No	no

Bacteria

- Very small in size
- Mostly unicellular
- Very diverse
- Different shapes
 - Rod star shaped
 - Spherical

square


- Helical
- Comma

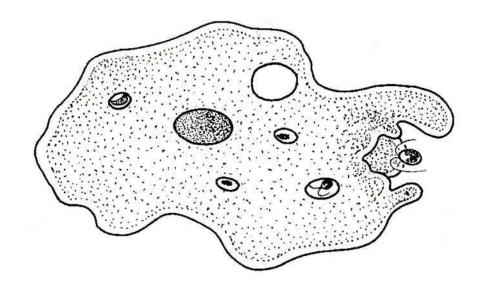
- Some can grow at -20 °C while some others can grow at 110 °C
- Some use organic matter while others can utilize inorganic materials
- Some are photosynthetic
- Some can live acidic conditons while some others can live in alkaline solutions

Archaea

- Separated only in 1970 from bacteria
- Considered to be ancient bacteria type
- First they were called archaebacteria
- They are very different from bacteria although they look like bacteria
- Largely extremophiles
- Some produce methane
- Methanobrevibacter smithii

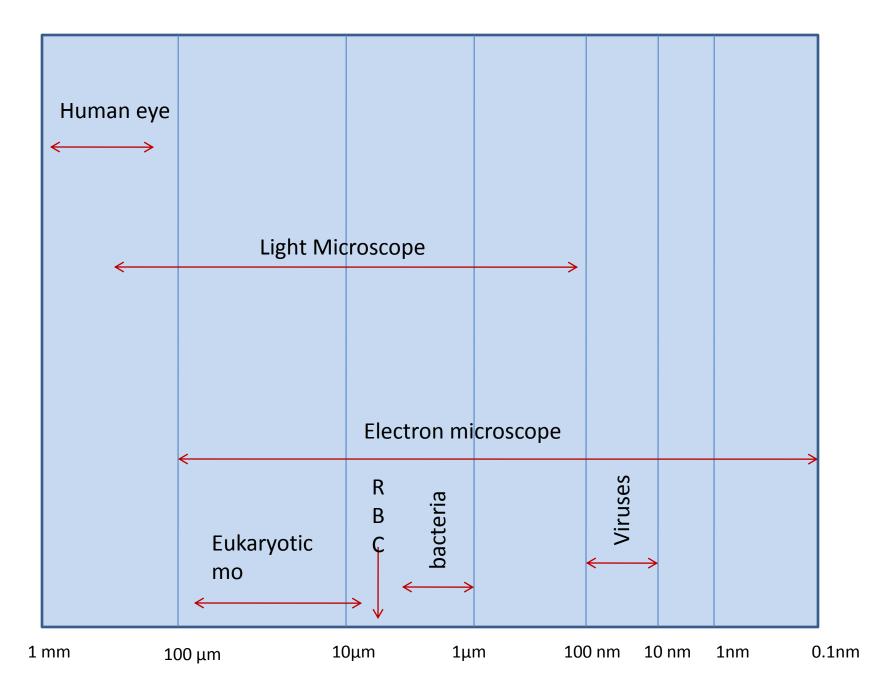
Phylogenetic Tree of Life

- Eukaryotes
- Carry out photosynthesis
- Unicellular or multicellular
- Microscopic or macroscopic
- Large algae look like plants but lack stems, roots or leaves


Fungi

- Include mushroom, yeast and mold
- In food microbiology yeasts and molds are considered separately
- Most are scavengers, thus ecologically important
- Some are pathogenic to humans and animals
- E.g. Pneumocystis carinii

- Most fungi grow as multibranched tubes making up mycelia
- Yeasts are unicellular
- Molds are generally multicellular
- Molds attack plants and cause plant diseases

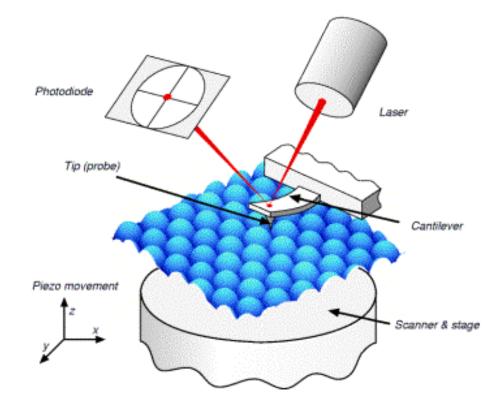

Protozoa

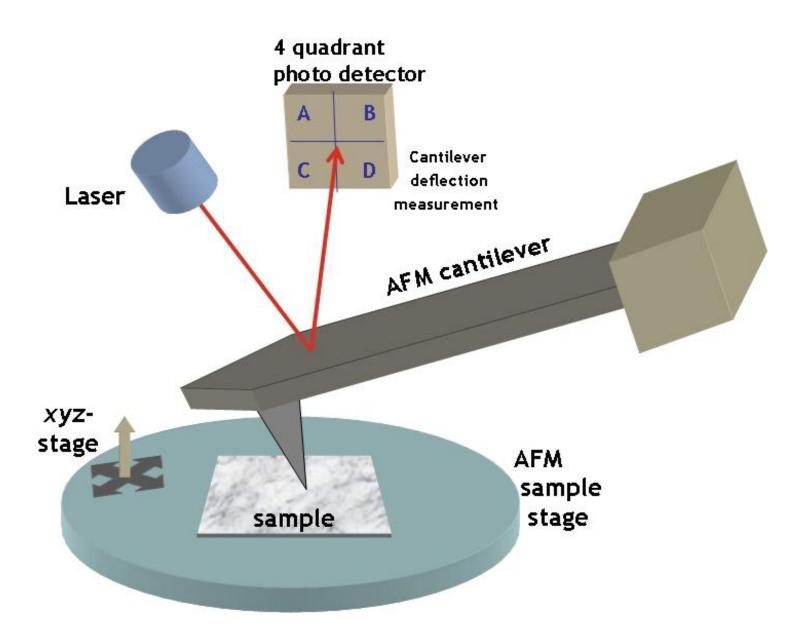
- Unicellular and motile
- E.g. amoeba
- Some cause diseases e.g. amoeba, African sleeping sickness and malaria

Viruses

- Acellular
- DNA or RNA particles packed in protein coats
- Sometimes bear a membrane surrounding the coat
- Incapable of reproducing on their own
- Can reproduce only in host cells
- Extremely small
- Largest virus is less than 1/10 of bacterial cell

Use of Microscopy


• Different types of microscopes are in use for examining MOs


Light microscopy

- Brightfield contrast achieved by absorption
- Darkfield brilliantly lit against a dark background
- Phase contrast contrast achieved by interference
- Fluorescence colored against a dark background
- Confocal produces 3D images by computer manipulations

- Electron microscopy
 - Scanning
 - Scanned proximity
 - Scanning tunneling
 - Transmission

• Atomic force

MAJOR MICROORGANISMS IN FOOD LECTURE - 02

Lesson Aims

• To introduce different microorganisms (both beneficial and harmful) present in association with food

Bacteria

- Acinetobactor
- Aeromonas
- Alcaligenes
- Altermonas
- Enterbactor
- Erwinia
- Escherichia
- Flavobacterium

- Pediococcus
- Proteus
- Pseudomonas
- Psychrobactor
- Bacillus
- Brochothrix
- Campylobactor
- Carnobacterium
- Citrobactor
- Corynebacterium

Clostridium Enterococcus Lactococcus Lactobacillus Leuconostoc Listeria Micrococcus Moraxella Salmonella Serratia

- Shigella
- Vagococcus
- Vibrio
- Yerisinia

Molds

- Alternaria
- Botrytis
- Colletotrichum
- Geotrichum
- Mucor
- Rhizopus
- Wallemia

Apergillus Cladosporium Fusarium Monilia Penicillium Trichothecium Xeromyces

Yeasts

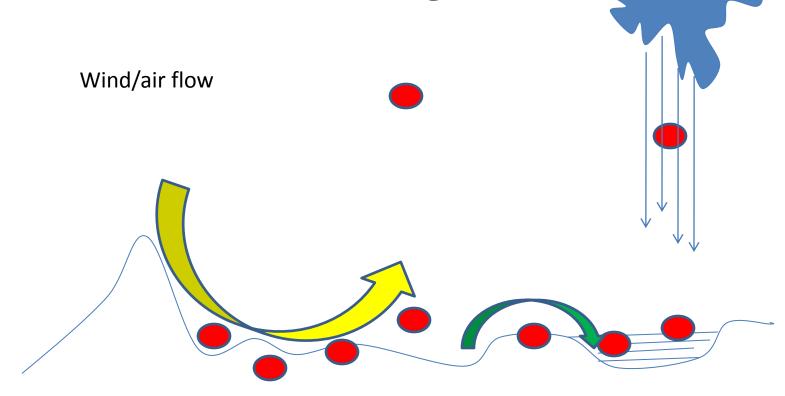
- Brettanomyces
- Schizosaccharomyces
- Rhodotorula
- Torulaspora
- Cryptococcus
- Hanseniaspora

Issatchenkia

- Pichia
- Saccharomyces
- Kluyveromyces
- Debaryomyces
- Zygosaccharomyces

Protozoa

- Cryptosporidium parvum
- Giardia lamblia
- Toxoplasma gondii
- Entamoeba histolytica


Primary Sources of MOs Associated with Food

- Each genus has its own nutritional and environmental requirements
- Eight different sources are identified
- 1. Soil and water
- 2. plants and plant products
- 3. Food utensils
- 4. GI tract
- 5. Food handlers
- 6. animal feed

- 7. Animal hide
- 8. Air and dust particles

1. Soil and water

- Many Mos share these two environments
- Thus, the two are put together

- Though many share the two environments there are some that can not share
- E.g. Altermonas spp need sea water salinity for growth and development thus they are not present in soil
- Seawater bacterial flora is essentially gram negative
- G(+)ves can present only as transients

2. Plant and Plant Products

- Many soil and water Mos get in touch with plants but only a few can live in plants.
- They are basically plant pathogens. e.g. Pseudomonas, Xanthomonas, Corynebacterium etc. and some molds.
- Others can not stay adhered to plant surface or impose pathogenicity in plants
- They are easily washed off to the ground and water.

3. Food Utensils

- Type of flora depends on the type of raw materials handled.
- E.g. the composition of flora in utensils handling fruits and vegetables is different from the utensils used for meat or fish

4. Gastro Intestinal Tract

- GI tract provides an ideal environment for some Mos
- Many pathogenic bacteria and all 4 protozoa live in GI tract
- Citrobactor, enterococcus, salmonella, Escherichia, Hafnia, Shigella and Vagococcus

5. Food handlers

- Depends on the environment and habits
- Chronic carriers
- Mos from nasal cavities, cuts, boils, bruises, open wounds etc.

6. Animal Feed

- An important source
- Spread onto animal hide
- Can cause diseases
- E.g. Salmonella in poultry
- Listeria monocytegenes from silage

7. Air and Dust

• E.g. gram positive bacteria in the air in food processing environments

8. Animal Hide

- A rich source of Mos.
- MOS residing in hide can easily get into animal products such as milk, meat