Advanced Algorithms - COMS31900

Approximation algorithms part three

(Fully) Polynomial Time Approximation Schemes

Raphaël Clifford

Slides by Benjamin Sach

Approximation Algorithms Recap

An algorithm A is an α-approximation algorithm for problem P if,

- A runs in polynomial time
- A always outputs a solution with value s

$$
\text { within an } \alpha \text { factor of } \mathrm{Opt}
$$

- Here P is an optimisation problem with optimal solution of value Opt
- If P is a maximisation problem, $\frac{\mathrm{Opt}}{\alpha} \leqslant s \leqslant \mathrm{Opt}$
- If P is a minimisation problem, $\mathrm{Opt} \leqslant s \leqslant \alpha \cdot \mathrm{Opt}$

We have seen:
a 3/2-approximation algorithm for Bin Packing
a 3/2-approximation algorithm for scheduling multiple machines
a 2 -approximation algorithm for k-centers

The Subset Sum problem

- Let S be a multi-set of positive integers and t be a positive integer

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

University of
$|S|=m$
The Subset Sum problem

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

University of
$|S|=m$
The Subset Sum problem

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

Optimisation Problem
Find the size of the largest subset of S which is no larger than t

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4, \mathbb{X}, \mathbf{X} 3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

Optimisation Problem
Find the size of the largest subset of S which is no larger than t

$$
t=12
$$

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4, \mathbf{X}, \mathbf{X} 3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

Optimisation Problem
Find the size of the largest subset of S which is no larger than t

The answer to the optimisation problem is ' 11 '

$$
t=12
$$

,

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

Optimisation Problem
Find the size of the largest subset of S which is no larger than t

- Let S be a multi-set of positive integers and t be a positive integer

$$
\text { here } S=\{4,2,4,7,2,3\} \text { and } t=12
$$

Decision Problem Is there a subset, $S^{\prime} \subseteq S$ with size t ?

$$
\text { the size of } S^{\prime} \text { is } \sum_{a \in S^{\prime}} a
$$

Optimisation Problem

Find the size of the largest subset of S which is no larger than t

The optimisation version is NP-hard and the decision version is NP-complete

An exact solution

$$
\text { Let } S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\} \text { be the set of items and } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t
S

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than $t \quad$ (here $t=12$)

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

S

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

S

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than $t \quad$ (here $t=12$)

The largest subset of S (of size at most t) is the largest number in L_{m}

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than $t \quad$ (here $t=12$)

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from L_{i-1} :

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than $t \quad$ (here $t=12$)

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than $t \quad$ (here $t=12$)

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

S

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

An exact solution

Let $S=\left\{s_{1}, s_{2}, s_{3} \ldots s_{m}\right\}$ be the set of items and $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$
Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (here } t=12 \text {) }
$$

S

The largest subset of S (of size at most t) is the largest number in L_{m}
We compute L_{i} from $L_{i-1}: \quad L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

$$
\text { where }\left(x+s_{i}\right) \in\left(L_{i-1}+s_{i}\right) \text { iff } x \in L_{i-1} \text { and } x+s_{i} \leqslant t
$$

We don't have any duplicates in L_{i} - so $\left|L_{i}\right| \leqslant t$

An exact solution

The algorithm

- Let $L_{0}=\{0\}$
- For $i=1 \ldots$. m :
- Compute $\left(L_{i-1}+s_{i}\right)$ from L_{i-1}
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}

University of
An exact solution

The algorithm

$$
O(1) \text { time }
$$

- Let $L_{0}=\{0\}$
o For $i=1 \ldots m$:
- Compute $\left(L_{i-1}+s_{i}\right)$ from L_{i-1}
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}

An exact solution

The algorithm

- Output the largest number in L_{m}

An exact solution

The algorithm

$$
O(1) \text { time }
$$

- Let $L_{0}=\{0\} \quad O\left(\left|L_{i-1}\right|\right)$ time
o For $i=1 \ldots m$:
- Compute $\left(L_{i-1}+s_{i}\right)$ from L_{i-1}
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}

An exact solution

$O(1)$ time
The algorithm

- Output the largest number in L_{m}

An exact solution

$O(1)$ time
The algorithm

- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$

An exact solution

The algorithm
$O(1)$ time

- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
The overall time complexity is therefore $O(m t)$

An exact solution

The algorithm

$O(1)$ time

- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$

An exact solution

The algorithm

$O(1)$ time

- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$ Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$

An exact solution

The algorithm

$O(1)$ time

- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$

An exact solution

The algorithm

- Let $L_{0}=\{0\}$
- For $i=1$. . . m :
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$
n is the length of the input (measured in words)

Input

An exact solution

The algorithm

$$
O(1) \text { time }
$$

- Let $L_{0}=\{0\}$
o For $i=1 \ldots m$:
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time

○ Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$

- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$
n is the length of the input (measured in words)

Input

An exact solution

The algorithm

$$
O(1) \text { time }
$$

- Let $L_{0}=\{0\}$
o For $i=1 \ldots m$:
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
The overall time complexity is therefore $O(m t)$

Is this polynomial in n ?
What even is n ?
n is the length of the input (measured in words)

An exact solution

The algorithm

- Let $L_{0}=\{0\}$
- For $i=1$. . . m :
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$
n is the length of the input (measured in words)

Input

An exact solution

The algorithm
$O(1)$ time

- Let $L_{0}=\{0\}$
- For $i=1 \ldots$. m :
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
The overall time complexity is therefore $O(m t)$
n is the length of the input (measured in words)

Input

The input to the Subset Sum problem is a list of the elements of S along with t encoded in binary in a total of n words

An exact solution

The algorithm

- Let $L_{0}=\{0\}$
- For $i=1 \ldots$. . :
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Output the largest number in L_{m}
 $O\left(\left|L_{m}\right|\right)$ time

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$
n is the length of the input (measured in words)
Input

The input to the Subset Sum problem is a list of the elements of S along with t encoded in binary in a total of n words

An exact solution

The algorithm
$O(1)$ time
\circ Let $L_{0}=\{0\}$

- For $i=1 \ldots$. m :
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}
 $O\left(\left|L_{m}\right|\right)$ time

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$
n is the length of the input (measured in words)

> Input

The input to the Subset Sum problem is a list of the elements of S along with t encoded in binary in a total of n words

As $m \leqslant n$, the time is $O(n t)$

An exact solution

The algorithm
$O(1)$ time

- Let $L_{0}=\{0\}$
- For $i=1 \ldots$. m :
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Compute $L_{i}=L_{i-1} \cup\left(L_{i-1}+s_{i}\right)$
- Output the largest number in L_{m}
 $O\left(\left|L_{m}\right|\right)$ time

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
Is this polynomial in n ?
The overall time complexity is therefore $O(m t)$
n is the length of the input (measured in words)

Input

The input to the Subset Sum problem is a list of the elements of S along with t encoded in binary in a total of n words

As $m \leqslant n$, the time is $O(n t) \ldots$ but t could be (for example) 2^{n}

An exact solution

The algorithm

- Let $L_{0}=\{0\}$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}+s_{i}\right)$ from $L_{i-1} O\left(\left|L_{i}\right|\right)$ time
- Output the largest number in L_{m}
 $O\left(\left|L_{m}\right|\right)$ time

Each L_{i} is of length $\left|L_{i}\right| \leqslant t$
The overall time complexity is therefore $O(m t)$

Is this polynomial in n ?
What even is $n ?$
n is the length of the input (measured in words)
Input

The input to the Subset Sum problem is a list of the elements of S along with t encoded in binary in a total of n words

As $m \leqslant n$, the time is $O(n t) \ldots$ but t could be (for example) $2^{n} \ldots$ in other words $O\left(n 2^{n}\right)$ time!

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$
for some constant c

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$
for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time
(in this case)

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$
for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$ for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$ for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity
We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$ for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity
We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it

The decision version of Subset Sum is weakly NP-complete

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$ for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity
We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it

The decision version of Subset Sum is weakly NP-complete
We say that an NP-complete problem is strongly NP-complete if it remains NP-complete when all the numbers are integers $\leqslant n^{c}$

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$ for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity
We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it

The decision version of Subset Sum is weakly NP-complete
We say that an NP-complete problem is strongly NP-complete if it remains NP-complete when all the numbers are integers $\leqslant n^{c}$

The decision version of Bin packing is strongly NP-complete

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$ for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time (in this case)

So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity
We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it

The decision version of Subset Sum is weakly NP-complete
We say that an NP-complete problem is strongly NP-complete if it remains NP-complete when all the numbers are integers $\leqslant n^{c}$

The decision version of Bin packing is strongly NP-complete (this only makes sense if you rephrase the problem)

Pseudo-polynomial time algorithms

We say that an algorithm is pseudo-polynomial time
if it runs in polynomial time when all the numbers are integers $\leqslant n^{c}$ for some constant c

The algorithm for Subset Sum given takes $O(n t)=O\left(n^{c+1}\right)$ time
(in this case)
So there is a pseudo-polynomial time algorithm for Subset Sum

A diversion into computational complexity
We say that an NP-complete problem is weakly NP-complete if there is a pseudo-polynomial time algorithm for it

The decision version of Subset Sum is weakly NP-complete
We say that an NP-complete problem is strongly NP-complete if it remains NP-complete when all the numbers are integers $\leqslant n^{c}$

The decision version of Bin packing is strongly NP-complete (this only makes sense if you rephrase the problem)
bins have size $t \in\left[n^{c}\right]$

item sizes are integers in $\left[n^{c}\right]$

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

Let $\epsilon=0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}$

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

Let $\epsilon=0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}$

Let $\epsilon=0.01$ so that $A_{0.01}$ also runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.01}>0.99 \cdot$ Opt

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

Let $\epsilon=0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}$

Let $\epsilon=0.01$ so that $A_{0.01}$ also runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.01}>0.99 \cdot$ Opt

Let $\epsilon=0.001$ so that $A_{0.001}$ also runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.001}>0.999 \cdot$ Opt

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

Let $\epsilon=0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}$

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

$$
\begin{aligned}
& \text { Let } \epsilon=0.1 \text { so that } A_{0.1} \text { runs in polynomial time and } \\
& \qquad \text { outputs a subset of size at least } \frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}
\end{aligned}
$$

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

$$
\begin{aligned}
& \text { Let } \epsilon=0.1 \text { so that } A_{0.1} \text { runs in polynomial time and } \\
& \qquad \text { outputs a subset of size at least } \frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}
\end{aligned}
$$

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$
A_{ϵ} can have a time complexity of $O\left(n^{\frac{c}{\epsilon}}\right)$ for example

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

Let $\epsilon=0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$
A_{ϵ} can have a time complexity of $O\left(n^{\frac{c}{\epsilon}}\right)$ for example

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

$$
\begin{aligned}
& \text { Let } \epsilon=0.1 \text { so that } A_{0.1} \text { runs in polynomial time and } \\
& \qquad \text { outputs a subset of size at least } \frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}
\end{aligned}
$$

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

$$
\begin{aligned}
& \text { Let } \epsilon=0.1 \text { so that } A_{0.1} \text { runs in polynomial time and } \\
& \qquad \text { outputs a subset of size at least } \frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}
\end{aligned}
$$

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$
A fully PTAS (FPTAS) has a time complexity which is polynomial in $1 / \epsilon$ (as well as polynomial in n)

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

$$
\begin{aligned}
& \text { Let } \epsilon=0.1 \text { so that } A_{0.1} \text { runs in polynomial time and } \\
& \qquad \text { outputs a subset of size at least } \frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}
\end{aligned}
$$

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$
A fully PTAS (FPTAS) has a time complexity which is polynomial in $1 / \epsilon$ (as well as polynomial in n)
i.e. the time complexity is $O\left((n / \epsilon)^{c}\right)$ for some constant c

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:

For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

- If we had a PTAS for Subset Sum we could:

Let $\epsilon=0.1$ so that $A_{0.1}$ runs in polynomial time and outputs a subset of size at least $\frac{\mathrm{Opt}}{1.1}>0.9 \cdot \mathrm{Opt}$

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$
A fully PTAS (FPTAS) has a time complexity which is polynomial in $1 / \epsilon$ (as well as polynomial in n)
i.e. the time complexity is $O\left((n / \epsilon)^{c}\right)$ for some constant c

In our example $O\left((10 n)^{c}\right)=O\left((100 n)^{c}\right)=O\left((1000 n)^{c}\right)=O\left(n^{c}\right)$

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t (where $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ - the first i numbers in the input) S

$$
L_{4}=\{0,2,4,6,7,8,9,10,11\}
$$

害 $1 /$ University of

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (where } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \text { - the first } i \text { numbers in the input) }
$$

$$
L_{4}=\{0,2,4,6,7,8,9,10,11\}
$$

The exact algorithm for Subset Sum was slow (in general) because each list of possible subset sizes L_{i} could become very large

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t (where $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ - the first i numbers in the input)

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t (where $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ - the first i numbers in the input)

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t (where $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ - the first i numbers in the input)

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t (where $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ - the first i numbers in the input)

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t (where $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ - the first i numbers in the input)

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big
Consider this process called Trim...

$$
\begin{gathered}
\operatorname{Trim}\left(L_{i}, \delta\right): \text { Include } L_{i}[j] \text { in } L_{i}^{\prime} \text { iff } \\
L_{i}[j]>(1+\delta) \cdot \text { prev }
\end{gathered}
$$

where prev is the previous
entry we included in L_{i}^{\prime}

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (where } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \text { - the first } i \text { numbers in the input) }
$$

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big
Consider this process called Trim...
$\operatorname{Trim}\left(L_{i}, \delta\right)$: Include $L_{i}[j]$ in L_{i}^{\prime} iff $L_{i}[j]>(1+\delta) \cdot \operatorname{prev}$

where prev is the previous entry we included in L_{i}^{\prime}

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (where } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \text { - the first } i \text { numbers in the input) }
$$

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big
Consider this process called Trim...

$$
\begin{gathered}
\operatorname{Trim}\left(L_{i}, \delta\right) \text { : Include } L_{i}[j] \text { in } L_{i}^{\prime} \text { iff } \\
L_{i}[j]>(1+\delta) \cdot \operatorname{prev}
\end{gathered}
$$

where prev is the previous entry we included in L_{i}^{\prime}

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (where } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \text { - the first } i \text { numbers in the input) }
$$

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big

Consider this process called Trim...
$\operatorname{Trim}\left(L_{i}, \delta\right)$: Include $L_{i}[j]$ in L_{i}^{\prime} iff $L_{i}[j]>(1+\delta) \cdot \operatorname{prev}$

$$
L_{4}=\{0,2,4,6,7,8,9,10,11\}
$$

L_{4}^{\prime} is a small subset of L_{4} and for any $y \in L_{4}$, there is an $z \in L_{4}^{\prime}$ with $z \geqslant y / 2$

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t (where $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ - the first i numbers in the input)

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big
Consider this process called Trim...

$$
\begin{gathered}
\operatorname{Trim}\left(L_{i}, \delta\right): \text { Include } L_{i}[j] \text { in } L_{i}^{\prime} \text { iff } \\
L_{i}[j]>(1+\delta) \cdot \text { prev }
\end{gathered}
$$

where prev is the previous
entry we included in L_{i}^{\prime}

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (where } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \text { - the first } i \text { numbers in the input) }
$$

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big
Consider this process called Trim...

$$
\begin{gathered}
\operatorname{Trim}\left(L_{i}, \delta\right): \text { Include } L_{i}[j] \text { in } L_{i}^{\prime} \text { iff } \\
L_{i}[j]>(1+\delta) \cdot \text { prev }
\end{gathered}
$$

where prev is the previous
entry we included in L_{i}^{\prime}

Unfortunately, this hasn't really achieved anything...

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (where } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \text { - the first } i \text { numbers in the input) }
$$

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big
Consider this process called Trim...

$$
\begin{gathered}
\operatorname{Trim}\left(L_{i}, \delta\right): \text { Include } L_{i}[j] \text { in } L_{i}^{\prime} \text { iff } \\
\qquad L_{i}[j]>(1+\delta) \cdot \text { prev }
\end{gathered}
$$

where prev is the previous entry we included in L_{i}^{\prime}

Unfortunately, this hasn't really achieved anything...
we don't have time to compute L_{i} and then trim it
(because L_{i} might be very big)

A PTAS for Subset Sum

Recall that L_{i} is the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { (where } S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\} \text { - the first } i \text { numbers in the input) }
$$

Key Idea Construct a trimmed version of L_{i} (denoted $L_{i}^{\prime} \subseteq L_{i}$) so that
L_{i}^{\prime} is a subset of L_{i} (i.e. $L_{i}^{\prime} \subseteq L_{i}$)
The length of L_{i}^{\prime} is polynomial in the input length (i.e. $\left|L_{i}^{\prime}\right| \leqslant n^{c}$ for some c)
For every $y \in L_{i}$, there is a $z \in L_{i}^{\prime}$ which is almost as big
Consider this process called Trim...
$\operatorname{Trim}\left(L_{i}, \delta\right):$ Include $L_{i}[j]$ in L_{i}^{\prime} iff $L_{i}[j]>(1+\delta) \cdot$ prev
where prev is the previous entry we included in L_{i}^{\prime}

Unfortunately, this hasn't really achieved anything...
we don't have time to compute L_{i} and then trim it
(because L_{i} might be very big)
Instead, we will trim as we go along...

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { - } L_{i}^{\prime} \text { is the trimmed version of } L_{i}
$$

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

Trim (U, δ) : Include $U[j]$ in L_{i}^{\prime} iff $U[j]>(1+\delta) \cdot$ prev
where prev is the previous thing we included in L_{i}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { - } L_{i}^{\prime} \text { is the trimmed version of } L_{i}
$$

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

The algorithm

- L_{i}^{\prime} is the trimmed version of L_{i}
- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

The algorithm

- L_{i}^{\prime} is the trimmed version of L_{i}
$\begin{aligned} & \text { o Let } L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m) \\ & \text { - For } i=1 \ldots m \text { : }\end{aligned} \quad L_{i-1}^{\prime}=\left\{\begin{array}{|l|l|}\hline \mathbf{2} & s_{i}=\square \\ \hline \mathbf{4}\end{array}\right.$
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

$$
\left.\left(L_{i-1}^{\prime}+s_{i}\right)=\frac{\mid}{3} \right\rvert\, \frac{1}{\frac{3}{2}}
$$

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

The algorithm

- L_{i}^{\prime} is the trimmed version of L_{i}
- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:

$$
L_{i-1}^{\prime}=\downarrow| | \begin{array}{|l|l|}
\hline \frac{2}{2} & s_{i}=\square \\
\hline 2 \\
\hline
\end{array}
$$

- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

$$
\left(L_{i-1}^{\prime}+s_{i}\right)=\left\lvert\, \frac{\mid}{\frac{3}{2}}\right.
$$

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

The algorithm

- L_{i}^{\prime} is the trimmed version of L_{i}
- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:

$$
L_{i-1}^{\prime}=\downarrow \int \frac{\mid}{2}\left|\frac{2}{4}\right|
$$

- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
\rightarrow ○ Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

$$
\left(L_{i-1}^{\prime}+s_{i}\right)=\frac{\mid}{\frac{3}{\frac{3}{2}}}
$$

$$
\left.4 \left\lvert\, \begin{array}{|l|l|}
& \\
\hline \mathbf{2} & \frac{3}{2} \\
\hline
\end{array}=L_{i}^{\prime}=\operatorname{Trim}(U, \delta)_{(\text {with }} \delta=1\right.\right)
$$

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

The algorithm

- L_{i}^{\prime} is the trimmed version of L_{i}
- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

$$
L_{i-1}^{\prime}=\downarrow \int \frac{}{2} \left\lvert\, \begin{array}{|l|l|}
\hline \frac{2}{4} \\
\hline
\end{array} s_{i}=\square\right.
$$

keep each thing if it is more than $(1+\delta)$ times as big as the last thing you kept

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

$$
\text { - } L_{i}^{\prime} \text { is the trimmed version of } L_{i}
$$

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Output the largest number in L_{m}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from $L_{i-1}^{\prime} O\left(\left|L_{i-1}^{\prime}\right|\right)$ time
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
$O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Output the largest number in L_{m}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from $L_{i-1}^{\prime} O\left(\left|L_{i-1}^{\prime}\right|\right)$ time
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
$O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Output the largest number in L_{m}^{\prime}

Trim (U, δ) : Include $U[j]$ in L_{i}^{\prime} iff $U[j]>(1+\delta) \cdot$ prev
where prev is the previous thing we included in L_{i}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from $L_{i-1}^{\prime} O\left(\left|L_{i-1}^{\prime}\right|\right)$ time
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$

$$
O\left(\left|L_{i}^{\prime}\right|\right) \text { time }
$$

- Output the largest number in L_{m}^{\prime}
$O\left(\left|L_{m}^{\prime}\right|\right)$ time

Trim (U, δ) : Include $U[j]$ in L_{i}^{\prime} iff $U[j]>(1+\delta) \cdot$ prev
where prev is the previous thing we included in L_{i}^{\prime}

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from $L_{i-1}^{\prime} O\left(\left|L_{i-1}^{\prime}\right|\right)$ time
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta) \longleftarrow O\left(\left|L_{i}^{\prime}\right|\right)$ time

○ Output the largest number in L_{m}^{\prime} O(|LLm|) time

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

This algorithm throws away some possible subsets, but it always outputs a valid subset (but probably not the largest one)

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
- For $i=1 \ldots m$:
- Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from $L_{i-1}^{\prime} O\left(\left|L_{i-1}^{\prime}\right|\right)$ time
- Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
$O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Output the largest number in L_{m}^{\prime} O(|LLm|) time

This algorithm throws away some possible subsets,
but it always outputs a valid subset (but probably not the largest one)

Two questions remain. . .

A PTAS for Subset Sum

Let L_{i} be the set of sizes of all $S^{\prime} \subseteq S_{i}$ which are not larger than t

- L_{i}^{\prime} is the trimmed version of L_{i}

The algorithm

This algorithm throws away some possible subsets, but it always outputs a valid subset (but probably not the largest one)

Two questions remain... How big is $\left|L_{i}^{\prime}\right|$? How good is the solution given?

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$ L_{i} vs. L_{i}^{\prime}

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$

For any entry in the original set $\left(L_{i}\right) \ldots$
there is one in the trimmed set $\left(L_{i}^{\prime}\right) \ldots$

$$
\text { of a 'similar'size (} \delta \text { is very small) }
$$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
L_{i} vs. L_{i}^{\prime}

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
L_{i} vs. L_{i}^{\prime}

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)

Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
L_{i} vs. L_{i}^{\prime}

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)

Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$
As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$
As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$

$$
\text { So we have that } z \leqslant x \leqslant y \text { and } z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^{i}}
$$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \cdot x \cdot(1+\delta)$

$$
\text { So we have thatz*x: } z \text { and } z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^{i}}
$$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x=y ;$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$
So we have that $z \leqslant x \leqslant y$ and $z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^{i}}$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$
So we have that $z \leqslant x \leqslant y$ and

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$

$$
\text { So we have that } z \leqslant x \leqslant y \text { and } z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^{i}}
$$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$
So we have that $z \leqslant x \leqslant y$ and $z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^{i}}$
I.e. that there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$ as required

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$

$$
\text { So we have that } z \leqslant x \leqslant y \text { and } z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^{i}}
$$

I.e. that there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$ as required

The case that $\left(y-s_{i}\right) \in L_{i-1}$ is almost identical

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$
Proof (by induction)
Base Case: $L_{0}=L_{0}^{\prime}=\{0\}$
Inductive step: Assume that the lemma holds for $(i-1)$

As $y \in L_{i}$ we have that either $y \in L_{i-1}$ or $\left(y-s_{i}\right) \in L_{i-1}$ if $y \in L_{i-1}$ then there is a $x \in L_{i-1}^{\prime}$ with $\frac{y}{(1+\delta)^{(i-1)}} \leqslant x \leqslant y$

By the definition of Trim there is some $z \in L_{i}^{\prime}$ with $z \leqslant x \leqslant z \cdot(1+\delta)$

$$
\text { So we have that } z \leqslant x \leqslant y \text { and } z \geqslant \frac{x}{1+\delta} \geqslant \frac{y}{(1+\delta)^{i}}
$$

I.e. that there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$ as required

The case that $\left(y-s_{i}\right) \in L_{i-1}$ is almost identical (we omit it for brevity)

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$

By setting $i=m$ and $\delta=\epsilon / 2 m$ we have that,

For any $y \in L_{m}$ there is a $z \in L_{m}^{\prime}$ with $\frac{y}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant y$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$

By setting $i=m$ and $\delta=\epsilon / 2 m$ we have that,

$$
\text { For any } y \in L_{m} \text { there is a } z \in L_{m}^{\prime} \text { with } \frac{y}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant y
$$

Further, Opt $\in L_{m}$ meaning there is a $z \in L_{m}^{\prime}$ with

$$
\frac{\mathrm{Opt}}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant \mathrm{Opt}
$$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$

By setting $i=m$ and $\delta=\epsilon / 2 m$ we have that,

$$
\text { For any } y \in L_{m} \text { there is a } z \in L_{m}^{\prime} \text { with } \frac{y}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant y
$$

Further, Opt $\in L_{m}$ meaning there is a $z \in L_{m}^{\prime}$ with

$$
\frac{\mathrm{Opt}}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant \mathrm{Opt}
$$

Recall that the output of the algorithm is the largest number in $L_{m}^{\prime} \ldots$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$

By setting $i=m$ and $\delta=\epsilon / 2 m$ we have that,

$$
\text { For any } y \in L_{m} \text { there is a } z \in L_{m}^{\prime} \text { with } \frac{y}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant y
$$

Further, Opt $\in L_{m}$ meaning there is a $z \in L_{m}^{\prime}$ with

$$
\frac{\mathrm{Opt}}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant \mathrm{Opt}
$$

Recall that the output of the algorithm is the largest number in $L_{m}^{\prime} \ldots$

$$
\text { We only need to show that }\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon \ldots
$$

Lemma For any $y \in L_{i}$ there is an $z \in L_{i}^{\prime}$ with $\frac{y}{(1+\delta)^{i}} \leqslant z \leqslant y$

By setting $i=m$ and $\delta=\epsilon / 2 m$ we have that,

For any $y \in L_{m}$ there is a $z \in L_{m}^{\prime}$ with $\frac{y}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant y$

Further, Opt $\in L_{m}$ meaning there is a $z \in L_{m}^{\prime}$ with

$$
\frac{\mathrm{Opt}}{1+\epsilon} \leqslant z \leqslant \mathrm{Opt}
$$

$$
\text { VS } \frac{\mathrm{Opt}}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant \mathrm{Opt}
$$

Recall that the output of the algorithm is the largest number in $L_{m}^{\prime} \cdots$

L_{i} vs. L_{i}^{\prime}

We need to show that $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon$ (for $0<\epsilon \leqslant 1$)
L_{i} vs. L_{i}^{\prime}

We need to show that $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon$ (for $0<\epsilon \leqslant 1$)

$$
\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant e^{\epsilon / 2} \leqslant 1+\frac{\epsilon}{2}+\left(\frac{\epsilon}{2}\right)^{2} \leqslant 1+\epsilon
$$

L_{i} vs. L_{i}^{\prime}

We need to show that $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon($ for $0<\epsilon \leqslant 1)$

$$
\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant e^{\epsilon / 2} \leqslant 1+\frac{\epsilon}{2}+\left(\frac{\epsilon}{2}\right)^{2} \leqslant 1+\epsilon
$$

This follows from the following facts:

$$
\begin{aligned}
& e^{x} \geqslant\left(1+\frac{x}{m}\right)^{m} \text { for all } x, m>0 \\
& e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!} \leqslant 1+x+x^{2}
\end{aligned}
$$

$|S|=m$
L_{i} vs. L_{i}^{\prime}

We need to show that $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon$ (for $0<\epsilon \leqslant 1$)

$$
\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant e^{\epsilon / 2} \leqslant 1+\frac{\epsilon}{2}+\left(\frac{\epsilon}{2}\right)^{2} \leqslant 1+\epsilon
$$

So the output of the algorithm is some z where,
L_{i} vs. L_{i}^{\prime}

We need to show that $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon($ for $0<\epsilon \leqslant 1)$

$$
\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant e^{\epsilon / 2} \leqslant 1+\frac{\epsilon}{2}+\left(\frac{\epsilon}{2}\right)^{2} \leqslant 1+\epsilon
$$

So the output of the algorithm is some z where,

$$
\frac{\text { Opt }}{1+\epsilon} \leqslant \frac{\text { Opt }}{\left(1+\frac{\epsilon}{2 m}\right)^{m}} \leqslant z \leqslant \mathrm{Opt}
$$

$|S|=m$
L_{i} vs. L_{i}^{\prime}

We need to show that $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon($ for $0<\epsilon \leqslant 1)$

$$
\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant e^{\epsilon / 2} \leqslant 1+\frac{\epsilon}{2}+\left(\frac{\epsilon}{2}\right)^{2} \leqslant 1+\epsilon
$$

So the output of the algorithm is some z where,

$$
\frac{\mathrm{Opt}}{1+\epsilon} \leqslant z \leqslant \mathrm{Opt}
$$

We need to show that $\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant 1+\epsilon($ for $0<\epsilon \leqslant 1)$

$$
\left(1+\frac{\epsilon}{2 m}\right)^{m} \leqslant e^{\epsilon / 2} \leqslant 1+\frac{\epsilon}{2}+\left(\frac{\epsilon}{2}\right)^{2} \leqslant 1+\epsilon
$$

So the output of the algorithm is some z where,

$$
\frac{\mathrm{Opt}}{1+\epsilon} \leqslant z \leqslant \mathrm{Opt}
$$

But how long does it take to run?

How big is L_{i}^{\prime} ?

The time complexity depends on $\left|L_{i}^{\prime}\right| \ldots$

How big is L_{i}^{\prime} ?

The time complexity depends on $\left|L_{i}^{\prime}\right| \ldots$

By the definition of Trim we have that,
any two successive elements, z, z^{\prime} of L_{i}^{\prime} have

$$
\frac{z^{\prime}}{z} \geqslant 1+\delta=1+\frac{\epsilon}{2 m}
$$

How big is L_{i}^{\prime} ?

The time complexity depends on $\left|L_{i}^{\prime}\right| \ldots$

By the definition of Trim we have that,
any two successive elements, z, z^{\prime} of L_{i}^{\prime} have

$$
\frac{z^{\prime}}{z} \geqslant 1+\delta=1+\frac{\epsilon}{2 m}
$$

Further, all elements are no greater than t

The time complexity depends on $\left|L_{i}^{\prime}\right| \ldots$

By the definition of Trim we have that,

$$
\begin{aligned}
& \text { any two successive elements, } z, z^{\prime} \text { of } L_{i}^{\prime} \text { have } \\
& \qquad \frac{z^{\prime}}{z} \geqslant 1+\delta=1+\frac{\epsilon}{2 m}
\end{aligned}
$$

Further, all elements are no greater than t

So L_{i}^{\prime} contains at most $O\left(\log _{(1+\delta)} t\right)$ elements

The time complexity depends on $\left|L_{i}^{\prime}\right| \ldots$

By the definition of Trim we have that,
any two successive elements, z, z^{\prime} of L_{i}^{\prime} have

$$
\frac{z^{\prime}}{z} \geqslant 1+\delta=1+\frac{\epsilon}{2 m}
$$

Further, all elements are no greater than t

So L_{i}^{\prime} contains at most $O\left(\log _{(1+\delta)} t\right)$ elements

$$
\log _{(1+\delta)} t=\frac{\ln t}{\ln (1+(\epsilon / 2 m))} \leqslant \frac{2 m(1+(\epsilon / 2 m)) \ln t}{\epsilon}=O\left(\frac{m \log t}{\epsilon}\right)
$$

The time complexity depends on $\left|L_{i}^{\prime}\right| \ldots$

By the definition of Trim we have that,
any two successive elements, z, z^{\prime} of L_{i}^{\prime} have

$$
\frac{z^{\prime}}{z} \geqslant 1+\delta=1+\frac{\epsilon}{2 m}
$$

Further, all elements are no greater than t
another fact:
$\ln (1+x)>\frac{x}{x+1}$
So L_{i}^{\prime} contains at most $O\left(\log _{(1+\delta)} t\right)$ elements

$$
\log _{(1+\delta)} t=\frac{\ln t}{\ln (1+(\epsilon / 2 m))} \leqslant \frac{2 m(1+(\epsilon / 2 m)) \ln t}{\epsilon}=O\left(\frac{m \log t}{\epsilon}\right)
$$

츨) University of

A PTAS for Subset Sum

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
o For $i=1 \ldots m$:
o Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
o Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$$\quad O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
- Output the largest number in L_{m}^{\prime}
$O\left(\left|L_{m}^{\prime}\right|\right)$ time

충/ University of

A PTAS for Subset Sum

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
o For $i=1 \ldots m$:
o Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
o Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$$\quad O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$

- Output the largest number in L_{m}^{\prime}
$O\left(\left|L_{m}^{\prime}\right|\right)$ time
As $\left|L_{i}^{\prime}\right|=O(m \log t / \epsilon)$, the algorithm runs in

$$
O\left(m^{2} \log t / \epsilon\right)=O\left(n^{3} \log n / \epsilon\right) \text { time }
$$

A PTAS for Subset Sum

The algorithm
－Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
o For $i=1 \ldots m$ ：
o Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
o Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$$\quad O\left(\left|L_{i}^{\prime}\right|\right)$ time
－Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
$O\left(\left|L_{i}^{\prime}\right|\right)$ time
－Output the largest number in L_{m}^{\prime}
$O\left(\left|L_{m}^{\prime}\right|\right)$ time
As $\left|L_{i}^{\prime}\right|=O(m \log t / \epsilon)$ ，the algorithm runs in

충/ University of

A PTAS for Subset Sum

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
o For $i=1 \ldots m$:
o Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
o Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$$\quad O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$

- Output the largest number in L_{m}^{\prime}
$O\left(\left|L_{m}^{\prime}\right|\right)$ time
As $\left|L_{i}^{\prime}\right|=O(m \log t / \epsilon)$, the algorithm runs in

$$
O\left(m^{2} \log t / \epsilon\right)=O\left(n^{3} \log n / \epsilon\right) \text { time }
$$

A PTAS for Subset Sum

The algorithm

- Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
o For $i=1 \ldots m$:
o Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
o Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$$\quad O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
$O\left(\left|L_{i}^{\prime}\right|\right)$ time
- Output the largest number in L_{m}^{\prime}
$O\left(\left|L_{m}^{\prime}\right|\right)$ time
As $\left|L_{i}^{\prime}\right|=O(m \log t / \epsilon)$, the algorithm runs in

$$
O\left(m^{2} \log t / \epsilon\right)=O\left(n^{3} \log n / \epsilon\right) \text { time }
$$

The output z is such that $\frac{\text { Opt }}{1+\epsilon} \leqslant z \leqslant$ Opt

A PTAS for Subset Sum

The algorithm
－Let $L_{0}^{\prime}=\{0\}, \delta=\epsilon /(2 m)$
o For $i=1 \ldots m$ ：
o Compute $\left(L_{i-1}^{\prime}+s_{i}\right)$ from L_{i-1}^{\prime}
o Compute $U=L_{i-1}^{\prime} \cup\left(L_{i-1}^{\prime}+s_{i}\right)$$\quad O\left(\left|L_{i}^{\prime}\right|\right)$ time
－Let $L_{i}^{\prime}=\operatorname{Trim}(U, \delta)$
$O\left(\left|L_{i}^{\prime}\right|\right)$ time
－Output the largest number in L_{m}^{\prime}
$O\left(\left|L_{m}^{\prime}\right|\right)$ time
As $\left|L_{i}^{\prime}\right|=O(m \log t / \epsilon)$ ，the algorithm runs in

$$
O\left(m^{2} \log t / \epsilon\right)=O\left(n^{3} \log n / \epsilon\right) \text { time }
$$

The output z is such that $\frac{\text { Opt }}{1+\epsilon} \leqslant z \leqslant$ Opt

So this is in fact an FPTAS for Subset Sum

Polynomial time approximation schemes

A Polynomial Time Approximation Scheme (PTAS) for problem P is a family of algorithms:
For any constant $\epsilon>0$ there is an algorithm in the family, A_{ϵ} such that A_{ϵ} is a $(1+\epsilon)$-approximation algorithm for P

We have seen an FPTAS for Subset Sum which runs in $O\left(n^{3} \log n / \epsilon\right)$ time The output z is such that $\frac{\text { Opt }}{1+\epsilon} \leqslant z \leqslant$ Opt

A PTAS does not have to have a time complexity which is polynomial in $1 / \epsilon$
e.g. the time complexity could be $O\left(n^{\frac{c}{\epsilon}}\right)$ (for example)

A fully PTAS (FPTAS) has a time complexity which is polynomial in $1 / \epsilon$ (as well as polynomial in n)
i.e. the time complexity is $O\left((n / \epsilon)^{c}\right)$ for some constant c

