
Fully Serverless
Pros and Cons - A Case Study

June 2018
Stephen Colebourne

Stephen Colebourne

● Engineering Lead at OpenGamma

● Worked at OpenGamma for 8 years

● Creator of Joda Time, java.time and many others

● Java Champion, blogger

OpenGamma

● Fintech startup dedicated to finance industry analytics

● Based in London and NY

● Modern SaaS products developed on the JVM, primarily Java

● Used by banks, hedge funds, pension funds, other vendors

● New platform built on AWS starting early 2017

● Underpinned by our award-winning open source analytics

library, Strata (strata.opengamma.io)

Contents

● Introduction

● Data services

● Margin service

● Analytics service

● Ops/Infrastructure

● Conclusions

Introduction

What is serverless?

● Many different definitions

● For us it means the infrastructure is invisible
○ We don’t know where our code runs

○ We have no control over where our code runs

AWS compute

● EC2 - IaaS

● Elastic Container Service - CaaS

● Elastic Beanstalk - PaaS

● Batch

● Lambda - FaaS

AWS compute

● EC2 - IaaS

● Elastic Container Service - CaaS

● Elastic Beanstalk - PaaS

● Batch

● Lambda - FaaS

SERVERS

SERVERLESS

AWS Lambda

public interface RequestStreamHandler {
 public void handleRequest(
 InputStream input,
 OutputStream output,
 Context context) throws IOException;
}

● Simple interface, not unlike Servlets

● Once method completes, the Lambda terminates

AWS Lambda

public class MyLambda implements RequestStreamHandler {
 public void handleRequest(
 InputStream input,
 OutputStream output,
 Context context) throws IOException {
 return “Hello world”;
 }
}

● Package it up as a jar-with-dependencies

● Upload it to AWS to be run

Other AWS services

● Lambda provides compute, also need...

● DynamoDB - NoSQL data store

● API Gateway - REST APIs

● S3 - File storage

● CloudWatch - Logging

● ...

OpenGamma systems

● Analytics Service
○ Batch calculations

○ Web interface

● Margin Service
○ Stateless on-demand calculations

○ REST API and Web interface

● Data Services
○ Download & Process industry data

○ API for Lookup

Data services

Data Services

● Reference data and market data used in calculations

● Downloaded from key industry data providers

● Multi-stage processing pipeline
○ Download data files from provider to S3

○ Process data files to create Java objects

● Expose data to calculations

Data Services - Downloaders

CloudWatch Events
Cron-like trigger

Lambda
Downloader

DynamoDB
Store metadata

S3
Store file

Triggering a Lambda

● Periodic / Cron-like

● Store a file in S3

● Update a DynamoDB table

● External API call

● From a Queue

● Directly, such as from another Lambda

● ...

Data Services - Converters

CloudWatch Events
Cron-like trigger

Lambda
Converter

DynamoDB
Store converted

metadata

S3
Store converted file

Lambda
Find file to convert

DynamoDB
Read metadata

S3
Read original file

Our standard data pattern

● Metadata in DynamoDB

● Data in S3

● Data too large for storing in DynamoDB

○ Limit is 400kb per “row”

● Lambda invocation sends back metadata, not data
○ Limit is 128Kb from triggers (6Mb in request/response mode)

○ Better for caller to directly query S3

Our standard data pattern

● Calls to/from one DynamoDB table restricted

● Call from Lambda to another Lambda to perform query

● Packaged up as a nice Java API
○ Hides Lambda and S3 calls

IndustryDataService svc = IndustryDataService.remote();
IndustryDataRequest req = …
IndustryDataResponse rsp = svc.query(request);
byte[] bytes = svc.fileAsBytes(rsp.getFileLocation());

Escaping the limits

● Lambda limits:
○ 5 minute timeout

○ Max 3Gb memory

○ 512Mb disk space

○ 1024 threads + processes

○ 1000 instances (can be increased)

○ 50Mb jar-with-dependencies

Data Services - Converters

CloudWatch Events
Cron-like trigger

Batch
Converter

DynamoDB
Store converted

metadata

S3
Store converted file

Lambda
Find file to convert

DynamoDB
Read metadata

S3
Read original file

Escaping the limits

● Batch intended for larger/longer data processing

● Submit a job, will be processed at some point

● Serverless - runs in Docker on EC2, but auto-scaling

● Can trigger Batch from CloudWatch Events
○ Recent AWS enhancement

Lambda vs Batch

● Prefer Lambda
○ Easier to use and manage

● Batch is useful fallback
○ But only if time to start job doesn’t matter

○ Will need a “fetch and run” docker image to run jar file

Lambda vs Batch

● Prefer Lambda
○ Easier to use and manage

● Batch is useful fallback
○ But only if time to start job doesn’t matter

○ Will need a “fetch and run” docker image to run jar file

● What if time to start job does matter?
○ There is no serverless compute solution available

Lambda vs Traditional server

● 4 services, formed of a total of 23 Lambda & 2 Batch

● Cron triggering via infrastructure

● Each Lambda performing a small isolated task

● 1 server instance running continuously

● Java code would perform cron triggering

● Good software discipline needed, need to avoid rogue tasks

Margin Service

Margin Service

● Financial calculation
○ Input - a portfolio of trades

○ Output - the margin, detailed breakdown, any errors

● Stateless, run on-demand

● REST API
○ Programmatic access

○ Web interface

Margin Service

● First implementation on Elastic Beanstalk (EB)

● Rewritten to use some Lambda

● Then reworked to use Lambda only

Margin Calculations - Data

● Calculations use small subset of large data set

● On EB, large data not such a big problem
○ Load full set of market data into memory at startup

○ Same set of data used for every request - excellent performance

Margin Calculations - Move to Lambda

● Cannot load the full data set
○ Too slow to do on each lambda invocation

○ Uses too much memory (>4GB in some cases)

● Only load the data needed for the calculation
○ Data must be pre-processed into small subsets

● Significant complexity in pre-processing

● No possibility of caching between requests
○ Each calculation needs a slightly different subset of the data

Margin Calculations - Migration impact

● Effectively a rewrite to manage data better

● Key business benefit was being able to process any date
○ Not just the current date

● Greater latency, but acceptable
○ Lambda has to load data each time it is invoked

Margin Calculations - Scaling

● Scalability is a headline feature of Lambda

● It really works!
○ Scales transparently in response to spikes

○ Scales down to zero when idle

● No silver bullet
○ A system is only as scalable as its least scalable component

○ DynamoDB and S3 have caused us problems

Margin calculation

API Gateway
External request

Lambda
Create calc

Lambda
Perform calc

DynamoDB
Store completed

S3
Store completedLambda

Get calc

Lambda
Delete calc

Lambda
Data services

Polling with Lambdas

● Margin calculation can be slow

● Client creates a calculation and polls for the result

● Lambda has no convenient way to handle this
○ Caller invokes a Lambda to create the calculation

○ When that returns “calculation created” it is finished

○ Must call a second async Lambda to perform the actual calculation

● Normally a simple coding problem to run background task

● Requires infrastructure changes with Lambda

Margin Service - REST API

● API defined in API Gateway
○ Provides some throttling/security benefits

● Request handling logic in a Lambda

Serverless REST APIs

● API Gateway + Lambda a good fit for our case
○ Stateless web app

○ All state is in the data stores

● But difficult to use
○ API Gateway configuration is complex & verbose

○ Integration with Lambda is low level

Serverless REST APIs - libraries

● No good choices for JVM when we needed them

● One Lambda for each endpoint is overly complex

● Created our own
○ Inspired by JAX-RS - one annotated method per endpoint

○ All requests dispatched to one lambda

○ Library code routes request to method

Serverless REST APIs - libraries

● More choices now
○ AWS SAM (still quite low level)

○ aws-serverless-java-container (built on AWS SAM)
■ Embed Spring, Spark Java, Jersey apps in a lambda

○ Osiris (www.osiris.ws)

Serverless REST APIs - Challenges

● Cold Start
○ JVM Lambdas take time to start

○ Lambdas are reused, typically live for a few minutes

○ Built a keep-alive mechanism to take advantage of this
■ A hack, but effective

● Routing all endpoints through one Lambda helps

Serverless REST APIs - Challenges

● Development workflow
○ Need to deploy to AWS to test

○ Hard to debug

○ Contention over shared dev environment

○ Rebuilt API by hand using Spark Java in to run locally
■ Ideally this should be provided by a library

Lambda vs Traditional server

● 9 Lambda, split because of polling

● Requires pre-processing to get data manageable

● Scales very well, at the expense of latency

● Would need more than one server

● Would still have needed data pre-processing

● Would have had fixed scaling limits

Analytics Service

Analytics Service

● Web interface - API Gateway + Lambda

● Daily batch calculations - AWS Batch

● Client portfolio data and calculation results persisted daily

Analytics Service - Data Security

● Inputs to calculations include client portfolios

● Calculation results include position data

● Data is highly sensitive

● Leaking client data would be a disaster

● Sending data to the wrong user would be a disaster

Analytics Service - Tenant Segregation

● Data for each client is encrypted with a different key
○ Using S3 server-side encryption and KMS

● Any process handles exactly one client
○ Only knows about one set of credentials - STS

○ Can only access one encryption key

● Security threaded through architecture (defense in depth)
○ Provided by both infrastructure and code

○ Enforced by trusted AWS security primitives

IAM security role

Analytics Service - Data Isolation

Lambda
Perform calc

DynamoDB

S3

KMS

Lambda vs Traditional server

● Each Lambda runs as a Role, simple effective tenant

● Batch works well for daily overnight calculations

● Would need more than one server

● Secure tenant segregation would require excellent coding or

lots of servers

Ops

Continuous Integration / Deployment

● Pipeline deploys directly to AWS

● Deployed versions controlled via files in GitHub

● Dev normally deployed after each PR merged to master

● Prod deployed from a tag
○ Tag code

○ Test tagged code

○ Update prod versions file with new tag

○ Tagged version is deployed

CI / CD Pipeline

● GitHub

● Shippable - builds and uploads artifacts to S3

● AWS CodePipeline - runs when new artifacts detected

● Lambda - loads versions file and controls deployment

Logging

● Highly distributed design means fragmented logs

● Difficult to find the source of an issue

● Everything goes into AWS CloudWatch Logs
○ Usability isn’t great

● Sumo Logic for log aggregation
○ Lambda writes log events from CloudWatch to Sumo Logic

○ Powerful querying capabilities

○ Structured logging - log JSON to enable querying

Monitoring / Alerts

● CloudWatch metrics
○ High-level metrics, e.g.

■ Failure count for lambdas

■ 5xx errors for API Gateway endpoints

○ Can trigger alerts

○ Hard to find source of failure

○ Not actually very useful

Monitoring / Alerts

● Sumo Logic alerts
○ Driven by log events

○ Queries executed against incoming events

Infrastructure

Infrastructure as Code

● All AWS resources defined in declarative configuration files

● Stored in GitHub
○ Versioned

○ Changes reviewed

● Environment can be rebuilt from scratch

● Uses Terraform
○ AWS CloudFormation is an alternative

Terraform

● Declarative format for defining AWS resources

● Command-line tool to diff and apply changes

● Verbose and fiddly
○ Reflects the underlying AWS model

○ Doesn’t add any higher-level abstractions

● Slightly flaky but does the job

Conclusions

Costs & Benefits

● Serverless architecture has definite costs and benefits

● Depends on the use case which is bigger

Costs

● Building from small simple pieces pushes complexity elsewhere
○ The infrastructure

○ The interactions between components

● No single high-level view of the application
○ Existing analysis tools don’t help much (e.g. IDEs)

● Monitoring and Alerting
○ Highly fragmented system is harder to manage

● Lambdas have restrictive limits

Benefits

● Not thinking about servers is as good as it sounds

● Transparent scaling to handle load

● Scales down to zero when idle
○ Potential large cost savings

○ Lowers the barrier to entry - more use cases are viable

● Great solution for tenants enforced by AWS security

● Simple programming model - everything is a function

● Simple deployment model - jar / zip files

Final Thoughts

● Serverless can be great and it can be painful
○ Depends very much on the use case

● Convergence between services would be welcome
○ FaaS and CaaS are points on a continuum

● The technology is young
○ Platform limitations are likely to be lifted

○ Tooling is bound to improve

