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EXECUTIVE SUMMARY O.
). :

The U.S. Army is investigating the use of MIL-T-83133 JP-8,viationl'rbine.uel

(NATO F-34) in compression-ignition engines, In previous engine-dynamometer

tests, JP-8 was oompletely -compatible with the 6V-53T and NHC-250 engines,-

Tests with the 6.2L engine,,_howeveri indicated that the JP-8 fuel may cause

premature fuel injection pump deterioration, resulting in a change in maximum fuel

delivery volume and retarding the injection timing. The fuel injection pump

manufacturer has experienced premature wear problems with their pumps when

operated on low viscosity fuels, such as JP-8 and DF-A)in cold climates.. The pump

manufacturep now offers an "arctic1 fuel injection pump-that- isdesigned to operate

with lower viscosity fuels. The- objective o0, this program,. to determine if he-', /.7-

arctib pump is superior to the standard pump in 4Uability-t9 preventTfli premature

wear with JP-8 fuel,bbserved in the engine-dynamometer testing. I -- - - " .

A O0-hour test-was run on a bench rig in order to compare the arctic and standard

pumps. The pumps were subjected to identical operating conditions, running JP-8

fuel at full rack. Test resulti indicate that the arctic pump performed better than

the standard pump in injection timing change (caused by internal drive tang wear),

while the standard pump was better in governor thrust washer wear. .

Results also indicate that the arctic and standard pumps experienced the same

amount of delivery volume deterioration during the 200-hour test. Based on this

one test, the arctic pump is superior to the standard pump in JP-8 service. Use of

JP-8 fuel with either the arctic or standard pump, however, will produce an initial

maximum power loss (due to the lower heating value, viscosity, and specific

gravity) and may ultimately produce an additional loss in maximum power due to

deterioration of fuel delivery as a result of component wear.
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I. INTRODUCTION

The U.S. Army is investigating the acceptability of using MIL-T-83133 JP-8
Aviation Turbine Fuel (NATO F-34) in compression ignition engine-powered ground

equipment and vehicles. (1 ,2 )* The work is being conducted under a project entitled

"Development of Accelerated Fuels Qualification Procedures (AFQP)" which was

initiated in FY80 to develop more efficient and rapid military fuel qualification

procedures. A basic concern in the AFQP program is to address those fuels

expected to be used in the near to distant future in currently fielded military

engines. Examples might include broad specification fuels, synthetic fuels, high-

sulfur fuels, or the use of aviation turbine fuels in diesel-powered equipment and

vehicles. There is significant concern within the NATO community to consider use

of JP-8 (F-34) as an alternate to diesel fuel (F-54). (3 ) Using JP-8 would eliminate

winter waxing, filter plugging, and other problems observed in ground equipment

operating with diesel fuel.

Laboratory engine-dynamometer cyclic endurance tests were previously completed

using JP-8 fuel in three different Army diesel engines which are representative of

high-density fielded equipment. These are the 6V-53T, the NHC-250, and the 6.2L

engines. All engine systems are found in combat and tactical vehicles.

S The JP-8 fuel was completely compatible with the 6V-53T and NHC-250 engines.

No fuel-related deposits, wear, or used lubricant problems were observed in either

the 6V-53T (operated under a 240-hour test) or NHC-250 (operated under a 210-

A hour test) engines.( 4-7)

Two tests were conducted using the 6.2L engine operated on JP-8 fuel. One test

was conducted according to the Army/CRC 210-hour wheeled-vehicle cycle, while
the other was conducted according to the 400-hour NATO qualification cycle (AEP-

5).(8) The JP-8 caused fuel injection pump deterioration in both tests.(9,10)

During the 210-hour test, there was a gradual increase in fuel injection pump

delivery and a gradual retarding of injection pump timing. The increase in delivery

*Underscored numbers in parentheses refer to the list of references at the end of
this report.



volume was thought to be the result of wear on the roller shoes, while the retarded

timing was the result of drive tang wear.

During the 400-hour test, there was a decrease in fuel injection pump delivery rate

and a loss of 8.5 percent in maximum power. The cause of the decreased fuel

delivery was not determined. Drive tang wear was also evident in this test.

N The manufacturer of the 6.2L fuel injection pumps has recognized that its fuel
injection pumps have a premature wear problem when operated with low-viscosity

fuels.(L1) In order to alleviate this problem, the manufacturer now offers new

pumps designated as "arctic" pumps. These pumps utilize different transfer pump

liners and blades, governor thrust washers, and drive shafts. The objective of the

* work reported herein was to determine if the arctic fuel injection pumps are

superior to the standard fuel injection pumps in preventing the premature wear

problems noted in the e ngine-dynam ometer testing.

2



EL APPROACH

A. Equipment

For this program, six 1986 standard fuel injection pumps were obtained through a

local pump service representative. Designated as part No. 23500413, manufacturer

part No. DB2829 4520, these pumps are designed for use on the Commercial Utility

Cargo Vehicle (CUCV) family of Army vehicles. Of the six pumps, three were

converted to arctic pumps by the pump service representative according to the

appropriate service bulletin.(ll) The pumps were converted because new pumps

were not yet available for direct purchase. The arctic pumps received an

electroless nickel-plated governor thrust washer (unplated on standard), sintered

M-2 transfer pump liner and blades (tool steel on standard), and a new drive shaft

with a hard chrome-plated tang (unplated on standard). The conversion resulted in

three part No. 23500414, manufacturer part No. DB2829 4521 fuel injection pumps.

Both the standard and arctic pumps were calibrated by the service representative

" to factory specifications. Calibration included checks of injection timing and

volumetric delivery characteristics at a variety of speeds.

A test stand was fabricated that has the ability to run two 6.2L pumps side-by-side

at the same test speed, using a common fuel supply. The stand was powered by a

variable speed drive system capable of turning at speeds ranging 300 through 3600

rpm. The pumps were mounted on a flat plate using the same mounting configura-

tion as on the engine. The pumps were gear driven from a common drive gear,

usinq the driving and driven gears from the engine. Gears ran in an oil bath using

AL-14080-L, the same Grade 30, MIL-L-2104D lubricant as had been used in the

engine tests. Each pump was axially loaded using the same spring and button

arrangement as is used on the engine, with spring tension adjusted by a set screw.

The set screw was adjusted to obtain the same amount of spring compression as on

the engine.

The fuel system for the test is depicted in Fig. 1. Fuel supply was from a 55-gallon

drum provided with a band heater. The band heater was used for startup only, in

order to provide fuel at test temperature. Fuel was pumped from the drum using a

centrifugal pump with bronze impeller and internal pressure regulator. This pump

3
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was selected in order to preclude the introduction of any iron wear particles into

the fuel. The fuel then flowed through a primary (sock) filter and then through

individual cartridge filters (paper). The cartridge filters were the same as the ones
- used on the 6.2L engines. Supply pressure of the fuel was measured at the pump

inlets and was maintained at 3 psig throughout all tests. Supply lines from the
drum to the primary filter were 1/2-in. diameter, from the primary filter to the

secondary filters were 3/8-in. diameter, and from the secondary filters to the
pumps were 1/4-in, diameter. Each of the pumps was connected through high-
pressure fuel lines of 24-7/8 in. length to fuel injectors from 6.2L engines. Each of

the injectors from an individual pump emptied into a fuel collection canister. A

valve was provided at the exit of each fuel collection canister in order to obtain
fuel delivery volumes throughout the test. After leaving the fuel collection

canisters, the fuel flowed througi a fuel-to-water heat exchanger and then

returned to the fuel drum. The fuel-to-water heat exchanger was used throughout

4
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the test to maintain a fuel temperature at the injection pump inlet of 105*F (91'C).

Internal fuel pressure (transfer pump pressure) was measured throughout the test

by replacing the inlet port locking screw with a combination locking screw and

pressure tap.

Fuel temperature was measured at the pump inlet using a type J thermocouple and

a chart recorder. Fuel supply pressure was measured for each pump using a 0- to

15-psig gauge. Internal transfer pump pressure was measured for each pump using

a 0- to 100-psig gauge. Speed was measured using a magnetic pickup on one of the

driven gears and a digital readout. The entire rig was equipped with safety

shutdowns that would turn off the drive motor in the event of low fluid level in the

supply drum, low or high fuel temperature, low or high transfer pump pressure, or

fire. The intent of the emergency shutdown capability was to allow the rig tar

safely run unattended overnight, greatly shortening the test period and reducing

the manhours spent on a test.

B. Materials

The test fuel for these evaluations was AL-14216-F, the same JP-8 fuel used in the

engine-dynamometer tests. Properties of the test fuel are shown in Table 1. A

break-in fuel (Caterpillar 1-H/-G) was used in the test apparatus since the supply

of JP-8 was limited, and the purpose of the break-in run was to test the device, not

the fuel. The gearbox of the test apparatus was filled with AL-14080-L, the same

Grade 30, MIL-L-2104D lubricant as had been used in the engine-dynamometer

tests.

C. Test Procedure

After receiving the fuel injectioi pumps at Belvoir Fuels and Lubricants Research

Facility (BFLRF) at Southwest Research Institute, each pump was visually in-

spected for obvious differences between the arctic and standard pumps. The pumps

were identical except for the identification plate attached by the pump service

representative. Each of the six pumps was coded with a number. The code

numbers are shown in Table 2.

5
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TABLE 1. Test Fuel Properties, AL-14216-F, JP-8

MIL-T-83133A
Property Method Result Spec. Limit

Saybolt Color D 156 +15 Report
Total Acid Number, mg KOH/gm D 3242 0.005 0.015 max
Flash Point, C D 93 55.5 38 min
Freezing Point, C D 2386 -55.0 -50 max
Specific Gravity at 60 0C D 1298 0.8100 NR
Gravity, 0API D 1298 40.3 37 to 51
K. Vis at -200C, cSt D 445 4.14 8.0 max

at 400C, cSt D 445 1.26 NR
at 500C, cSt D 445 1.12 NR
at 1000C, cSt D 445 0.67 NR

Distillation Temp., 0C

IBP 0.5% D 2887 136.2 Report
5% D 2887 157.1 NR
10% D 2887 166.9 186 max
20% D 2287 178.3 Report
30% D 2287 188.6 NR
40% D 2287 197.9 NR
50% D 2287 205.2 Report
60% D 2887 212.5 NR
70% D 2887 220.3 NR
80% D 2887 230.0 NR
90% D 2887 239.0 Report
99.5% D 2887 262.6 330 max
100% D 2887 323.3 NR
Residue, vol% D 2887 0.0 1.5 max

Lubricity Wear Scar Dia., mm BOCLE 0.3 NR
Copper Corrosion, 2 hr at 1000C D 130 1A lB max
Sulfur, wt% XRF <.01 0.3 max
Mereaptan Sulfur, wt% D 3227 0.00016 0.001 max
Iron Content, ppm XRF <10 NR
Cetane Number D 613 41.5 NR
Net Heat of Combustion, Btu/Ib D 240 18532 18400 min
Hydrogen, wt% D 3178 13.7 13.5 min
Smoke Point, mm D 1322 22.2 19.0 min
Thermal Stability, JFTOT D 3241 Pass NR
Existent Gum, mg/100 mL D 381 0.2 7.0 max
Water Reaction D 1094 1 lB max
Water Separation Index D 2550 NP 85 min
Fuel System lee Inhib, vol% FTM 5340 0.04 0.10 to 0.15
Electrical Conductivity, pS/m D 2624 170 200 to 600
Particulate Matter, mg/L D 2276 1.1 1.0 max
Aromatics, vol% D 1319 19.0 25.0 max
Olefins, vol% D 1319 0.0 5.0 max
Saturates, vol% D 1319 81.0 NR

NR = Not Required
NP = Not Performed

6
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TABLE 2. Fuel Injection Pump Code Sheet

Code No. Pump Type Serial No.

1 Arctic 5113925
2 Standard 5113921
3 Standard 5113920
4 Arctic 5113931
5 Arctic 5113935
6 Standard 5113919

Each pump was then checked for full-power performance characteristics by running

it on a GM 6.2L engine coupled to a dynamometer. This procedure was followed in

order to assure that each pump was calibrated correctly and to establish before-

test baseline performance. Each pump was mounted to the engine in the same

timing orientation, with the timing line on the pump aligned with the timing line on

the engine. During the power determinations, injection timing was checked with a

Snap-On luminosity/ magnetic timing meter No. MT480.

Injection timing was checked at 700 rpm, no-load; 1500 rpm, 100 lb-ft load; and

1600 rpm, full-load. Cylinder No. 3 was used as the indicating cylinder. The

timing specification obtained from GM was 3 to 4 degrees after top dead center

(TDC) at 1600 rpm, full-load, and 1 to 2 degrees after TDC at 1500 rpm, 100 lb-ft

load. Although 700 rpm, no-load was not a factory specification point, timing was

checked at this point because it could easily be checked on a vehicle. Table 3 lists

the timing data from the full-power performance determinations.

Results of the before-test, full-power performance determinations indicated that

pump No. I exhibited noticeably less power than the other pumps throughout the

speed range. This is shown graphically in Fig. 2. In addition, the injection timing

of pump No. 1 appeared to be advanced by 1.5 to 3.5 degrees when compared to the

other pumps. Because of this, pump No. 1 was returned to the pump service

representative for re-calibration.

Each pump was also checked for internal backlash using an in-house developed

apparatus. The device consisted of a small locking pin inserted through the

7



TABLE 3. njection Timlin Measurements

Injection Timing, Degrees After TDC
Before Test After Test

Pump 700 1500 1600 700 1500 1600
No. Type rpm rpm rpm rpm rpm rpm

1 *Arctic 0.0 1.OB 3.5B NM NM NM
1 Arctic 2.0 0.0 0.5 2.0 2.0 0.5
2 Standard 3.5 0.5 0.0 3.5 1.0 0.5
3 Standard 2.0 0.5 0.0 NM NM NM
4 Arctic 2.5 1.0 0.0 5.0 1.5 0.0
5 Arctic 0.5 0.5 0.0 NM NM NM
6 Standard 3.5 0.5 0.5B NM NM NM

* = These timing measurements are before re-calibration by pump representative.
B = Before TDC
NM = Not Measured

250
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I 0- PUMP 2
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Figure 2. Before test torque curve with VV-F-800 DF-2 fuel
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timing hole (side cover) of the pump, an 8-in. arm fastened to the drive flange of

the pump, and a dial indicator to measure the deflection of the arm. The locking

pin effectively prevented the internal rotor from moving by engaging the case and

an Allen head bolt on the rotor. The deflection of the arm (rotation of the drive

flange) was measured using the dial indicator at an 8-in. radius under light hand

pressure. An attempt was made to use a spring scale to deflect the arm, but light

hand pressure yielded more repeatable results. The resultant internal backlash

numbers represent the total angular freedom of the input shaft with respect to the

case when the rotor is locked. This angular freedom is mainly the result of play

between the drive shaft tang and the rotor and, to a lesser extent, the result of

drive shaft bearing radial movement. This measurement was deemed important

because it permitted the quantification of the drive tang wear before and after the

test. Drive tang wear was apparent in the previously mentioned engine-dynamome-

ter tests. The pump manufacturer has apparently recognized this as a problem

since the arctic pumps have a hard chrome plating on the drive tangs. Drive tang

wear results in a shift in injection timing that is double the angular wear

experienced. The shift in injection timing could retard the combustion event, '

leading to power loss and possible overheating of engine components and lubricant.

The test rig was run on a shakedown run for 5 hours using nontest fuel injection

pumps and Caterpillar 1-H/l-G test fuel. During the shakedown, one fuel injection

line broke. The line was replaced, and the test continued. No other operational

difficulties were experienced during the shakedown run. The pumps were run at

1800 rpm (equivalent to 3600 rpm engine speed) at full rack with a supply pressure

of 3 psig and a fuel temperature of 1051F (91°C). The fuel temperature was chosen

to coincide with the fuel temperature from the engine tests.

After the shakedown run, the fuel system was flushed with the test fuel (AL-14216-

F, JP-8) and the filters changed. A sample of the test fuel was analyzed as shown

in Table 1. Pump Nos. 5 and 6 (arctic and standard, respectively) were placed on

the test rig. The standard pump was placed on the right side of the injection rig

when viewed from the drive side. The fuel drum was preheated to 1050F. Fuel

viscosity at 105OF was 1.25 cSt. The test was initiated late in the afternoon and

set to run overnight. At 0.5 test hours, a fuel injection line began to leak. The

unit was brought down manually, and the test was continued. At 4.0 test hours,

9
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another fuel injection line broke, shutting the unit down in the automatic mode

from low fuel level in the supply drum. Possible vibration problems were
investigated, and fuel injection lines were ordered from a second supplier.

Injection line quality and/or vibration problems were suspected since the upset end
of the fuel injection line had broken off, and cracks in the end fittings appeared to

be the problem with the first two failures. The line was replaced the next day, the
fuel preheated, and the unit started. Since the unit had shut down automatically

the day before, the speed control lever was necessarily in the full-speed position at

startup. Normal startup procedure was to start with the speed at minimum (600
rpm) and idle for approximately 3 minutes to allow the pump time to warm up.

After an emergency shutdown, however, the speed control lever remains in the

A full-speed (1800 rpm) position until the operator can manually crank it down to 600
rpm at the next startup. This is a function of the design of the variable speed drive

system which will not allow speed changes while the unit is stationary. Pump No. 6
(a standard pump) failed at startup at 4.6 test hours. The failure mode was a
broken drive shaft in the necked down area of the drive shaft. Disassembly and

inspection of Ehe failed pump revealed a locked rotor with severe galling at the
outlet ports of the rotor. The local pump service representative could assign no

positive reason for the failure except to suggest that contamination in the fuel may
have caused the failure.

No post-test full-power determinations or internal backlash determinations were
PS., performed on pump No. 6 since the broken drive shaft made such tests impossible.

Pump Nos. 3 and 4 were then mounted on the test stand. This time the arctic pump

(No. 4) was placed on the right side of the injection rig when viewed from the drive
side. The test was started and ran well until it was shut down by a faulty

temperature sensor 3 hours into the test. The rig was started in the high speed
mode the following day (since it had shut down automatically the day before) and
pump No. 3 (standard) failed almost immediately in the same failure mode as the
previous pump. The local pump service representative could offer no reason for
the failure. Fig. 3 and 4 depict the split rotors and stators and broken drive shafts
from the failed pumps. Again, no after-test, full-power curves or internal backlash
measurements were taken on the failed set of pumps.

10



.4 VJ

Figure 3. Broken drive dhaft, Figure 4. Broken drive shaft,
rotor and slit stator from rotor andspit stator ~ifro

p~ump No. 3 pump No. 6

Pump Nos. I and 2 were next mounted on the test stand. At this point, it was

decided to monitor the rigs continuously and run only 8 hours per day. This

procedure would allow the operator to bring the rig down manually in the event of

any problem and to avoid any high-speed startups. This approach was successful,

with the rig completing 200 hours of operation.

During the run, several problems were encountered, the most serious of which was

fuel injection line failure. The original fuel injection lines used on the rig failed

frequently during the test. The lines would begin to leak at the injector end and

would stop leaking upon tightening. This did not appear to be a vibration loosening

problem since the lines were still snug when they were leaking. During the course

of the test, five lines were replaced. The original lines were 24-7/8 in. in length

with a 0.090-in, diameter bore. They had a pressed on ferrule on the pump end and

a pressure swaged head on the injector end. The failures were occurring at the

(AFM1 .A) 11



swaged end and took the form of cracking at the tube-swage interface. The pump

service representative supplied BFLRF with replacement lines 24-1/2 in. in length
and 0.090 in. inside diameter. The replacement lines had brazed or silver soldered
heads on both ends. The original lines were replaced with the new lines on an
attrition basis. No problems were experienced with the new lines.

minor fluctuations in speed were experienced during the test. This was caused by
worn drive belts on the variable speed drive system. It was not feasible to replace

the belts during test since replacement belts were available only with a 4-week
lead time and required a complete teardown of the rig for installation. Belt
dressing on the drive belts minimized the speed fluctuations to approxima,-ely 50
rpm at infrequent intervals.

At hourly intervals throughout the test, an operator logged the date, time, test
hour, fuel temperature, supply pressure, internal transfer pump pressure, and speed

for both pumps. At 10-hour intervals, a composite fuel delivery was measured for

4 ~ each pump by routing the return fuel from the fuel collection canisters to a
graduated cylinder and measuring the flow time. This provided a measure of
delivered volume as the test progressed. Fuel samples were taken at 0, 100, and
200 test hours and tested for weal metals and lubricity (BOCLE). No significant
changes in fuel lubricity or wear metals were found in the 100- or 200-hour
samples. The test was completed, full-power performance curves were run, and
internal backlash measurements were made on each pump. Throughout the tests,
the identity of U. test pumps were masked, making it impossible to distinguish
between arctic and standard pumps. This was important in order to minimize
experimental bias in favor of either pump. All of the injectors used in the test
were checked for proper spray pattern and jerk pressure both before arnd after test.

After the test was completed, all pumps were disassembled for inspection.
Photographs were taken of the governor thrust washers from all six pumps.
Surface profiles were run on all six washers at four locations equally spaced on the
surface of each washer. Photographs were taken of the split stators, rotors, and
drive shafts from the failed standard pump Nos. 3 and 6. Photographs were taken
of all six drive shaft tangs. Photomicrographs were taken of the roller shoes from

all six pumps.

12
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111. DISCUSSION OF RESULTS

Results trom the first two tests (pump Nas. 3, 4, 5, and 6) represent only a few

hours of run time but are, nonetheless, comparable in terms of wear. The fact that

both standard pumps failed and both arctic pumps survived is disturbing. The

probable cause for the standard pumps failing was the high-speed startup procedure

used for the first two tests. The arctic pump drive shafts may have undergone a

slightly different manufacturing process than the standard pump shafts (in addition

to the hard chrome plating) and, therefore, been less prone to failure from shock 0 1
loading. Minor differences in the transfer pumps or assembly technique may have

contributed to the arctic pumps surviving and the standard pumps failing.

Fig. 5 depicts the wear on the drive tangs from pumps 1 through 6. Worn areas are

highlighted with white lines for better comparison. Note that in all cases, the

standard tangs have noticeably more worn area than the arctic tangs. This wear,

* when coupled with any rotor wear in the mating area, can effectively retard the

injection timing of the engine. 7he fact that the hard chrome plating decreased

* the wear in this area indicates that this aspect of the arctic conversion was an

improvement over the standard pumps. Before and after test internal backlash

* measurements for all pumps are tabulated in Table 4.

TABLE 4. Internal Backlash Measurements

Lash, Degrees
Pump No. TyeBefore Af ter

I Arctic 0.394 0.458

2 Standard 0.272 0.859

3 Standard 0.294 Broken

4 Arctic 0.430 Not Meas.

5 Arctic 1.884 0.344

6 Standard 1.719 Broken

13
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The data in Table 4 are comparable only in pairs (1-2, 3-4, 5-6), since only pairs of

* pumps experienced the same running conditions. The lash figures are measures of

total angular movement of the drive shaft with the rotor locked. This is the sum

bearing movement, seal flexure, and tang wear. These data are very limited sinceZ

* only pump Nos. 1 and 2 completed the test intact and were, therefore, comparable.

Note that the arctic pump experienced a 0.064 degree increase in lash while the

standard pump experienced a 0.587 degree increase in lash. The 0.587 degree

increase in pump lash demonstrated by the standard pump should equate to a 1.174

degree retardation of engine timing since the pump turns at half engine speed.

This retardation was measured with the snap-on timing light as 0.5 degrees

difference before and after test on pump No. 2. The 0.064 degree increase in

arctic pump No. 1 should equate to a 0.19.8 degree change in engine timing. The

measured value from the engine was 2 degrees retarding at 1600 rpm, full-load, Rnd

no change at 1500 rpm, 100 lb-ft load. Two other anomalies are worthy of note in

Table 4. Pump Nos. 5 and 6 exhibited initial lashes approximately six times higher

than the other pumps. This was very surprising and was checked a number of times

to minimize measurement error. The cause of the increased readings is not known.

Pump No. 5 exhibited less lash after running for 4 hours. One possible reason for

this decrease might be that seal swelling dominated the lash measurement and

masked any tang wear.

Fig. 6 shows the governor thrust washers from each of the pumps. This is one of

the parts changed on the arctic pumps. The arctic washers are electroless nickel

plated and, hence, have a gold coloration. In addition, the arctic washers have a

small bevel on one edge that is designed to provide clearance for the governor

weights. The wear scar appears to be deeper for all arctic pumps when compared

to their standard counterparts. The wear on arctic thrust washer No. I is

markedly deeper than its standard counterpart No. 2. Table 5 shows average wear

scar depth at the deepest part of the wear scar. These data were computed from
A surface profiles run with a Talysurf Model 10 at four equispaced locations on the

surface of each washer. The change to the electroless nickel plating does not

appear to improve the wear characteristics of the governor thrust washers and
may actually accelerate it under similar running conditions.

Fig. 7 depicts the composite fuel delivery volume from pump Nos. 1 and 2 plotted

against test hour. The one high point in the arctic curve may be operator error, or

16
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a. Pump I (Arctic) b. Pump 2 (Standard)

c. Pump 3 (Standard) d. Pump 4 (Arctic)

e. Pump 5 (Arctic) f. Pump 6 (Standard)

Figure 6. Governor thrus~t washers
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TABLE 5. Average Deepest Wear Sear Depths on Governor Thrust Washers

Pump No. KindDetm
1 Arctic 502
2 Standard 0.0037

*..3 Standard 0.0
4 Arctic 0.0025
5 Arctic 0. 0068
6 Standard 0.0

> 2

.425 c---Pump # 2 (Standard)

-- C -Pump# 1 (Arctic)

E

.4

0

4 43 
-5

- 3

Q)

0
(.
E
0 35 I

o0 25 50 75 100 125 150 175 200
Test Hours

Figure 7. Composite fuel delivery on test rig with JP-8 fuel

it may be an actual temporary increase in fuel delivery. In any event, the trend
for both the arctic and standard pump is a gradual decrease in maximum fuel

delivery.

The decrease in delivered volume shown in Fig. 7 was reflected in engine fuel

delivery as shown in Fig. 8. Note that the standard and arctic pumps experienced

18
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Figure 8. Full-load fuel flow

about the same amount of decreased fuel flow from before to after test. The fuel

deliveries shown in Fig. 8 were taken from pre- and post-test full-load perfor-

mance determinations.

The decrease in fuel flow produced a decrease in maximum load that the engine

would produced. Fig. 9 shows the observed load versus speed curves for the

arctic and standard pumps (1 and 2) both before and after test. Note that the

before-test arctic curve was taken after the re-calibration by the pump

service representative and is different from that shown in Fig. 1. Both the arctic

and standard pumps experienced about the same amount of deterioration in

maximum torque.

Exhaust common temperatures for the arctic and standard pumps before and after

test are shown in Fig. 10. Note that there are five apparent anomalies in the

arctic after-test curve. The causes of these high readings are unknown. Again,
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Figure 10. Exhaust temperature with VV-F-800 DF-2 fuel
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the exhaust temperatures were taken from full-load performance determinations

in exhaust temperature when compared to pre-test values.

Other parts examined for wear were the transfer pump liners, cam ring, and

rollers. No significant wear was evident in these areas. Transfer pump pressure

remained essentially constant throughout the three tests, indicating that there was

either minimal wear in the transfer pump or that flow was adequate to feed the

built-in pressure relief valve.

21



IV. CONCLUSIONS

* The arctic pumps for the 6.2L engine exhibit less drive tang wear than the

standard pumps in JP-8 service under full-rack full-speed conditions. If

allowed to progress, drive tang wear could lead to ignition timing retardation

in the engine and a resultant decrease in engine efficiency.

* The arctic pumps experience more governor thrust washer wear under the

same conditions.

* Both the arctic and standard fuel injection pumps exhibited a decrease in

maximum fuel delivery throughout the test. This decrease equates to a

maximum power loss for the engine. The cause of the decrease in fuel flow

has not yet been determined.

Visual inspection of the transfer pumps reveal no significant distress for

either the arctic or standard pumps. Transfer pump pressure remained

essentially constant throughout the test.

* On engine ignition timing may be a means to compensate for the effects of
drive tang wear. This would require cooperation with the engine

manufacturer to develop a procedure for measuring timing change and

compensating for it.

* These results were obtained at full-output conditions, which are believed to

be the most severe for the wear behavior studied. Actual vehicle service

conditions may reduce the rate of wear significantly. At this time, the data

do not allow estimation of when the observed pump wear would become

apparent in actual service.

* Results from these tests are very limited since data from only one dual 200-

hour run and two short failed runs were available.
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V. RECOMMENDATIONS

_ Additional testing using a statistically significant number of arctic and

standard pumps should be undertaken to quantify wear effects. This testing

could take the form of bench tests similar to those reported herein, or could

be a controlled field test.

* JP-8 should be used in 6.2L engines with the understanding that it will

produce an initial loss in maximum power (due to viscosity and heating value

effects) and may ultimately produce an additional loss in power due to fuel

injection pump deterioration.

* The engine manufacturer should be queried for a procedure to check ignition

timing in the fielded Commercial Utility Cargo Vehicles and High-Mobility

Multipurpose Wheeled Vehicles. Vehicles in cold climates currently using DF-

A should be checked for retarded injection timing. This could provide field

data on when (or if) potential problems may occur.

23
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