

Advanced Algorithms – COMS31900

Approximation algorithms part three

(Fully) Polynomial Time Approximation Schemes

Raphaël Clifford

Slides by Benjamin Sach

Approximation Algorithms Recap

An algorithm A is an α -approximation algorithm for problem P if,

 $\circ A$ runs in polynomial time

 \circ A always outputs a solution with value s

within an lpha factor of Opt

ullet Here P is an optimisation problem with optimal solution of value Opt

• If *P* is a *maximisation* problem, $\frac{\text{Opt}}{\alpha} \leq s \leq \text{Opt}$

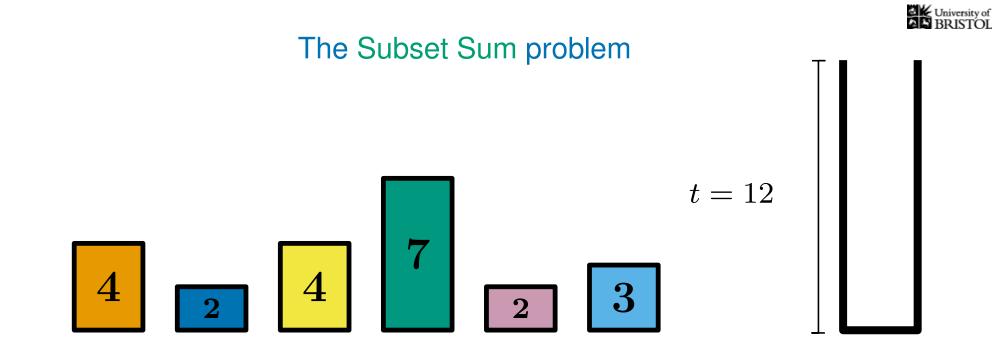
• If P is a *minimisation* problem, $\mathrm{Opt} \leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

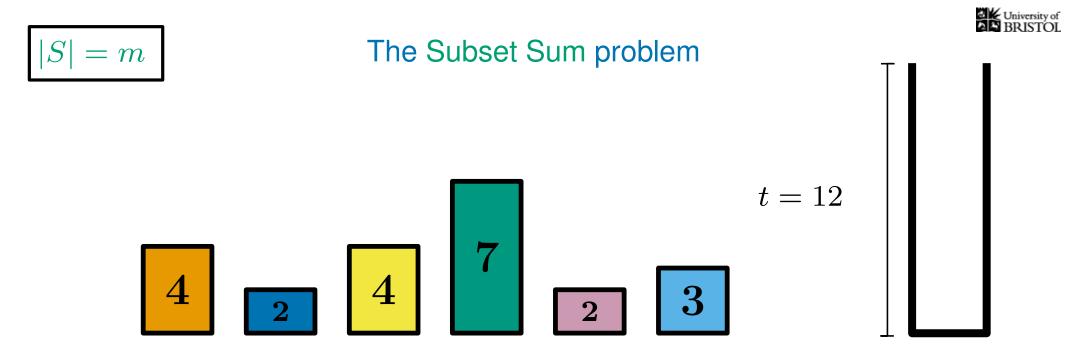
We have seen:

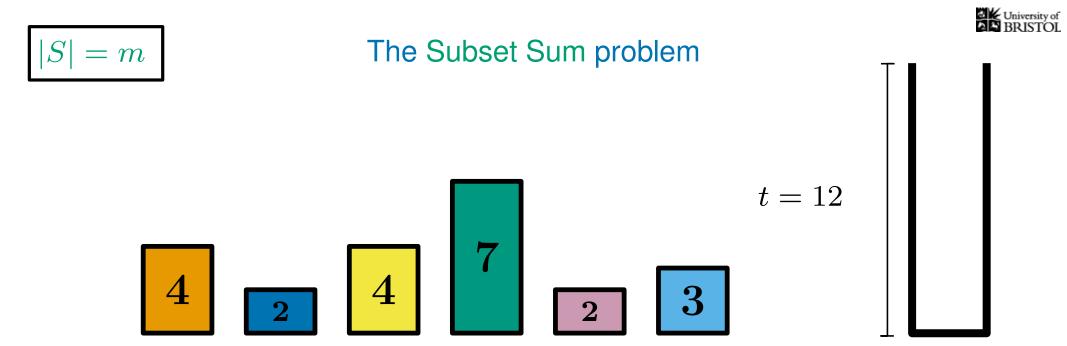
a 3/2-approximation algorithm for Bin Packing

a 3/2-approximation algorithm for scheduling multiple machines

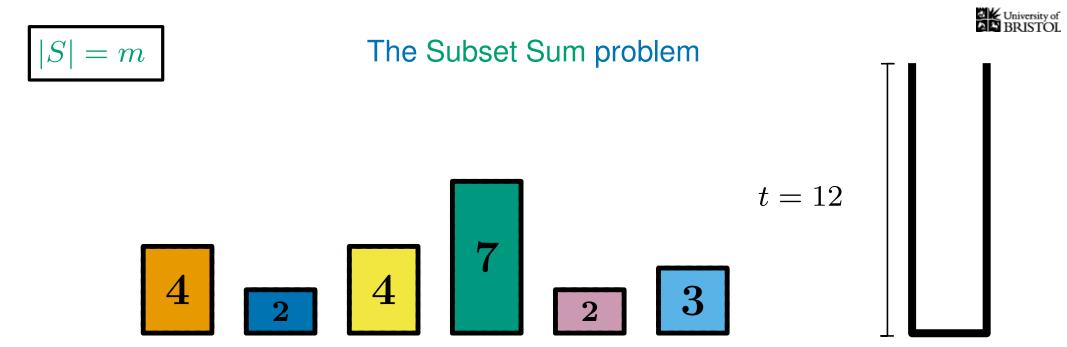
a 2-approximation algorithm for k-centers





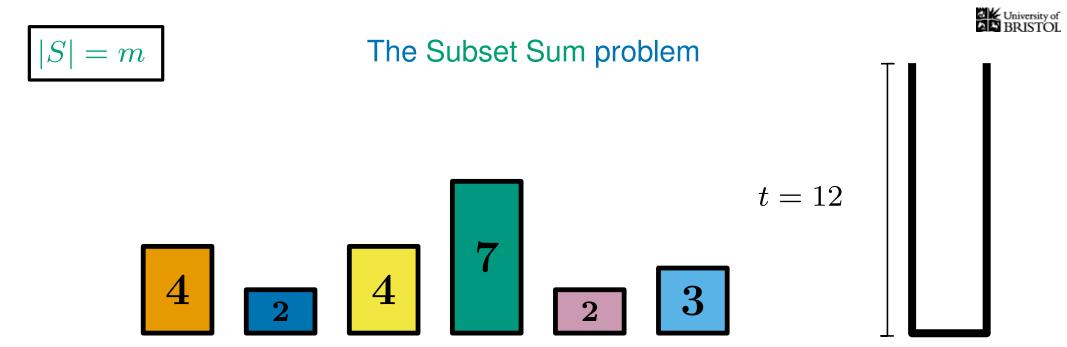


here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12



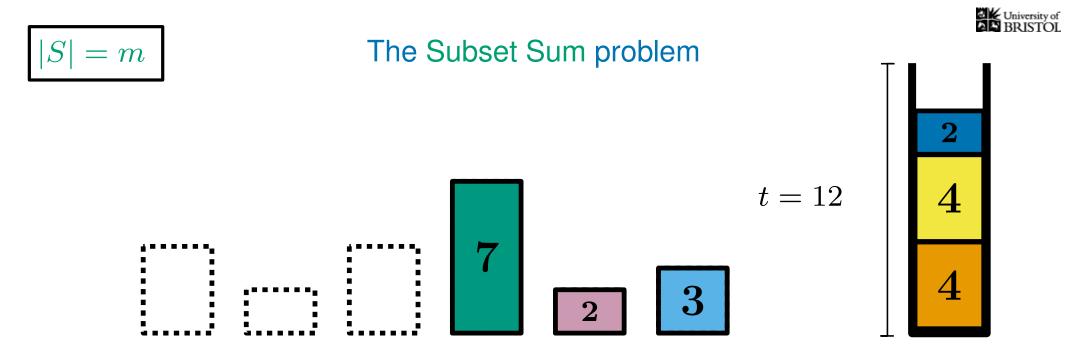
here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?



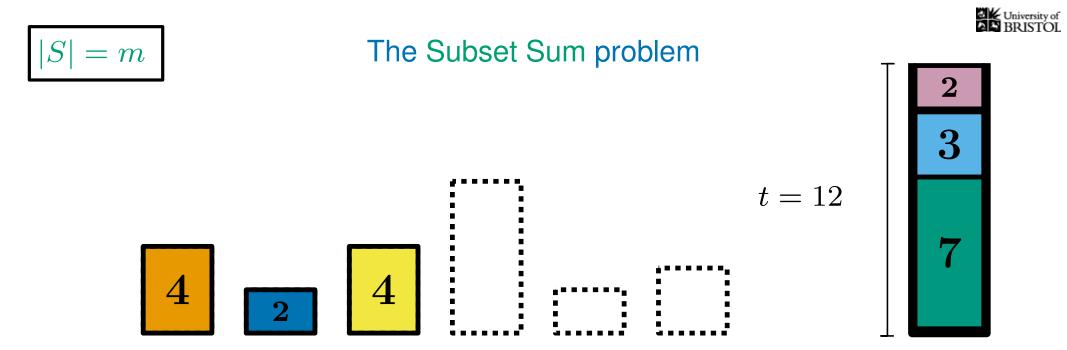
here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?



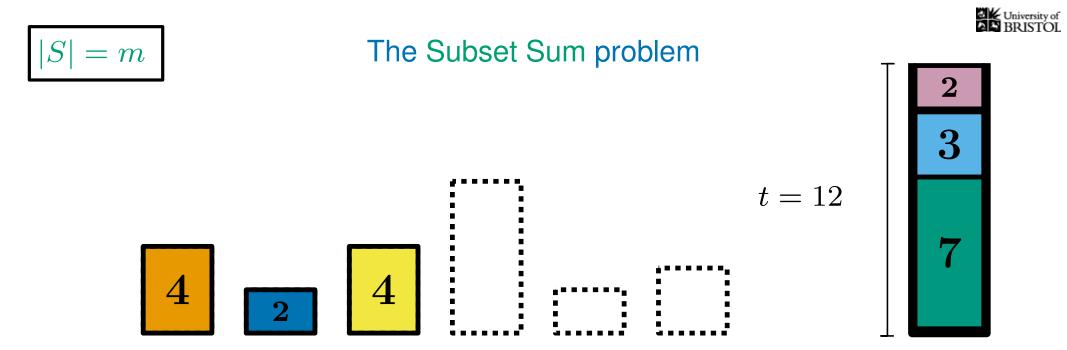
here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?



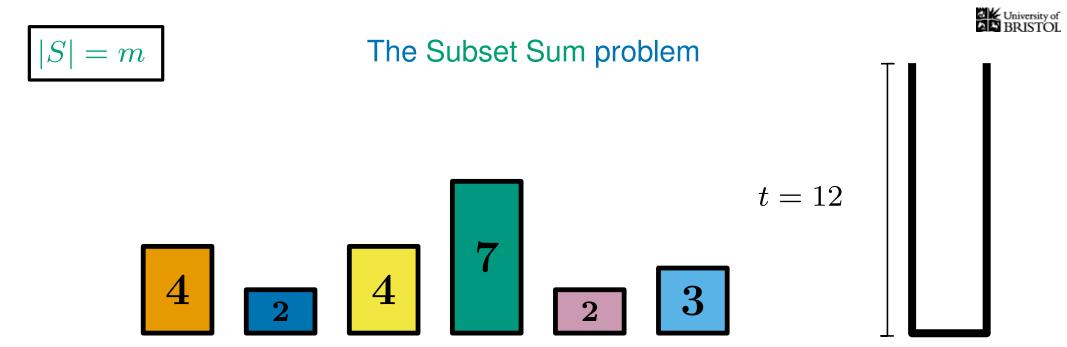
here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?



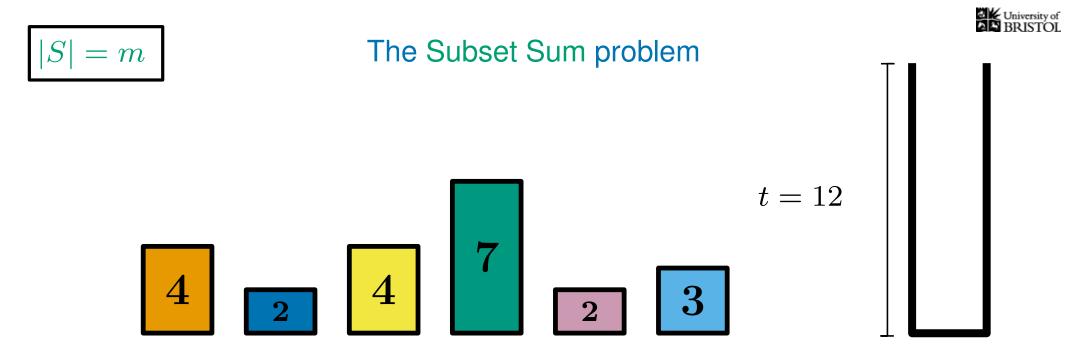
here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?



here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

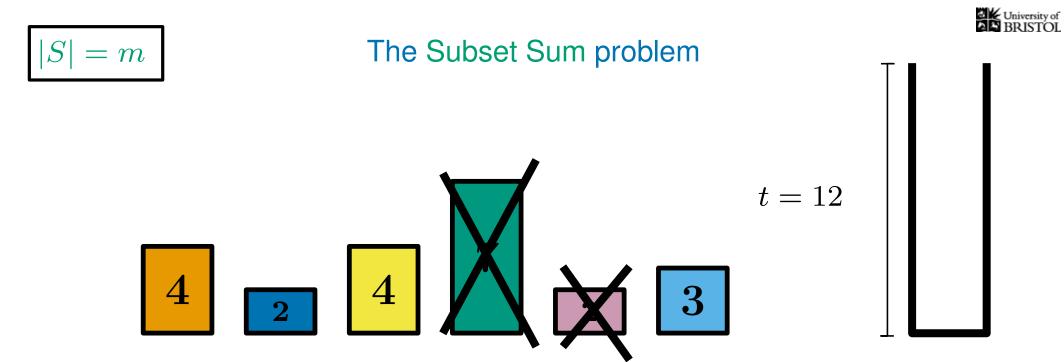


here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

the size of S' is $\sum_{a \in S'} a$

Optimisation Problem

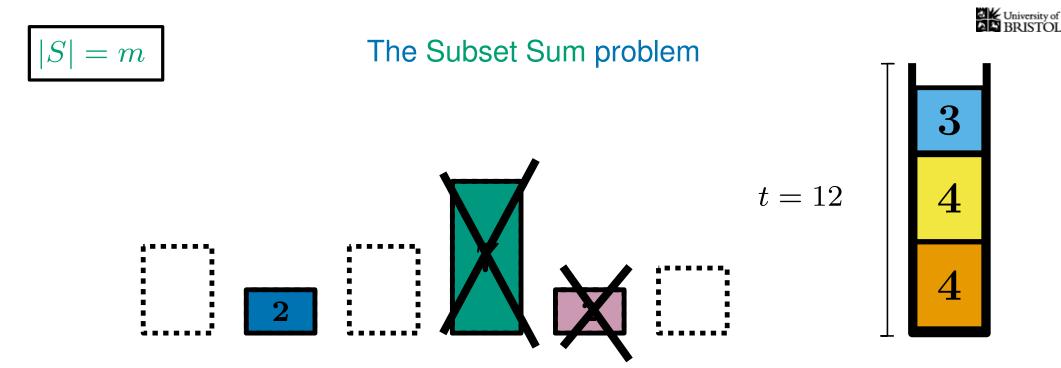


here $S = \{4, 2, 4, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

the size of S' is $\sum_{a \in S'} a$

Optimisation Problem

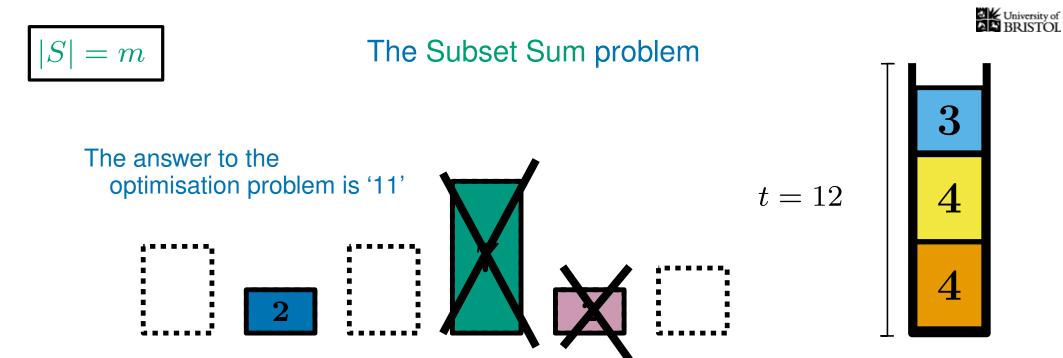


here $S = \{4, 2, 4, \mathbf{X}, \mathbf{X}, \mathbf{X}, \mathbf{X}\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

the size of S' is $\sum_{a \in S'} a$

Optimisation Problem

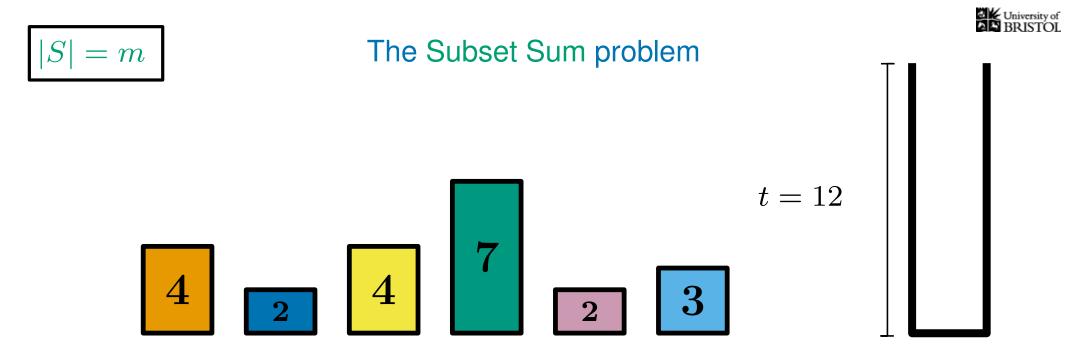


here $S = \{4, 2, 4, X, X, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

the size of S' is $\sum_{a \in S'} a$

Optimisation Problem

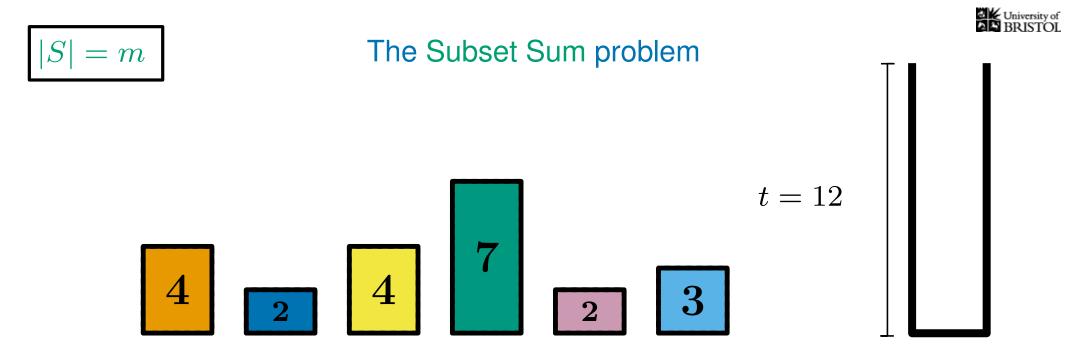


here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

the size of S' is $\sum_{a \in S'} a$

Optimisation Problem



here $S = \{4, 2, 4, 7, 2, 3\}$ and t = 12

Decision Problem Is there a subset, $S' \subseteq S$ with size t?

the size of S' is $\sum_{a \in S'} a$

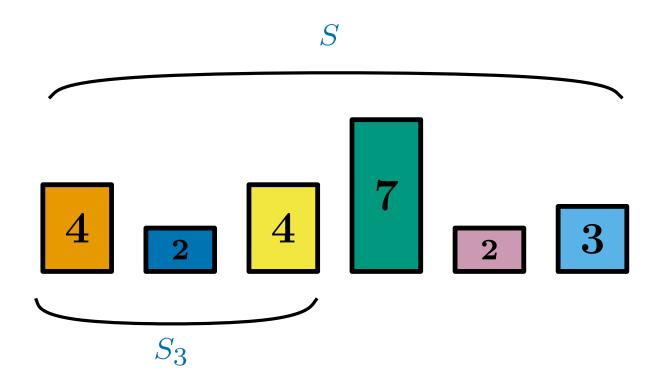
Optimisation Problem

Find the size of the largest subset of S which is no larger than t

The optimisation version is NP-hard

and the decision version is $NP\mbox{-}complete$

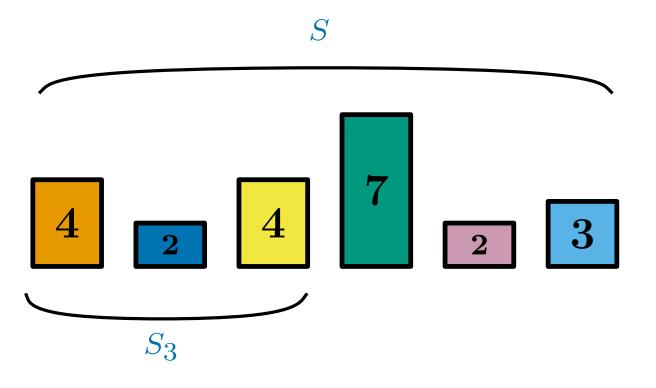
University of BRISTOL



University of BRISTOL

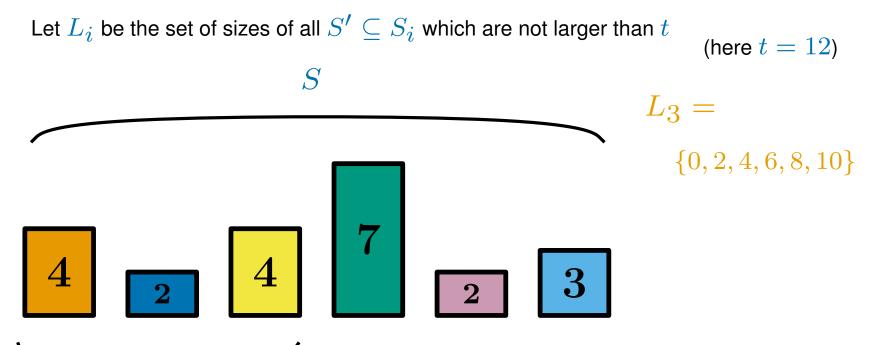
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

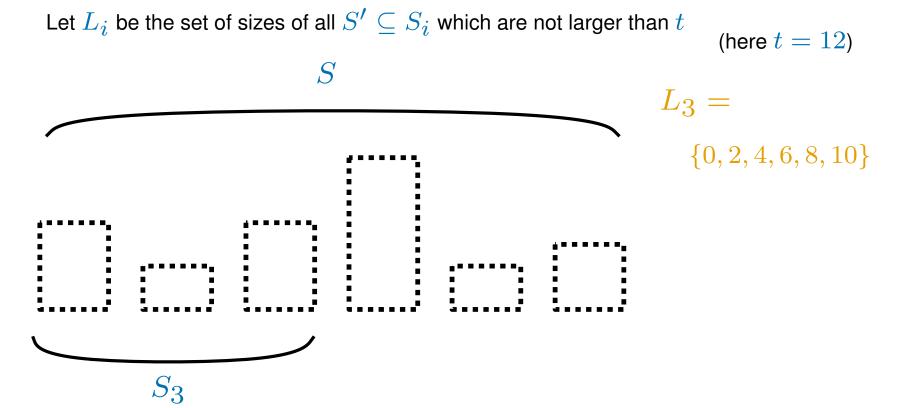


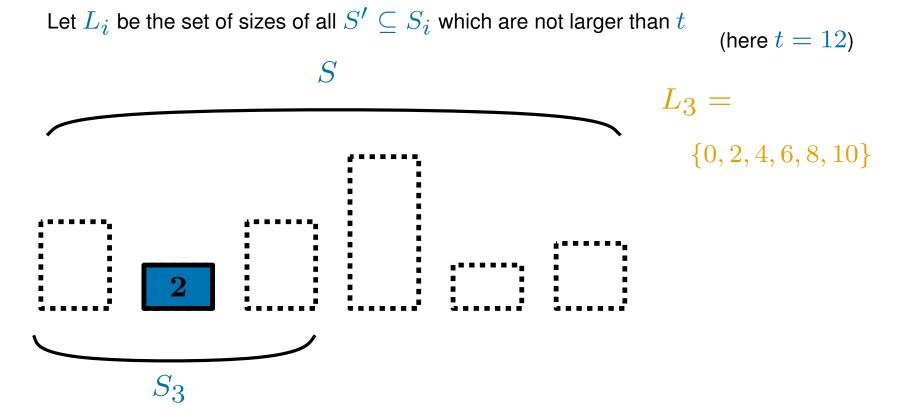
 S_3

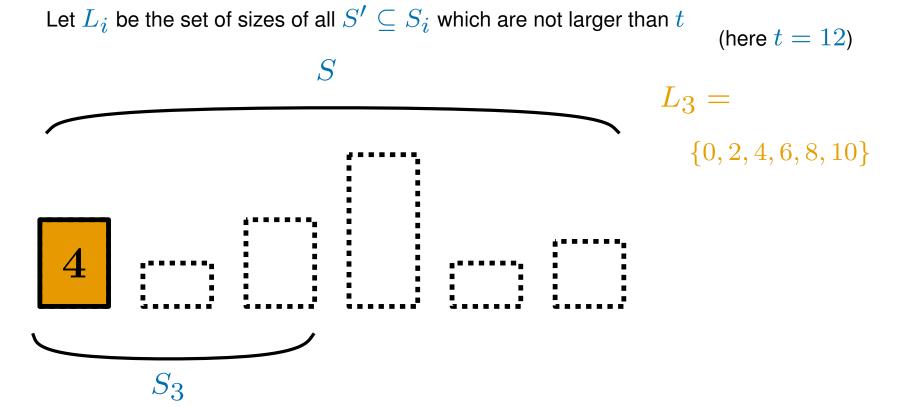
An exact solution



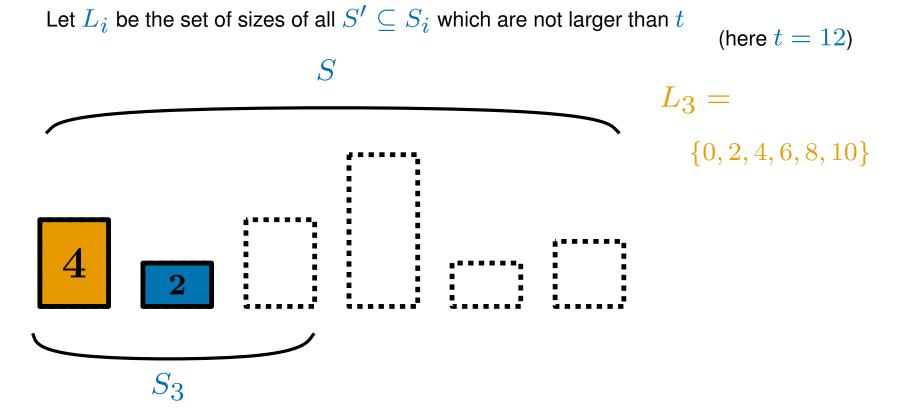
University of BRISTOL



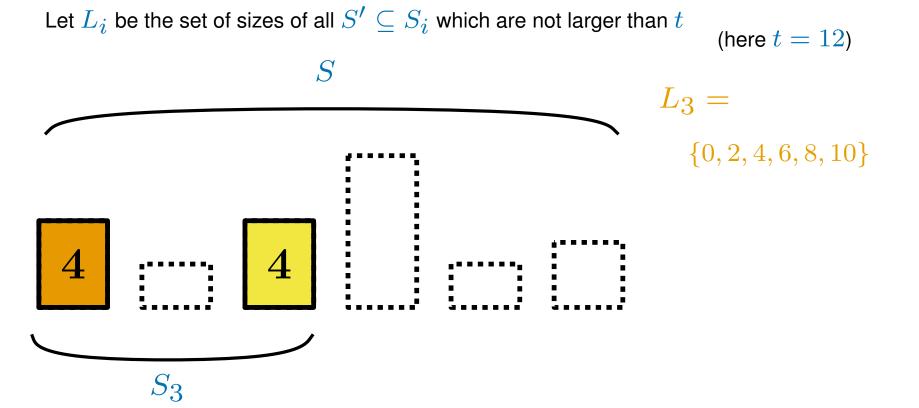




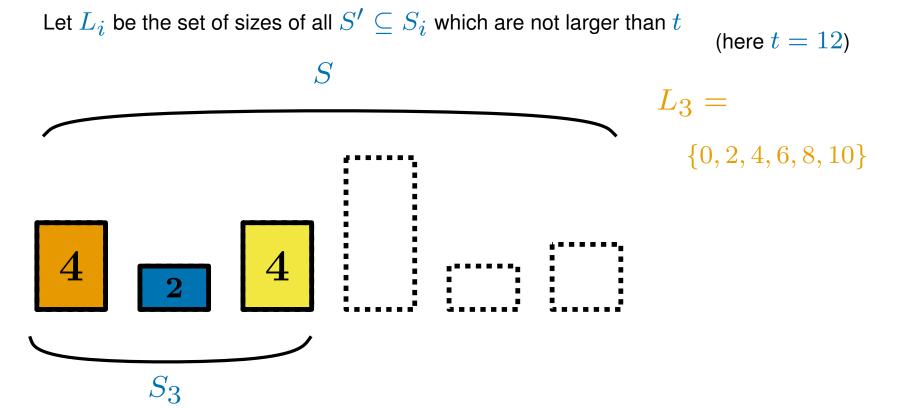
University of BRISTOL



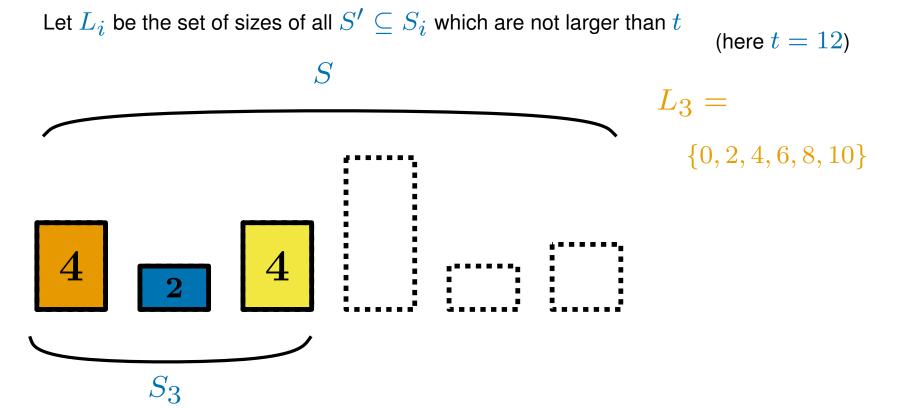
University of BRISTOL



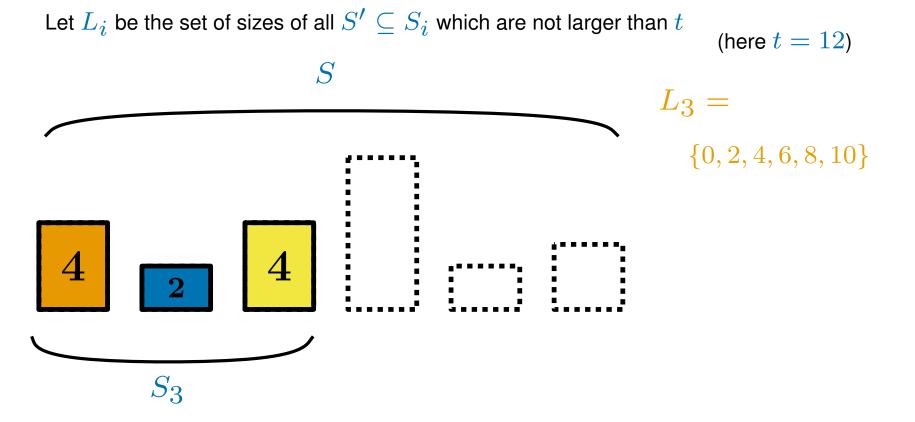
University of BRISTOL



University of BRISTOL

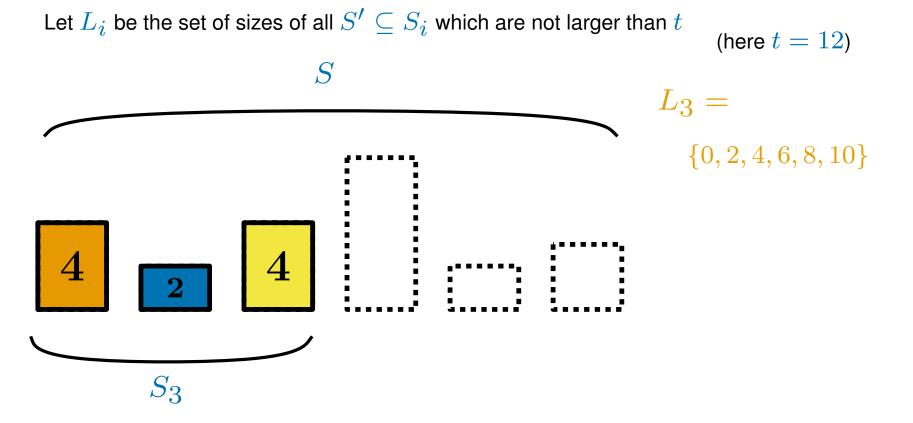


Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in L_m

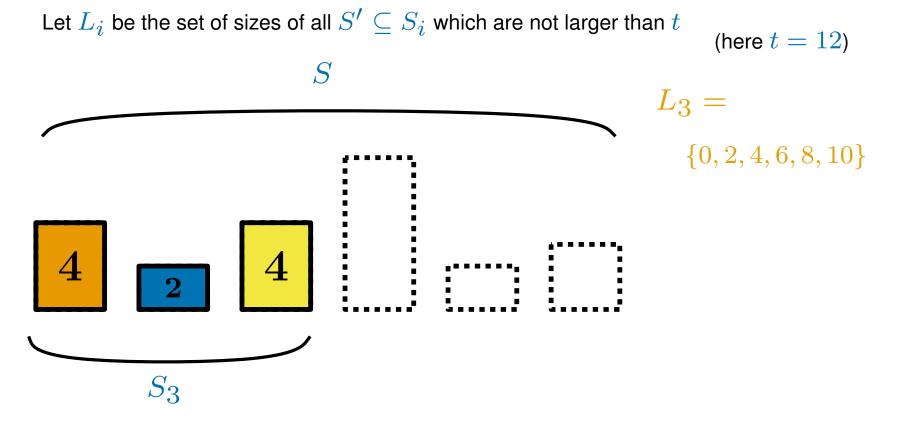
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in L_m

We compute L_i from L_{i-1} :

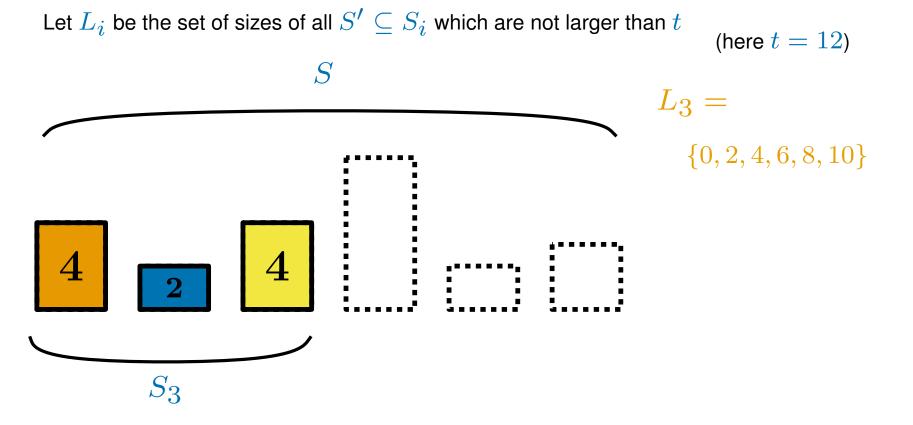
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in L_m

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

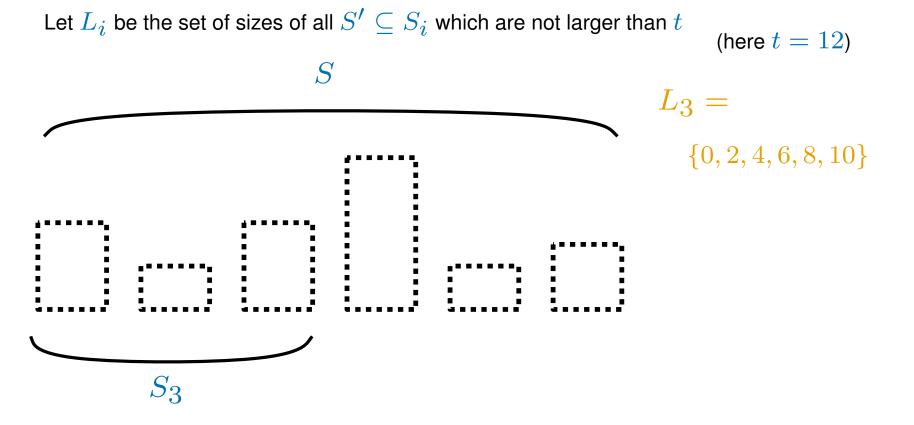
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

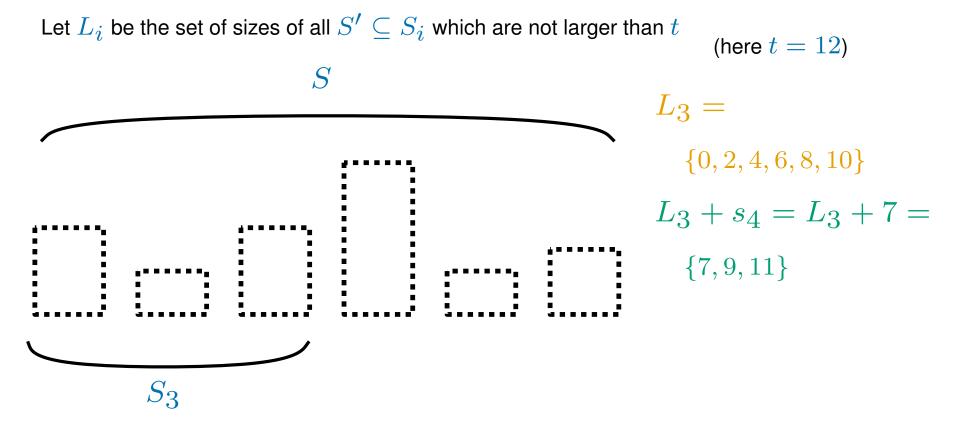
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in L_m

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

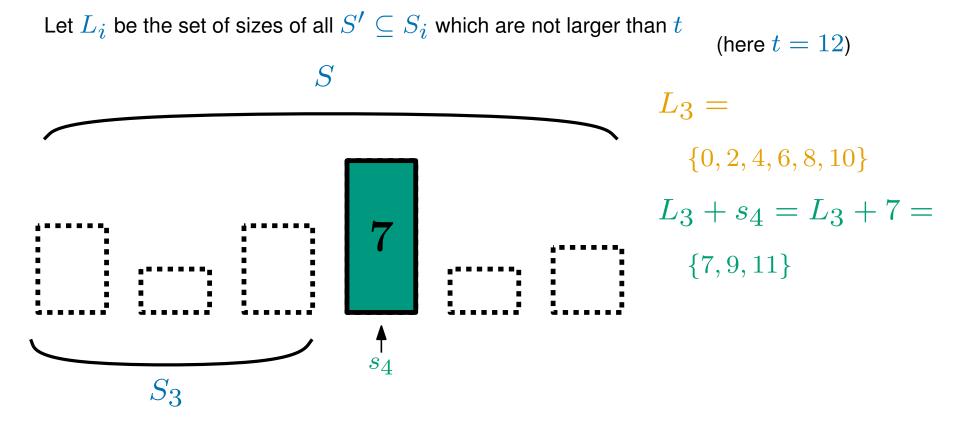
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

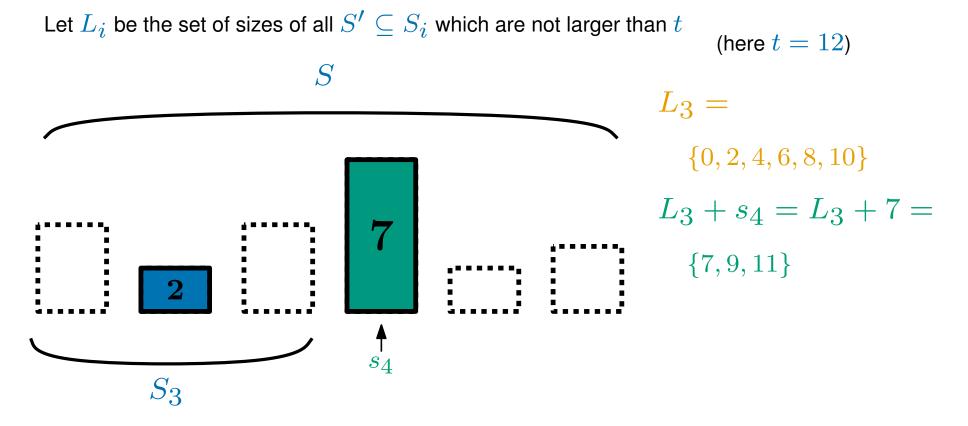
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

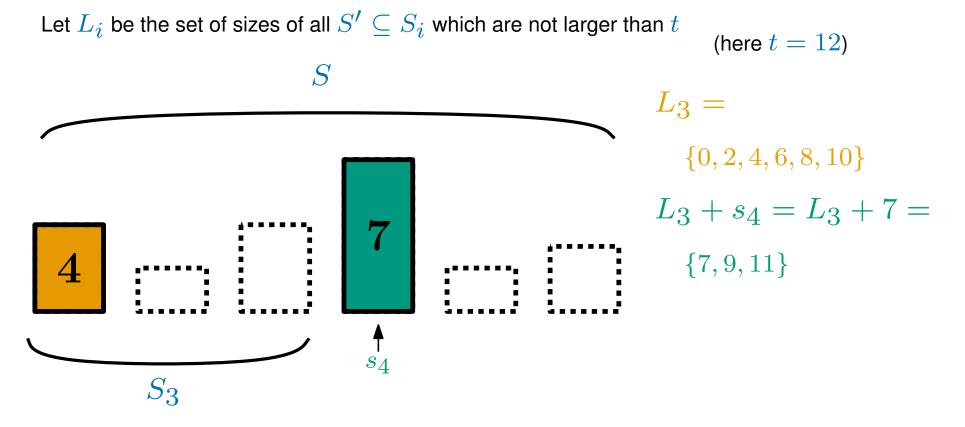
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



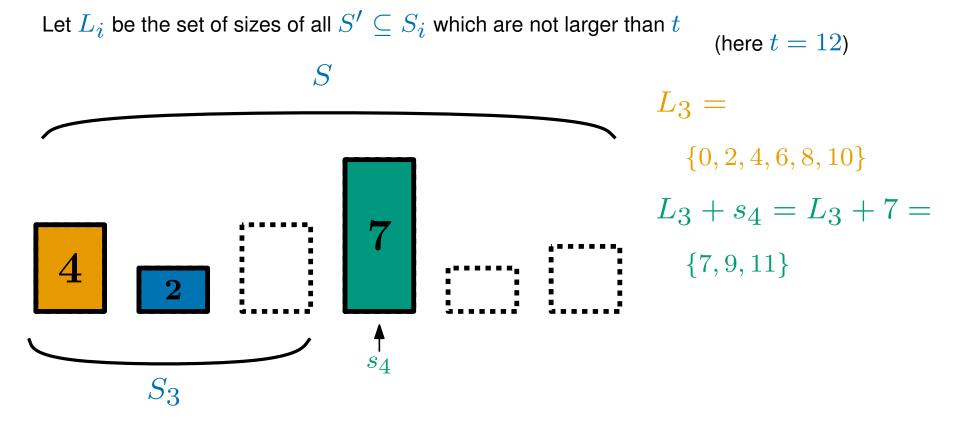
The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

where $(x + s_i) \in (L_{i-1} + s_i)$ iff $x \in L_{i-1}$ and $x + s_i \leq t$

University of BRISTOL

Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$

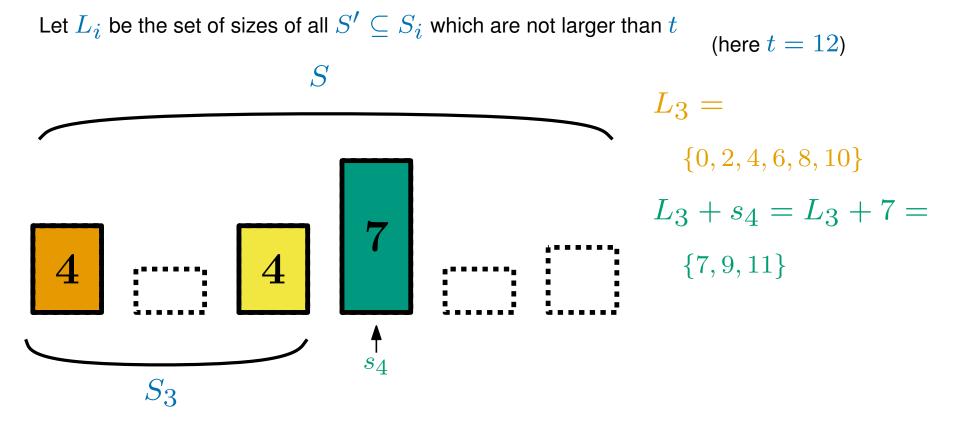


The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

University of BRISTOL

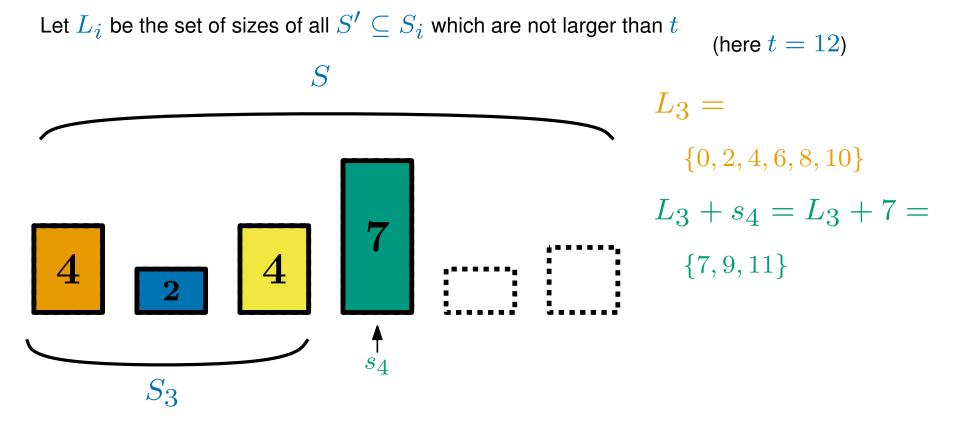
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

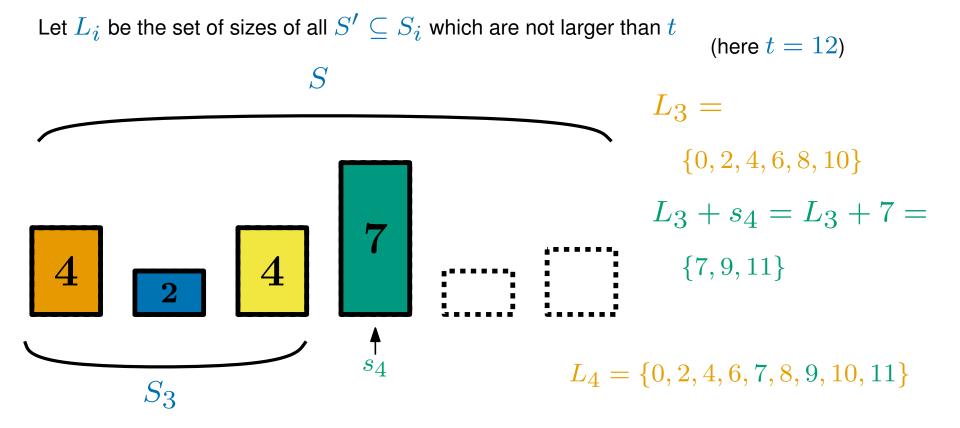
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in $L_{m{m}}$

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

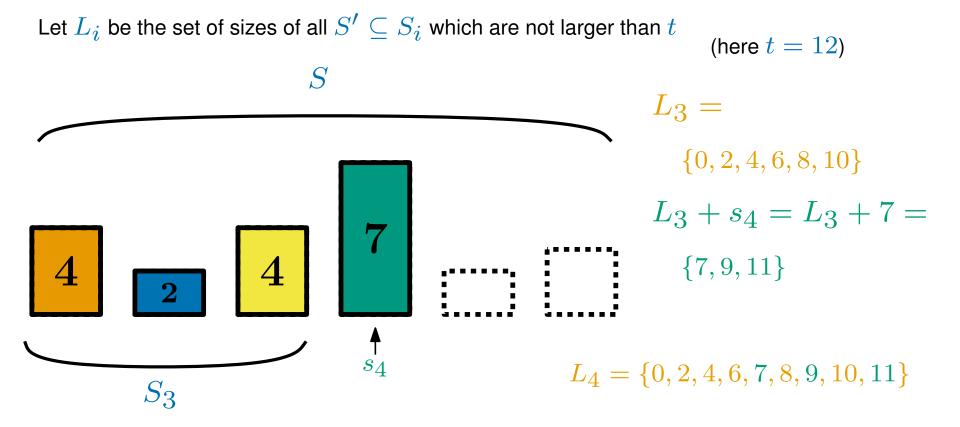
Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$



The largest subset of S (of size at most t) is the largest number in L_m

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

Let $S = \{s_1, s_2, s_3 \dots s_m\}$ be the set of items and $S_i = \{s_1, s_2, \dots, s_i\}$

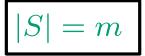


The largest subset of S (of size at most t) is the largest number in L_m

We compute L_i from L_{i-1} : $L_i = L_{i-1} \cup (L_{i-1} + s_i)$

where $(x + s_i) \in (L_{i-1} + s_i)$ iff $x \in L_{i-1}$ and $x + s_i \leq t$

We don't have any duplicates in L_i - so $|L_i|\leqslant t$

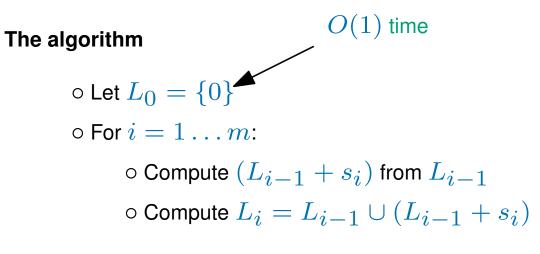


The algorithm

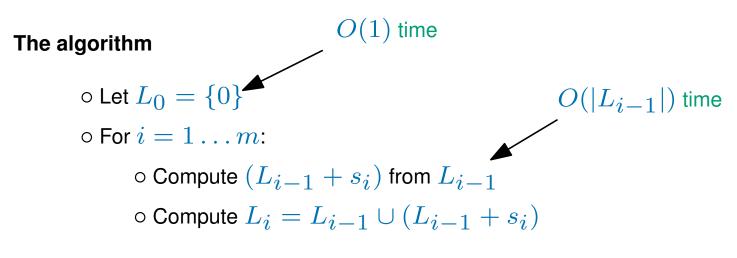
- $\circ \text{Let } L_0 = \{0\}$ $\circ \text{ For } i = 1 \dots m:$ $\circ \text{ Compute } (L_{i-1} + s_i) \text{ from } L_{i-1}$ $\circ \text{ Compute } L_i = L_{i-1} \cup (L_{i-1} + s_i)$
- \circ Output the largest number in L_m

|S| = m

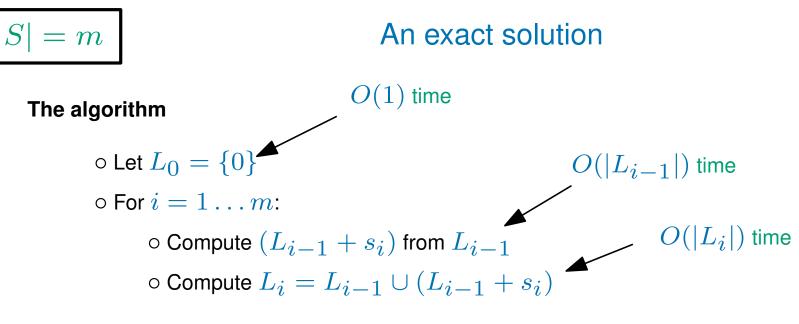
An exact solution



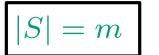
 \circ Output the largest number in L_m



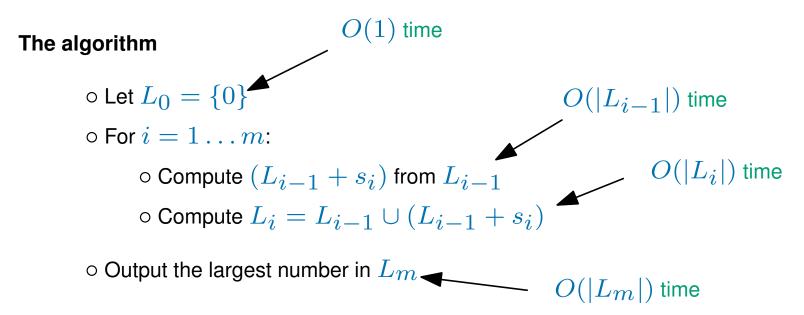
 \circ Output the largest number in L_m



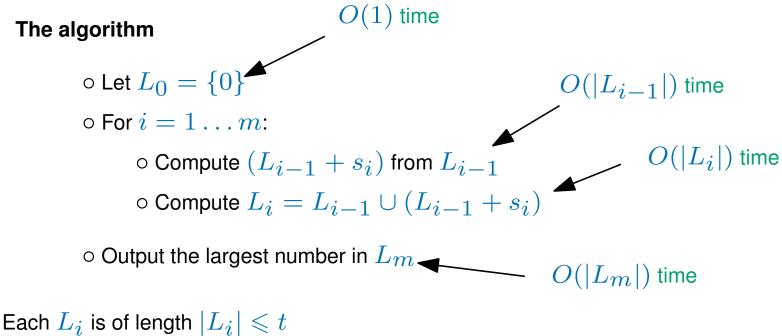
 \circ Output the largest number in L_m

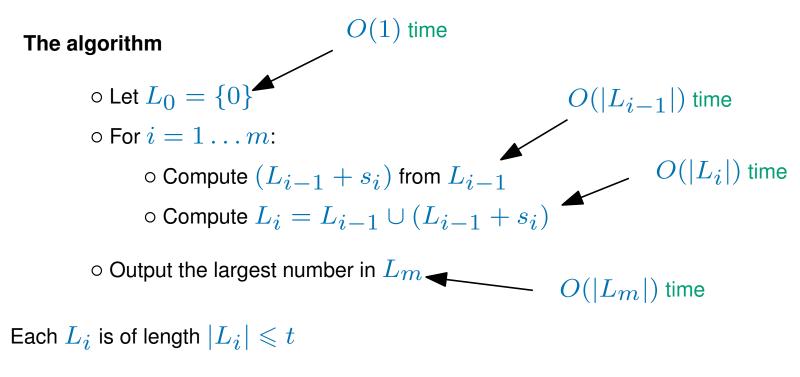


An exact solution

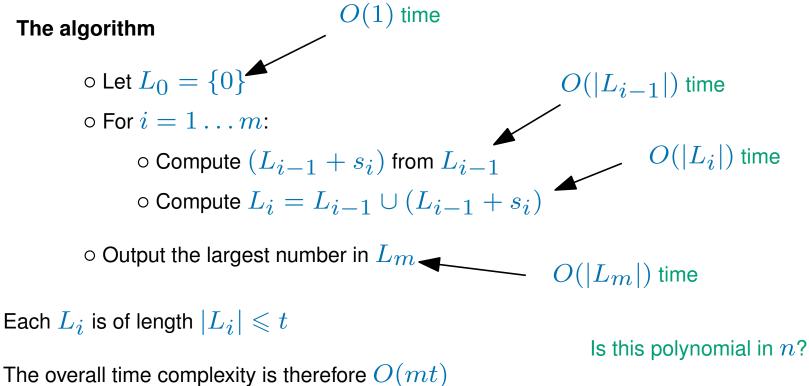


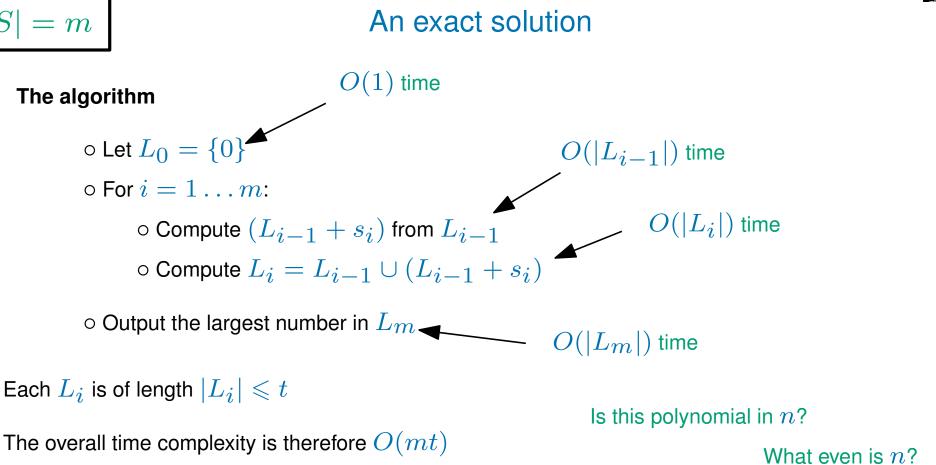
An exact solution

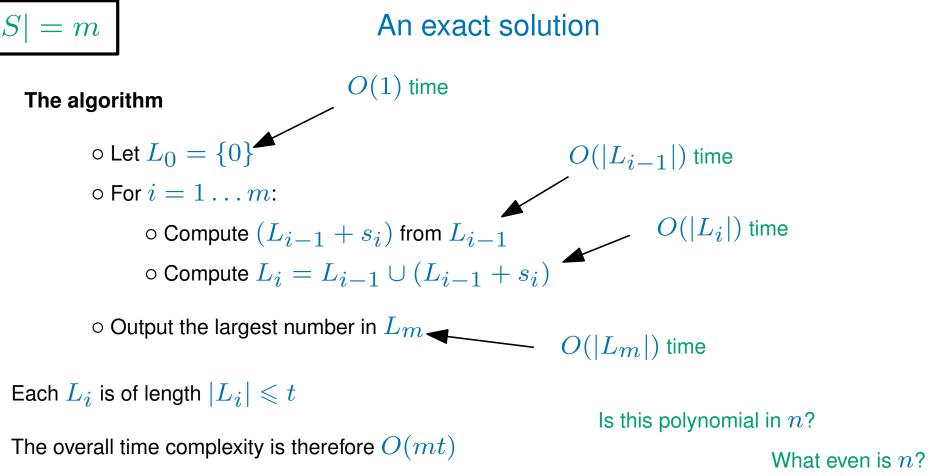


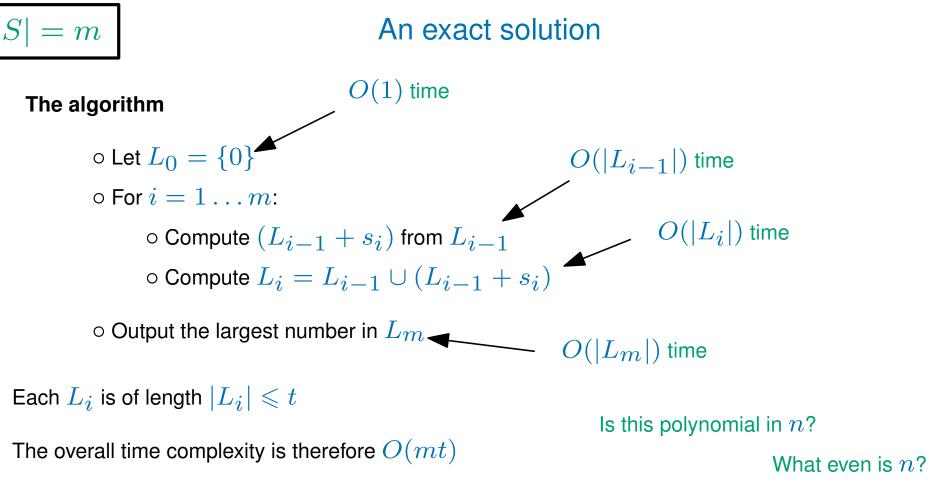


The overall time complexity is therefore O(mt)



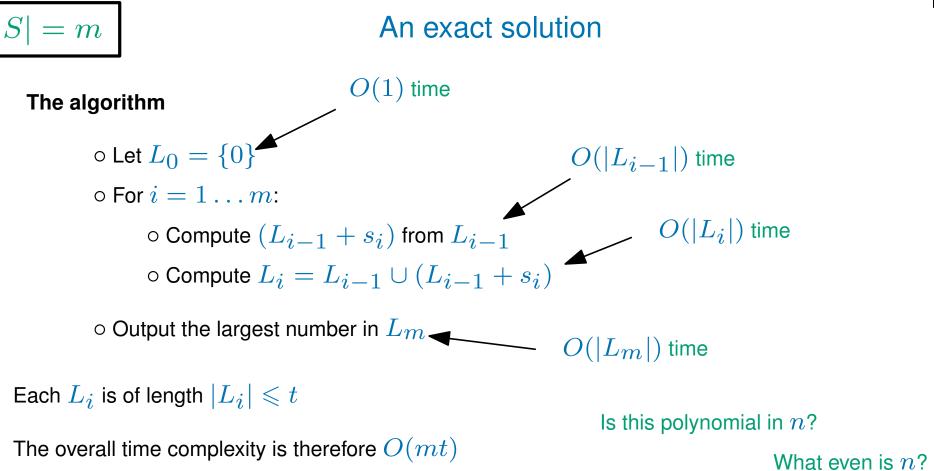


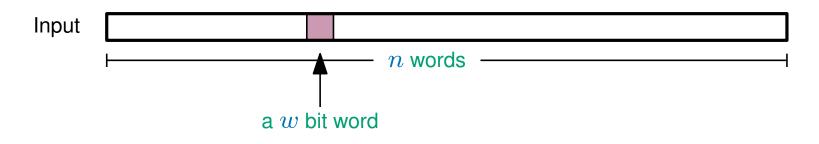


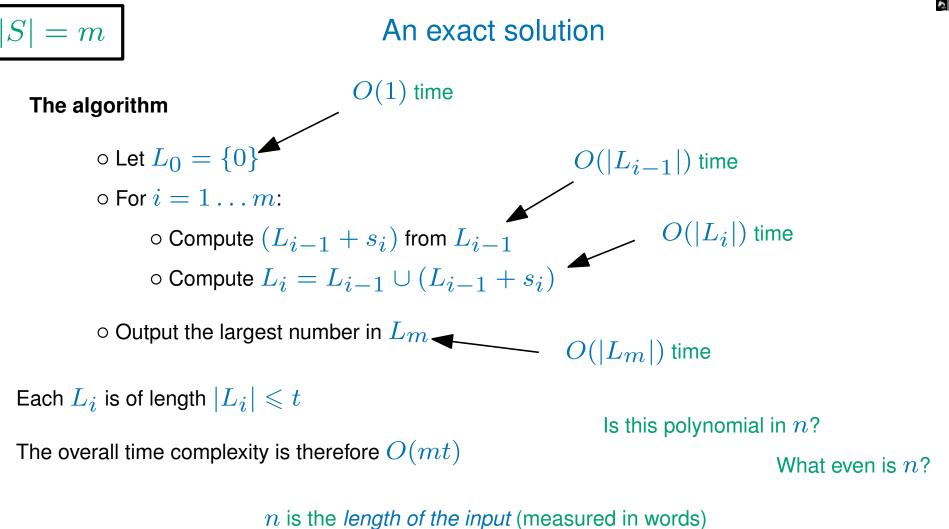


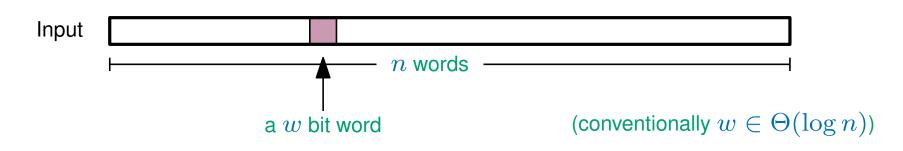
Input

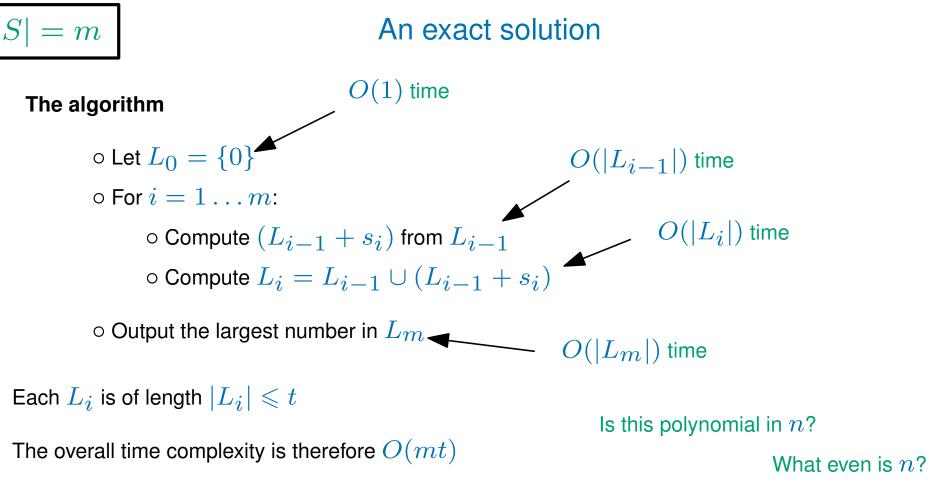
n words





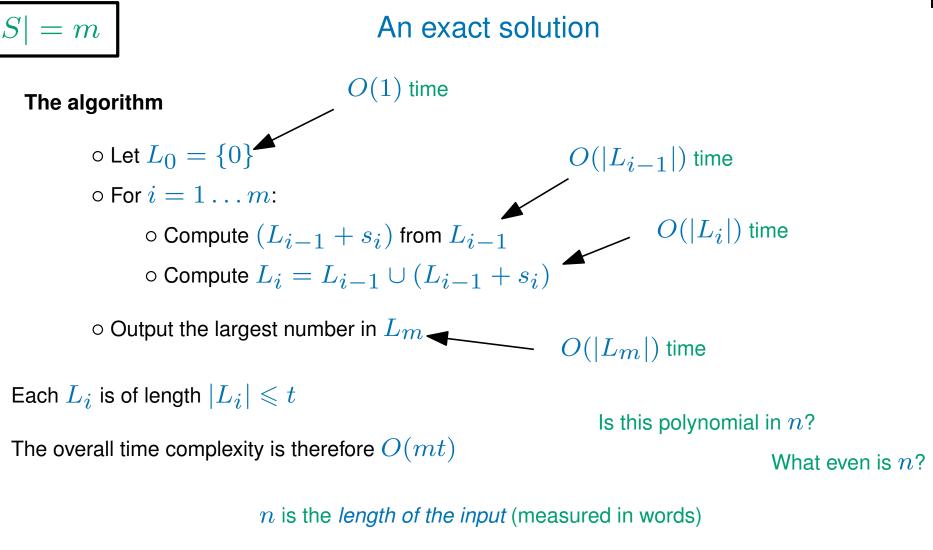


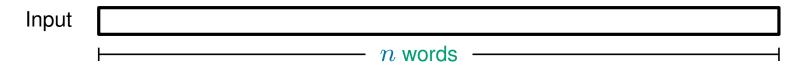




Input

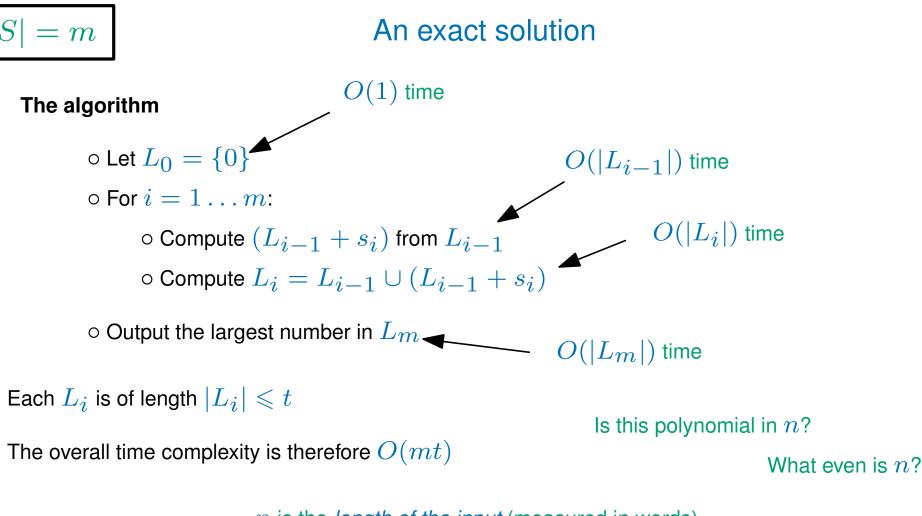
n words

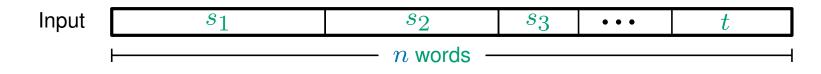




The input to the Subset Sum problem is a list of the elements of S along with t

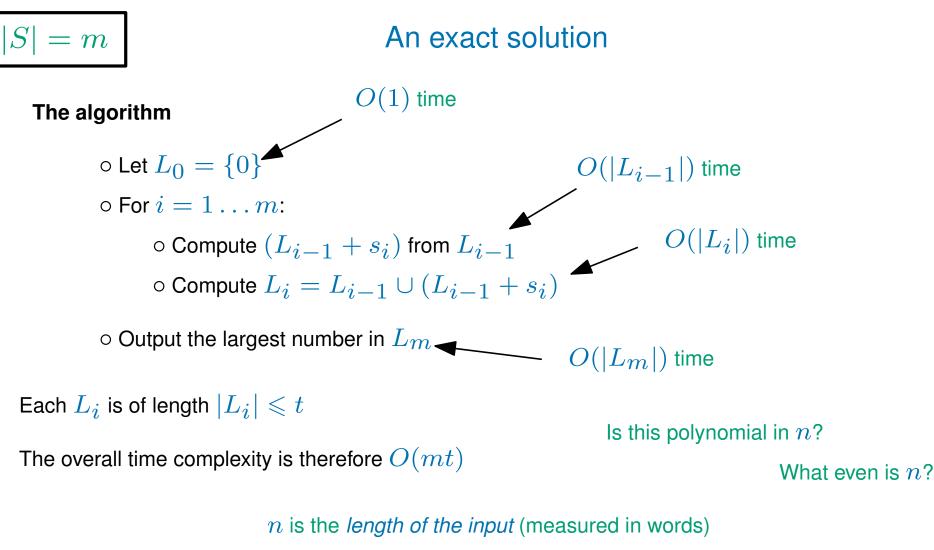
encoded in binary in a total of n words

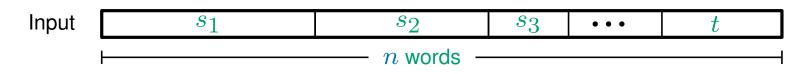




The input to the Subset Sum problem is a list of the elements of S along with t

encoded in binary in a total of n words

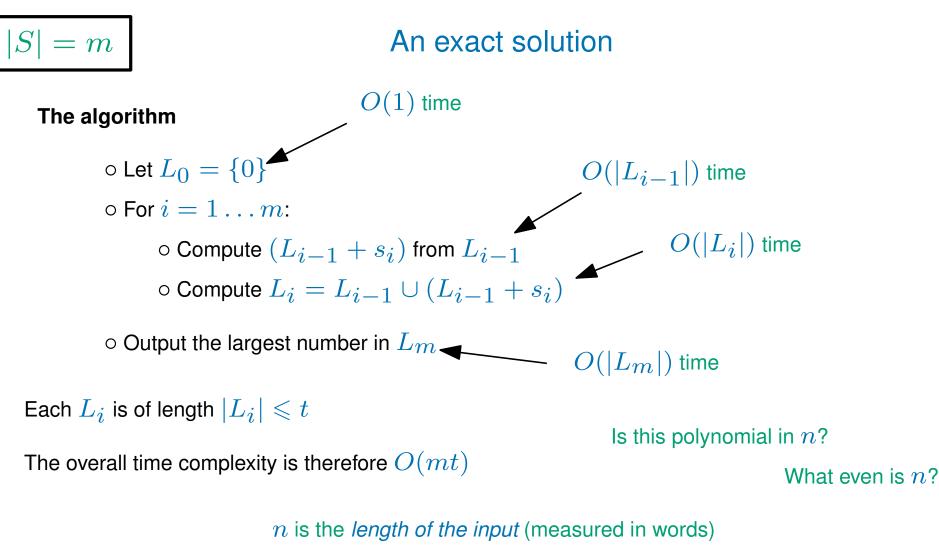


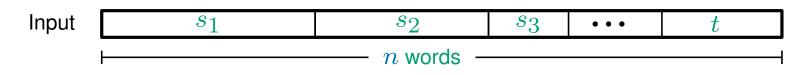


The input to the Subset Sum problem is a list of the elements of S along with t

encoded in binary in a total of n words

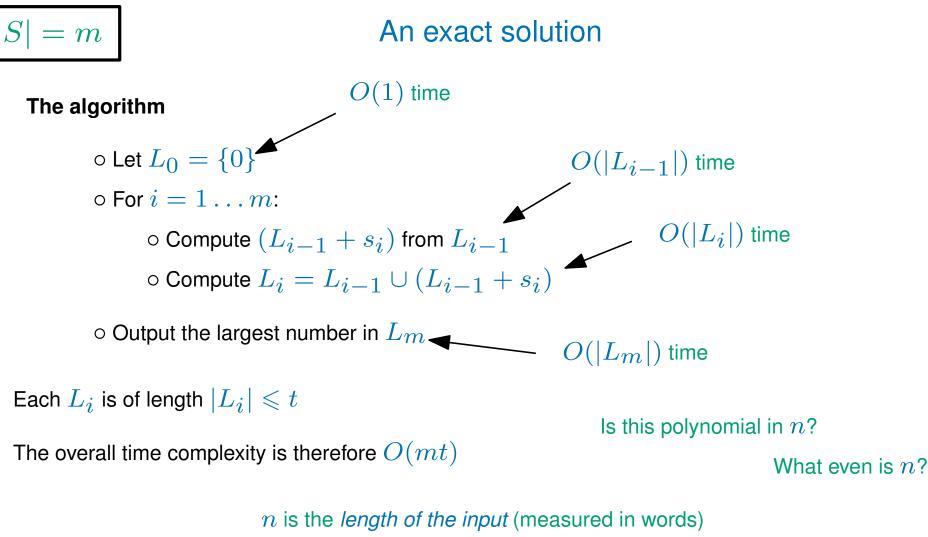
As $m \leqslant n$, the time is O(nt)

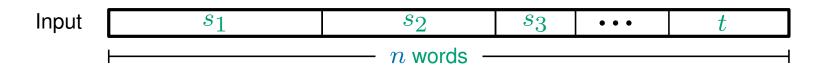




The input to the Subset Sum problem is a list of the elements of S along with t encoded in binary in a total of n words

As $m \leqslant n$, the time is $O(nt) \dots$ but t could be (for example) 2^n





The input to the Subset Sum problem is a list of the elements of S along with t

encoded in binary in a total of n words

As $m \leq n$, the time is $O(nt) \dots$ but t could be (for example) $2^n \dots$ in other words $O(n2^n)$ time!

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant *c*

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant *c*

The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case)

University of BRISTOL

Pseudo-polynomial time algorithms

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant *c*

The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant *c*

University of BRISTOL

The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

----- A diversion into computational complexity ------

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant c

University of BRISTOL

The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

----- A diversion into computational complexity ------

We say that an $NP\-complete$ problem is weakly $NP\-complete$ if there is a pseudo-polynomial time algorithm for it

University of BRISTOL

We say that an algorithm is *pseudo-polynomial time* if it runs in polynomial time when all the numbers are integers $\leq n^c$ for some constant *c*

The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

----- A diversion into computational complexity ------

We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it The decision version of Subset Sum is weakly NP-complete

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant \boldsymbol{c}

University of BRISTOL

The algorithm for Subset Sum given takes ${\cal O}(nt) = {\cal O}(n^{c+1})$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

----- A diversion into computational complexity ------

We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it The decision version of Subset Sum is weakly NP-complete

We say that an NP-complete problem is strongly NP-complete if it remains NP-complete when all the numbers are integers $\leq n^c$

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant *c*

University of BRISTOL

The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

----- A diversion into computational complexity ------

We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it The decision version of Subset Sum is weakly NP-complete

We say that an NP-complete problem is strongly NP-complete if it remains NP-complete when all the numbers are integers $\leq n^c$

The decision version of Bin packing is strongly $NP\mbox{-}complete$

We say that an algorithm is *pseudo-polynomial time*

if it runs in polynomial time when all the numbers are integers $\leqslant n^c$

for some constant c

University of

The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

----- A diversion into computational complexity ------

We say that an $NP\-complete$ problem is weakly $NP\-complete$ if there is a pseudo-polynomial time algorithm for it

The decision version of Subset Sum is weakly $NP\mbox{-}complete$

We say that an NP-complete problem is strongly NP-complete if it remains NP-complete when all the numbers are integers $\leq n^c$ The decision version of Bin packing is strongly NP-complete (this only makes sense if you rephrase the problem)

University of BRISTOL

We say that an algorithm is *pseudo-polynomial time* if it runs in polynomial time when all the numbers are integers $\leq n^{c}$ for some constant *c* The algorithm for Subset Sum given takes $O(nt) = O(n^{c+1})$ time (in this case) So there is a pseudo-polynomial time algorithm for Subset Sum A diversion into computational complexity ------We say that an NP-complete problem is weakly NP-complete if bins have size $t \in [n^c]$ there is a pseudo-polynomial time algorithm for it The decision version of Subset Sum is weakly NP-complete We say that an NP-complete problem is strongly NP-complete if it remains NP -complete when all the numbers are integers $\leqslant n^c$ item sizes are The decision version of Bin packing is strongly NP-complete integers in $|n^c|$ (this only makes sense if you rephrase the problem)

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

Let $\epsilon = 0.01$ so that $A_{0.01}$ also runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.01} > 0.99 \cdot \text{Opt}$

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

Let $\epsilon = 0.01$ so that $A_{0.01}$ also runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.01} > 0.99 \cdot \text{Opt}$

Let $\epsilon = 0.001$ so that $A_{0.001}$ also runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.001} > 0.999 \cdot \text{Opt}$

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

 A_ϵ can have a time complexity of $O(n^{rac{c}{\epsilon}})$ for example

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

$$A_{\epsilon} \text{ can have a time complexity of } O(n^{\frac{c}{\epsilon}}) \text{ for example}$$
$$O(n^{10c}) \text{ vs. } O(n^{100c}) \text{ vs. } O(n^{1000c}) \text{ in our example}$$
$$\bullet = 0.1 \quad \bullet = 0.01 \quad \bullet = 0.001$$

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_ϵ such that A_ϵ is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

A fully PTAS (FPTAS) has a time complexity which is polynomial in $1/\epsilon$ (as well as polynomial in n)

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

A fully PTAS (FPTAS) has a time complexity which is polynomial in $1/\epsilon$ (as well as polynomial in n) i.e. the time complexity is $O((n/\epsilon)^c)$ for some constant c

A Polynomial Time Approximation Scheme (PTAS) for problem ${\cal P}$

is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_ϵ such that A_ϵ is a $(1 + \epsilon)$ -approximation algorithm for P

• If we had a PTAS for Subset Sum we could:

Let $\epsilon = 0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\text{Opt}}{1.1} > 0.9 \cdot \text{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

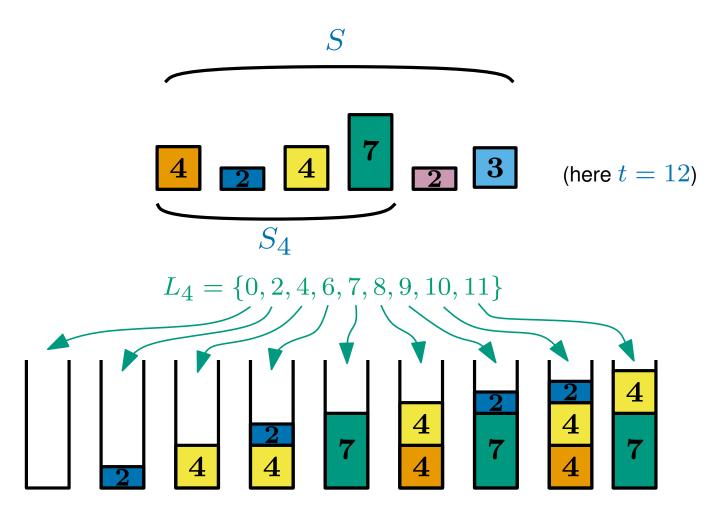
A fully PTAS (FPTAS) has a time complexity which is polynomial in $1/\epsilon$ (as well as polynomial in n)

i.e. the time complexity is $O((n/\epsilon)^c)$ for some constant c

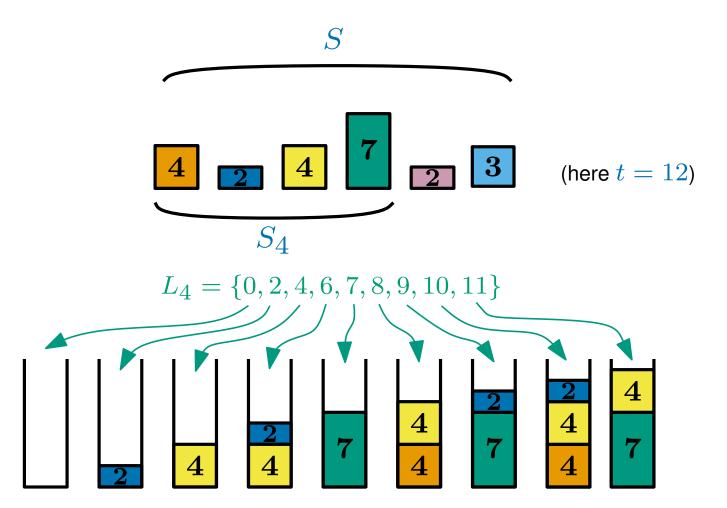
In our example
$$O((10n)^c) = O((100n)^c) = O((1000n)^c) = O(n^c)$$

 $\epsilon = 0.1$ $\epsilon = 0.01$ $\epsilon = 0.001$

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)



Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)



The exact algorithm for Subset Sum was slow (in general) because each list of possible subset sizes L_i could become *very large*

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

 L_i' is a subset of L_i (i.e. $L_i' \subseteq L_i$)

A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

 L_i' is a subset of L_i (i.e. $L_i'\subseteq L_i$)

The length of L'_i is polynomial in the input length (i.e. $|L'_i| \leq n^c$ for some c)

A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

 L'_i is a subset of L_i (i.e. $L'_i \subseteq L_i$) The length of L'_i is polynomial in the input length (i.e. $|L'_i| \leq n^c$ for some c) For every $y \in L_i$, there is a $z \in L'_i$ which is *almost* as big

Consider this process called **Trim**...

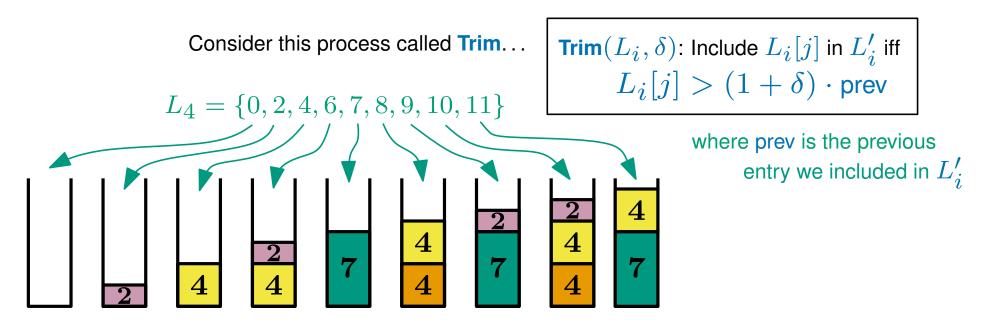
 $\begin{aligned} \operatorname{Trim}(L_i,\delta) &: \operatorname{Include} L_i[j] \text{ in } L_i' \text{ iff} \\ L_i[j] > (1+\delta) \cdot \operatorname{prev} \end{aligned}$

where prev is the previous entry we included in L'_i

A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

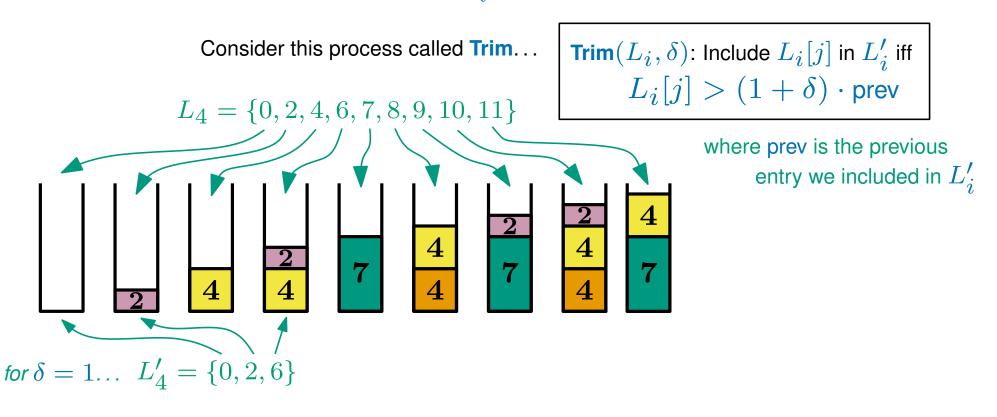
Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that



A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

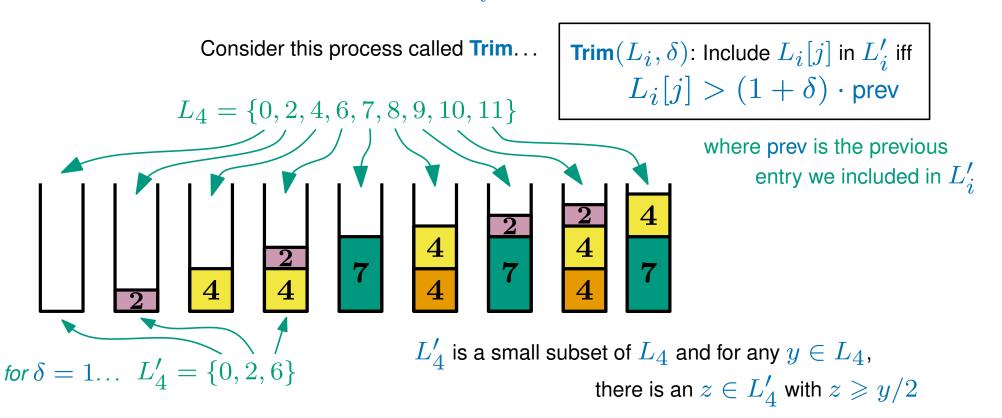
Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that



A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that



A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

 L'_i is a subset of L_i (i.e. $L'_i \subseteq L_i$) The length of L'_i is polynomial in the input length (i.e. $|L'_i| \leq n^c$ for some c) For every $y \in L_i$, there is a $z \in L'_i$ which is *almost* as big

Consider this process called **Trim**...

 $\begin{aligned} \operatorname{Trim}(L_i,\delta) &: \operatorname{Include} L_i[j] \text{ in } L_i' \text{ iff} \\ L_i[j] > (1+\delta) \cdot \operatorname{prev} \end{aligned}$

where prev is the previous entry we included in L'_i

A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

 L'_i is a subset of L_i (i.e. $L'_i \subseteq L_i$) The length of L'_i is polynomial in the input length (i.e. $|L'_i| \leq n^c$ for some c) For every $y \in L_i$, there is a $z \in L'_i$ which is *almost* as big

Consider this process called **Trim**...

 $\begin{aligned} \operatorname{Trim}(L_i,\delta) &: \operatorname{Include} L_i[j] \text{ in } L_i' \text{ iff} \\ L_i[j] > (1+\delta) \cdot \operatorname{prev} \end{aligned}$

where prev is the previous entry we included in L'_i

Unfortunately, this hasn't really achieved anything...

A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first i numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

 L'_i is a subset of L_i (i.e. $L'_i \subseteq L_i$) The length of L'_i is polynomial in the input length (i.e. $|L'_i| \leq n^c$ for some c) For every $y \in L_i$, there is a $z \in L'_i$ which is *almost* as big

Consider this process called **Trim**...

 $\begin{aligned} \operatorname{Trim}(L_i,\delta) &: \operatorname{Include} L_i[j] \text{ in } L_i' \text{ iff} \\ L_i[j] > (1+\delta) \cdot \operatorname{prev} \end{aligned}$

where prev is the previous entry we included in L'_i

Unfortunately, this hasn't really achieved anything...

we don't have time to compute L_i and then trim it

(because L_i might be very big)

A PTAS for Subset Sum

Recall that L_i is the set of sizes of all $S' \subseteq S_i$ which are not larger than t(where $S_i = \{s_1, s_2, \dots, s_i\}$ - the first *i* numbers in the input)

Key Idea Construct a *trimmed* version of L_i (denoted $L'_i \subseteq L_i$) so that

 L'_i is a subset of L_i (i.e. $L'_i \subseteq L_i$) The length of L'_i is polynomial in the input length (i.e. $|L'_i| \leq n^c$ for some c) For every $y \in L_i$, there is a $z \in L'_i$ which is *almost* as big

Consider this process called **Trim**... | **Trim** (L_i, δ) : Include $L_i[j]$ in L'_i iff $L_i[j] > (1+\delta) \cdot \text{prev}$

> where prev is the previous entry we included in L'_i

Unfortunately, this hasn't really achieved anything...

we don't have time to compute L_i and then trim it

(because L_i might be very big)

Instead, we will trim as we go along...

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm

- $\circ \operatorname{Let} L'_{0} = \{0\}, \delta = \epsilon/(2m)$ $\circ \operatorname{For} i = 1 \dots m:$ $\circ \operatorname{Compute} (L'_{i-1} + s_{i}) \operatorname{from} L'_{i-1}$ $\circ \operatorname{Compute} U = L'_{i-1} \cup (L'_{i-1} + s_{i})$ $\circ \operatorname{Let} L'_{i} = \operatorname{Trim}(U, \delta)$
- \circ Output the largest number in L_m'

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

The algorithm

- $\circ \operatorname{Let} L'_{0} = \{0\}, \delta = \epsilon/(2m)$ $\circ \operatorname{For} i = 1 \dots m:$ $\circ \operatorname{Compute} (L'_{i-1} + s_{i}) \operatorname{from} L'_{i-1}$ $\circ \operatorname{Compute} U = L'_{i-1} \cup (L'_{i-1} + s_{i})$ $\circ \operatorname{Let} L'_{i} = \operatorname{Trim}(U, \delta)$
- \circ Output the largest number in L_m'

Trim (U, δ) : Include U[j] in L'_i iff $U[j] > (1 + \delta) \cdot \text{prev}$

where prev is the previous thing we included in L'_i

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm

- $\circ \operatorname{Let} L'_{0} = \{0\}, \delta = \epsilon/(2m)$ $\circ \operatorname{For} i = 1 \dots m:$ $\circ \operatorname{Compute} (L'_{i-1} + s_{i}) \operatorname{from} L'_{i-1}$ $\circ \operatorname{Compute} U = L'_{i-1} \cup (L'_{i-1} + s_{i})$ $\circ \operatorname{Let} L'_{i} = \operatorname{Trim}(U, \delta)$
- \circ Output the largest number in L_m'

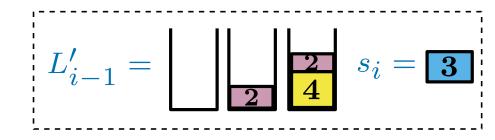
Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L'_i is the *trimmed* version of L_i

University of BRISTOL

The algorithm

 $\circ \operatorname{Let} L'_{0} = \{0\}, \delta = \epsilon/(2m)$ $\circ \operatorname{For} i = 1 \dots m:$ $\circ \operatorname{Compute} (L'_{i-1} + s_{i}) \operatorname{from} L'_{i-1}$ $\circ \operatorname{Compute} U = L'_{i-1} \cup (L'_{i-1} + s_{i})$ $\circ \operatorname{Let} L'_{i} = \operatorname{Trim}(U, \delta)$



 \circ Output the largest number in L_m'

The algorithm

A PTAS for Subset Sum

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L'_i is the *trimmed* version of L_i

University of BRISTOL

$\circ \operatorname{Let} L'_{0} = \{0\}, \delta = \epsilon/(2m)$ $\circ \operatorname{For} i = 1 \dots m:$ $\circ \operatorname{Compute} (L'_{i-1} + s_{i}) \operatorname{from} L'_{i-1} \\ \circ \operatorname{Compute} U = L'_{i-1} \cup (L'_{i-1} + s_{i})$ $\circ \operatorname{Let} L'_{i} = \operatorname{Trim}(U, \delta)$ $\circ \operatorname{Output} \text{ the largest number in } L'_{m}$

The algorithm

A PTAS for Subset Sum

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L'_i is the *trimmed* version of L_i

University of BRISTOL

\circ Let $L_0' = \{0\}, \delta = \epsilon/(2m)$ $s_i = 3$ $L'_{i-1} =$ \circ For $i = 1 \dots m$: • Compute $(L'_{i-1} + s_i)$ from L'_{i-1} $\circ \text{ Compute } U = L'_{i-1} \cup (L'_{i-1} + s_i)$ \circ Let $L'_i = \operatorname{Trim}(U, \delta)$ $(L_{i-1}'+s_i) =$ \circ Output the largest number in L_m' $U = L'_{i-1} \cup (L'_{i-1} + s_i) =$

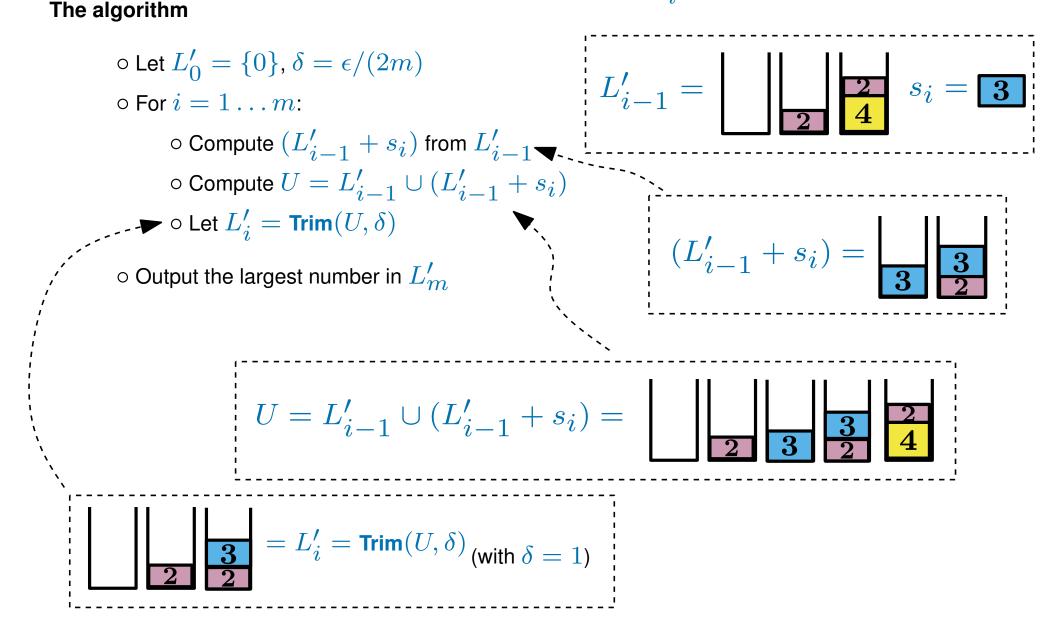
|S| = m

A PTAS for Subset Sum

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L'_i is the *trimmed* version of L_i

University of BRISTOL

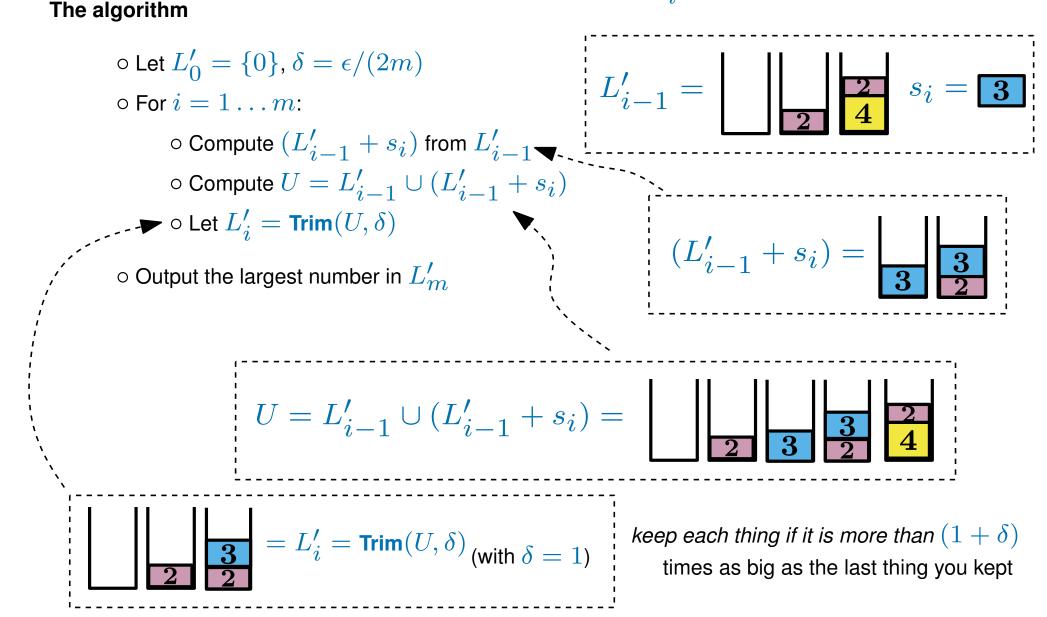


|S| = m

A PTAS for Subset Sum

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L'_i is the *trimmed* version of L_i



Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm

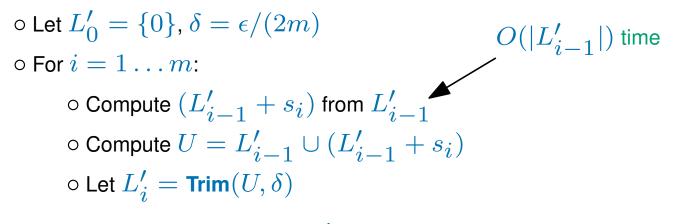
- $\circ \operatorname{Let} L'_{0} = \{0\}, \delta = \epsilon/(2m)$ $\circ \operatorname{For} i = 1 \dots m:$ $\circ \operatorname{Compute} (L'_{i-1} + s_{i}) \operatorname{from} L'_{i-1}$ $\circ \operatorname{Compute} U = L'_{i-1} \cup (L'_{i-1} + s_{i})$ $\circ \operatorname{Let} L'_{i} = \operatorname{Trim}(U, \delta)$
- \circ Output the largest number in L_m'

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm



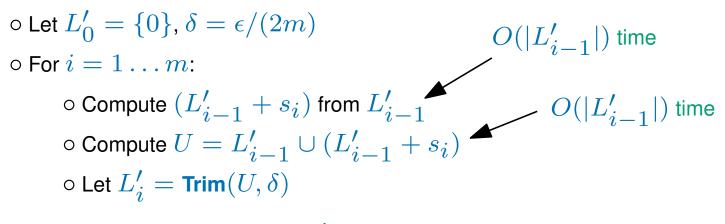
 \circ Output the largest number in L_m'

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm

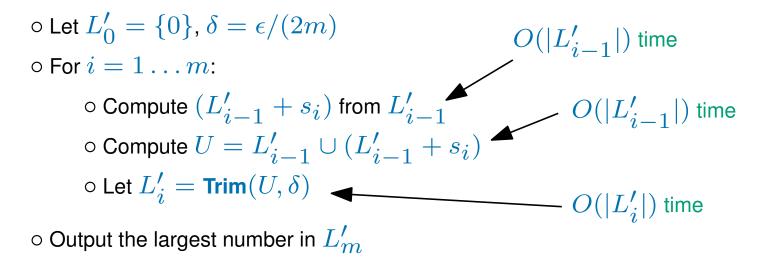


 \circ Output the largest number in L_m'

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

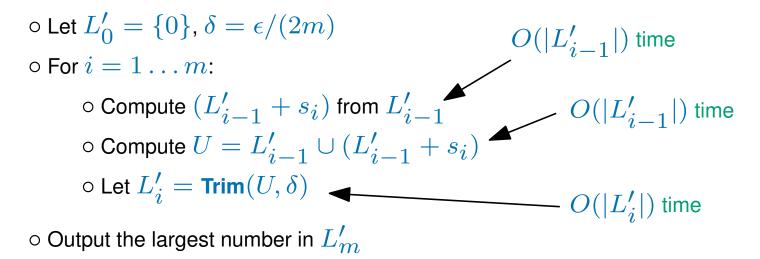
The algorithm



Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

The algorithm



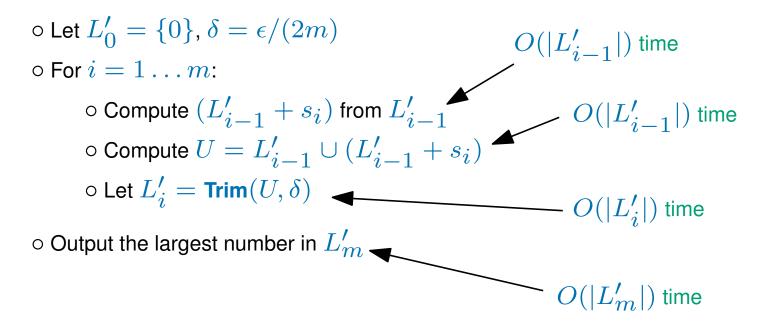
 $\begin{aligned} \operatorname{Trim}(U,\delta) &: \operatorname{Include} U[j] \text{ in } L'_i \text{ iff } U[j] > (1+\delta) \cdot \operatorname{prev} \\ & \text{where prev is the previous thing we included in } L'_i \end{aligned}$

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm



 $\mathrm{Trim}(U,\delta) \colon \mathrm{Include}\ U[j] \ \mathrm{in}\ L'_i \ \mathrm{iff}\ U[j] > (1+\delta) \cdot \mathrm{prev}$

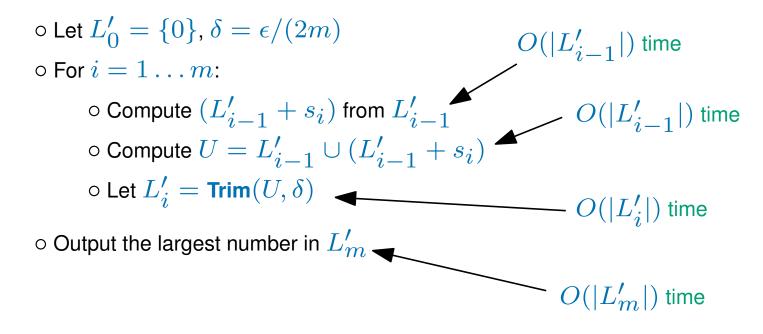
where prev is the previous thing we included in L'_{i}

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm

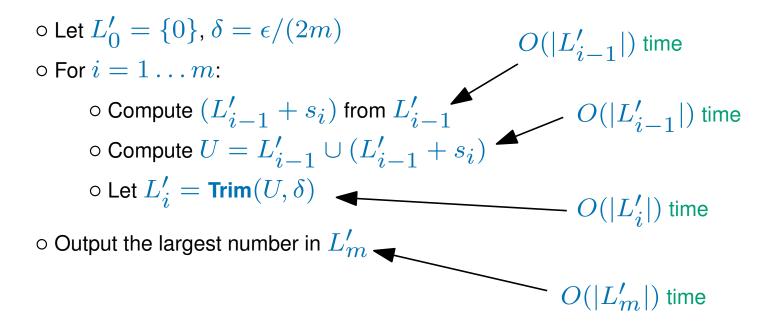


Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of BRISTOL

The algorithm



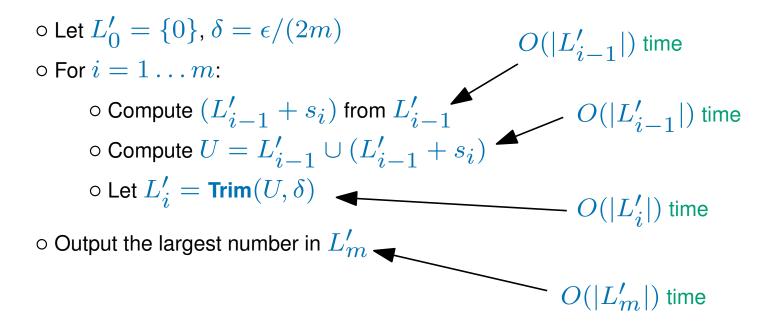
This algorithm throws away some possible subsets,

but it always outputs a *valid* subset (but probably not the largest one)

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

The algorithm



This algorithm throws away some possible subsets,

but it always outputs a *valid* subset (but probably not the largest one)

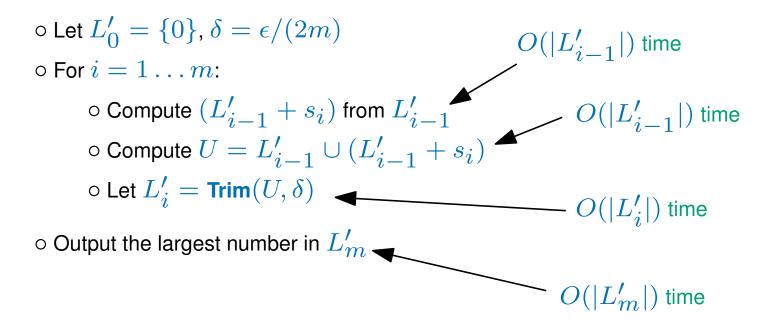
Two questions remain...

Let L_i be the set of sizes of all $S' \subseteq S_i$ which are not larger than t

- L_i' is the *trimmed* version of L_i

University of

The algorithm



This algorithm throws away some possible subsets,

but it always outputs a *valid* subset (but probably not the largest one)

Two questions remain...

How big is $|L'_i|$?

How good is the solution given?

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\ rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

For any entry in the original set (L_i) ...

there is one in the trimmed set (L'_i) ...

of a *'similar'* size (δ is very small)

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\ rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Proof (by induction)

Lemma For any $y \in L_i$ there is an $z \in L_i'$ with $\frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\ rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Base Case: $L_0 = L'_0 = \{0\}$

Inductive step: Assume that the lemma holds for (i-1)

$$|S| = m$$

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\ \frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$

Inductive step: Assume that the lemma holds for (i-1)

As $y \in L_i$ we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$

$$L_i$$
 vs. L_i'

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\leqslant z\leqslant y$

Base Case: $L_0 = L'_0 = \{0\}$

Inductive step: Assume that the lemma holds for (i-1)

As $y \in L_i$ we have that either $y \in L_{i-1}$ or $(y-s_i) \in L_{i-1}$

if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $rac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\leqslant z\leqslant y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)As $y \in L_i$ we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

$$L_i$$
 vs. L_i'

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\leqslant z\leqslant y$

Base Case: $L_0 = L'_0 = \{0\}$

Inductive step: Assume that the lemma holds for (i-1)

As $y \in L_i$ we have that either $y \in L_{i-1}$ or $(y-s_i) \in L_{i-1}$

if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $rac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

$$|S| = m$$

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\leqslant z\leqslant y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As $y \in L_i$ we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leq x \leq z \cdot (1 + \delta)$

$$S|=m$$

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\,\leqslant\, z\,\leqslant\, y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As
$$y \in L_i$$
 we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$
if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leqslant x \leqslant z \cdot (1 + \delta)$

So we have that
$$z \leqslant x \leqslant y$$
 and $z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^i}$

$$L_i$$
 vs.

 L'_{i}

$$|S| = m$$

Lemma For any $y \in L_i$ there is an $z \in L_i'$ with $\frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As $y \in L_i$ we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leqslant x \leqslant z \cdot (1+\delta)$

So we have that
$$z\leqslant x\leqslant y$$
 and $z\geqslant rac{x}{1+\delta}\geqslant rac{y}{(1+\delta)^i}$

$$L_i$$
 vs. L

$$|S| = m$$

Lemma For any $y \in L_i$ there is an $z \in L'_i$ with $\frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As
$$y \in L_i$$
 we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$
if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$.

By the definition of Trim there is some $z \in L'_i$ with $z \leq x \leq z \cdot (1 + \delta)$

So we have that
$$z\leqslant x\leqslant y$$
 and $z\geqslant rac{x}{1+\delta}\geqslant rac{y}{(1+\delta)^i}$

$$L_i$$
 vs. L

$$|S| = m$$

Lemma For any $y \in L_i$ there is an $z \in L_i'$ with $\frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As $y \in L_i$ we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leq x \leq z \cdot (1 + \delta)$. So we have that $z \leq x \leq y$ and $z \geq \frac{x}{1+\delta} \geq \frac{y}{(1+\delta)^i}$

$$L_i$$
 vs. L_i'

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\leqslant z\leqslant y$

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As
$$y \in L_i$$
 we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$
if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leqslant x \leqslant z \cdot (1+\delta)$

So we have that
$$z \leqslant x \leqslant y$$
 and $z \gtrless \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^i}$.

$$S|=m$$

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\,\leqslant\, z\,\leqslant\, y$

Proof (by induction)

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As
$$y \in L_i$$
 we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$
if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leqslant x \leqslant z \cdot (1 + \delta)$

So we have that
$$z \leqslant x \leqslant y$$
 and $z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^i}$

$$L_i$$
 vs. L_i^\prime

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As
$$y \in L_i$$
 we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$
if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leq x \leq z \cdot (1 + \delta)$

So we have that
$$z \leqslant x \leqslant y$$
 and $z \geqslant rac{x}{1+\delta} \geqslant rac{y}{(1+\delta)^i}$

I.e. that there is an $z \in L'_i$ with $\ \ \frac{y}{(1+\delta)^i} \leqslant z \leqslant y$ as required

$$L_i$$
 vs. L_i'

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As
$$y \in L_i$$
 we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$
if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leqslant x \leqslant z \cdot (1+\delta)$

So we have that
$$z\leqslant x\leqslant y$$
 and $z\geqslant rac{x}{1+\delta}\geqslant rac{y}{(1+\delta)^i}$

I.e. that there is an $z \in L'_i$ with $\ \ \frac{y}{(1+\delta)^i} \leqslant z \leqslant y$ as required

The case that $(y-s_i) \in L_{i-1}$ is almost identical

$$L_i$$
 vs. L_a^\prime

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Base Case: $L_0 = L'_0 = \{0\}$ Inductive step: Assume that the lemma holds for (i - 1)

As
$$y \in L_i$$
 we have that either $y \in L_{i-1}$ or $(y - s_i) \in L_{i-1}$
if $y \in L_{i-1}$ then there is a $x \in L'_{i-1}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L'_i$ with $z \leq x \leq z \cdot (1 + \delta)$

So we have that
$$z\leqslant x\leqslant y$$
 and $z\geqslant rac{x}{1+\delta}\geqslant rac{y}{(1+\delta)^i}$

I.e. that there is an $z \in L'_i$ with $\ \ \frac{y}{(1+\delta)^i} \leqslant z \leqslant y$ as required

The case that $(y - s_i) \in L_{i-1}$ is almost identical *(we omit it for brevity)*

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\ rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\frac{y}{(1+\delta)^i} \leqslant z \leqslant y$

By setting i=m and $\delta=\epsilon/2m$ we have that,

For any
$$y \in L_m$$
 there is a $z \in L'_m$ with $\ \ \dfrac{y}{(1+rac{\epsilon}{2m})^m} \leqslant z \leqslant y$

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\leqslant z\leqslant y$

By setting i=m and $\delta=\epsilon/2m$ we have that,

For any
$$y \in L_m$$
 there is a $z \in L'_m$ with $\ \ \dfrac{y}{(1+\dfrac{\epsilon}{2m})^m} \leqslant z \leqslant y$

Further, $\operatorname{Opt} \in L_m$ meaning there is a $z \in L_m'$ with

$$\frac{\text{Opt}}{\left(1 + \frac{\epsilon}{2m}\right)^m} \leqslant z \leqslant \text{Opt}$$

Lemma For any
$$y\in L_i$$
 there is an $z\in L_i'$ with $\ rac{y}{(1+\delta)^i}\leqslant z\leqslant y$

By setting i=m and $\delta=\epsilon/2m$ we have that,

For any
$$y \in L_m$$
 there is a $z \in L'_m$ with $\ \ \dfrac{y}{(1+\dfrac{\epsilon}{2m})^m} \leqslant z \leqslant y$

Further, $\operatorname{Opt} \in L_m$ meaning there is a $z \in L_m'$ with

$$\frac{\text{Opt}}{\left(1 + \frac{\epsilon}{2m}\right)^m} \leqslant z \leqslant \text{Opt}$$

Recall that the output of the algorithm is the largest number in L_m' ...

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\ rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

By setting i=m and $\delta=\epsilon/2m$ we have that,

For any
$$y \in L_m$$
 there is a $z \in L'_m$ with $\ \ \dfrac{y}{(1+\dfrac{\epsilon}{2m})^m} \leqslant z \leqslant y$

Further, $\operatorname{Opt} \in L_m$ meaning there is a $z \in L'_m$ with

$$\frac{\text{Opt}}{\left(1 + \frac{\epsilon}{2m}\right)^m} \leqslant z \leqslant \text{Opt}$$

Recall that the output of the algorithm is the largest number in L_m' ...

We only need to show that $\left(1+\frac{\epsilon}{2m}\right)^m\leqslant 1+\epsilon\dots$

Lemma For any
$$y \in L_i$$
 there is an $z \in L_i'$ with $\ rac{y}{(1+\delta)^i} \leqslant z \leqslant y$

By setting i=m and $\delta=\epsilon/2m$ we have that,

For any
$$y \in L_m$$
 there is a $z \in L'_m$ with $\ \ \dfrac{y}{(1+\dfrac{\epsilon}{2m})^m} \leqslant z \leqslant y$

Further, $\operatorname{Opt} \in L_m$ meaning there is a $z \in L_m'$ with

$$\frac{\text{Opt}}{1+\epsilon} \leqslant z \leqslant \text{Opt} \qquad \mathbf{VS} \quad \frac{\text{Opt}}{\left(1+\frac{\epsilon}{2m}\right)^m} \leqslant z \leqslant \text{Opt}$$

Recall that the output of the algorithm is the largest number in L'_m ...

We only need to show that $\left(1+\frac{\epsilon}{2m}\right)^m\leqslant 1+\epsilon\dots$

We need to show that $\left(1+rac{\epsilon}{2m}
ight)^m\leqslant 1+\epsilon$ (for $0<\epsilon\leqslant 1$)

$$|S| = m$$

$$L_i$$
 vs. L_i^\prime

We need to show that $\left(1+rac{\epsilon}{2m}
ight)^m\leqslant 1+\epsilon$ (for $0<\epsilon\leqslant 1$)

$$\left(1+\frac{\epsilon}{2m}\right)^m \leqslant e^{\epsilon/2} \leqslant 1+\frac{\epsilon}{2}+\left(\frac{\epsilon}{2}\right)^2 \leqslant 1+\epsilon$$

$$|S| = m$$

$$L_i$$
 vs. L_i^\prime

We need to show that $\left(1+rac{\epsilon}{2m}
ight)^m\leqslant 1+\epsilon$ (for $0<\epsilon\leqslant 1$)

$$\left(1 + \frac{\epsilon}{2m}\right)^m \leqslant e^{\epsilon/2} \leqslant 1 + \frac{\epsilon}{2} + \left(\frac{\epsilon}{2}\right)^2 \leqslant 1 + \epsilon$$

This follows from the following facts:

$$e^x \geqslant (1+rac{x}{m})^m$$
 for all $x,m>0$

$$e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!} \leqslant 1 + x + x^2$$

$$|S| = m$$

$$L_i$$
 vs. L_i^\prime

$$\left(1 + \frac{\epsilon}{2m}\right)^m \leqslant e^{\epsilon/2} \leqslant 1 + \frac{\epsilon}{2} + \left(\frac{\epsilon}{2}\right)^2 \leqslant 1 + \epsilon$$

So the output of the algorithm is some z where,

$$|S| = m$$

$$L_i$$
 vs. L_i^\prime

$$\left(1 + \frac{\epsilon}{2m}\right)^m \leqslant e^{\epsilon/2} \leqslant 1 + \frac{\epsilon}{2} + \left(\frac{\epsilon}{2}\right)^2 \leqslant 1 + \epsilon$$

So the output of the algorithm is some z where,

$$\frac{\text{Opt}}{1+\epsilon} \leqslant \frac{\text{Opt}}{\left(1+\frac{\epsilon}{2m}\right)^m} \leqslant z \leqslant \text{Opt}$$

$$|S| = m$$

$$L_i$$
 vs. L_i^\prime

$$\left(1 + \frac{\epsilon}{2m}\right)^m \leqslant e^{\epsilon/2} \leqslant 1 + \frac{\epsilon}{2} + \left(\frac{\epsilon}{2}\right)^2 \leqslant 1 + \epsilon$$

So the output of the algorithm is some z where,

$$\frac{\operatorname{Opt}}{1+\epsilon} \leqslant z \leqslant \operatorname{Opt}$$

$$|S| = m$$

$$L_i$$
 vs. L_i^\prime

$$\left(1 + \frac{\epsilon}{2m}\right)^m \leqslant e^{\epsilon/2} \leqslant 1 + \frac{\epsilon}{2} + \left(\frac{\epsilon}{2}\right)^2 \leqslant 1 + \epsilon$$

So the output of the algorithm is some z where,

$$\frac{\operatorname{Opt}}{1+\epsilon} \leqslant z \leqslant \operatorname{Opt}$$

But how long does it take to run?

The time complexity depends on $|L_i'|$...

The time complexity depends on $|L_i'|$...

By the definition of Trim we have that,

any two successive elements, z, z' of L'_i have

$$\frac{z'}{z} \geqslant 1 + \delta = 1 + \frac{\epsilon}{2m}$$

The time complexity depends on $|L_i'|$...

By the definition of Trim we have that,

any two successive elements, z, z' of L'_i have

$$\frac{z'}{z} \ge 1 + \delta = 1 + \frac{\epsilon}{2m}$$

Further, all elements are no greater than t

The time complexity depends on $|L'_i|$...

By the definition of Trim we have that,

any two successive elements, z, z' of L'_i have

$$\frac{z'}{z} \geqslant 1 + \delta = 1 + \frac{\epsilon}{2m}$$

Further, all elements are no greater than t

So L'_i contains at most $O(\log_{(1+\delta)} t)$ elements

How big is
$$L'_i$$
?

The time complexity depends on $|L'_i|$...

By the definition of Trim we have that,

any two successive elements, z, z^\prime of L_i^\prime have

$$\frac{z'}{z} \ge 1 + \delta = 1 + \frac{\epsilon}{2m}$$

Further, all elements are no greater than t

So L'_i contains at most $O(\log_{(1+\delta)} t)$ elements

$$\log_{(1+\delta)} t = \frac{\ln t}{\ln(1 + (\epsilon/2m))} \leqslant \frac{2m(1 + (\epsilon/2m))\ln t}{\epsilon} = O\left(\frac{m\log t}{\epsilon}\right)$$

The time complexity depends on $|L'_i|$...

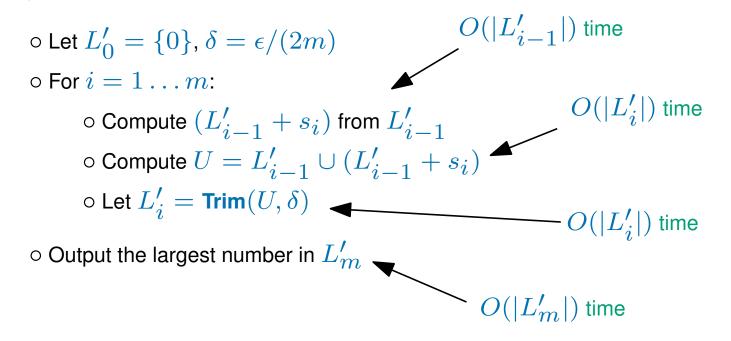
By the definition of Trim we have that,

any two successive elements, z, z' of L'_i have

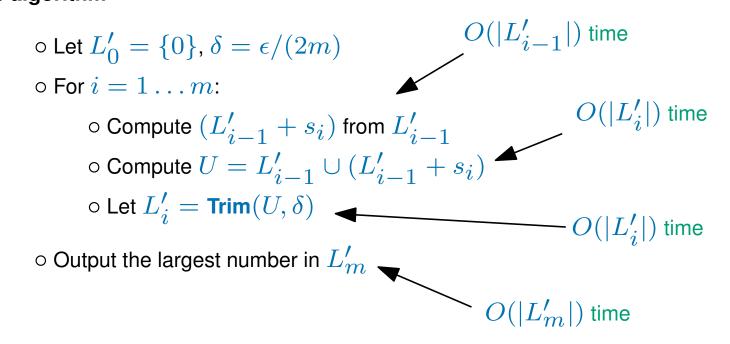
$$\frac{z'}{z} \ge 1 + \delta = 1 + \frac{\epsilon}{2m}$$

Further, all elements are no greater than tSo L'_i contains at most $O(\log_{(1+\delta)} t)$ elements $\log_{(1+\delta)} t = \frac{\ln t}{\ln(1 + (\epsilon/2m))} \leqslant \frac{2m(1 + (\epsilon/2m))\ln t}{\epsilon} = O\left(\frac{m\log t}{\epsilon}\right)$

The algorithm



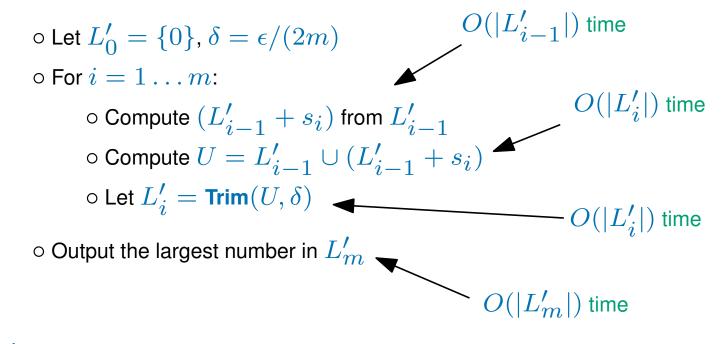
The algorithm



As $|L'_i| = O(m \log t/\epsilon)$, the algorithm runs in

 $O(m^2 \log t/\epsilon) = O(n^3 \log n/\epsilon)$ time

The algorithm

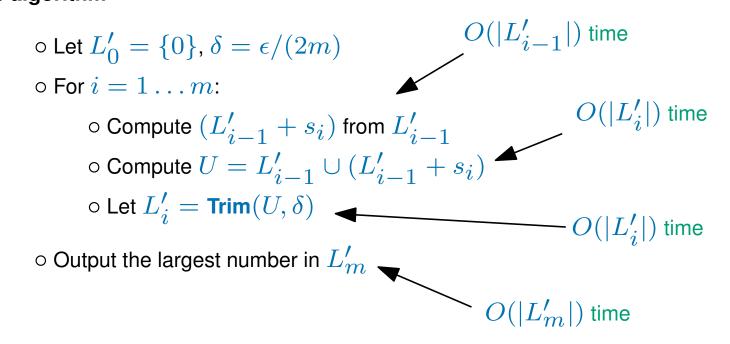


As $|L'_i| = O(m \log t/\epsilon)$, the algorithm runs in

$$O(m^2\log t/\epsilon) = O(n^3\log n/\epsilon)$$
 time
$$\log t = O(n\log n)$$
 $m \leqslant n$

Recall that n is the *length of the input* (measured in words)

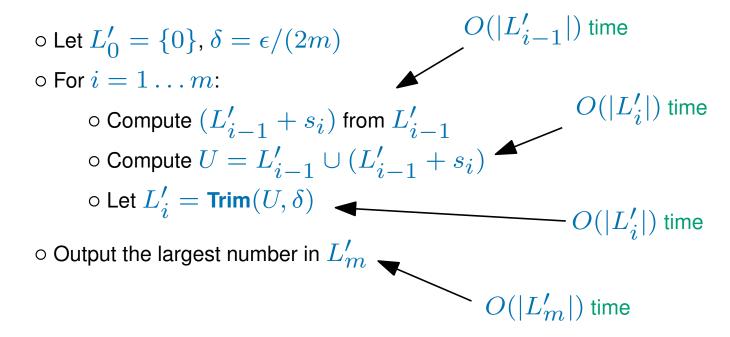
The algorithm



As $|L'_i| = O(m \log t/\epsilon)$, the algorithm runs in

 $O(m^2 \log t/\epsilon) = O(n^3 \log n/\epsilon)$ time

The algorithm

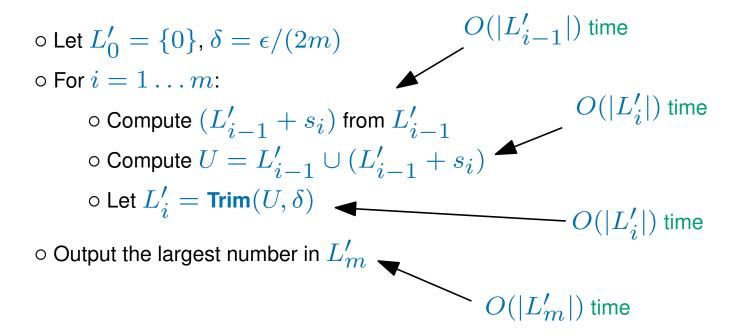


As $|L'_i| = O(m \log t/\epsilon)$, the algorithm runs in

$$O(m^2 \log t/\epsilon) = O(n^3 \log n/\epsilon)$$
 time

The output
$$z$$
 is such that $\frac{\text{Opt}}{1+\epsilon} \leqslant z \leqslant \text{Opt}$

The algorithm



As $|L'_i| = O(m \log t/\epsilon)$, the algorithm runs in

$$O(m^2 \log t/\epsilon) = O(n^3 \log n/\epsilon)$$
 time

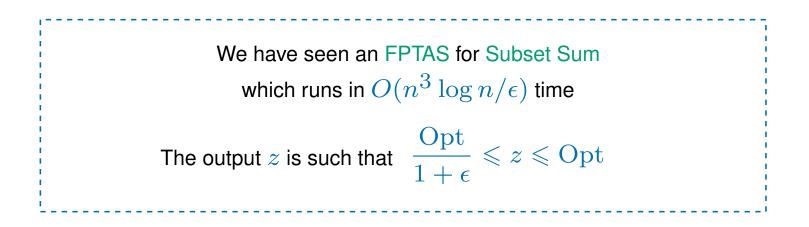
The output
$$z$$
 is such that $\frac{\operatorname{Opt}}{1+\epsilon} \leqslant z \leqslant \operatorname{Opt}$

So this is in fact an FPTAS for Subset Sum

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon > 0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1 + \epsilon)$ -approximation algorithm for P



A PTAS does not have to have a time complexity which is polynomial in $1/\epsilon$

e.g. the time complexity could be $O(n^{\frac{c}{\epsilon}})$ (for example)

A fully PTAS (FPTAS) has a time complexity which is polynomial in $1/\epsilon$ (as well as polynomial in n) i.e. the time complexity is $O((n/\epsilon)^c)$ for some constant c