Fuel Cells for Stationary Power Generation

A Comprehensive Analysis of Technology, Plant Construction, and Marketing Strategy for Small Buildings

> The University of Oklahoma Fuel Cell Corporation

> > April 29, 2004

***₩M** Pot~ss

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

Mathematical Model and Economic Analysis Lola Soyebo

> Uncertainty and Risk Analysis Caroline Ihejiawu

****M D+~~&&

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

Mathematical Model and Economic Analysis Lola Soyebo

> Uncertainty and Risk Analysis Caroline Ihejiawu

****M D+~~&&

The OUFCC Product

The OUFCC offers the following services with the purchase of at least one stationary 200-250 kW fuel cell:

- All fuel cell "plant" parts (reformer, power conditioner, etc.)
- On-site consultation to suggest infrastructure changes, determine the best source of fuel, and help customer choose fuel cell type.

Phosphoric Acid Fuel Cell (PAFC)Solid Oxide Fuel Cell (SOFC)Proton Exchange Membrane Fuel Cell (PEMFC)

Delivery

- Trial-period of one year
- Warranty period of two years

Fuel Cell Advantages

The OUFCC will fill the need of supplying a source of electricity that has the following advantages:

- High efficiency and cogeneration applications
- Reliable
- Independent of a power grid
- Optionally dependent on fossil fuel
- Few maintenance costs
- Clean

The Market

Main customers:

- Hospitals
- Banks
- Post Offices
- Police Stations

Most Probable Location:

- High No. of Businesses
- High Air Pollution Levels
- High Electricity Price
- Away from markets already targeted

Our largest market is in the Southwest (AZ, NM, OK, TX)

Technology Competitors

Technology	Commercially Available?	Cogen Available?	Cost (\$/kW)	NOx Emissions (ppm)	Efficiency (%)
Fuel Cells	Yes	Yes	4000-4800	0	60-85%
Microturbines	Yes	Yes	700-1100	50	20-30%
Combustion Turbines	Yes	Yes	300-1000	150-300	20-45%
Reciprocating Engines (Generators)	Yes	Yes	300-900	45-200	25-45%
Stirling Engines	No	Yes	2000-50,000	Low	12-20%
Photovoltaic Systems	Yes	No	6000-10,000	0	5-15%
Wind Systems	Yes	No	1000	0	20-40%

The OUFCC's Goals

Current Goals:

Enter the stationary fuel cell market, make a profit, and establish a name and reputation.

Future Goals:

Develop a niche market. Eventually, as fuel cell technology becomes more widely accepted, compete as a leading provider of stationary fuel cells.

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

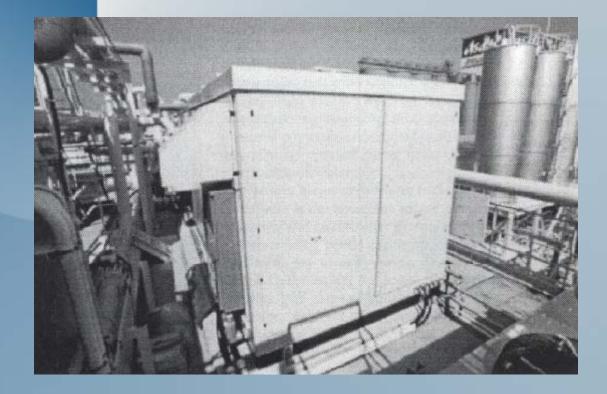
Mathematical Model and Economic Analysis Lola Soyebo

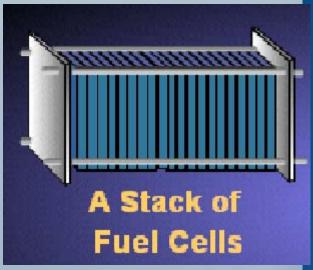
> Uncertainty and Risk Analysis Caroline Ihejiawu

****M D+~~&&

What are fuel cells?

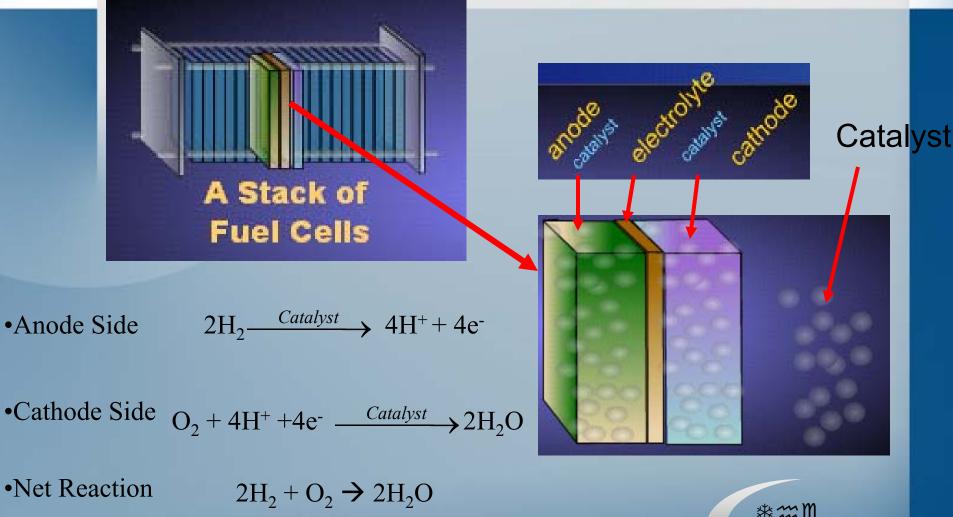
- Electrochemical devices
- Convert chemical energy directly to electricity and produce heat, with the help of catalyst
- Similar to batteries in operation
- Difference: batteries store energy while fuel cells produce electricity




History of Fuel Cells

- 1932: First successful fuel cell device was developed.
- 1959: A practical 5-kW fuel cell system was demonstrated.
- In more recent decades, fuel cell energy has been expected to replace traditional power sources.

***~~M** Potorss

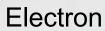

A Fuel Cell System

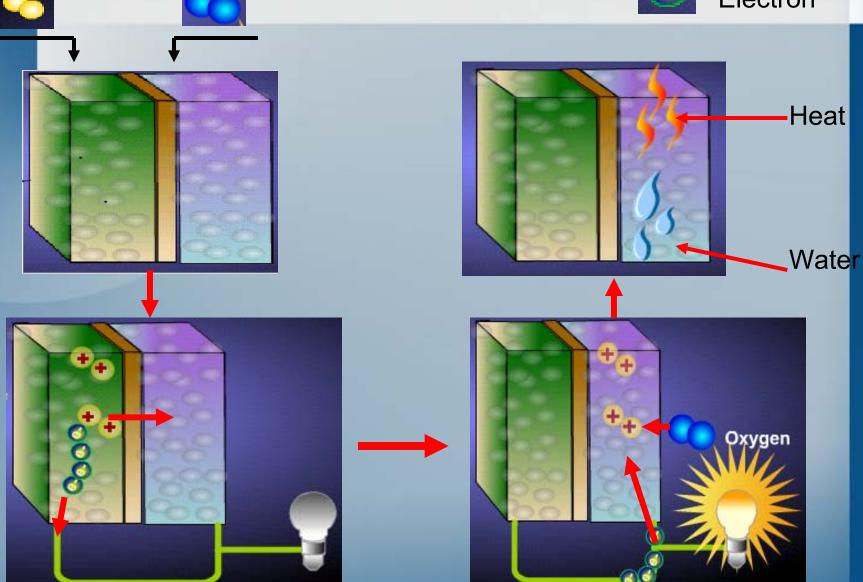
***~~**M Pot~ss

How Fuel Cells Work

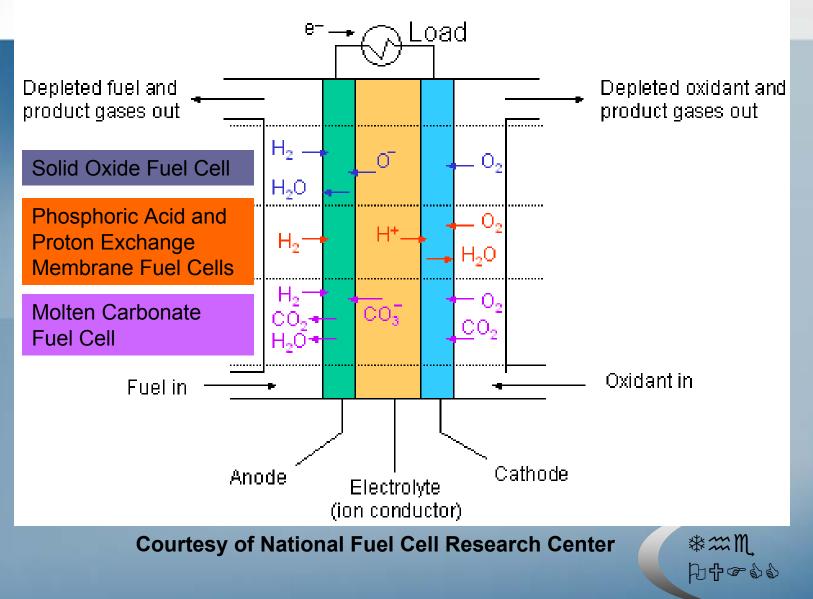
****M Potorss

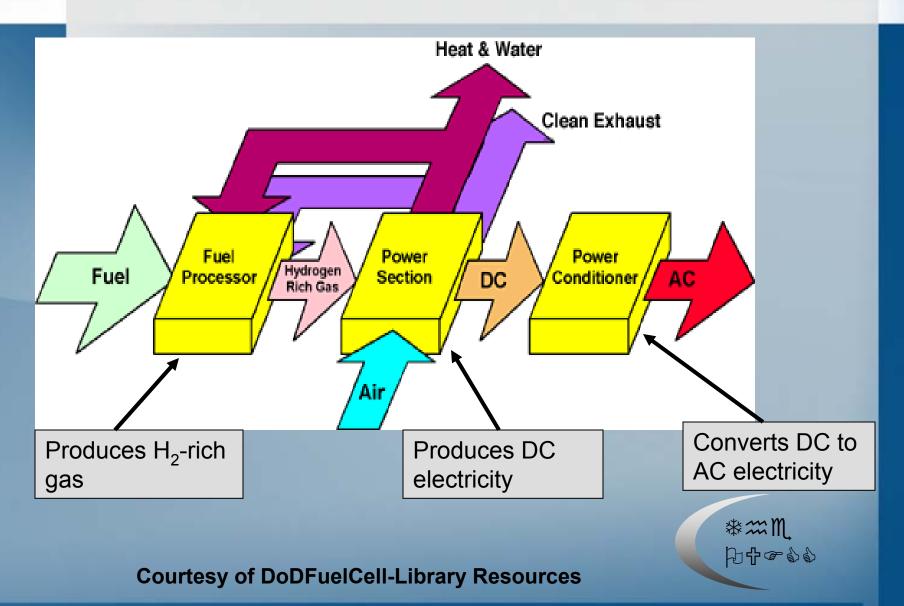
Hydrogen




Proton

Oxygen





Electrochemical Reactions for Diff. Types of Fuel Cells

FC REACTANTS AND PRODUCTS

Block Diagram of Fuel Cell System

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

Mathematical Model and Economic Analysis Lola Soyebo

> Uncertainty and Risk Analysis Caroline Ihejiawu

*....M ∂+° € € €

Fuel Cells: Stationary Power Generation

- Phosphoric Acid Fuel Cell (PAFC)
- Solid Oxide Fuel Cell (SOFC)
- Proton Exchange Membrane Fuel Cell (PEMFC)
- Molten Carbonate Fuel Cell (MCFC)

Fuel Cell Types

PHOSPHORIC ACID FUEL CELL (PAFC)

- Electrolyte: Concentrated Phosphoric Acid
- Most mature technology and widely diffused
- Supplied stationary power for 10 yrs
- Dimensions: 5.5m X 3m X 3m
- Manufacturing Cost: \$575,000

Fuel Cell Types

SOLID OXIDE FUEL CELL (SOFC)

- Electrolyte: solid metal oxide
- Excellent cogeneration capabilities
- Most desirable
- Dimensions: 6m X 3m X 3m
- Mfg. Cost: \$524,800

Courtesy of Global Thermoelectric Inc.

***~~ M** Potosé

Fuel Cell Types

PROTON EXCHANGE MEMBRANE FUEL CELL (PEMFC)

- Electrolyte: solid perflurosulfonic acid polymer
- Newest technology
- Lower Operating Costs
- Quick Start-Up
- High Sensitivity to Fuel
- Dimensions: 5.4m X 3m X 3m
- Manufacturing Cost: \$590,600

* m

╞╋╔╸╣╣

Fuel Cell Types MOL TEN CARBONATE FUEL CELL (MCFC)

- Electrolyte: liquid lithium-potassium carbonate salt
- Electrode corrodes @ high temp.
- Currently in low demand
- Fuel and catalyst flexibility

Fuel Cell Analysis

Criteria	Phosphoric Acid	Molten Carbonate	Solid Oxide	Proton Exchange
Efficiency	37% - 42%	50% - 55%	50% - 60%	50%
Operating Temp.	370 - 410°F	1200°F	1800°F	175°F
Durability/Corrosion Issues	Catalyst poisoned @ low temp.	Electrode corrodes @ high temp.	No poison or corrosion	Catalyst poisoned @ low temp.
Start-Up Time	1 – 4 hr	8 – 10 hr	5 – 10 hr	6 min
Peak Power Density	~ 200 mW/cm ²	~ 160 mW/cm²	~ 200 mW/cm ²	~ 700 mW/cm ²
Availability of Raw Materials	Massachusetts	limited	Ohio	Massachusetts
Cost of Raw Materials	\$560/kW	\$780/kW	\$377/kW	\$750/kW
Fuel	pure H ₂	flexible	flexible	pure H ₂

Fuel Cell Challenges

Expensive System

Conservative Market

Unproven Market and Technology

Fuel Supply

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Types of Products Manufactured Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

> Mathematical Model Lola Soyebo

Uncertainty and Risk Analysis Caroline Ihejiawu

****M D+~~&&

Hydrogen Production Fuels

- Gasoline/Diesel
- Coal
- Biogas
- Electrolysis of H₂O
- Methanol/Ethanol
- Natural Gas

****M

ᡗᡰᡗᢁ᠔᠔

Natural Gas Reforming

- Availability
- Mature Infrastructure
- Low Emissions

Halias Natural Gas Reformer for 7.5 kW PEMFC, ChevronTexaco

Steam Reforming Process

 $CH_4 + H_2O \rightarrow CO + 3H_2$

• Purpose $CO + H_2O \rightarrow CO_2 + H_2$

- Center of reforming process convert CH₄ to H₂ using steam.
- Method
 - High Temperature ~ 800 °C
 - Use H₂O to push equilibrium towards products
 - Nickel Oxide 4 hole cylinders

***∭** ₽₽☞\$\$

The Problem of Carbon Monoxide

 $CO + H_2O \leftrightarrow CO_2 + H_2$

- Purpose
 - Convert Carbon Monoxide Byproduct of Steam Reforming
- Method
 - Two reactors with different...
 - Temperatures ($T_1 \sim 450 \text{ °C}$, $T_2 \sim 225 \text{ °C}$)
 - Catalysts (chromia promoted iron oxide pellets, copper-zinc oxide pellets)

***~~M** D+~\$\$

The Problem of Sulfur

 $(C_2H_5)_2S + 2H_2 \rightarrow 2C_2H_6 + H_2S$

 $H_2S + ZnO \rightarrow ZnS + H_2O$

- Purpose
 - Reduce Sulfur content of gas
- Method
 - Cobalt-Molybdenum extrudes
 - ZnO spheres to remove H₂S
 - 300-400 °C

Fuel Cell Design Requirements

- SOFC
 - Sulfur reduction to less than 1 ppm
- PAFC
 - Sulfur to less than 50 ppm
 - CO to less than 0.5 mole %
- PEMF
 - Sulfur to less than 1 ppb
 - CO to less than 10 ppm

To Build or Not to Build

 ✓ Benefits
 ✓ Lower Per Unit Cost
 ✓ Opportunities for Process Integration
 ✓ Increased Design Flexibility

- × Disadvantages
 - Increased Capital Investment
 - Catalyst
 Regeneration and
 Handling
 - X Diffuse Market Focus

Potential Reformer Suppliers

- Ztek Corporation
 - East Coast
 - Flexible Fuel Stocks
 - Gasoline
 - Natural Gas
 - 4000 SCF H₂ produced per hour.
 - 2 m by 4 m by 2 m
 - Estimated cost of \$125,000 based upon
 Department of Energy study.

- ChevronTexaco
 - West Coast
 - Fuel Stocks
 - Natural Gas
 - Propane
 - Currently under scaled
 - Only 250 SCF H₂ per hour
 - 1.5 m by 1 m by 1 m

***~~N** Potoso

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

Mathematical Model and Economic Analysis Lola Soyebo

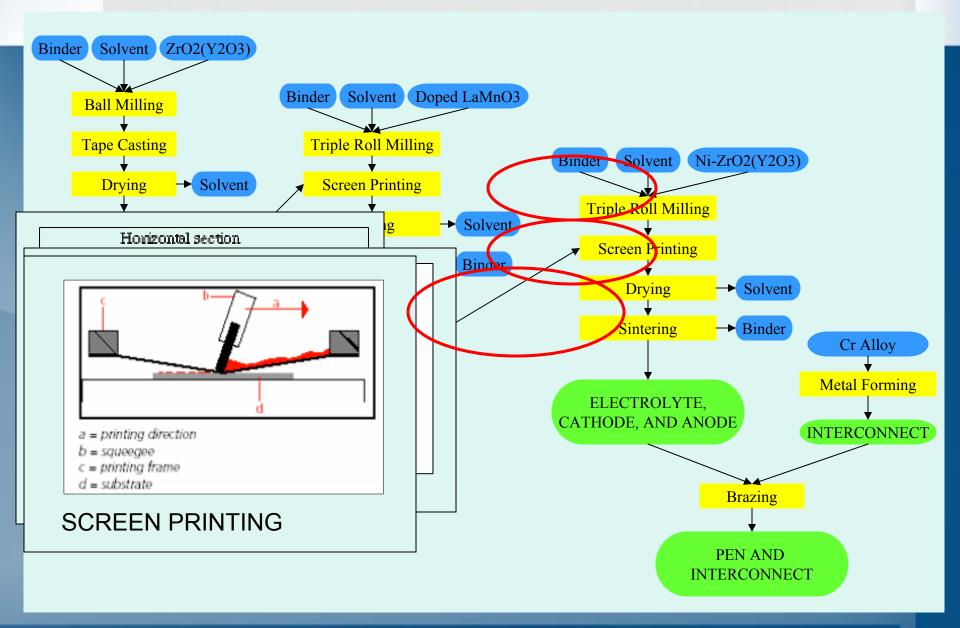
> Uncertainty and Risk Analysis Caroline Ihejiawu

****M D+~~&&

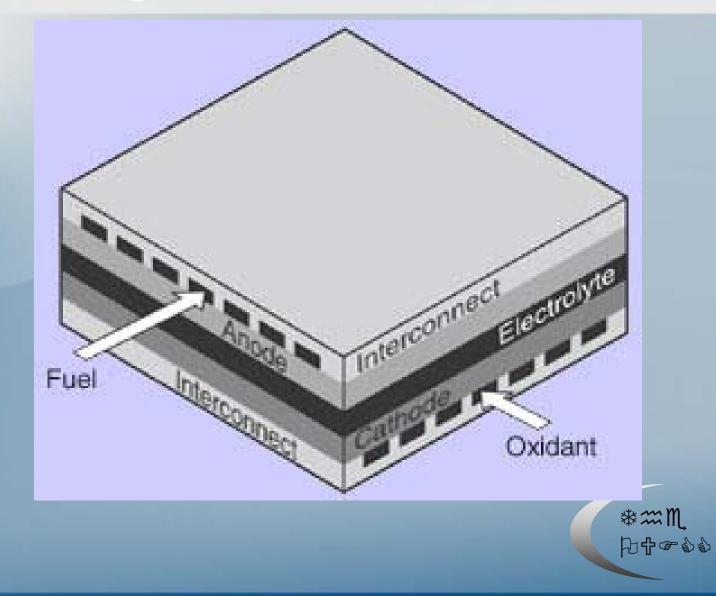
Fuel Cell Manufacturing Processes

- PAFC
 - Teflon bonded silicon carbide matrix suspends the phosphoric acid
- PEMFC
 - MEA is created through polymer processes
- SOFC

 Cathode, anode, and electrolyte are all produced from powder solutions


***~~N** Dt~~&&

SOFC Raw Materials


- Electrolyte $ZrO_2(Y_2O_3)$ powder
- Cathode doped LaMnO₃ powder
- Anode Ni-ZrO₂(Y₂O₃) powder
- Other Materials
 - Solvents
 - Binders
 - Plastisisers
 - Cr Alloy


Process Flowchart for SOFC

Diagram of the Unit Cell

Process Cost Break-Down

Factors: Labor, Power, Raw Materials

***₩M** Pot~dd

Equipment Cost

Process Description	Component	Equipment Description	Equipment Cost
Automated Tape Casting	Electrolyte	Tape Caster	\$300,000
Screen Printing	Anode, Cathode	Manual Station	\$20,000
Vacuum Leak Test	Fabrication	Inspection Machine	\$300,000
Continuous Sinter	Fabrication	Sintering Furnace	\$500,000
IC joining -Heat Treatment	Interconnect	Brazing Furnace	\$400,000
Milling	Anode, Cathode, Electrolyte	Ball Mill, Roll Mills	\$22,000

Courtesy of Department of Energy-Federal Energy Technology Center

***₩M** ₽₽~\$\$

Total SOFC Equipment Cost = \$2.4 million

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

Mathematical Model with Economic Analysis Lola Soyebo

> Uncertainty and Risk Analysis Caroline Ihejiawu

***~~M** Df~&&

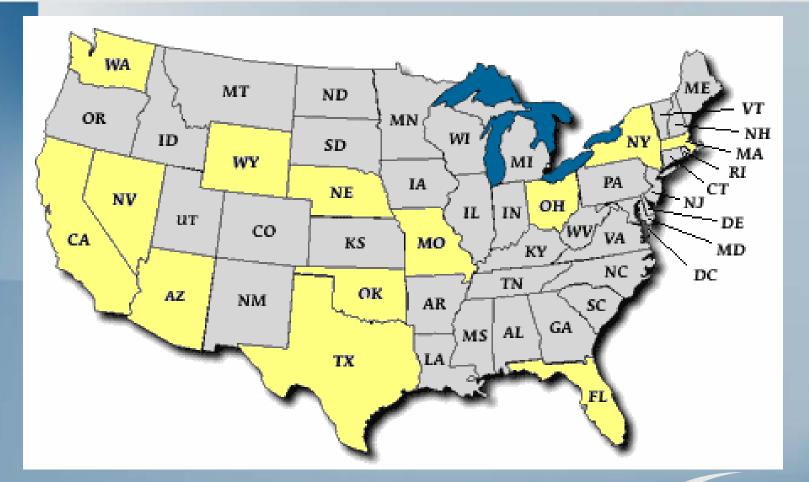
Plant Location Analysis

Origin of Raw Materials

MA and OH

Possible Market Locations

No. of Small Business Amount of Pollution Electricity Prices


Low Tax Rates

Property, Sales, Federal, and State Taxes

- Low Cost of Labor
 Median Hourly Wage
- Only the Lower 48 States Were Considered

≉**‱∭** ₽₽☞৩১

Plant Location Analysis

***~~M** Dt~~&&

Labor & Tax Analysis

Labor

- Number of Employees
- Annual Salaries by Position
- 3 Shifts per Day / 341 Days per year

Taxes

- State Corporate Income Tax
- Federal Corporate Income Tax
- Sales Tax
- Property Tax

Transportation Analysis

Two options – American Freight Company or The OUFCC fleet

If AFC is contracted:

- We will be Packing, Crating and Addressing the Shipments
- \$1.45 for each mile traveled
- Flat Fee \$668 per delivery
- Large City Surcharge of \$100

Transportation Analysis

If The OUFCC purchases own fleet:

- Trucks \$55,000 each
- Truck Drivers \$40,000/yr
- Diesel

 Licenses, Tires, Insurance and Maintenance

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

Tax, Labor, and Transportation Analysis Jennifer Treece

Mathematical Model and Economic Analysis Lola Soyebo

> Uncertainty and Risk Analysis Caroline Ihejiawu

****M D+~~&&

Mathematical Model

- Why use a model?
 - Consider multiple design options simultaneously.
 - Prediction of sales and added production over project lifetime.
- Type: General Algebraic Modeling System (GAMS)

Mathematical Model -GAMS

- Goal:
 - Determine plant and market locations
 - Determine annual production rate of each type
 - Maximize our objective function: NPW
- Types: Deterministic and Stochastic

Deterministic Model

Input

- Raw Materials
- Utilities costs
- Transportation
- Taxes
- Market demands
- Maximum capacity
- Selling price of fuel cells

Output

- Production rate
- Increase production
- Revenue
- Cash Flow
- FCI,TCI
- Objective Function: NPW

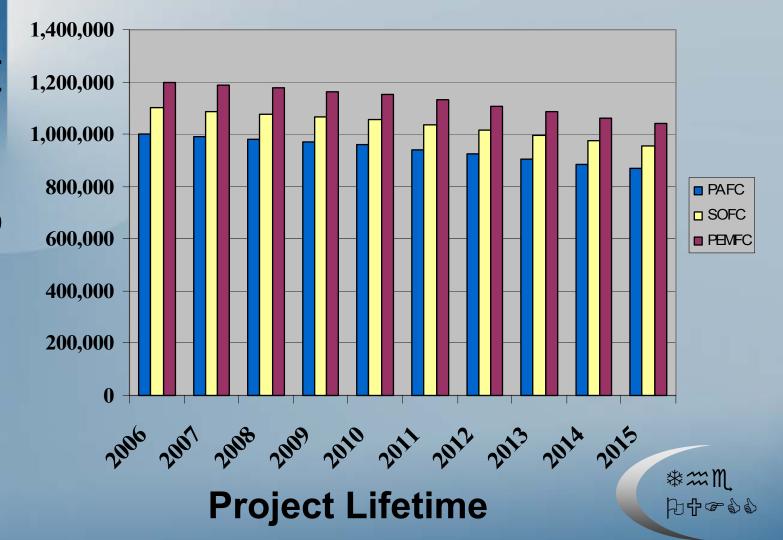
****M

ᡗ᠇ᡗᡃᢁ᠋ᢩ᠔᠔

Deterministic Model

Constraints

 Decision variable for plant location
 Maximum Capacity
 Market demand



Parameters

- Locations: 13
 - AZ, CA,FL,MA,MO,NE,NV,NY,OH,OK,TX,WA, WY
- Labor: 71 workers
- Operating Period: 341 days/yr; 24 hrs/day
- Project Life:10 years
- Selling Price: Varies over time
 - \$1.0 million for PAFC
 - \$1.1 million for SOFC
 - \$1.2 million for PEMFC

***∭** ₽₽☞\$\$

Selling Price

Selling Price (\$)

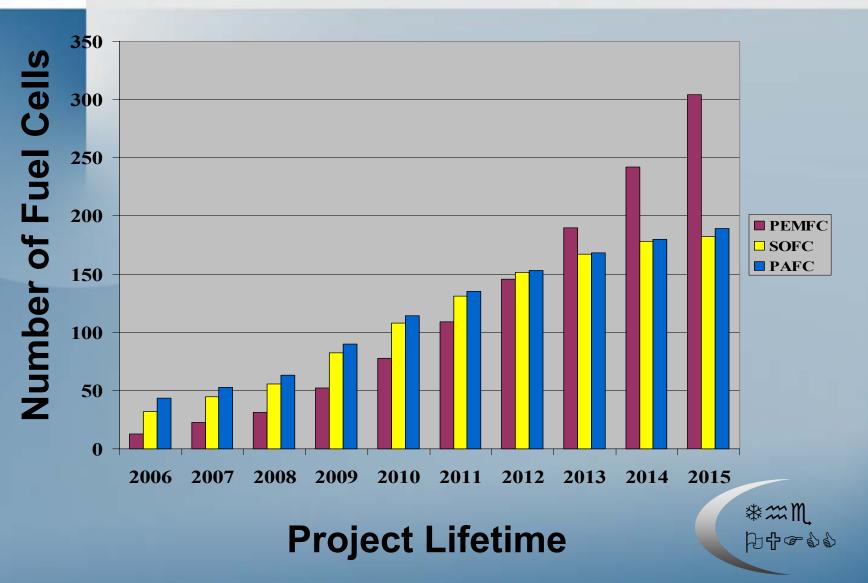
Mathematical Equations

$$FCI_i = FxCost_{i,t} + \sum_k \alpha * AddProd_{i,k,t}$$

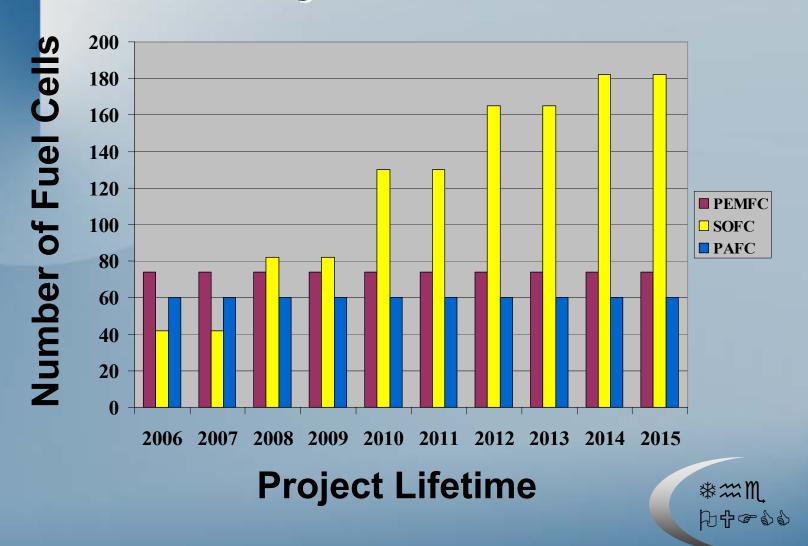
Revenue

FCI

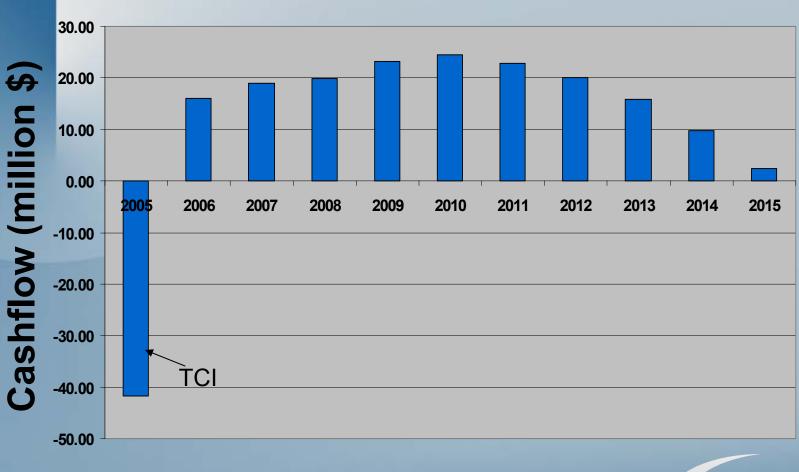
$$\operatorname{Re} v_{i,t} = \sum_{j} (Sell(k) * x(i, j, k, t) - TOC_{i,t})$$


Cashflow

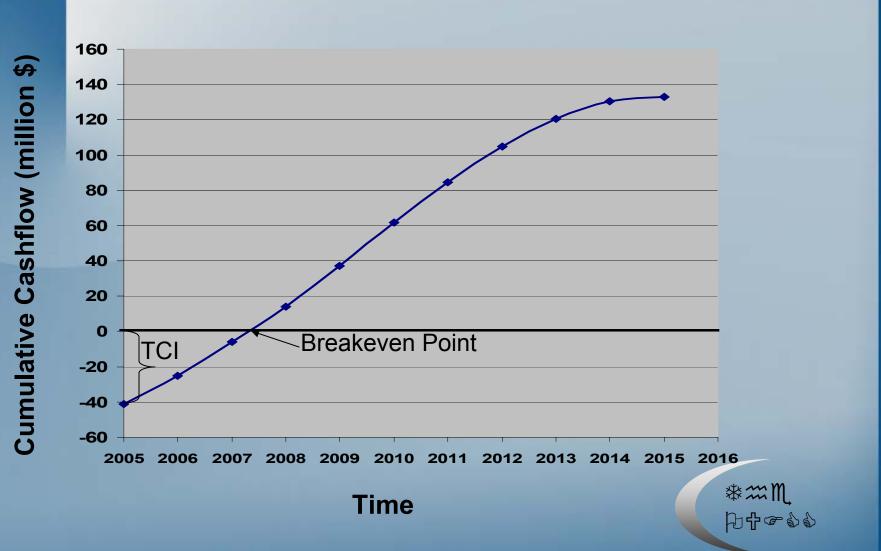
 $CF_{i,t} = [\operatorname{Re} v_{i,t} - (\operatorname{Re} v_{i,t} - Dep^*FCI_i)^*Tax_i] - TOC_{i,t}$


• Net Present Worth $NPW = \sum_{i} \sum_{t} (CF_{i,t} - TCI_{i}) / (1 + int^{Time_{t}})$

***~~**M Dt~&&&


Market Demand

Projected Sales


Cash Flow Predictions

Project Lifetime

***₩M** ₽¢°§§

Breakeven Chart

Deterministic Model Results

- Plant Location: Wyoming
- Plan to increase production other year
- FCI: \$35,789,500
- TCI: \$41,157,930
- NPW: \$83,154,900
- ROI: 23%

Presentation Outline

Business Overview and Market Analysis Kristen Martinez

> Technology Overview Thu Nguyen

Fuel Cell Analysis Caroline Ihejiawu

Fuels and Gas Reforming Justice Diven

Process Flowsheet and Equipment Costs Eric Daugherty

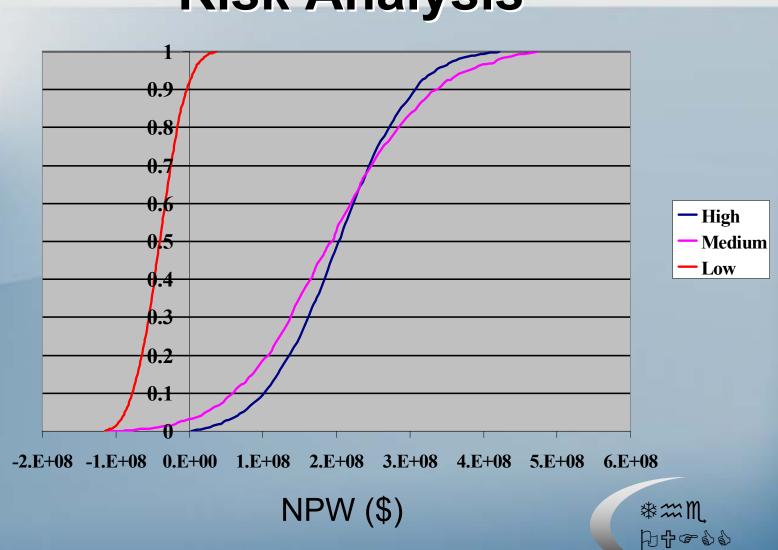
Tax, Labor, and Transportation Analysis Jennifer Treece

Mathematical Model and Economic Analysis Lola Soyebo

> Uncertainty and Risk Analysis Caroline Ihejiawu

***~~N** Dt~ss

Risk and Uncertainty


Uncertain Parameters

- Raw Material Costs
- Equipment Cost
- Selling Price

Examined 3 Scenarios

Deviated 20% around the mean values

***∭N** ₽₽~\$\$

Risk Analysis

Probability

Stochastic Modeling MAXIMIZE

Net Present Value considering all possible scenarios of the uncertain parameters

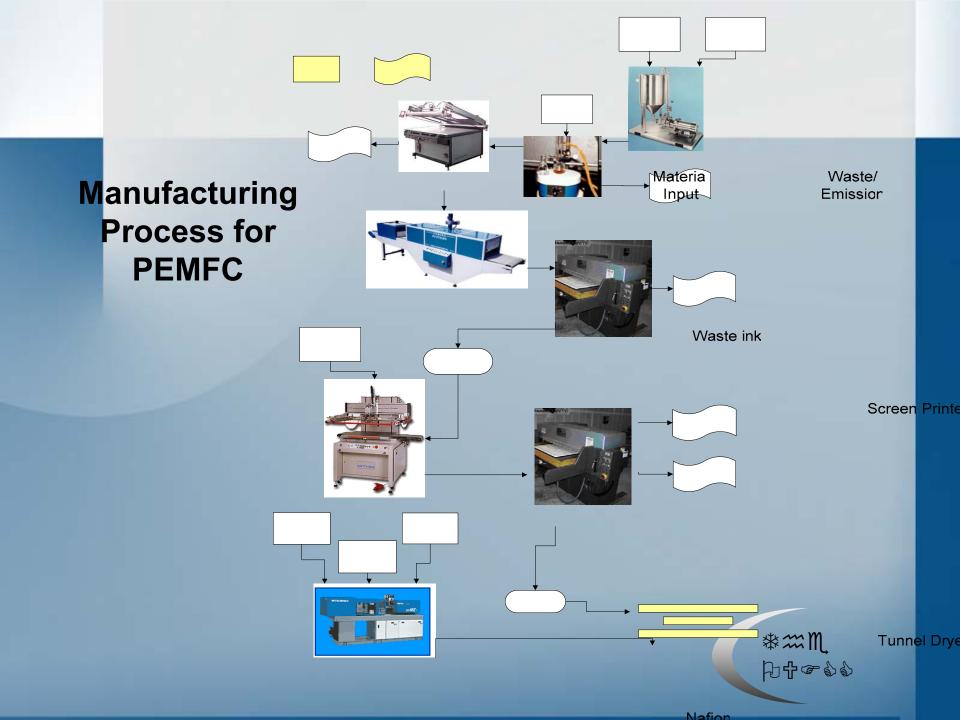
Stochastic Analysis

Thank you. Any **Questions?**

***₩M** |∂t°°§§

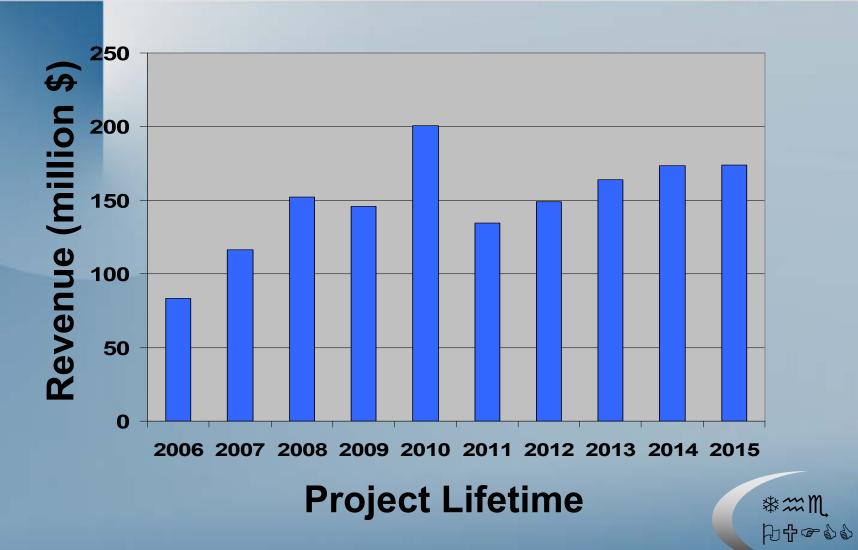
Extra Slides

Process Equipment



1---

Courtesy of Global Thermoelectric Inc.


Raw Materials for PEMFC

Component	Cost (\$)	
Hardware	187,500	
Electrode	17,400	
Catalyst	2,700	

Total manufacturing cost = \$576,600

Revenue Predictions

Still more questions?

***~~M** Potorss