embraco Power IN. CHANGE ON.

FULLMOTION COMPRESSORS ELECTRONIC INVERTER

Product Manual Fullmotion CF10C

BEFORE YOU BEGIN

Incorrect operation could result in bodily injury or death due to electrical hazard.

Incorrect operation could cause bodily injury or could result in equipment damage.

NOTICE

Contain helpful suggestions or references to material not covered in this document.

Contents

1	INTF	DUCTION 1
	1.1	Product description
		1.1.1 Statute approval
	12	/NE compressor series description
	13	FME and VEG compressor series description
	1.4	Product handling
	1.5	Dimensions (mm)
		1.5.1 FMF and VEG compressor series
		1.5.2 VNE compressor series \ldots \ldots \ldots \ldots \ldots \ldots ϵ
	1.6	Package information
2	TECH	
2	2.1	Nomenclature
		2.1.1 Label information
	2.2	Product specifications
	2.3	nverter enclosure
		2.3.1 Product dimensions
		2.3.2 Connectors
		2.3.3 Product discards
	2.4	nformation about input inrush current
3	INST	LLATION 16
	3.1	Assembly instructions
		3.1.1 VEG and FMF compressor cable connection
		3.1.2 VNE compressor cable connection 19
		3.1.3 Forced ventilation 22
		3.1.4 Optional AC Fan switch control
		3.1.5 Inverter cables arrangement 25
	30	3.1.6 INPUL CADIE WILH IEITILE IIILEI
	5.2	
4	OPE	ATION 25
	4.1	Frequency control mode
	4.2	Urop-In control mode
		4.2.1 FIISE TIME PUIL-DOWN
		+.2.2 INVITUAL CYCUTY
		$+7$ λ

CONTENTS

	4.3 Serial	control mode	 33
	4.3.1	Serial specifications and Internal Circuit	 33
	4.3.2	Commands	 35
5	DIAGNOSTI	CS	39
	5.1 LED in	ndication	 39
	5.2 Troubl	leshooting	40

GENERAL PRECAUTIONS

Chapter 1 INTRODUCTION

Embraco's Fullmotion compressors are ideal for commercial applications where wide voltage range, fast pull down, better performance, fine temperature control, lower power consumption and very low noise and vibration levels are required. This is possible thanks to the use of an electronic inverter capable of driving the compressor at different speeds and consequently, controlling its refrigeration capacity.

Efficiency	Fullmotion Compressors technology al- lows the compressor to operate at dif- ferent speeds, adjusting it according to demand. When side by side with a con- ventional compressor, the energy con- sumption is up to 45%.
Flexible	Indicated for commercial refrigeration system, provides more flexibility in cus- tomized solutions through inclusion of electronics already coupled to the com- pressor, opening a wide variety of appli- cations.

CHAPTER 1. INTRODUCTION

1.1 Product description

1.1.1 Stand alone inverter

	Composed by
Indicator	Description
1	Plastic body
2	Plastic cover
3	Compressor cable output connection
4	Input/ Earth/ Communication cables connection

Figure 1.1: Stand alone view

CF10C inverter series are designed toNOTICEbe used only in built in appliances, with
not accessible machine compartment.

1.1.2 Institute approval

1.2 VNE compressor series description

1.3 FMF and VEG compressor series description

1.4 Product handling

1.5 Dimensions (mm)

1.5.1 FMF and VEG compressor series

1.5.2 VNE compressor series

1.6 Package information

The inverters are packed in a carton box. Figure 1.2 shows the used box to pack the product. The quantity of products inside the box may change due to internal or external requirements. Box dimensions can be changed without previous information.

*Dimensions are in mm.

Chapter 2

TECHNICAL SPECIFICATIONS

2.1 Nomenclature

CF 10 C KK X U.Y VV W ZZ

- CF Driver Type
- 10 Family
- C Generation
- KK Subversion
- X Power Supply
- U.Y Protective Function
- VV Eletronic Configuration
- W Enclosure
- ZZ Cables and Peripherals

Example: CF 10 CO2 N 0.1 01 A 00

- CF Fullmotion controller
- 10 High power series (500 W 1000 W)
- C 3rd generation
- 02 Product subversion
- N Single Voltage 50 60 Hz
- 0.1 HW PEC version 1
- 01 Eletronic configuration version 01
- A Stand Alone
- 00 Cable configuration version 00

2.1.1 Label information

Next image shows the product label description.

[em	npraco	CF10CKK X U.Y VV W ZZ VN			/NE		
	Input	220V-240	V / 50	60Hz	5.0A	<u>4</u> hp	1PH	
	Output	286V -	33 to	75Hz	6.5A	3	3PH	
	CAUTION: U	ise this inverter on	ly with VNI	Compressor Se	ries	ĸx	RoHS	
Manufactur	er code	\uparrow	\uparrow	Batch	n code	/ Se	rial ni	Jmber
	Prod	uction site	Рго	duction dat	e			

2.2 Product specifications

	General Specificati	ONS					
Input rated voltage r	Input rated voltage range 220 V-240 V						
Input operating volt range	age	160 V-264 V					
Input frequency range 50 Hz to 60 Hz Control mode Frequency, Drop-in and Serial							
Parameter	VEG	VNE	FMF				
Maximum input current Maximum input power Output frequency range Maximum output current	2.62 A 540 W 60 Hz to 150 Hz 3.3 A	5.00 A 1100 W 33 Hz to 75 Hz 6.5 A	5.00 A 1100 W 60 Hz to 150 Hz 6.5 A				
Compressor speed range	4500 rpm	4500 rpm	4500 rpm				
Stora	an and Operating a	conditions					

Storage and Operating conditions

Storage humidity	< 85%
Storage ambient temperature	-20 °C to 85 °C
Operating humidity	< 85%
Operating ambient temperature*	-20 °C to 60 °C
Air forced ventilation (min) [†]	2 m/s
Ingress Protection Grade [‡]	IPXO

^{*}VDE agency approval temperature.

⁺Air flow over the inverter heat sink, as shown in Figure 3.9.

[‡]Ingress Protection grades are described in IEC 60529 (Degrees of protection provided by enclosures).

2.3 Inverter enclosure

2.3.1 Product dimensions

Figure 2.1: Stand alone dimensions

2.3.2 Connectors

This section presents the available connectors of Fullmotion CF10C Inverter, as well as their propper connections. The final enclosure without plastic cover is presented

to improve understanding. The manufacturer part number of each connector can be found in the following table.

Figure 2.2: Connectors

Connectors part numbers

Indicator	Description	Part number	Insulation
1	Serial Communication	S3P-VH (LF) (SN)	Reinforced
2	Frequency input	S2P-VH (LF) (SN)	Reinforced
3	Drop in	1217754-1	Functional
4	AC input (L+N)	1217754-1	Functional
5	AC Fan*	MSLO 9402 - 002 - 00A - 960 - 000 - 00	_
6	Additional Drop in (optional)	1217754-1	Functional
7	Safety Earth	63849-1	Basic

*Mates with 1/4" faston receptacle. Fan connector assemble is optional.

Figure 2.3: Motor cable for VEG and FMF compressor series

Figure 2.4: Motor cable for VNE compressor series with OLP

Figure 2.5: EMI Earth and Safety Earth Cable

Cable Specification

Indicator	Description	Part Specification	Соlог
Figure 2.3	Standard Motor Cable	UL STYLE 2586 105°C 600 V	Black, Blue and Brown
Figure 2.4	Motor Cable With OLP	UL STYLE 2586 105°C 600 V	Black, Blue and Brown
Figure 2.5	Safety Earth Cable	UL STYLE 1015 105°C 600 V	Green/Yellow
Figure 2.5	EMI Earth Cable	UL STYLE 1015 105°C 600 V	White

Inside the inverter enclosure, the compressor motor and Earth cables must be connected as shown in Figure 2.6. Earth cables shall always be connected first to avoid ESD.

Figure 2.6: Motor cable

2.3.3 Product discards

• Do not remove the inverter from its case.
 Do not incinerate any Embraco's inverter. Contact your local authorities, if you need to incinerate this product for disposal.
 Inverters should not be mixed with general waste.
 If you wish to discard this product, please contact your local authorities or dealer for the correct method of disposal, for proper treatment, recovery and recycling.
 This device is RoHS compliant, neverthe- less the correct disposal of this product will help to save valuable resources and prevent any potential negative effects on human health and the environment (e.g.: to avoid ground disperse) which could oth- erwise arise from inappropriate handling.

2.4 Information about input inrush current

Inrush Spe	cifications	
Allowed inrush events Inrush current (cold state) Inrush current (hot state) Input fuse melting (i²t)	1 per day 235 A peak 357 A peak 209 A²s	

Inrush current refers to a transient phenomenon that occurs rarely and only when the power supply cord is connected to the power grid or in the case of power grid shutdown. CF10C inverter series are designed accordingly and can reliably withstand this current along the expected product lifespan. Excessive inrush current events may damage the inverter. Regarding inverter installation, Embraco recommends to have the appliance supply cord directly connected to inverter power input without any disconnection means. Please, contact Embraco Technical Support for any assistance or application assessment needed.

Chapter 3 INSTALLATION

3.1 Assembly instructions

Figure 3.1: Inverter overview

The Fullmotion CF10C Inverter has a quick and easy assembly method. To perform the assembly steps, remove the plastic cover and make sure to correctly follow the instructions.

The Fullmotion CF10C Inverter comprises three basic elements:

- 1. Plastic body;
- 2. Electronic board;
- 3. Plastic cover;
- 4. Heat sink.

CF10C inverter is compatible with three compressor's family. Subsection 3.1.1 describes the compressor cable connection for VEG and FMF series, while subsection 3.1.2 the cable connection for VNE compressor series.

3.1.1 VEG and FMF compressor cable connection

To connect the inverter to the compressor, attach the motor cable on the hermetic compressor terminal, as shown in Figure 3.2 and Figure 3.3*.

Figure 3.2: Step 1

Figure 3.3: Step 2

After performing the connections, assemble the compressor fence cover as shown in the following sequence (Step 3 and 4).

Figure 3.4: Step 3

Figure 3.5: Step 4

^{*}The figures displayed here are merely illustrative

To disassemble the fence cover, the following sequence must be adopted*.

- 1. Introduce a screwdriver into the clip in the top of the fence cover and push it down;
- 2. To remove the cover, push it down and pull out of the compressor.

Figure 3.6: Step 1

Figure 3.7: Step 2

^{*}The figures displayed here are merely illustrative

3.1.2 VNE compressor cable connection

To connect the inverter to the compressor, attach the motor cable on the hermetic compressor terminal, as shown in the sequence*.

Step 1: Check the cord anchorage position on the fence support (1).

Step 2: Slide cord anchorage snap for attachment on fence (2).

Step 3:

Grounding terminal to fasten the screw in cord anchorage bracket (3) (screw torque 0.1 - 0.6 N.m.).

*The figures displayed here are merely illustrative

CHAPTER 3. INSTALLATION

Step 11:

Place terminal board cover on fence support top-down (11) until complete fit (12).

Step 5:

Inverter conector insertion in the compressor hermetic terminal (5).

Step 6:

Insertion of grounding cable

Step 7:

Inverter terminal cables on OLP (7).

Step 8:

Inverter cables positioning on cord anchorage bracket (8).

Step 9:

Insert and screw the cable clip (screw torque 0.7 - 1.2 N.m.).

Step 10:

Complete electrical cables fastening.

To disassemble the fence cover, the following sequence must be adopted

Step 1: Using a screw driver, push the keys in tabs of terminal board cap.

Step 2: Force the tabs on the opposite direction (13) and then move the cap up (14).

21

3.1.3 Forced ventilation

Recommended position of fan + compressor + inverter are shown in the figure 3.8.*.

All mentioned positions are acceptable. Considering specific aspects as inverter and motor-compressor cooling, the most recomendated are positions 1-4. The last recomendated but still acceptable are positions 5 and 6.

Both air flow directions are acceptable, but position above illustrated is preferred. The inverter heat sink air flow is shown in Figure 3.9. As reference, the heat sink also is shown on Figure 3.1.

^{*}The figures displayed here are merely illustrative

Figure 3.8: Air flow direction

Figure 3.9: Inverter air flow direction

3.1.4 Optional AC Fan switch control

CF10C inverter series can be equipped with AC Fan switch control. This switch is ON in case compressor is running and OFF once compressor is stopped. Note, that AC Fan switch control is not powered. It operates like a switch to interrupt the AC supply Line or Neutral of the FAN.

Following connections to be made for switching power of the AC Fan:

- one terminal of AC Fan output to the Phase (or Neutral);
- second terminal of AC Fan output to customer's AC Fan terminal;

- the remaining terminal of customer's AC Fan to the Neutral (or Phase).

3.1.5 Inverter cables arrangement

The input and communication cables are not provided by Embraco. Therefore, inverter cables must be arranged according to the following instructions.

- 1. Push/pull repeatedly the cover plastic flap until it detach as much as necessary to pass the cables.
- 2. Take care to positioning the EMI earth (when applied) and Safety earth cables with the protecting tape beneath the cord relief as shown in Figure 3.10.
- 3. The cables must pass through the cord relief as shown in Figure 3.11.
- 4. Assemble the cord relief.

	t
rigere size. costes analigemen	L.

Routing Description				
Indicator	Description			
1	AC Input Cable			
2	EMI Earth Cable (optional)			
3	Communication Cable			
4	FAN Cable			
5	Cord Relief			
6	Fixing Screw			

Figure 3.11: Cord relief assembly

The compressor motor cable assembly is through the inverter enclosure and must follow the sequence shown in Figure 3.12.

Motor Cable Routing Description		
Indicator	Description	
1	Compressor Cable	
2	Cord Relief	
3	Fixing Screw	

3.1.6 Input cable with ferrite filter

CF10C inverter may be supplied with an input cable with ferrite filter. The Figure 3.13 shows the input cable with ferrite filter aspect.

Figure 3.13: Input cable with ferrite filter

3.2 Electrical Installation

In single-phase installations, the line phase wire must be protected by a circuit breaker. Furthermore, the line phase wire must be connected to the phase input connector of the inverter and the line neutral to the neutral input connector of the inverter.

Figure 3.14: Phase-Neutral connection

In the case of two-phase installations, it is mandatory to use a 2-pole circuit breaker, because in case of a short circuit both phases of power supply are protected.

Figure 3.15: Phase-Phase connection

Chapter 4 OPERATION

The Fullmotion CF10C Inverter have support for Serial, Frequency and Drop-In communication modes.

4.1 Frequency control mode

In this operation mode the compressor speed is controled through a frequency signal sent to the inverter. Usually this signal is provided by an electronic thermostat. The frequency signal is a digital square wave and its characteristics are described on Signal specification table and Figure below.

Signal spec	cifications	15V 🛉		
Voltage range OFF state	-5 V to +15 V -5 V to +0.7 V		On state	From
ON state Maximum duty-cycle	+4.5 V to +15 V	4.5V +	Indefinite state	TIOIII
Minimum duty-cycle	30%	0.7 V	Off state	
Maximum current	15 mA @ 15 V	-5V †		

0.7 V to 4.5 V the inverter behaviour is indefinite, therefore, it is not recommended to use signals within this range. The following figure presents a graphic example of an input frequency signal of 125 Hz sent to the inverter. The digital signal duty-cycle can vary in the range from 30% to 70%.

The compressor will follow frequency signal sent to the inverter according to the relation described on the following table and illustrated on the graph below.

The Figure 4.1 shows the electrical connections to perform frequency communication between an electronic thermostat and Fullmotion CF10C Inverter Control connector. For Frequency Control Mode, the input resistance is $1.2 \text{ k}\Omega$.

Figure 4.1: Electrical schematic of frequency communication

The following figure shows the right way to perform the Frequency Control Mode connection according to the connectors described in Figure 2.2.

Figure 4.2: Frequency control mode connection

4.2 Drop-In control mode

The Drop-In mode is a Fullmotion CF10C Inverter control mode, where single thermostat contact is used to set the compressor running conditions. Drop-In mode allows the application to any refrigeration system with a simple ON/OFF thermostat, without needing a control signal coming from an electronic thermostat. The compressor speed will be adjusted automatically by the Inverter, in accordance to the thermal load variation.

4.2.1 First time Pull-down

After 3 minutes of intermediary speed, the speed is increased to maximum and it is kept at this rotation until the thermostat opens, switching the compressor off.

4.2.2 Normal cycling

Compressor speed increases and decreases proportional to thermal load variation during compressor running time. Optimum speed will be targeted to minimize energy consumption. If thermal load remains constant for a period longer than 20 minutes, the compressor speed is increased.

Compressor speed versus thermostat behavior

4.2.3 Connection

The Drop-In mode connection shall be wired according to Figure 4.3. The connection is an Energized Contact and must be used when the thermostat control signal is energized directly from the AC phase. This signal is usually called Thermostat Return Signal.

4.3 Serial control mode

This option is used when an electronic thermostat controls the CF10C Inverter uses a serial communication protocol. Based on Embraco protocol it is possible to define the compressor speed and check other parameters.

4.3.1 Serial specifications and Internal Circuit

The Serial Control mode has an isolated input stage provided by the usage of optocouplers. The circuit on Figure 4.4 shows the electrical connections to perform serial communication between an electronic thermostat and Fullmotion CF10C Inverter serial connector (CN204).

The input resistance for serial communication, shown in Figure 4.4, is 1.2 k Ω .

Figure 4.4: Electrical schematic of serial communication

To guarantee the correct functionality of serial communication, the signal to be sent to the inverter must be according to the following values.

Example: 39h sent to inverter

The identification byte (1st byte), is used for command synchronization. After inverter identifies a valid A5h, it starts to read the next 4 bytes. After reading, a re-

sponse will be sent as indicated on "Receive commands structure" table. No response will be sent until the inverter recognizes a byte A5h. There is a time out of 2 seconds to receive the entire command after inverter identifies one A5h. After this time out, a new synchronization will start.

Basic specification			
Communication type	UART (Half-Duplex)		
Baud rate	600 baud		
Parity	None		
Flow control	None		
Unit size	5 Bytes		
Electronic thermostat	Host		
Inverter	Slave		

To perform serial communication between a computer (RS-232) and the Fullmotion CF10C Inverter serial connection, please contact Embraco Technical Support to receive instructions.

4.3.2 Commands

	Comm	and structure		
1st Byte	2nd Byte	3rd Byte	4th Byte	5th Byte
Identification (ID)	Command (CMD)	LSB*	MSB**	sum*** (CK)

*Least significant Byte (LSB) of Data. Example: Data=ABCDh, thus Data low=CDh.

**Most significant Byte (MSB) of Data. Example: Data=ABCDh, thus Data high=ABh.

***Checksum=100h - (S14h AND OFFh), where S14h is the addition of Bytes 1 to 4.

Т	ransmit co	ommands :	structure		
Command	ID	CMD	LSB	MSB	CK
Set speed	A5h	C3h	Speed	[RPM]	CK
Read set speed	A5h	3Ch	80h	39h	CK
Read operation status	A5h	3Ch	83h	39h	CK
Read power	A5h	3Ch	82h	39h	CK
Read starting trials	A5h	3Ch	81h	39h	CK
Read bus voltage	A5h	3Ch	84h	39h	CK
Read temperature	A5h	3Ch	88h	39h	CK
Read power limitation	A5h	3Ch	8Ah	39h	CK
Serial set speed overwrite	A5h	69h	[Note]	93h	CK

Receive commands structure					
Response to:	ID	CMD	LSB	MSB	CK
Set speed	5Ah	83h	Sta	etus*	CK
Read set speed	5Ah	80h	Spee	d [RPM]	CK
Read operation status	5Ah	83h	Sta	etus*	CK
Read power	5Ah	82h	Pow	ver [W]	CK
Read starting trials	5Ah	81h	Numbe	er of trials	CK
Read bus voltage	5Ah	84h	Volta	age [V]	CK
Read temperature	5Ah	88h	Temperat	ure [°C x 10]	CK
Read power limitation	5Ah	8Ah	Power lin	nitation [W]	CK
Serial set speed overwrite	A5h	C3h	[Note]	OOh	CK
Communication error	5Ah	Code**	FFh	FFh	CK
*See Status Data table.					

**See Error Code table

[Note]: Serial set speed overwrite status/command:

00h – Serial set speed does not overwrite the thermostat set point

01h – Serial set speed overwrites the thermostat set point

Remark: if there is no serial communication for more than 4 h then the overwrite command is resetted.

		St	atus Data
H Bit	LSB	MSB	Description
-	-	00h	Compressor running
-	-	FFh	Compressor stopped (waiting for a valid start speed)
0	01h	FFh	Start failure
1	02h	-	Overload protection (Note 1)
1	02h	FFh	Overload (Note 3)
2	04h	FFh	Under speed (1550 rpm or lower)
3	08h	FFh	Wrong rotor position
4	10h	FFh	Short circuit
5	20h	FFh	Over temperature failure (Note 6)
7	80h	-	Set speed data out of specification (Note 2)
7	80h	FFh	Set speed data out of specification (Note 4)

Note 1 : This response occurs when compressor is running with a high load. If the Data High byte is 00h, compressor is still running.

Note 2 : Response to the out-of-spec set speed data received while the comp is running.

Note 3 : This response occurs when compressor is stopped due to high load. Note 4 : Response to the out-of-spec set speed data received while the comp is stopped.

Note 5 : When one or more errors occur, the corresponding bits "H" are set to 1. Example: Overload and Under speed: 0xFF06

Note 6 : The over temperature failure refers to when the inverter turns off due to the temperature overcoming 105°C, not to the temperature protection actuating.

	Error Code
Code	Error
FOh	Error in 4th Byte
F2h	Checksum error
F4h	Command error
F8h	Error in the 3rd Byte

If compressor is stopped due to a failure (see Data Status table), it is possible to reset that failure sending a speed command to turn inverter off (O rpm set speed). However, if nothing is done, the failure reset will occur after 8 minutes and then the compressor will try to restart. The following example shows a situation where the compressor speed is set at 2000 RPM.

	 To avoid noise increasing and damages to the compressor due to mechanical reso- nance, some operating speeds are forbid- den by software for all control modes.
NOTICE	 When one or more errors occur, the cor- responding "H" bits are set to 1. Example: Overload and Under speed LSB →06h.
	 The Frequency and Drop-In modes can have serial communication only for mon- itoring purpose. This functionality can be used for product diagnostic.

Chapter 5 DIAGNOSTICS

The Fullmotion CF1OC Inverter has two diagnostics methods, by visual light emission using a LED indication, or by serial communication protocol.

5.1 LED indication

The LED diagnostics function helps services technicians to diagnose possible fault components by blinking a LED inside the box in different patterns. Basically, it indicates if there is a problem with Compressor, CF10C Inverter or Thermostat. The table below describes the failure modes.

LED Status	Period	Соlог	Description
1 Flash 2 Flashes	30 seconds	Green	Normal operation
3 Flashes	5 seconds	Red	Inverter problem
4 Flashes	5 seconds	Orange	Compressor problem No input power / Damaged
NO Flash	_	_	inverter

5.2 Troubleshooting

The following tables shows some possible problems and the best action to deal with them.

Compressor does not start				
Problem	Action			
Compressor disconnected from the inverter.	•Verify compressor cable connection.			
No AC power supply; or wrong voltage/terminals connected.	 Verify AC input cable connection and measure AC input voltage. 			
No control signal input or bad connection.	 Verify control input cable connection and measure the signal from the thermostat. 			
Blown fuse (due to previous major failure).	 Return the unit to manufacturer, replacing it by new one. 			
Open compressor motor winding.	•Measure winding for open circuit between all pair of pins on the hermetic terminal. If any winding is open, return compressor to manufacturer.			
Compressor with locked rotor (due to mechanical damage).	 Replace compressor by new one and test for confirmation. Return damaged unit to manufacturer. 			
Dropped, damaged, burnt inverter.	 Replace by new one and test for confirmation. Return damaged unit to manufacturer. 			
Inverter on waiting time after failed start.	•Wait the necessary time or reset the inverter disconnecting it from the AC power supply. The reset time is about 50s.			
Demagnetized rotor (only if compressor was previously connected directly to the AC power supply).	 Replace compressor by a new one and test for confirmation. Return damaged unit to manufacturer. 			
Unequaled pressures between discharge and suction pressures in the refrigerating system.	•Allow the Inverter to equalize pressure between suction and discharge sides.			
Low input voltage supplied to the inverter.	•Measure AC voltage to confirm.			

Compressor does not run at the selected speed	
Problem	Action
High compression load, with compressor being subjected to a stall condition.	•Review system design,refrigerant gas load or compressor capacity is not suitable for the application. If system is apropriated designed, speed will reach set value when load condition is stabilized.
Compressor always on pulldown cycle for Drop-In Mode.	 In Drop-In mode, check if the inverter AC input is connected to thermostat output. Inverter AC input should be directly connected to AC power supply (see Drop-In mode schematic).
No or incorrect control signal.	•Check if the appropriate control signal is being correctly applied to the Control Input Connection.

DISCLAIMER

The Fullmotion CF10C Inverter is for use only with the Embraco compressors. ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHER-WISE.

Embraco, its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Embraco"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Embraco makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Embraco disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Embraco's knowledge of typical requirements that are often placed on Embraco products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Embraco's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Embraco products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Embraco product could result in personal injury or death. Customers using or selling Embraco products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Embraco personnel to obtain written terms and conditions regarding products designed for such applications.No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Embraco. Product names and markings noted herein may be trademarks of their respective owners. All trademarks in this material are property of the respective companies. EMBRACO is trademark of Whirlpool S/A. All rights reserved.

If after these instructions you still have doubts, please do not hesitate to contact our Technical Support. www.embraco.com