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Approximation Algorithms Recap

An algorithm A is an c-approximation algorithm for problem P if,

o A runs in polynomial time

o A always outputs a solution with value s

within an « factor of Opt

® Here P is an optimisation problem with optimal solution of value Opt

Op

® If I is a maximisation problem, < s < Opt

® If P is a minimisation problem, Opt < s < a - Opt

We have seen:

a 3 /2-approximation algorithm for Bin Packing

a 3 /2-approximation algorithm for scheduling multiple machines

a 2-approximation algorithm for £-centers
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® Let S be a multi-set of positive integers and ¢ be a positive integer

here S = {4,2,4,7,2,3} andt = 12
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® Let S be a multi-set of positive integers and ¢ be a positive integer
here S = {4,2,4,7,2,3} andt = 12

Decision Problem s there a subset, S’ C S with size £?
the size of S is Y, c g @

Optimisation Problem

Find the size of the largest subset of S which is no larger than ¢
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® Let S be a multi-set of positive integers and ¢ be a positive integer
here S = {4,2,4,X, X 3} andt = 12

Decision Problem s there a subset, S’ C S with size £?

Optimisation Problem

Find the size of the largest subset of S which is no larger than ¢
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The Subset Sum problem

The answer to the
optimisation problem is ‘11’

® Let S be a multi-set of positive integers and ¢ be a positive integer
here S = {4,2,4,X, X 3} andt = 12

Decision Problem s there a subset, S’ C S with size £?

Optimisation Problem

Find the size of the largest subset of S which is no larger than ¢
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the size of S is Y, c g @
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® Let S be a multi-set of positive integers and ¢ be a positive integer
here S = {4,2,4,7,2,3} andt = 12
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® Let S be a multi-set of positive integers and ¢ be a positive integer
here S = {4,2,4,7,2,3} andt = 12

Decision Problem s there a subset, S’ C S with size £?
the size of S is Y, c g @
Optimisation Problem

Find the size of the largest subset of S which is no larger than ¢

The optimisation version is N P-hard

and the decision version is N P-complete
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Let S = {s1,59,53...5m} bethe setofitemsand S; = {s1,s9,...,5;}

Let L, be the set of sizes of all S’ C S; which are not larger than ¢
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The largest subset of S (of size at most t) is the largest number in L,
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(here t = 12)
S
el N
Ly 4+ sy =L+ 7=
- peveem L+ {7,011}
— 4
7,8,9 11

The largest subset of S (of size at most t) is the largest number in L,

where (z +s;) € (L;_1 + s;)iffx € L;_jandx + s; <t



B SRt

S| =m An exact solution
Let S = {s1,59,53...5m} bethe setofitemsand S; = {s1,s9,...,5;}
Let ; be the set of sizes of all S’ C S; which are not larger than ¢
(here t = 12)
S
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The largest subset of S (of size at most t) is the largest number in L,
where (z +s;) € (L;_1 + s;)iffx € L;_jandx + s; <t

We don’t have any duplicates in L; -so |L;| <t
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The algorithm

oLet Lo = {0}
oFor:=1...m:
o Compute (L;_1 + s;) from L; 4
o Compute L; = L; 1 U (L; 1+ s;)

o Output the largest number in L,
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The algorithm

o Output the largest number in Lm<\ O

Each L; isof length | L;| <t

An exact solution

O(1) time

/

o Let LO — {O}

oForz=1...

O(|Lj—1]) time

g

o Compute (L;_1 + s;) from L; 4 / O(|L;|) time
oCompute L; = L; 1 U(L;_1+s;)

(|Lym]) time

The overall time complexity is therefore O (mit)
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An exact solution

O(1) time

/

o Let LO — {O}

O(|Lj—1]) time

oFori=1...m: /

o Output the largest number in Lm<\ O

o Compute (L;_1 + s;) from L; 4 / O(|L;|) time
oCompute L; = L; 1 U(L;_1+s;)

(|Lym]) time

Each L; isof length | L;| <t

The overall time complexity is therefore O (mit)

Input

Is this polynomial in .7

What even is n.?

n is the length of the input (measured in words)

1, words |
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An exact solution
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An exact solution

O(1) time

/

o Let L() — {O}

O(|Lj—1]) time

oFori=1...m: /

o Output the largest number in Lm<\ O

o Compute (L;_1 + s;) from L; 4 / O(|L;|) time
oCompute L; = L; 1 U(L;_1+s;)

(|Lym]) time

Each L; isof length | L;| <t

The overall time complexity is therefore O (mit)

Input

Is this polynomial in .7

What even is n.?

n is the length of the input (measured in words)

? T, words |

a w bit word (conventionally w € ©(logn))
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An exact solution

O(1) time

/

o Let LO — {O}

O(|Lj—1]) time

oFori=1...m: /

o Output the largest number in Lm<\ O

o Compute (L;_1 + s;) from L; 4 / O(|L;|) time
oCompute L; = L; 1 U(L;_1+s;)

(|Lym]) time

Each L; isof length | L;| <t

The overall time complexity is therefore O (mit)
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n is the length of the input (measured in words)
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S| =m An exact solution
The algorithm / O(1) time

oForo=1...m: /

o Compute (L;_1 + s;) from L; 4 / O(|L;|) time
oCompute L; = L; 1 U(L;_1+s;)

o Output the largest number in Lm<\ O(|Lim)) 1
m|) time
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Input

: . words |

The input to the Subset Sum problem is a list of the elements of S along with ¢
encoded in binary in a total of 7 words
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encoded in binary in a total of 7 words

As m < n, the time is O(nt)
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o Compute (L;_1 + s;) from L; 4 / O(|L;|) time
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As m < n, the timeis O(nt) ...but t could be (for example) 2"
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S| =m An exact solution
The algorithm / O(1) time
o Let LO = {O} O(lLi—lDtime

oForo=1...m: /

o Compute (L;_1 + s;) from L; 4 / O(|L;|) time
oCompute L; = L; 1 U(L;_1+s;)

o Output the largest number in Lm<\ O(|Lim)) 1
m|) time

Each L, is of length | L;| < t
Is this polynomial in .7

The overall time complexity is therefore O (mit) What even is 7.2

n is the length of the input (measured in words)

Input S1 S92 S3 oo 2

: . words |

The input to the Subset Sum problem is a list of the elements of S along with ¢
encoded in binary in a total of 7 words

As m < n, the time is O(nt) ...but t could be (for example) 2™ ...in other words O (n2™) time!
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Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time

if it runs in polynomial time when all the numbers are integers < n°

for some constant ¢

The algorithm for Subset Sum given takes O(nt) = O(nt1) time
(in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity --------==---==---------- oo

We say that an N P-complete problem is weakly INP-complete if bins have size
there is a pseudo-polynomial time algorithm for it t € [n]

The decision version of Subset Sum is weakly NP-complete

We say that an NP-complete problem is strongly N P-complete if .
it remains INP-complete when all the numbers are integers < n°© ’/\/

- : : L item sizes are
The decision version of Bin packing is strongly NP-complete

(this only makes sense if you rephrase the problem)

integers in [n¢]
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Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P

is a family of algorithms:

For any constant € > 0 there is an algorithm in the family, A¢

such that A¢ is a (1 + e)-approximation algorithm for P

® |f we had a PTAS for Subset Sum we could:
Let e = 0.1 so that Ay 1 runs in polynomial time and
outputs a subset of size at least % > 0.9 - Opt
A PTAS does not have to have a time complexity which is polynomial in 1/6

A¢ can have a time complexity of O(ng ) for example

O(n19¢) vs. O(n109¢) vs. O(n1909¢) in our example

R

e =0.1 e =0.01 €=0.001
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Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P

is a family of algorithms:

For any constant € > 0 there is an algorithm in the family, A¢

such that A¢ is a (1 + e)-approximation algorithm for P

® If we had a PTAS for Subset Sum we could:

Let e = 0.1 so that Ay 1 runs in polynomial time and

outputs a subset of size at least % > 0.9 - Opt

A PTAS does not have to have a time complexity which is polynomial in l/e

A fully PTAS (FPTAS) has a time complexity which is polynomial in 1/6 (as well as polynomial in 1)

i.e. the time complexity is O((n/€)€) for some constant ¢

In our example O ((101)¢) = O((100m)¢) = O((1000n)¢) = O(n°)

b

e = 0.1 e = 0.01 e = (0.001
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A PTAS for Subset Sum

Recall that L, is the set of sizes of all S’ C S; which are not larger than

(where S; = {s1,s9,...,8;} -thefirst i numbers in the input)
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A PTAS for Subset Sum

Recall that L; is the set of sizes of all S’ C S; which are not larger than ¢

(where S; = {s1,s9,...,8;} -thefirst i numbers in the input)

S

4 4 (here t = 12)
—
S4
L4 — {07 27 47 67

o [
4
4

The exact algorithm for Subset Sum was slow (in general) because
each list of possible subset sizes L; could become very large
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A/_/ | \‘\%‘ where prev is the previous
entry we included in L;
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A PTAS for Subset Sum

Recall that L; is the set of sizes of all S’ C S; which are not larger than ¢

(where S; = {s1,s9,...,8;} -thefirst i numbers in the input)

Key Idea Construct a frimmed version of L; (denoted L,’L. C L;) so that

L is a subset of L; (i.e. Lr’[; C L;)

)
The length of L,’L. is polynomial in the input length (i.e. |L;| < n¢ for some ¢)

Forevery y € L;,thereisa z € L,’L. which is almost as big

Consider this process called Trim... | Trim(L;, §): Include L;[7] in L; iff
L;l7] > (1 +9) - prev

\‘\%‘ where prev is the previous
entry we included in Lg

(2 |
4
v\_,_\‘\——\ .
N\ g} L4 is a small subset of 1.4 and forany y € L4,

f =1... L/ — 0727
or o 1 =1 thereis an z € L/, with z > 1/2
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A PTAS for Subset Sum

Recall that L; is the set of sizes of all S’ C S; which are not larger than ¢

(where S; = {s1,s9,...,58;} -thefirst i numbers in the input)

Key Idea Construct a frimmed version of L; (denoted L,’L. C L;) sothat

L is a subset of L; (i.e. L;; C L;)

)
The length of LfL. is polynomial in the input length (i.e. |L;| < n¢ for some ¢)

Forevery y € L;,thereisa z € L,’L. which is almost as big

Consider this process called Trim... | Trim(L;, §): Include L;[7] in L; iff
L;l7] > (1 +9) - prev

where prev is the previous
entry we included in Lg

Unfortunately, this hasn’t really achieved anything. ..

we don’t have time to compute L; and then trim it
(because L; might be very big)

Instead, we will trim as we go along...
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- Lfi is the trimmed version of L
The algorithm
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o Let L, = Trim(U, 9)

o Output the largest number in ./,



S| =m A PTAS for Subset Sum
Let L, be the set of sizes of all S’ C S; which are not larger than ¢
- Lfi is the trimmed version of L
The algorithm

o Let L6 = {0},0 =¢/(2m)

oForz=1...m:

o Compute (Lfb-_1 + 5;) from Lf/i—l
o Compute U = L;;—l U (L;—l + 57)
o Let L,’L. = Trim(U, §)

o Output the largest number in ./,

Trim(U, §): Include U[5] in L. iff U[j] > (14 9) - prev

where prev is the previous thing we included in LfL.

University of
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S~
-~ -
-
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Let L, be the set of sizes of all S’ C S; which are not larger than ¢

- Lfé is the trimmed version of L
The algorithm

oLet L)) = {0}, = ¢/(2m) i §
oFori=1...m: iLf/i—lz UE] S

o Compute (L. | + ;) from L | Q.

o Compute U = Lfi—l U (L;;_1 + 5;) \‘;_\ ________________________________ |

-wolet Ll =Trim(U,0) A 4 |

el \\‘ E (L/ + S') — !

o Output the largest number in L;n ' ! 1—1 ! 3 :
\ E / / E
‘ ! — — (21 .
“ : U L_1U(L _1+Sz) :
\ : 3 |27 ;
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S| =m A PTAS for Subset Sum

Let L, be the set of sizes of all S’ C S; which are not larger than ¢

- Lfé is the trimmed version of L

The algorithm
o Let L{, = {0}, = ¢/(2m) -
. L — 21 s;, =131
oFori=1...mu: v —1 :
o Compute (L,’L-_1 + s;) from L;—1‘~-~::: ________________________________________ |
o Compute U = L | U (L. | +s;) N |
-wolet Ll =Trim(U,0) A 4 !
(L +s;) = |
/ o Output the largest number in ./, ' : 1—1 ‘ 3 ;

keep each thing if it is more than (1 + §)
times as big as the last thing you kept
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Let L, be the set of sizes of all S’ C S; which are not larger than ¢
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o Let L6 = {0},0 =¢/(2m)
oForve=1...m: /
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O(|L,_|) time

O(|L!_4]) time

O(|L%]) time
o Output the largest number in ./,
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The algorithm
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(|L;n\)time

This algorithm throws away some possible subsets,

but it always outputs a valid subset (but probably not the largest one)

Two guestions remain. .. How big is yL; ki How good is the solution given?
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Y
_ . /. _J
Lemma Forany y € L; thereisan z € L with (1+5)? < 2 < Y

For any entry in the original set (L;) ...
there is one in the trimmed set (L,’L.) .

of a ‘similar’size (0 is very small)

University of
BRISTOL



B SRt

Lemma Forany y € L, thereisan z € L; with (1_|3_J5)7; < < < Y



B SRt

Lemma Forany y € L, thereisan z € L; with _(143{5)7: < < < Y

Proof (by induction)



B SRt

S| =m L;vs. L;

. ;o Y
Lemma Forany y € L; thereisan z € Li with (1_|_5)7; < < < y
Proof (by induction)

Base Case: Lg = L6 = {0}



B SRt

S| =m L;vs. L;

Lemma Forany y € L, thereisan z € Lg with ﬁ < < < Y
Proof (by induction)

Base Case: Lg = L6 = {0}

Inductive step: Assume that the lemma holds for (7 — 1)



B SRt

S| = m L;vs. L

Lemma Forany y € L, thereisan z € Lg with ﬁ < < < Y
Proof (by induction)

Base Case: Ly = L = {0}

Inductive step: Assume that the lemma holds for (7 — 1)

Asy € L; we have that eithery € L; 1 or(y —s;) € L;_q



B SRt

S| = m L;vs. L

Lemma Forany y € L; thereisan z € L;; with ﬁ < < < Y
Proof (by induction)

Base Case: Ly = L = {0}

Inductive step: Assume that the lemma holds for (7 — 1)

Asy € L; we have that eithery € L; 1 or(y —s;) € L;_q

ify € L; 1 thenthereisax € L,’L._1 with (14_5?(7;_1) STy



B SRt

S| =m Livs. L

y
. / . _
Lemma Forany y € L; thereisan z € L with (1_|_5)7; < < < Y

Proof (by induction)

by the inductive hypothesis
Base Case: Lg = L6 = {0}

Inductive step: Assume that the lemma holds for (7 — 1)

Asy € L; we have that eithery € L; 1 or(y —s;) € L;_q

ify € L; 1 thenthereisax € L,’L._1 with (14_5?(7;_1) STy



B SRt

S| = m L;vs. L

Lemma Forany y € L; thereisan z € L;; with ﬁ < < < Y
Proof (by induction)

Base Case: Ly = L = {0}

Inductive step: Assume that the lemma holds for (7 — 1)

Asy € L; we have that eithery € L; 1 or(y —s;) € L;_q

ify € L; 1 thenthereisax € L,’L._1 with (14_5?(7;_1) STy



B SRt

S| =m L;vs. L

Lemma Forany y € L, thereisan z € Lg with ﬁ < < < Y
Proof (by induction)

Base Case: Lg = L6 = {0}

Inductive step: Assume that the lemma holds for (7 — 1)

Asy € L; we have that eithery € L; 1 or(y —s;) € L;_q

ify € L; 1 thenthereisax € L,’L._1 with (14_5?(1-_1) STy

By the definition of Trim there is some z € Lfb. withz < oz < z- (14 9)



B SRt

S| =m Livs. L

Lemma Forany y € L, thereisan z € L; with _(143{5)7: < < < Y

Proof (by induction)

Base Case: Lg = L6 = {0}

Inductive step: Assume that the lemma holds for (7 — 1)

Asy € L; we have that eithery € L; 1 or(y —s;) € L;_q

. . : /
ify € L; 1 thenthereisax € L, | with (1+5)(z_1) STy

By the definition of Trim there is some z € Lfb. withz < oz < z- (14 9)

Sowehavethatz < x < yand z > —5 (1+5)



B s

S| =m L;vs. L

Lemma Forany y € L, thereisan z € L; with _(143{5)7: < < < Y

Proof (by induction)

Base Case: Lg = L6 = {0}

Inductive step: Assume that the lemma holds for (7 — 1)

Asy € L; we have that eithery € L; 1 or(y —s;) € L;_q

ify € L;_1thenthereisax € L,’L. with ST Y

(1+5)<%—1>

- -
' .~

By the definition of Trim there is some z & L’ W|thz < :13:< z-(149)

~.__¢

- -
’ﬂ .~

Sowe have that z < 2:< yand 2z > —5 (1+5)
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L’L VS. L’L
Lemma Forany y € L; thereisan z € L with ﬁ < < < Y
By setting 7 = m and § = ¢/2m we have that,
/ Yy
Forany y € L thereisa z € L;,, with (1 I )m
2m

University of
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We need to show that (1 + ﬁ

(1

g

Livs. L

)" <14 e(for0 < e < 1)

< e’? < 1+%+

(

€
2

2
> < 1+e
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We need to show that (1 -+

(1

2m

.E)m
o9m

e)m

< e <o+t

Livs. L

<14 e(for0O<e<])

>

This follows from the following facts:

e’ = (1+ =) forallz, m >0

et ="

o0
1=0

: 2
TS 1l+tr+o

€

2

2
> < 1+e
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We need to show that (1 + ﬁ)m <1+e(for0O<e<])

€ \mM € €\ 2
14 ) <e’? < 14— (—) <1
( o § 55 e

So the output of the algorithm is some z where,
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So the output of the algorithm is some z where,

Opt
14+ €

<
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2 \2

2
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We need to show that (1 + ﬁ

(1

€

2m

g

Livs. L

)" <14 e(for0 < e < 1)

< e <o+t

So the output of the algorithm is some z where,

Opt
14 €

<z < Opt

2

(

€
2

2
) < 1+e
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We need to show that (1 -+ ﬁ)m <1+e(for0O<e<])

(1

€

2m

yn<e”2<1+%+(

So the output of the algorithm is some z where,

Opt
14 €

<z < Opt

But how long does it take to run?

€
2

2
) < 1+e
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By the definition of Trim we have that,
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S| = m How big is L2

The time complexity depends on |LfL ...

By the definition of Trim we have that,

any two successive elements, z, 2’ of LfL. have

%’>1+5:1+L

2m

Further, all elements are no greater than ¢
another fact:

In(1+4+z) > =5

/ :
So L; contains at most O (log 14 5) ©) elements / (here = = €/2m)

Int m—}—(e/Qm)) Int _

B m logt
08(145) £ = In(1+ (e/2m)) s € © ( € )




B SRt

S| =m A PTAS for Subset Sum

The algorithm

o Let L6 = {O}, o = e/(Qm) O(lL{L_lD time

oForv=1...mu: /

LN o
o Compute (L;_1 + s; ) from Lf,i—l L O(|L;]) time
o Compute U = L/’[;_1 U (Lf,i—l + ;)
olLet L. = Trim(U, §
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T/
o Output the largest number in L,

T~

O(|L|) time
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The algorithm

o Let L6 = {O}, o = e/(Qm) O(lLfb_lD time

oForis =1...mu: /
o Compute (Lg_1 + s; ) from L,’L._1 P
o Compute U = L;;—l U (L,’L._1 + ;)
o Let L; = Trim(U, ) q—

T~

As |L,’L| = O(mlogt/e), the algorithm runs in
O(m?logt/e) = O(n3logn/e) time

O(|L”]) time

O(|L”]) time
T/
o Output the largest number in L,

O(|L. ) time

logt = O(nlogn)
mn

Recall that n is the length of the input (measured in words)
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The output 2 is such that < z < Opt
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The algorithm

o Let L6 = {O}, o = e/(Qm) O(lL{L_lD time

oForz=1...m: /

o Compute (L | + ;) from L P
o Compute U = L,’[;_1 U (L,’L._1 + ;)
olet L =Trim(U,0) q—

T~

As |L'| = O(mlogt/e), the algorithm runs in
O(m?logt/e) = O(n3logn/e) time

O(|L”]) time

O(|L”]) time
T/
o Output the largest number in L,

O(|L|) time

Opt
1+ €

The output 2 is such that < z < Opt

So this is in fact an FPTAS for Subset Sum
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Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem £ is a family of algorithms:

For any constant ¢ > O there is an algorithm in the family, A¢

such that A¢ is a (1 + ¢)-approximation algorithm for P

We have seen an FPTAS for Subset Sum
which runs in O (n? log n/€) time

Opt

14+ €

The output z is such that

A PTAS does not have to have a time complexity which is polynomial in 1/6

e.g. the time complexity could be O(ng ) (for example)

A fully PTAS (FPTAS) has a time complexity which is polynomial in 1/6 (as well as polynomial in 1)

i.e. the time complexity is O((n/€)€) for some constant ¢



