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Approximation Algorithms Recap

An algorithmA is an α-approximation algorithm for problem P if,

◦A runs in polynomial time

◦A always outputs a solution with value s

• Here P is an optimisation problem with optimal solution of value Opt

• If P is a maximisation problem, Opt
α 6 s 6 Opt

within an α factor of Opt

• If P is a minimisation problem, Opt 6 s 6 α ·Opt

We have seen:

a 3/2-approximation algorithm for Bin Packing

a 2-approximation algorithm for k-centers

a 3/2-approximation algorithm for scheduling multiple machines
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• Let S be a multi-set of positive integers and t be a positive integer

here S = {4, 2, 4, 7, 2, 3} and t = 12

Decision Problem Is there a subset, S′ ⊆ S with size t?

Optimisation Problem

the size of S′ is
∑
a∈S′ a

The optimisation version is NP-hard

and the decision version is NP-complete

Find the size of the largest subset of S which is no larger than t
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An exact solution

The algorithm

◦ Let L0 = {0}
◦ For i = 1 . . .m:

◦ Compute (Li−1 + si) from Li−1
◦ Compute Li = Li−1 ∪ (Li−1 + si)

◦ Output the largest number in Lm

O(1) time

O(|Li−1|) time

O(|Li|) time

O(|Lm|) time

Each Li is of length |Li| 6 t

The overall time complexity is thereforeO(mt)
Is this polynomial in n?

What even is n?

n is the length of the input (measured in words)

Input

n words

The input to the Subset Sum problem is a list of the elements of S along with t

encoded in binary in a total of n words

s1 s2 s3 t

Asm 6 n, the time isO(nt) . . . but t could be (for example) 2n

|S| = m

. . . in other wordsO(n2n) time!
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We say that an algorithm is pseudo-polynomial time

if it runs in polynomial time when all the numbers are integers 6 nc

for some constant c

The algorithm for Subset Sum given takesO(nt) = O(nc+1) time
(in this case)

We say that an NP-complete problem is weakly NP-complete if

there is a pseudo-polynomial time algorithm for it

We say that an NP-complete problem is strongly NP-complete if

it remains NP-complete when all the numbers are integers 6 nc

The decision version of Subset Sum is weakly NP-complete

The decision version of Bin packing is strongly NP-complete

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity

item sizes are

integers in [nc]

4

bins have size

t ∈ [nc]

(this only makes sense if you rephrase the problem)
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A Polynomial Time Approximation Scheme (PTAS) for problem P

is a family of algorithms:

For any constant ε > 0 there is an algorithm in the family,Aε

such thatAε is a (1 + ε)-approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let ε = 0.1 so thatA0.1 runs in polynomial time and

outputs a subset of size at least Opt
1.1 > 0.9 ·Opt

A PTAS does not have to have a time complexity which is polynomial in 1/ε

Aε can have a time complexity ofO(n
c
ε ) for example

O(n10c) vs. O(n100c) vs. O(n1000c) in our example
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Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P

is a family of algorithms:

For any constant ε > 0 there is an algorithm in the family,Aε

such thatAε is a (1 + ε)-approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let ε = 0.1 so thatA0.1 runs in polynomial time and

outputs a subset of size at least Opt
1.1 > 0.9 ·Opt

A PTAS does not have to have a time complexity which is polynomial in 1/ε

A fully PTAS (FPTAS) has a time complexity which is polynomial in 1/ε (as well as polynomial in n)

i.e. the time complexity isO((n/ε)c) for some constant c

In our exampleO((10n)c) = O((100n)c) = O((1000n)c) = O(nc)

ε = 0.1 ε = 0.01 ε = 0.001
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A PTAS for Subset Sum

The exact algorithm for Subset Sum was slow (in general) because
each list of possible subset sizes Li could become very large
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Recall that Li is the set of sizes of all S′ ⊆ Si which are not larger than t

Key Idea Construct a trimmed version of Li (denoted L′i ⊆ Li) so that

The length of L′i is polynomial in the input length (i.e. |L′i| 6 nc for some c)

For every y ∈ Li, there is a z ∈ L′i which is almost as big

(where Si = {s1, s2, . . . , si} - the first i numbers in the input)

L′i is a subset of Li (i.e. L′i ⊆ Li)

Consider this process called Trim. . . Trim(Li, δ): Include Li[j] in L′i iff

where prev is the previous

Li[j] > (1 + δ) · prev

entry we included in L′i

Unfortunately, this hasn’t really achieved anything. . .

we don’t have time to compute Li and then trim it

Instead, we will trim as we go along. . .

(because Li might be very big)
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This algorithm throws away some possible subsets,

Two questions remain. . .

◦ Let L′i = Trim(U, δ)

O(|L′m|) time

but it always outputs a valid subset (but probably not the largest one)

How big is |L′i|? How good is the solution given?
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How big isL′i?

The time complexity depends on |L′i|. . .

By the definition of Trim we have that,

any two successive elements, z, z′ of L′i have

z′

z > 1 + δ = 1 + ε
2m

Further, all elements are no greater than t

So L′i contains at mostO(log(1+δ) t) elements

log(1+δ) t =
ln t

ln(1 + (ε/2m))
6

2m(1 + (ε/2m)) ln t

ε
= O

(
m log t

ε

)

ln(1 + x) > x
x+1

(here x = ε/2m)

another fact:
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A PTAS for Subset Sum

The algorithm

◦ Let L′0 = {0}, δ = ε/(2m)

◦ For i = 1 . . .m:

◦ Compute (L′i−1 + si) from L′i−1
◦ Compute U = L′i−1 ∪ (L′i−1 + si)

◦ Output the largest number in L′m
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O(|L′i|) time
◦ Let L′i = Trim(U, δ)

O(|L′m|) time
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|S| = m

m 6 n
log t = O(n logn)

Recall that n is the length of the input (measured in words)



A PTAS for Subset Sum

The algorithm

◦ Let L′0 = {0}, δ = ε/(2m)

◦ For i = 1 . . .m:

◦ Compute (L′i−1 + si) from L′i−1
◦ Compute U = L′i−1 ∪ (L′i−1 + si)

◦ Output the largest number in L′m

O(|L′i−1|) time

O(|L′i|) time

O(|L′i|) time

As |L′i| = O(m log t/ε), the algorithm runs in

◦ Let L′i = Trim(U, δ)

O(|L′m|) time

O(m2 log t/ε) = O(n3 logn/ε) time

|S| = m



A PTAS for Subset Sum

The algorithm

◦ Let L′0 = {0}, δ = ε/(2m)

◦ For i = 1 . . .m:

◦ Compute (L′i−1 + si) from L′i−1
◦ Compute U = L′i−1 ∪ (L′i−1 + si)

◦ Output the largest number in L′m

O(|L′i−1|) time

O(|L′i|) time

O(|L′i|) time

As |L′i| = O(m log t/ε), the algorithm runs in

The output z is such that

◦ Let L′i = Trim(U, δ)

O(|L′m|) time

O(m2 log t/ε) = O(n3 logn/ε) time

Opt

1 + ε
6 z 6 Opt

|S| = m



A PTAS for Subset Sum

The algorithm

◦ Let L′0 = {0}, δ = ε/(2m)
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◦ Compute U = L′i−1 ∪ (L′i−1 + si)

◦ Output the largest number in L′m

O(|L′i−1|) time

O(|L′i|) time
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The output z is such that

◦ Let L′i = Trim(U, δ)

O(|L′m|) time
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So this is in fact an FPTAS for Subset Sum

|S| = m



Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant ε > 0 there is an algorithm in the family,Aε

such thatAε is a (1 + ε)-approximation algorithm for P

We have seen an FPTAS for Subset Sum

A PTAS does not have to have a time complexity which is polynomial in 1/ε

A fully PTAS (FPTAS) has a time complexity which is polynomial in 1/ε (as well as polynomial in n)

i.e. the time complexity isO((n/ε)c) for some constant c

e.g. the time complexity could beO(n
c
ε ) (for example)

which runs inO(n3 logn/ε) time

The output z is such that
Opt

1 + ε
6 z 6 Opt


