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Preface

This book is an expanded version of lecture notes for the graduate course “An
Introduction to Methods of Functional Analysis in Probability and Stochastic
Processes” thatI gave for students of the University of Houston, Rice University,
and a few friends of mine in Fall, 2000 and Spring, 2001. It was quite an
experience to teach this course, for its attendees consisted of, on the one hand,
a group of students with a good background in functional analysis having limited
knowledge of probability and, on the other hand, a group of statisticians without
a functional analysis background. Therefore, in presenting the required notions
from functional analysis, I had to be complete enough for the latter group while
concise enough so that the former would not drop the course from boredom.
Similarly, for the probability theory, I needed to start almost from scratch for the
former group while presenting the material in a light that would be interesting
for the latter group. This was fun. Incidentally, the students adjusted to this
challenging situation much better than I.

In preparing these notes for publication, I made an effort to make the presen-
tation self-contained and accessible to a wide circle of readers. I have added a
number of exercises and disposed of some. I have also expanded some sections
that I did not have time to cover in detail during the course. I believe the book
in this form should serve first year graduate, or some advanced undergraduate
students, well. It may be used for a two-semester course, or even a one-semester
course if some background is taken for granted. It must be made clear, however,
that this book is not a textbook in probability. Neither may it be viewed as a
textbook in functional analysis. There are simply too many important subjects
in these vast theories that are not mentioned here. Instead, the book is intended
for those who would like to see some aspects of probability from the perspec-
tive of functional analysis. It may also serve as a (slightly long) introduction
to such excellent and comprehensive expositions of probability and stochastic
processes as Stroock’s, Revuz’s and Yor’s, Kallenberg’s or Feller’s.
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xii Preface

It should also be said that, despite its substantial probabilistic content, the
book is not structured around typical probabilistic problems and methods. On
the contrary, the structure is determined by notions that are functional analytic
in origin. As it may be seen from the very chapters’ titles, while the body is
probabilistic, the skeleton is functional analytic.

Most of the material presented in this book is fairly standard, and the book is
meant to be a textbook and not a research monograph. Therefore, I made little
or no effort to trace the source from which I had learned a particular theorem
or argument. I want to stress, however, that I have learned this material from
other mathematicians, great and small, in particular by reading their books. The
bibliography gives the list of these books, and I hope it is complete. See also
the bibliographical notes to each chapter. Some examples, however, especially
towards the end of the monograph, fit more into the category of “research”.

A word concerning prerequisites: to follow the arguments presented in the
book the reader should have a good knowledge of measure theory and some
experience in solving ordinary differential equations. Some knowledge of ab-
stract algebra and topology would not hurt either. I sketch the needed material
in the introductory Chapter 1. I do not think, though, that the reader should start
by reading through this chapter. The experience of going through prerequisites
before diving into the book may prove to be like the one of paying a large bill
for a meal before even tasting it. Rather, I would suggest browsing through
Chapter 1 to become acquainted with basic notation and some important exam-
ples, then jumping directly to Chapter 2 and referring back to Chapter 1 when
needed.

Iwould like to thank Dr. M. Papadakis, Dr. C. A. Shaw, A. Renwick and F. J.
Foss (both PhDs soon) for their undivided attention during the course, efforts to
understand Polish-English, patience in endless discussions about the twentieth
century history of mathematics, and valuable impact on the course, including
how-to-solve-it-easier ideas. Furthermore, I would like to express my gratitude
to the Department of Mathematics at UH for allowing me to teach this course.
The final chapters of this book were written while I held a special one-year
position at the Institute of Mathematics of the Polish Academy of Sciences,
Warsaw, Poland.

A final note: if the reader dislikes this book, he/she should blame F. J.
Foss who nearly pushed me to teach this course. If the reader likes it, her/his
warmest thanks should be sent to me at both addresses: bobrowscy@op.pl
and a.bobrowski@pollub.pl. Seriously, I would like to thank Fritz Foss for his
encouragement, for valuable feedback and for editing parts of this book. All
the remaining errors are protected by my copyright.
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Preliminaries, notations and conventions

Finite measures and various classes of functions, including random vari-
ables, are examples of elements of natural Banach spaces and these
spaces are central objects of functional analysis. Before studying Ba-
nach spaces in Chapter 2, we need to introduce/recall here the basic
topological, measure-theoretic and probabilistic notions, and examples
that will be used throughout the book. Seen from a different perspective,
Chapter 1 is a big “tool-box” for the material to be covered later.

1.1 Elements of topology

1.1.1 Basics of topology =~ We assume that the reader is familiar with
basic notions of topology. To set notation and refresh our memory, let us
recall that a pair (S,U) where S is a set and U is a collection of subsets
of S is said to be a topological space if the empty set and .S belong to
U, and unions and finite intersections of elements of I belong to U. The
family U is then said to be the topology in S, and its members are called
open sets. Their complements are said to be closed. Sometimes, when
U is clear from the context, we say that the set S itself is a topological
space. Note that all statements concerning open sets may be translated
into statements concerning closed sets. For example, we may equivalently
define a topological space to be a pair (S,C) where C is a collection of
sets such that the empty set and S belong to C, and intersections and
finite unions of elements of C belong to C.

An open set containing a point s € .S is said to be a neighborhood of
s. A topological space (S,U) is said to be Hausdorff if for all p;,ps € S,
there exists Ay, Ao € U such that p; € A;,i = 1,2 and A; N Ay = 0.
Unless otherwise stated, we assume that all topological spaces considered
in this book are Hausdorff.
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The closure, cl(A), of a set A C S is defined to be the smallest closed
set that contains A. In other words, cl(A) is the intersection of all closed
sets that contain A. In particular, A C cl(A4). A is said to be dense in
Siff cl(A) = S.

A family V is said to be a base of topology U if every element of U
is a union of elements of V. A family V is said to be a subbase of U if
the family of finite intersections of elements of V is a base of U.

If (S,U) and (S’,U") are two topological spaces, then amap f : S — S5’
is said to be continuous if for any open set A’ in U’ its inverse image
f71(A) is open in S.

Let S be a set and let (S”,U’) be a topological space, and let { f;,t € T}
be a family of maps from S to S’ (here T is an abstract indexing set).
Note that we may introduce a topology in S such that all maps f; are
continuous, a trivial example being the topology consisting of all subsets
of S. Moreover, an elementary argument shows that intersections of finite
or infinite numbers of topologies in S is a topology. Thus, there exists
the smallest topology (in the sense of inclusion) under which the f;
are continuous. This topology is said to be generated by the family

{fi,t € T}.

1.1.2 Exercise Prove that the family ¥ composed of sets of the form
fr (A, t € T, A’ €U’ is a subbase of the topology generated by fi,t €
T.

1.1.3 Compact sets A subset K of a topological space (S,U) is said to
be compact if every open cover of K contains a finite subcover. This
means that if V is a collection of open sets such that K C (Jgcy B,
then there exists a finite collection of sets Bi,..., B, € V such that
K c |Jj_, B;. If S is compact itself, we say that the space (S,U) is
compact (the reader may have noticed that this notion depends as much
on S as it does on U). Equivalently, S is compact if, for any family
Ci,t € T of closed subsets of S such that (. C; = (0, there exists
of its members such that (N, Cy, = 0.
A set K is said to be relatively compact iff its closure is compact.

a finite collection Ci,,...,CY,
A topological space (S,U) is said to be locally compact if for every
point p € S there exist an open set A and a compact set K, such that
s € A C K. The Bolzano—Weierstrass Theorem says that a subset
of R™ is compact iff it is closed and bounded. In particular, R™ is locally
compact.
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1.1.4 Metric spaces Let X be an abstract space. Amap d : XxX — R¥
is said to be a metric iff for all z,y, z € X

(a) d(z,y) = d(y, ),
(b) d(z,y) < d(z,2) +d(z,y),
(c) d(z,y) =0iff x = y.

A sequence z,, of elements of X is said to converge to x € X if
lim,, 00 d(xy, z) = 0. We call z the limit of the sequence (z,,),>1 and
write lim,, .., , = x. A sequence is said to be convergent if it con-
verges to some x. Otherwise it is said to be divergent.

An open ball B(z,r) with radius r and center z is defined as the set
of all y € X such that d(z,y) < r. A closed ball with radius r and center
x is defined similarly as the set of y such d(x,y) < r. A natural way to
make a metric space into a topological space is to take all open balls as
the base of the topology in X. It turns out that under this definition a
subset A of a metric space is closed iff it contains the limits of sequences
with elements in A. Moreover, A is compact iff every sequence of its
elements contains a converging subsequence and its limit belongs to the
set A. (If S is a topological space, this last condition is necessary but
not sufficient for A to be compact.)

A function f : X — Y that maps a metric space X into a normed
space Y is continuous at z € X if for any sequence x,, converging to
x, lim, o f(z,) exists and equals f(x) (x, converges in X, f(z,) con-
verges in Y). f is called continuous if it is continuous at every x € X
(this definition agrees with the definition of continuity given in 1.1.1).

1.2 Measure theory

1.2.1 Measure spaces and measurable functions  Although we assume
that the reader is familiar with the rudiments of measure theory as
presented, for example, in [103], let us recall the basic notions. A family
F of subsets of an abstract set {2 is said to be a o-algebra if it contains ()
and complements and countable unions of its elements. The pair (2, F)
is then said to be a measurable space. A family F is said to be an
algebra or a field if it contains (2, complements and finite unions of its
elements.

A function p that maps a family JF of subsets of  into R* such that

n(J A =Y n(4n) (1.1)

neN
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for all pairwise-disjoint elements A,,n € N of F such that the union
Unen An belongs to F is called a measure. In most cases F is a o-
algebra but there are important situations where it is not, see e.g. 1.2.8
below. If F is a o-algebra, the triple (2, F, u) is called a measure space.

Property (1.1) is termed countable additivity. If F is an algebra
and u(S) < oo, (1.1) is equivalent to

oo

nh—>ngo w(Ap) =0 whenever A, € F, A, D Any1, ﬂ A, =0. (1.2)
n=1

The reader should prove it.

The smallest o-algebra containing a given class F of subsets of a set is
denoted o(F). If Q is a topological space, then B(§2) denotes the smallest
o-algebra containing open sets, called the Borel o-algebra. A measure
u on a measurable space (€2, F) is said to be finite (or bounded) if
1() < oo. It is said to be o-finite if there exist measurable subsets ,,,
n € N, of Q such that p(2,) < oo and Q= J,,cr Qn-

A measure space (2, F, ) is said to be complete if for any set A C
and any measurable B conditions A C B and p(B) = 0 imply that A
is measurable (and p(A) = 0, too). When €2 and F are clear from the
context, we often say that the measure p itself is complete. In Exercise
1.2.10 we provide a procedure that may be used to construct a complete
measure from an arbitrary measure. Exercises 1.2.4 and 1.2.5 prove that
properties of complete measure spaces are different from those of mea-
sure spaces that are not complete.

A map f from a measurable space (2, F) to a measurable space
(QV,F’) is said to be F measurable, or just measurable iff for any
set A € F’ the inverse image f~1(A) belongs to F. If, additionally, all
inverse images of measurable sets belong to a sub-o-algebra G of F, then
we say that f is G measurable, or more precisely G/F’ measurable.
If f is a measurable function from (2, F) to (', F’) then

or ={Ac F|A= f'(B) where B € F'}

is a sub-c-algebra of F. oy is called the o-algebra generated by f. Of
course, f is G measurable if oy C G.

The o-algebra of Lebesgue measurable subsets of a measurable subset
A C R™ is denoted M,,(A) or M(A) if n is clear from the context, and
the Lebesgue measure in this space is denoted leb,,, or simply leb. A stan-
dard result says that M := M(R") is the smallest complete o-algebra
containing B(R™). In considering the measures on R™ we will always
assume that they are defined on the o-algebra of Lebesgue measurable
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sets, or Borel sets. The interval [0,1) with the family of its Lebesgue
subsets and the Lebesgue measure restricted to these subsets is often
referred to as the standard probability space. An n-dimensional
random vector (or simply n-vector) is a measurable map from a proba-
bility space (€2, F,P) to the measurable space (R™, B(R")). A complex-
valued random variable is simply a two dimensional random vec-
tor; we tend to use the former name if we want to consider complex
products of two-dimensional random vectors. Recall that any random n-
vector X is of the form X = (X3, ..., X,,) where X; are random variables
X;: Q—R.

1.2.2 Exercise Let A be an open set in R™. Show that A is union of
all balls contained in A with rational radii and centers in points with
rational coordinates. Conclude that B(R) is the o-algebra generated by
open (resp. closed) intervals. The same result is true for intervals of the
form (a,b] and [a,b). Formulate and prove an analog in R™.

1.2.3 Exercise Suppose that Q and ' are topological spaces. If a map
f:Q — Q' is continuous, then f is measurable with respect to Borel
o-fields in  and €. More generally, suppose that f maps a measurable
space (2, F) into a measurable space (Q,F’), and that G’ is a class of
measurable subsets of ' such o(G’') = F'. If inverse images of elements
of G’ are measurable, then f is measurable.

1.2.4 Exercise Suppose that (Q, F, ;1) is a measure space, and f maps
Q into R. Equip R with the g-algebra of Borel sets and prove that f
is measurable iff sets of the form {w|f(w) < t}, ¢ € R belong to F.
(Equivalently: sets of the form {w|f(w) < t}, t € R belong to F.) Prove
by example that a similar statement is not necessarily true if Borel sets
are replaced by Lebesgue measurable sets.

1.2.5 Exercise  Let (9, F, 1) be a complete measure space, and f be
amap f: Q — R. Equip R with the algebra of Lebesgue measurable
sets and prove that f is measurable iff sets of the form {w|f(w) < t},
t € R belong to F. (Equivalently: sets of the form {w|f(w) < t},t € R
belong to F.)

1.2.6 Exercise  Let (S,U) be a topological space and let S’ be its
subset. We can introduce a natural topology in S’, termed induced
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topology, to be the family of sets U’ = U N S” where U is open in S.
Show that

B(S)={BcCS|B=AnS AcBS))} (1.3)

1.2.7 Monotone class theorem A class G of subsets of a set €2 is termed
a w-system if the intersection of any two of its elements belongs to the
class. It is termed a A-system if (a) Q belongs to the class, (b) A,B € G
and A C Bimplies B\A € G and (¢) if A, As,... € G,and A} C Az C ...
then (J,,cy An € G. The reader may prove that a A-system that is at the
same time a m-system is also a o-algebra. In 1.4.3 we exhibit a natural
example of a A-system that is not a o-algebra. The Monotone Class
Theorem or 7—\ theorem, due to W. Sierpinski, says that if G is
a m-system and F is a A-system and G C F, then o(G) C F. As a
corollary we obtain the uniqueness of extension of a measure defined on
a m-system. To be more specific, if (Q,F) is a measure space, and G is
a m-system such that o(G) = F, and if g and ' are two finite measures
on (Q,F) such that u(A) = ' (A) for all A € G, then the same relation
holds for A € F. See [5].

1.2.8 Existence of an extension of a measure A standard construction
involving the so-called outer measure shows the existence of an extension
of a measure defined on a field. To be more specific, if y is a finite
measure on a field F, then there exists a measure i on o(F) such that
i(A) = p(A) for A € F, see [5]. It is customary and convenient to omit
the “7” and denote both the original measure and its extension by pu.
This method allows us in particular to prove existence of the Lebesgue
measure [5, 106].

1.2.9 Two important properties of the Lebesgue measure — An important
property of the Lebesgue measure is that it is regular, which means that
for any Lebesgue measurable set A and € > 0 there exists an open set
G D A and a compact set K C A such that leb(G \ K) < e. Also, the
Lebesgue measure is translation invariant, i.e. leb A = leb A; for any
Lebesgue measurable set A and ¢t € R, where

Ar={seR;s—te A} (1.4)

1.2.10 Exercise Let (2, F) be a measure space and p be a measure,
not necessarily complete. Let Fy be the class of subsets B of {2 such that
there exists a C' € F such that 4(C) = 0and B C C. Let F,, = o(FUFy).
Show that there exists a unique extension of p to F,,, and (2, F,, 1) is a
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complete measure space. Give an example of two Borel measures p and
v such that F, # F,.

1.2.11 Integral  Let (2, F, 1) be a measure space. The integral [ fdpu
of a simple measurable function f, i.e. of a function of the form
f = Z?:l cila, where n is an integer, ¢; are real constants, A; be-
long to F, and p(A4;) < oo, is defined as [ fdu = > i, ciu(A;). We
check that this definition of the integral does not depend on the choice
of representation of a simple function. The integral of a non-negative
measurable function f is defined as the supremum over integrals of non-
negative simple measurable functions f; such that fs < f (u a.e.). This
last statement means that fs(w) < f(w) for all w € Q outside of a mea-
surable set of u-measure zero. If this integral is finite, we say that f is
integrable.

Note that in our definition we may include functions f such that
f(w) = oo on a measurable set of ws. We say that such functions have
their values in an extended non-negative half-line. An obvious necessary
requirement for such a function to be integrable is that the set where it
equals infinity has measure zero (we agree as it is customary in measure
theory that 0 - co = 0).

If a measurable function f has the property that both f* = max(f, 0)
and f~ = max(—f,0) are integrable then we say that f is absolutely
integrable and put [ fdu = [ f*du— [ f~ du. The reader may check
that for a simple function this definition of the integral agrees with the
one given initially. The integral of a complex-valued map f is defined
as the integral of its real part plus ¢ (the imaginary unit) times the
integral of its imaginary part, whenever these integrals exist. For any
integrable function f and measurable set A the integral [ 4 J dpis defined
as [1afdpu.

This definition implies the following elementary estimate which proves

‘/Afdu‘ S/Alfldu- (1.5)

Moreover, for any integrable functions f and g and any a and S in R,

useful in practice:

we have
/(af+ﬁg)du=a/fdu+ﬁ/gdu~

In integrating functions defined on (R", M,,(R"™), leb,,) it is customary
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to write dsj...ds, instead of dleb,(s) where s = (s1,...,8,). In one
dimension, we write ds instead of dleb(s).

There are two important results concerning limits of integrals de-
fined this way that we will use often. The first one is called Fatou’s
Lemma and the second Lebesgue Dominated Convergence The-
orem. The former says that for a sequence of measurable functions f,
with values in the extended non-negative half-line limsup,, . [ fn du >
Jlimsup,,_, . fndu, and the latter says that if f, is a sequence of mea-
surable functions and there exists an integrable function f such that
|fnl < f (p ae.), then lim, .o [ fndp = [gdp, provided f, tends
to g pointwise, except perhaps on a set of measure zero. Observe that
condition |f,| < f implies that f, and g are absolutely integrable; the
other part of the Lebesgue Dominated Convergence Theorem says that
J |fn — g|du tends to zero, as n — oo. The reader may remember that
both above results may be derived from the Monotone Convergence
Theorem, which says that if f,, is a sequence of measurable functions
with values in the extended non-negative half-line, and f,+1(w) > fp,(w)
for all w except maybe on a set of measure zero, then [ 4 Jndpu tends to
J 4 limy, oo fr(w) dp regardless of whether the last integral is finite or in-
finite. Here A is the set where lim,, .~ fn(w) exists, and by assumption
it is a complement of a set of measure zero.

Note that these theorems are true also when, instead of a sequence of
functions, we have a family of functions indexed, say, by real numbers
and consider a limit at infinity or at some point of the real line.

1.2.12 Exercise Let (a,b) be an interval and let, for 7 in this inter-
val, (7, w) be a given integrable function on a measure space (€2, F, 11).
Suppose furthermore that for almost all w € Q, 7 — z(7,w) is con-
tinuously differentiable and there exists an integrable function y such
that sup, ¢, [2'(7,w)| < y( ). Prove that 2(1) = [qz( p(dw) is
differentiable and that 2'(7) = [, 2’ dw)

1.2.13 Product measures  Let (Q,F, ) and (', F’, 1) be two o-finite
measure spaces. In the Cartesian product £ x Q' consider the rect-
angles, i.e. the sets of the form A x A’ where A € F and A" € F',
and the function pu ® p/(A x A") = p(A)p/(A’). Certainly, rectangles
form a m-system, say R, and it may be proved that p ® y’ is a mea-
sure on R and that there exists an extension of u ® u’ to a measure on
o(R), which is necessarily unique. This extension is called the prod-
uct measure of g and p’. The assumption that p and p' are o-finite
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is crucial for the existence of p ® u'. Moreover, u ® p' is o-finite, and it
is finite if pu and p' are. The Tonelli Theorem says that if a func-
tion f : Q@ x @ — R is o0(R) measurable, then for all w € Q the
function f, : & — R, f,(v) = f(w,w’) is F' measurable and the
function f¢ : Q — R, f“’/(w) = f(w,w’) is F measurable. Further-
more, the Fubini Theorem says that for a ¢(R) measurable function
f:OxQ —-RT,

/ fd(ue p')
QxQ/

/[ Folw) ()] o)

|1 £ ) i e,

finite or infinite; measurability of the integrands is a part of the theorem.
Moreover, this relation holds whenever f is absolutely integrable.

1.2.14 Absolute continuity Let u and v be two measures on a measure
space (2, F); we say that u is absolutely continuous (with respect
to v) if there exists a non-negative (not necessarily integrable) function
[ such that p(A) = [, fdv for all A € F. In such a case f is called
the density of p (with respect to v). Observe that f is integrable (with
respect to v) iff p is finite, i.e. iff ©(Q2) < co. When it exists, the density
is unique up to a set of v-measure zero.

1.2.15 Change of variables formula  Suppose that (Q, F,P) is a mea-
sure space and f is a measurable map from (2, F) to another mea-
surable space (Q,F’). Consider the set function py on F' defined by
pr(A) = u(f~1(A)) = u(f € A). We check that uf is a measure in
(¥, F'). Tt is called the transport of the measure p via f or a mea-
sure induced on (', ') by p and f. In particular, if u is a probability
measure, and ' = (R", M,,(R™)), uy is called the distribution of f.

Note that a measurable function z defined on ' is integrable with
respect to py iff z o f is integrable with respect to v and

/Q/xduf:/ga:ofd,u. (1.6)

To prove this relation, termed the change of variables formula, we
check it first for simple functions, and then use approximations to show
the general case. A particular case is that where a measure, say v, is
already defined on (€', ), and p is absolutely continuous with respect
to v. If ¢ is the density of uy with respect to v, then the change of
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variables formula reads:

/xofdu:/ xduf:/ xpdu.
Q Q/ (944

Of particular interest is the case when ' = R" and v = leb,,.

If 4 = P is a probability measure on (Q,F) and ' = R, we usually
denote measurable maps by the capital letter X. We say that X has a
first moment iff X is integrable, and then write EX = [XdP. EX
is called the first moment or expected value of X. The Holder in-
equality (see 1.5.8 below) shows that if X? has a first moment then X
also has a first moment (but the opposite statement is in general not
true). E X2 is called the (non-central) second moment of X. If F X2
is finite, we also define the central second moment or variance of X
as D? X = 0% = E(X — E X)? The reader will check that 0% equals
EX?— (EX)>.

If the distribution of a random variable X has a density ¢ with respect
to Lebesgue measure, than F X exists iff f(§) = £p(€) is absolutely
integrable and then EX = [~ _£¢(€) d¢.

1.2.16 Convolution of two finite measures Let p and v be two finite
measures on R. Consider the product measure y ® v on R x R, and a
measurable map f: RxR — R, f(¢,7) = ¢+ 7. The convolution p *v
of p with v is defined as the transport of p ® v via f. Thus, p* v is a
bounded measure on R and, by the change of variables formula,

/xd(u*y) - //;v(g—FT),u(dc)I/(dT). (1.7)

We have pxv(R) = p@v(RxR) = p(R)v(R). In particular, the convolu-
tion of two probability measures on R is a probability measure. Observe
also that p* v = v x u, and that (u* p') * p” = p* (' = ') for all
bounded measures pu, i’ and p”.

1.2.17 Convolution of two integrable functions For two Lebesgue in-
tegrable functions ¢ and i on R their convolution ¢ * 1 is defined by
(&) = [ (£ —<)¥(c) ds. The reader will use the Fubini-Tonelli The-
orem to check that ¢ * ¢ is well-defined for almost all £ € R.

1.2.18 Exercise Suppose that p and v are two finite measures on R,
absolutely continuous with respect to Lebesgue measure. Let ¢ and o
be the densities of 1 and v, respectively. Show that u * v is absolutely
continuous with respect to Lebesgue measure and has a density ¢ = ¢x*1.
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In partlcular if both ¢ and v vanish for & < 0 then so does ¢ and

fo ¥(<) ds.

1.2.19 Exercise A counting measure on R with support Z is a mea-
sure that assigns value one to any set {k} where k is an integer. Suppose
that p and v are two measures on R, absolutely continuous with respect
to the counting measure. The densities of  and v may be identified with
infinite sequences, say (a,),~; and (b,),~, - Prove that p * v is abso-
lutely continuous with respect to counting measure and that its density
may be identified with a sequence ¢, = Zziioo an_kbg. In particular,
if a, = b, =0forn <0, then ¢, =0 for n < 0 and ¢, = >, _g an—rbs
for n > 0.

1.2.20 Proposition Let 1 and v be two finite Borel measures on R
and assume that [ @ dpu = [ 2 dv for every bounded continuous function
z. Then p = v, i.e. u(A) =v(A) for all Borel sets A.

Proof Tt suffices to show that p(a,b] = v(a,b],a < b € R. Consider
Tt = %I[O’t) * 14,5, > 0. Since

nr) =+ | " Loy (7 — )Ly (6) s, (18)

t) o

then |2:(7)| <1 and |z¢(7 +¢) — 24(7)| < 3, so that x; is bounded and
continuous. Hence, by assumption

/xt dp = /xt dw. (1.9)

If 7 <a, (1.8) implies z;(7) = 0. If 7 > b, we write

1 b 1 T—a

2(7) = ;/ Lo (r — <) ds = ;/ 10.(s) ds (1.10)
a T—b

to see that z,(7) = 0,if 7—b > ¢. Finally, if a < 7 < b, 24(7 7tf0 =

1, for t < 7 — a. Consequently, lim; .o x¢(7) = 1(4)(7),7 € R. By the

Lebesgue Dominated Convergence Theorem we may let t — 0 in (1.9)

to obtain yu(a,b] = [ 1 dp = [ 1 dv = v(a,b]. O

The reader should note how in the proof we have used the “smoothing
property” of convolution and the family z; (which should be thought as
approximating the Dirac measure at 0, see below). Also, a careful ex-
amination of the proof shows that our result is true as well when we
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replace the phrase “bounded continuous functions” by “bounded uni-
formly continuous functions” or even “continuous functions with com-
pact support”. This result will become even clearer in Chapter 5, see the
celebrated Riesz Theorem 5.2.9.

1.2.21 Exercise Let (92, F) be a measurable space and w belong to
Q2. The measure J,, given by 6,(A) =1 ifw e A and §,(A) =0ifw & A
is termed Dirac (delta) measure at the point w. Consider the Dirac
measure 0y in the measurable space (R,B(R)) and show that for any
Borel measure p on R, % dg = . How would you describe p* d;,t € R?
See (1.4).

1.2.22 Conwvolution on a topological semigroup  The notion of convo-
lution may be generalized if we introduce the notion of a topological
semigroup. By definition, a topological semigroup G is a topological
space and a semigroup at the same time, such that the multiplication
inG, -:GxG — G is continuous (G x G is equipped with the product
topology — see 5.7.4). This map, being continuous, is measurable with
respect to appropriate Borel o-fields. Therefore, for two bounded mea-
sures u and v on G, we may define p* v as the transport of u® v via this
map. By the change of variables formula for any measurable f : G — R,

/ fd(uw) = / £(6 ) () ( ). (1.11)

Convolution so defined is associative, multiplication in G being associa-
tive, but in general is not commutative, for neither must G be commu-
tative.

If G is a group such that (£,1) — &n and € — &1 are continuous,
then G is called a topological group; ¢! is, of course, the inverse of

£in G.

1.2.23 Example  Convolution on the Klein group. The Klein four-
group [50] (the Klein group for short) is a commutative group G with
four elements, ¢i, ..., g4, and the following multiplication table:

°© g1 92 g3 94

g1 g1 92 g3 94
g2 g2 91 g4 G3
g3 g3 g4 g1 G2
94 94 93 92 41

Table 1.1




1.2 Measure theory 13

G is a topological group when endowed with discrete topology (all sub-
sets of G are open sets). Any finite measure p on G may be identi-
fied with a vector (a;),_,
v = (bi);—y 4 the coordinates of convolution p* v = (¢;);—; 4. as
the image of the measure (asb;); ;_; , on G X G, can be read off the
multiplication table:

4, with non-negative coordinates. For any

c1 = a1by +azby + azbs + asby,
2 = aiby + asby + azbs + asbs,
c3 = aibs+ agby + azby + asbe,
¢4 = aibg + asbs + agbs + ayb;. (1.12)

Note that convolution on the Klein group is commutative, for the group
is commutative.

1.2.24 Example  Convolution on the Kisynski group. Consider G =
R x {—1, 1}, with multiplication rule

(1, k) o (1) = (7l + <, kl). (1.13)

We will leave it to the reader to check that G is a (non-abelian) group,
and note the identity in G is (0, 1) and the inverse of (7, k) is (—k7, k). G
is also a topological space, even a metric space, when considered as a sub-
space of R2. Clearly, if (7,,, k) converges to (7, k) and (,,l,,) converges
to (s,1) then (7, kn) © (Sn, In) converges to (7,k) o (s, 1), and (—k,7n, kn)
converges to (—kT, k), proving that G is a topological group.

If 4 is a measure on G then we may define two measures on R by
wi(A) = p(A x {i}),i = 1,-1, A € M. Conversely, if u;,i = 1,—1 are
two measures on R, then for a measurable subset B of G we may put
w(B) = (BNRx{1})+p_1(BN(Rx{-1})), where BN(R x {1}) is
identified with an appropriate subset of R. This establishes a one-to-one
correspondence between measures on G and pairs of measures on R; to
denote this correspondence we shall write p = (u1, —1). We have

/Gfdu=/Rf(&l)m(dﬁ)+/Rf(£7—1)u71(d§), (1.14)

for all bounded measurable functions f : G — R.
Let xg denote the convolution in G and let * denote the convolution
in R. For f as above,

/G Fd(uxv) = /G /G F (k) 0 (6,1))  (d(r k) v (d(s. 1))
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Using (1.14) this may be rewritten as

/G {/}R frl+ ¢, py (d7) + /R flrl+¢,—Dp—y (dr)} v (d(s,1))

or, consequently, as
/R / Fr + 6 D (d7) w1 (ds) + / / F(=7 46~ (dr) v_y (do)
4 / / F(7 46—y (dr) 1y (d)
4 / / F= 46, Dt (A7) vy (ds).

Hence, (p *g v)1 is a sum of two measures: one of them is puy * v; and
the other one is fi_1 * v_q, where i_1(A) = p_1(—A), and —A = {5 €
R,—¢ € A}. Similarly, we obtain a formula for (u *g v)_1. We may
summarize this analysis by writing:

(1, p—1) %G (v1,v—1) = (p *v1 + iy *xv_q, p—1 *v1 + fig xv_1), (1.15)

or in matrix notation,

(11, p11) %6 (1, v1) = (“1 f“) <V1 > . (1.16)

p-1 v

1.2.25 Exercise  Let pu(t) = 3(1 +e 29,1 — 2% ,0,0) where a > 0
is a constant, be a probability measure on the Klein group. Use (1.12)
to check that u(t) * p(s) = u(t +s),s,t > 0.

1.2.26 Exercise  Let pu(t) = 3((14+e72%")§;, (1 —e~2%%)6,), where a is
a positive constant and §; is the Dirac measure at ¢, be a measure on the
Kisynski group. Use (1.16) to check that p(t) * u(s) = u(t + s),s,t > 0.

1.2.27 Exercise Find the formula for the convolution of two measures
on a group G of congruences modulo p where p is a prime number. Recall
that this group is composed of numbers 0, 1, ...,p — 1 and the product of
two elements a and b of this group is defined to be ab (mod p).

1.2.28 Exercise Use convolutions in R” to extend the argument used
in 1.2.20 and show that the same theorem holds for Borel measures in
R™.
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1.2.29 Exercise Let C = {z € C;|z| = 1} be the unit circle with
usual multiplication. Check that a convolution of two integrable func-
tions on C is given by z x y(e'®) = [T _x(e!®=D)y(el?) d6. Let

p(eia):i 1—7"2 :i i T‘|n\eina 0<r<l1
" 211 —2rcosa+1r2  2m ’ -

n=—oo

be the Poisson kernel. Check that p, > 0, ffﬂ pr(e?)df = 1, and
Dr*Ds = Prs, 0 < 1,5 < 1. The equivalence of the two definitions of p, is
a consequence of the formula for the sum of a geometric series and some
simple (but intelligent) algebra — see [103, 111] or other textbooks.

1.2.30 Definition FEven though the probability space is a basic notion
of the theory of probability and stochastic processes, it is often the case
that we are not able to say anything about the underlying “original”
probability space upon which the random variable/process is defined.
Neither do we need or intend to. Quite often all we need is the informa-
tion on distributions. The following definitions are exactly in this spirit.

A random variable X is called Gaussian/normal with parame-

ters m € R,0? > 0 if its distribution is absolutely continuous with
(é m)

respect to leb and has density ﬁexp{ }. We also write
X ~ N(m,0?). Sometimes it is convenient to allow 0% = 0 in this
definition, and say that X = m a.s. is a (degenerate) normal variable
with parameters m and 0.

e A random variable is called exponential with parameter \ > 0 if
its distribution is absolutely continuous with respect to leb and has
the density Alg+e™*°. If its density equals %e*’\““', s € R, the random
variable is called bilateral exponential.

e A random variable is called uniform on the interval [a, b] if its distri-
bution is absolutely continuous with respect to leb and has a density
allad):

e A random variable is called gamma with parameters ¢ > 0 and
b > 0 if its distribution is absolutely continuous with respect to leb
and has density %Sa_le_bis+( s), where I'(a) = [~ s*7'e " ds.

e A random variable is called binomial with parameters n € N and

pebalitree=n = (})ra-prrosisn
e A random variable X is called Poisson with parameter A\ > 0 if

P(X =k)=e A k=0,1,...
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e A random variable X is called geometric with parameter p € [0, 1]

The reader is encouraged to check that the first four functions listed
above are indeed densities of probability measures on R (see Exercise
1.2.31 below), while the last three are probability mass functions of
probability measures on N. Notice also that a gamma variable with
parameters 1 and A is an exponential variable. In the following sec-
tions we shall prove, not only that there exist random variables with
any given distribution, but also that for any distribution there exist in-
finitely many independent random variables with this distribution. Some
readers might find it surprising that all such variables may be defined
on the standard probability space.

g2
1.2.31 Exercise  Show that [, ez ds = v/27.

1.2.32 Exercise Prove that if X is a normal variable with parameters
0 and o, then X2 is a gamma variable with parameters % and 2%2
1.2.33 Exercise Let u be the distribution of a gamma variable with
parameters a and b, and let v be the distribution of a gamma variable
with parameters a’ and b. Show that p * v has the same density as a
gamma variable with parameters a + o’ and b.

1.2.34 Exercise  (Poisson approximation to binomial) Show that if
X, is a sequence of random variables with binomial distributions having
parameters n and p, respectively, and if lim,, .., np, = A > 0, then
lmP[X, = k] = 2re ™, k> 0.

1.2.35 Exercise  Show that if X ~ N(u,0?) then E X = u, 0% = o?.
Moreover, if X ~ I'(a,b) then E X = ¢, and 0% = 7z

1.2.36 Exercise Let X be a non-negative random variable with finite
expected value. Prove that P{X > e} < £X (Markov inequality).
Also, deduce that for any random variable with a finite second moment,
P{{IX -EX|>¢e} < i—z‘ (Chebyshev’s inequality).

1.2.37 Exercise  Use the Fubini Theorem to show that for any non-
negative random variables X and Y and any numbers «, 5 > 0 we have

EX°YP = / / as® IBPTIP{X > 5, Y >t} dsdt. (1.17)
0 0
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Take X =1, to deduce
EYP = /OOO BtPIP{Y > t} dt. (1.18)
Apply this to obtain
EYPlixsq) = /OOO BOIP{X > 5, Y > t}dt, s>0, (1.19)
and, consequently,

EX“Y":/ as® TEYP1 x5, ds. (1.20)
0

1.3 Functions of bounded variation. Riemann—Stieltjes
integral

1.3.1 Functions of bounded variation A function y defined on a closed
interval [a, b] is said to be of bounded variation if there exists a number
K such that for every natural n and every partition a =t <ty < --- <
tn = b,

Z|y L1)|<K

The infimum over all such K is then denoted varly,a,b]. We do not
exclude the case where a = —oo or b = co. In such a case we understand
that y is of bounded variation on finite subintervals of [a,b] and that
varly, —o0o, bl = lim._, _ o, var[y, ¢, b] is finite and/or that

varly,a,o0] = lim varly, a, c|

is finite. It is clear that var[y, a,b] > 0, and that it equals |y(b) — y(a)| if

y is monotone. If y is of bounded variation on [a, ] and a < ¢ < b, then
y is of bounded variation on [a, ¢| and [c, b], and

varly, a, b = varly, a, c| + var[y, ¢, b. (1.21)
Indeed,if a =t <ty <---<t,=candc=s51 <s93<--- <85, = b,
then u; = ¢t = 1,....,.n — 1, up, = t, = s1 and upy; = Si41,¢ =
1,...,m —1, is a partition of [a, b], and

m+4n—1 m

ST ly(u) —y(uim)l =3 [y(ts) — y(tim)| + D [y(si) — ylsia)].

1=2 =2 =2
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This proves that the right-hand side of (1.21) is no greater than the
left-hand side. Moreover, if a =ty <ty < --- < t, = b is a partition of
[a, ] then either ¢ = ¢; for some 1 < j < n, or there exists a j such that
t; < ¢ < tjq1. In the first case we define the partition a = t; <ty <
-+ <t; = cof [a,c] and the partition ¢ =51 <s9 <+ < $pp1-; =b
of [c,b] where s; = tj4;_1, to see that the right-hand side of (1.21) is no
less than the left-hand side. In the other case we consider the partition
a=t; <ty <. <ty =bof [a,b], where ] =¢t; for i < j, t}; =,
t;H =tjti—1,?=1,...,n+1—7, and reduce the problem to the previous
case by noting that

t;) = y(ti1)l.

(]
=X
—~
S+
~—

I
<
—~
S+

|
—_
=

AN
=
—~

i=2 i=2
Equation (1.21) proves in particular that the function v, (t) = varly, a, t]
where ¢t € [a,b] is non-decreasing. Define v_(t) = vy (t) — y(t). For
s < t, the expression v_(t) — v_(s) = v (t) — v4(s) — [y(t) — y(s)] =
varly, s,t] — [y(t) — y(s)] is non-negative. We have thus proved that any
function of bounded variation is a difference of two non-decreasing func-
tions y(t) = vy (t) — v_(t). In particular, functions of bounded variation
have right-hand and left-hand limits. The left-hand limit of y at ¢ is
denoted y(t—) and the right-hand limit of y at ¢ is denoted y(t+). Note
that the representation of a function of bounded variation as a difference
of two non-decreasing functions is not unique. See 1.3.6 below.

1.3.2 Lemma If y(¢) is a function of bounded variation on [a, b] then
there exists at most countable number of points of discontinuity of ¥,

i.e. points t € [a,b] where y(t—) # y(t), or y(t+) # y(t).

Proof Fix m € N. Note that there may be only a finite number of
points such that |y(t—) — y(t)| > L. This shows that there exists at
most countable number of points ¢ € [a,b] where y(t—) # y(t). The
same argument proves that there exists at most countable number of
points t € [a, b] where y(t+) # y(t), and these two facts together imply

our claim. 0

1.3.3 Exercise  Let y(¢) be a function of bounded variation, and let
Dis(y) be the set of points of discontinuity of y. Let y, be defined as
y(t) = y(t+),t € [a,b] (note that y and y, differ only on Dis(y)).
Prove that y, is right-continuous and of bounded variation. Moreover,
var[yy, a, b < varly,a,b].
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The function y, is called the regularization of y. A function y of
bounded variation is said to be regular if y = y,.

1.3.4 Exercise  Prove that if y is of bounded variation and right-
continuous, then so is vy (t) = varly, a, t].

1.3.5 Monotone functions and finite measures In this subsection we
will show that there is a one-to-one correspondence between regular non-
decreasing functions satisfying (1.22) below, and finite measures on R.

Let u be a finite measure on R. Define y(t) = p(—oo, t]. It is clear that
y(t) is non-decreasing, has left limits and is right-continuous. As for the
last two statements it suffices to note that if ¢,, < ¢ and lim,,_, oo t,, = ¢,
then |J(—o0,t,] = (—o0,t) and by continuity of measure, the limit of
y(t,) exists and equals p(—o0, t); analogously, if s, > t and lim, o0 8, =
t, then ((—oo,t,] = (—o0,t] and the limit of y(s,) exists and equals
y(t) = p(—o0,t]. Also, note that

y(—oo) = lim y(t) =0, and y(co)= lim y(t) < 0. (1.22)
t——o0 t—o0
The last limit equals x(R) and in particular, if p is a probability measure,
it equals 1.

Now, suppose that y is a right-continuous non-decreasing function
such that (1.22) holds. We will show that there exists a unique finite
Borel measure p such that u(—oo,t] = y(t).

If p is such a measure, and ag < a1 < by < az <by < ... <a, <b, <
bn+1 are real numbers, then we must have

L ((oo, ag] U U(ai, bi] U (b1, oo))

= [y(ao) — y(—00)] + > _[y(bs) — y(ai)] + [y(00) — y(bns1)]
i=1
with obvious modification if (—oo, ag] and/or (by,41,00) is not included
in the union. Such finite unions form a field F, and we see that the above
formula defines an additive function on F.

To show that p thus defined is countably additive, assume that A, D
An+1 are members of F and that ﬂff:l A,, = (. We need to show that
lim,, 0o p(Ay) = 0.

Suppose that this is not the case, and that there exists an ¢ > 0
such that u(A,) > € for all n > 1. By (1.22) and right-continuity of
y, for every A, there exists a B, € F such that cl(B,) C A, and
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(An\ Bn) < sagr. This is just saying that for a finite interval (a, b] € F
the right-continuity of y implies that we may find o’ > a such that
y(b)—y(a’) is arbitrarily close to y(b) —y(a), and that (1.22) allows doing
the same with infinite intervals. It will be convenient to treat cl(B,,)
as subsets of R = {—oo} UR U {+0o0}. R equipped with the topology
inherited from R plus neighborhoods of {—oc} and {+oco} of the form
[—00, 5), and (s,00],s € R respectively, is a compact topological space.
Since (cl(By) = 0, there exists an n € N such that cl(B1) Necl(Bz) N
..Ncl(By) = 0. Now,

p(An) = (A \ () B+ () B) = u((J (4 \ B)
<n(J@i\B) <3 mA\B) <3 5o < 5.

a contradiction. Hence, by 1.2.8 there exists an extension of y to o(F)
which is clearly equal to the Borel o-algebra, and 1.2.7 shows that this
extension is unique. Finally,

y(t) = lim [y(t) —y(=n)] = lim p(=n,t] = p(-o0,].

1.3.6 Functions of bounded variation and signed measures In this sub-
section we introduce the notion of a charge and discuss some properties
of charges. In particular, we prove that there is a one-to-one correspon-
dence between signed measures and regular functions of bounded varia-
tion satisfying (1.22).

A set function p on a measurable space (2, F) is said to be a charge
or a signed measure if there exist finite measures u™ and g~ such
that g = pu+ — ™. Of course such a representation is not unique; for any
positive finite measure v we have p = (u* +v) — (1~ +v). Later on, we
will see that there is representation of y that is in a sense “minimal”.

Given a Borel charge iz on R, i.e. a signed measure which is the differ-
ence of two finite Borel measures on R, we may define y(t) = pu(—oo, t].
Then y is a regular function of bounded variation and satisfies (1.22),
being the difference of y* () = pt(—oc0,t] and y~(t) = p~(—o0, t]. Con-
versely, if y is a regular function of bounded variation satisfying (1.22),
then there exists a unique Borel charge such that p(—o0,t] = y(t). To
prove this, consider x(t) = var[y, —o0o,t], yg = % and y, = “5¥. For
any a < b, 2[ys (b) — i (@)] = 2(b) — 2(a) + y(b) — y(a) > 0, proving
that yar is non-decreasing. In a similar fashion we show that y, is non-
decreasing also. Both yg and y, are regular and satisfy (1.22) since x
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and y do. Therefore, there exist two positive finite measures ,ua' and f
such that yi (t) = pg (—oo,t] and yy (t) = pg (—o0, t]. Since

Y=u5 — Yo (1.23)

the charge p = ,uar — 1o satisfies our requirements.

Moreover, the functions yar and y, satisfy z = yar + 7o - The repre-
sentation (1.23) is minimal in the following sense: if y* and y~ are two
regular non-decreasing functions satisfying (1.22) such that y = y*—y~,
then y* +y~ > x. Indeed, in such a case, for any a < b we have

y(b) —y(a) = [y (b) —y*(a)] = [y~ (b) =y~ (a)]

and consequently

ly(®) —y(a)l < [y" (0) —y"(a)] = [y~ (b) =y~ (a)].

Using this inequality for subintervals of [a, b] we obtain

varly,a,b] < [y*(b) —y*(a)] — [y~ (b) — y~ (a)] (1.24)

and the claim follows by taking the limit as a — —oo.
By 1.2.8, this proves that

lul < pt+pu” (1.25)

where |p| is a measure related to z and put and p~ are related to y and
y~, respectively. To be more specific, there exists a positive measure v
such that |p|4+2v = g™+ p~. Thus, the minimality of the representation
(1.23) may also be rephrased as follows: for any charge p there exists two
positive measures ,uar and pg such that y = /JSF — g and |p| = M(T + g
and for any other measures ut and p~ such that © = pu* — u~ there
exists a positive measure v such that ut = pud +v and p= = pg +v.
Given a charge p in the minimal representation p = ug — 1y and a
function f that is absolutely integrable with respect to ,uar and pg , we
define [ fduas [ fdug— [ fdug . It may be checked that if g = p+ —pu~
for some other measures u+ and g~ such that f is absolutely integrable
with respect to them, then [ fdu = [ fdu®™ — [ fdu~. Obviously,

‘/fdu‘ < [1niant+ [1r1an
‘/fdlt‘ < [ 151l

and in particular
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1.3.7 The Riemann—Stieltjes integral — Let [a,b] be an interval (a < b)
and let y be a function of bounded variation on [a,b]. Suppose that
t — x(t) € R is another function on [a,b]. Consider two sequences,
T = (ti)i=o,..x and E = (§;)i=0,... k of points of [a,b], where k is an
integer, such that

a=ty <ty <---<tp=>, to <& <t <o <t <o <ty

Define the related numbers A(7) = supg<,;<j{t; —ti—1} and

E

-1
5(77571"3/) x(éz)[ ( z+1) - y(tz)] (126)

7

I§
o

If the limit lim, oo S(75, 20, x,y) exists for any sequence of pairs
(7,,Ey) such that lim, .o A(7,) = 0, and does not depend on the
choice of the sequence of (7,,,Z,,), function z is said to be Riemann—
Stieltjes integrable with respect to . The above limit is denoted

/ab x¢ dy(t)

and called the (Riemann—Stieltjes) integral of = (with respect to y).

This definition has to be modified when either a or b is infinite. Assume
for instance that a is finite and b = co. It is clear then that the definition
of A(7) has to be changed since A(7T) as defined now is always infinite.
We put therefore A(T) = supg<;<j_1(ti — ti—1), and then require that
the limit lim,, o0 S(7p, 2, , y)_e)_(ists for any sequence of pairs (7,,,Z,,)
such that lim, .. A(7,) = 0, and lim,, oty ,—1 = 00. Here ¢, 1
is the second to last element of partition 7,; the last one is always oc.
Again the limit is not to depend on the choice of the sequence of (7,,, Z,,).

With this definition, it turns out that continuous functions are Rie-
mann—Stieltjes integrable. First of all, Exercise 1.3.8 below shows that
continuous functions are integrable with respect to a function of bounded
variation iff they are integrable with respect to its regularization. Thus, it
suffices to show that continuous functions are integrable with respect to
regular functions of bounded variation. To this end, let x be continuous
on [a,b]. To focus our attention, we assume that a = —oo and b is finite.
We understand that the limit lim;, . x(¢) exists. Function z, being
continuous, is measurable. Extend y to the whole line by setting y(t) =
y(b) for t > b. Let p be the unique finite (signed) measure corresponding
to the regularization y, of such an extended function. Since x is bounded,
it is integrable and we may define [ = [ f du. Now, consider the sequence
of partitions 7,, with sets of midpoints =,,. Fix € > 0. Since « is uniformly
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continuous, we may choose an R > 0 and a 0 > 0 such that |z(t)—z(s)| <
e provided |t — s| < ¢, for s,t € (—o0,b], or s,t < —R. Choose n large
enough so that A(7,) < € and ¢,2 < —R. Again, ¢, is the second
element of partition 7,,. Now

|Z7S(,];L7En7x7y)|
kn

xdu — Zw(ﬁn,i)[y(tn,iﬂ) —Y(tn,i)]

(tn,istn,it1] i=0

Z / L CRECHIECY

This proves that the limit of S(7,, Z,,z,y) is [ and concludes the proof
of our claim.

< eu(R).

1.3.8 Exercise Let y be a function of bounded variation on an inter-
val [a, b], let y, be the regularization of y and = be a continuous function
n [a,b]. Assume to fix attention that ¢ and b are finite. Consider the
sequence of partitions 7,, with sets of midpoints =,,, such that the cor-
responding A,, tends to zero. Prove that
lim §(7,.Z,2.9) = lim S(T,.Z,.2.9,) + a(a)ly(at) - (o))

n—oo

1.4 Sequences of independent random variables

1.4.1 Definition Let (Q,F,P) be a probability space. Let F;,t € T
be a family of classes of measurable subsets (T is an abstract set of
indexes). The classes are termed mutually independent (to be more
precise: mutually P-independent) if for all n € N, all t1,...,¢t, € T
and all A; € ]:t,”i =1,..,n

P(() 4) = H]P’(Ai). (1.27)

i=1
The classes are termed pairwisely independent (to be more precise:
pairwisely P-independent) if for all n € N, all ¢1,t, € T and all
A; Gfti?i: 1,2

P(A; N Ap) = P(A;)P(Ay).

It is clear that mutually independent classes are pairwisely independent.
Examples proving that pairwise independence does not imply joint in-
dependence may be found in many monographs devoted to probability
theory. The reader is encouraged to find one.
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Random variables X;,t € T are said to be mutually (pairwisely) in-
dependent if the o-algebras F; = o(X;) generated by X; are mutually
(pairwisely) independent.

From now on, the phrase “classes (random variables) are indepen-
dent” should be understood as “classes (random variables) are mutually
independent”.

1.4.2 Exercise Suppose that two events, A and B, are independent,
i.e. P(AN B) = P(A)P(B). Show that the o-algebras

{A.4%0,0}, (B,B%0,0}
are independent.

1.4.3 Exercise Let (2, F,P) be a probability space and G € F be a o-
algebra. Define G as the class of all events A such that A is independent
of B for all B € G. Show that GL is a A-system. To see that Gt is in
general not a c-algebra consider Q = {a,b,c,d} with all simple events
equally likely, and G a o-algebra generated by the event {c¢, d}. Note that
A ={a,c} and B = {b, ¢} are independent of G but that neither AN B
nor AU B are independent of G.

1.4.4 Exercise Suppose that random variables X and Y are indepen-
dent and that f and g are two Lebesgue measurable functions. Prove that
f(X) and ¢(Y) are independent.

1.4.5 Exercise Show that random variables X and Y are independent
iff the distribution of the random vector (X, Y) is Px ® Py . Consequently,
the distribution of the sum of two independent random variables is the
convolution of their distributions:

Px+y = ]P’X * ]Py.

1.4.6 Exercise Suppose that X,,,n > 1 is a sequence of independent
random variables with exponential distribution with parameter A > 0.
Show that S, = Y_,_, X} is a gamma variable with parameters A and
n.

1.4.7 Exercise Let X ~ N(0,0%) and Y ~ N(0,03) be two indepen-
dent random variables. Show that X +Y ~ N(0,0? + 03).

1.4.8 Exercise  Suppose that random variables X and Y are inde-
pendent and have expected values. Show that £ XY = EX EY; the
existence of F XY is a part of the claim.
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1.4.9 Example It is easy to find an example showing that the con-
verse statement to the one from the previous exercise is not true. Suppose
however that X and Y are such that EXf(Y) = EXFE f(Y) for any
Borel function f. Does that imply that X and Y are independent? The
answer is still in the negative. As an example consider random variables
X that has only three possible values 0,2 and 4 each with probability
%, and Y that attains values a and b (a # b) with probability % each.
Assume also that their joint probability mass function is given by:

Y\X 0 2 4
a 12 1 Table 1.2

132 6 132

b 5 0 i

Then the joint probability mass function of X and f(Y) for any f is the
same, except that a is replaced with some real o and b is replaced with a
B (o« may happen to be equal ). Certainly X and Y are not independent,
andyet EX =2, Ef(Y) =2 and EXf(Y) =82 442 4 120 _ 1 g,
and so Ef(Y)X = EXFE f(Y). The reader should be able to prove that
it Ef(Y)g(X)=FEf(Y)E g(X) for all Borel functions f and g then X
and Y are independent.

1.4.10 Exercise If random variables X; are exponential with param-
eter A\;,4 = 1,2, and independent, then ¥ = min(X;, X3) is exponential
with parameter A1 + As.

1.4.11 Exercise Show that if X and Y are independent exponential
random variables with parameters A and p, respectively, then P[X <

_ 2
Y]—m.

1.4.12 Theorem  Suppose that F;,¢ € T are independent m-systems
of measurable sets, and that T,,u € U are disjoint subsets of T. The
o-algebras G, generated by F;,t € T, are independent.

Proof Fix n € N, and choose indexes uy1, ..., u, € U. (If the number of
elements of U is finite, n must be chosen no greater than the number of
elements in U.) We need to prove that (1.27) holds for all A; € G,,,,i =
1,...,n. By assumption, (1.27) holds if all A; belong to the class A; of
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events of the form
k(i)
A; = () Bij, (1.28)
j=1

where B; ; belong to F,  for some t; ; € Ty,. Now, fix A;,i = 2,...,n, of
this form and consider the class By of events A; such that (1.27) holds.
As we have pointed out B contains A;p, and it is easy to check that By
is a A-system (for example, to check that A, B € B; and A C B implies
B\ A € By we use only the fact that for such sets P(B\A) = P(B)—P(A4)).
Since A; is a m-system, by the Monotone Class Theorem B; contains
the o( A1), and, consequently G,,. Thus, (1.27) holds for A; € G, and
A;,i=2,..,n, of the form (1.28).

Now, we fix 41 € G,, and A;,i = 3,...,n, of the form (1.28), and
consider the class By of events As such that (1.27) holds. Repeating the
argument presented above we conclude the this class contains G,,,, which
means that (1.27) holds if A; belongs to G,,, A3 belongs to G,, and the
remaining A; are of the form (1.28). Continuing in this way we obtain
our claim. |

1.4.13 A sequence of independent random variables with two values

Let n(t) = >"2, 11.1y(t — i) and X, k > 1, be random variables on the
standard probability space, given by Xj(t) = n(2¥t),t € [0,1). For any
k, Xy attains only two values, 0 and 1, both with the same probability
%. To be more precise, Xy = 1if t € [giﬂ, giﬁ) for some 0 < § < 2F
and 0 otherwise. X are also independent. To show this note first that
for any n > 0, the set of ¢ such that Xy = 41,..., X;, = J,, (where §; are

either 0 or 1), equals [S7 ;) 5%, 327 ) 5% + o). Therefore,

1 n
leb{X1 =01, Xn = 0n} = o = Hleb{Xi =6} (1.29)
Moreover,
leb{ Xy =03,... Xy =0n} = leb{X1=1Xo=0,....Xn =0p}
+leb{X1 = O7X2 = 627 ,Xn = 677,}
11 1 -
— 27 —+ 27 = 2n—1 = l:HQZSb{XZ = 51}

In a similar fashion, we may remove any number of variables X; from
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formula (1.29) to get

leb{X;, = 01,..., X;, = O} = 2% =[] tev{x;, =6},
j=1

which proves our claim.

1.4.14 A sequence of independent uniformly-distributed random vari-
ables  The notion of independence does not involve the order in the
index set T. Reordering the sequence Xj from 1.4.13 we obtain thus
an infinite matrix X,, ,,,,n,m > 1, of independent random variables at-
taining two values 0 and 1 with the same probablhty . Define Y,
> 57 Xnm- This series converges absolutely at any t € [0,1), and
the sum belongs to [0, 1]. Since for any n € N, 0(Y},) is included in the o-
algebra F,, generated by random variables X, ,,, m > 1, and o-algebras
Fn are independent by 1.4.12, the random variables Y;, are independent.
We claim that they are uniformly distributed on [0,1).

Let p, be the distribution of Y;,, and g, be the distribution of
Zﬁl 1 2},1 Xpn,m- By the Lebesgue Dominated Convergence Theorem, for
any continuous function f,

/fdun = /]"(Yn)dleb_/1 f(Y,(s))ds (1.30)
1 k 1

= lim Z 2—m ds =: klirgO fdpn k.

k—o0
=1

To determine the distribution p,  and the above integral note that

an 1 2}” Xy, m attains only 2% values, from 0 to 1 — Qk,

ability = 5% Thus ,un % is the sum of point masses 21k concentrated at the

each with prob-

points 0, 2%, ...;1 — 2. Hence, the last integral equals = 5% Zf 0_1 f(zk)
This is, however the approx1mat1ng sum of the Rlemann integral of the
function f. Therefore, the limit in (1.30) equals fo s)ds. On the other
hand, this is the integral with respect to the d1str1but10n of a random
variable that is uniformly distributed on [0,1). Our claim follows by
1.2.20.

1.4.15 A sequence of independent normal random variables  From the
random variables Y;, we obtain easily a sequence of independent normal
random variables. In fact, we consider Z,, = erf(Y},), where “erf” is the

52
inverse of the increasing function y(t) = \/% fioo e~ 7 ds, that maps
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the real line into (0,1).f Z, are independent since “erf” is continuous,
so that 0(Z,,) C o(Y,,). Moreover, for any continuous function f on [0, 1],
changing the variables s = y(t),

/deP’zn = Jon F(erf) dP = /01 Flerf(s))ds = \/% /: Flt)e™ 7 dt,

and the claim follows.

1.4.16 Exercise Prove the existence of an infinite sequence of random
variables with (a) exponential distribution (b) Poisson distribution.

1.4.17 A sequence of independent random variables If we are more
careful, we may extend the argument from 1.4.15 to prove existence of a
sequence of independent random variables with any given distribution.
Indeed, it is just a question of choosing an appropriate function to play
a role of “erf”.

The distribution of a random variable Y is uniquely determined by
the non-decreasing, right-continuous function y(t) = P[Y < ], satisfying
(1.22) with y(+o00) = 1, often called the cumulative distribution
function. Therefore, it suffices, given a non-decreasing, right-continuous
function y satisfying (1.22) with y(400) = 1, to construct a measurable
function z : [0,1] — R such that

leb{s € [0,1] : x(s) <t} =y(t), teR. (1.31)

Indeed, if this can be done then for a sequence Y,,n > 1 of indepen-
dent random variables with uniform distribution in [0, 1) we may define
Zn = x(Yy,), n > 1. Since 0(Z,,) C 0(Yy,), Z, are independent and have
cumulative distributions function equal to y, for we have
PZ, <t] =Plz(Y,) <t] =Py, [s: z(s) <]
=leb{s: xz(s) <t} = y(t),
as desired.
Coming back to the question of existence of a function y satisfying

(1.31), note that if we require additionally that z be non-decreasing and
left-continuous, this relation holds iff

{s €[0,1);2(s) <t} = [0,y(2)].
Thus, condition s < y(¢) holds iff z(s) < ¢, and for any s we have

{t:s <y} ={t;2(s) <t} = [x(s),0).

1 This is somewhat non-standard but useful notation.
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Therefore, we must have
x(s) =inf{t: s < y(t)}. (1.32)
Note that for & thus defined,

z(s) <t < inf{u;y(u) > s} <t
& (t,00) C {usy(u) > s}
e yt) =ylt+) > s,

since y is non-decreasing. This implies that = is measurable and that
(1.31) holds. Note that we do not need to know whether x is or is not
left-continuous; we have used the assumption of left-continuity to infer
(1.32) from (1.31), but do not require it in proving that (1.32) implies
(1.31).

1.4.18 Exercise  We will say that a random variable Y has a modified
Bernoulli distribution with parameter 0 < p < 1 iff %(Y—i— 1) is Bernoulli
r.v. with the same parameter. In other words, P{Y = 1} = p,P{Y =
—1} = ¢ = 1 — p. Suppose that we have two sequences X,;,n > 1 and
Y,,n > 1 of mutually independent random variables such that all X,
have the same distribution with E X = m and D?X,, = ¢2, and that Y,
all have the modified Bernoulli distribution with parameter 0 < p < 1.
Then (X,,Y,) are random vectors with values in the Kisynski group.
Let Z,,n > 1 be defined by the formula: (X;,Y7) o ... 0 (X,,Y,) =
(Zn, 11, Yi). Show that (a) [[;—,Y; is a modified Bernoulli variable
with parameter p, = £(p—¢q)" + 3, (b) EZ,, = 2. (1=(p—q)"), and (c)
D27, = no? + 4pq E;:ll (E Z;)?, so that lim,, DZnZ" =02+ §m2.

1.5 Convex functions. Holder and Minkowski inequalities

1.5.1 Definition Let (a,b) be an interval (possibly unbounded: a =
—oo and/or b = 00). A function ¢ is termed convex if for all u,v € (a, b)
and all 0 < a < 1,

dlau+ (1 — a)v) < ag(u) + (1 — a)p(v). (1.33)

1.5.2 Exercise  Show that ¢ is convex in (a,b) iff for all a < u; <
ugy < ug < b,

U2 — Uy uz — Uz

P(u2) <

o(us) +

Uz — Uy Uz — Up

P(u2). (1.34)
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1.5.3 Exercise  (a) Assume ¢ is convex in (a, b). Define ¢(u) = ¢(a+
b—u). (If a = —00,b = 0o, put @+ b = 0.) Show that ¢ is convex. (b)
For convex ¢ on the real line and ¢t € R, define ¢(u) = ¢(2t — u). Prove
that ¢ is convex.

1.5.4 Lemma  Suppose ¢ is convex in (a,b) and let u € (a,b). Define

1) = Jouls) = PO e (g
o0 = gout) = YU ey )

Then (a) f and g are non-decreasing, and (b) f(s) < g(t) for any s and
t from the domains of f and g, respectively.

Proof To prove the statement for f, we take a < s < s’ < u and do
some algebra using (1.34) with u; = s1,us = s2 and uz = u. To prove
the corresponding statement for g we either proceed similarly, or note
that ge(s) = —f5 .1p_y (@ +b—s). Indeed,

Platb—u)—dlatb—s) _ ¢(u) - (s)

Fi.arp-ulatb—s)= at+b—u—(a+b-s) D)

Finally, (b) follows from (1.34), with uy = s,ug = u,ug = t. O
1.5.5 Proposition Convex functions are continuous.

Proof By 1.5.4, for any u € (a,b) there exist right-hand side and left-
hand side derivatives of ¢ at u, which implies our claim. Note that the
left-hand side derivative may be smaller than the right-hand side deriva-
tive: consider ¢(u) = |u| at u = 0. O

1.5.6 Proposition Let ¢ be a convex function on (a,b), and let S
be the family of linear functions 1(t) = a + bt such that ¥(t) < ¢(¢),
t € (a,b). Furthermore, let Sy = {¢ € S|Y(t) = at + b,a,b € Q}. Then
(a) ¢(t) = supyeg¥(t), and (b) if ¢ is not linear itself, then ¢(t) =
Sup sy (1),

Proof (a) Obviously, ¢(t) > sup,,cg ¥(t), so it is enough to show that for
any t € (a,b) there exists a 1y € S such that 1;(t) = ¢(t). We claim that
we may take 1:(s) = q(s —t) + ¢(t), where ¢ is any number bigger than
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the left-hand derivative ¢’_(t) of ¢ at ¢, and smaller than the right-hand
derivative ¢/, (t) of ¢ at t. Indeed, ¢ (t) = ¢(t), and by 1.5.4, for s > t,

Pe(s) — (1) o(s) — o(t)

=g<q¢, (1)<
p—_— q<¢L(t) < s 1

which implies ¥(s) < ¢(s). For s < ¢, the argument is the same, or we
could argue using the function ¢ defined in 1.5.3 to reduce the problem
to the case s > t.

(b) Let t € (a,b) and let ¢y be the function defined in (a). Since ¢ is
% is not equal to g for some s € (a,b). Without loss
of generality, we may assume that s > ¢ (if s < ¢, consider the function
d(u) = ¢(2t — u), which is convex also, and note that it is enough to
show (b) for ¢ instead of ¢). The claim will be proven if we show that
for any € > 0, and sufficiently small h > 0, the function

Vren(w) = (g+h)(u—1t) + ¢(t) — e =y (u) + h(u —t) — ¢

(
belongs to S. We take h < min(<5, (Szif(t) q). Note that ¢(52 f(t) >
q, by 1.5.4.

Foru <s, e n(u) < Py(u) <
For u > t, by 1.5.4, M“Jj’(t >

o(u) — ¢(t)
—t

not linear,

1.36)

qﬁ( ) since h(u—t)—e < h(s—t)—e < 0.
)= ¢ 4 h. Thus,

Ypen(u) < (u—1)+ o(t) — e < d(u).

O

1.5.7 Proposition If ¢ is continuously differentiable with ¢’ increas-
ing, then ¢ is convex.

Proof Fix u € (a,b) and consider fy,, defined in (1.35). For s < u, there
exists a s < 6 < w such that —¢(0)(u — s) + ¢(u) — ¢(s) = 0. Thus,
Fhu(s) = _d)(s)(“(j)';;b(“) ¢() > 0, proving that f#u 1s non-decreasing

n (a,u). Reversing the argument from 1.5.4 we prove that this implies
the thesis. 0

1.5.8 Holder inequality — Let (2, F, 1) be a measure space, and let z,y
be two measurable functions on Q with values in [0, co]. Suppose that
%+%:17p>1. Then

[ () (o)
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Proof Let K = ([, d,u)% and L = ([,y? du)%. Without loss of
generality we may assume that both K and L are finite and non-zero
since if K > 0,L = oo or K = oo, L > 0, there is nothing to prove, or if
K =0 (respectively L =0), then =0 p a.e. (y =0 p a.e.) so that the
left hand-side equals zero too.

Let, X = 2/K,Y = y/L. Then [, X?du = [,Y9dp = 1. Note also
that [, XY du = [, XY dp, where B = {w|X(w)Y (w) > 0}. On B we
may define the functions a(w) and b(w) such that X (w) = e*«)/P and
Y (w) = e?«)/4. Since ¢(s) = e* is a convex function (see 1.5.7),

X(@)Y(w) = e@/rb@/a < Lo o Lo
P q
LXP(0) + LY ()
= — w bl w ).
p q

Integrating over B we get

1 1
/XYd,u = /XYdugf/Xpdquf/quu
Q B pJB pJB
1 1

1 1
= f/Xpdquf/qu,u:erf:l,
bJB pPJB p q

which gives the thesis. |

1.5.9 Minkowski inequality =~ Under notations of 1.5.8,

(fesors)} (Lo (L)

Proof By the Holder inequality,

/Q(x+y)”du:/Qx(w+y)p’1du+/ﬂy(»’c+y)”’1du
() (e
+ (/Q ypdu); (/Q(Hy)(’(”‘” du>é

(/prdu>h (/Qypdﬂﬂ (/Q(f”+y>pdﬂ>;~

The thesis follows by dividing both sides by the last term above (note
that if this term is zero, there is nothing to prove.) |
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1.6 The Cauchy equation

The content of this section is not needed in what follows but it provides
better insight into the results of Chapter 6 and Chapter 7. Plus, it con-
tains a beautiful Theorem of Steinhaus. The casual reader may skip this
section on the first reading (and on the second and on the third one as
well, if he/she ever reads this book that many times). The main theorem
of this section is 1.6.11.

1.6.1 Exercise  Let (2, F, 1) be a measure space. Show that for all
measurable sets A, B and C

(AN B) = p(CNB)| < p(A=C).

Here + denotes the symmetric difference of two sets defined as A+ B =

(A\B)U (B\ A).

1.6.2 Lemma If A C R is compact and B C R is Lebesgue measur-
able, than z(t) = leb(A; N B) is continuous, where A, is a translation of
the set A as defined in (1.4).

Proof By Exercise 1.6.1,

\leb(AH_h N B) - l€b(At N B)| S leb(At+h - At)
=leb(Ap +~ A); = leb(Ap, + A), t,heR,

since Lebesgue measure is translation invariant. Therefore it suffices to
show that given € > 0 there exists a 0 > 0 such that leb(A, +~ A) < ¢
provided |h| < d. To this end let G be an open set such that leb(G\ A) <
§, and take 0 = min,e 4 min, e |a — b|. This is a positive number since
A is compact, GC is closed, and A and Gt are disjoint (see Exercise 1.6.3
below). If |h| < §, then A, C G. Hence,

leb(Ap, \ A) < leb(G\ A) < %
and
leb(A \ Ah) = leb(A \ Ah)fh = leb(A,h \ A) <

)

[N e

as desired. O

1.6.3 Exercise Show that if A and B are disjoint subsets of a metric
space (X, d), A is compact, and B is closed, then 6 = minge 4 minyep |a—
b| is positive. Show by example that the statement is not true if A is
closed but fails to be compact.
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1.6.4 The Steinhaus Theorem If A and B are Lebesgue measurable
subsets of R such that leb(A) > 0 and leb(B) > 0, then A+ B = {c €
Rlc=a+b,a € A,b € B} contains an open interval.

Proof Since Lebesgue measure is regular, there exists a compact subset
of A with positive measure. Therefore it suffices to show the theorem
under additional assumption that A is compact. Of course, C' = —A =
{u,—u € A} is then compact also. By 1.6.2, z(t) = leb(C; N B) is a
continuous, in particular measurable, function. On the other hand, =z =
14 %1, so that [ x(t)dt = leb(A) leb(B) > 0.

This implies that there exists a point ¢y such that x(tg) > 0. Since z
is continuous, there exists an interval (to — d,t9 + §), § > 0 in which x
assumes only positive values. Hence leb(Cy N B) > 0 for ¢ in this interval,
and in particular Cy N B is non-empty. Thus, for any t € (to — 0,19 + 0)
there exists b € B and a € A such that —a +t = b. This shows that this
interval is contained in A + B, as desired. 0

1.6.5 The Cauchy equation A function z : Rt — R is said to satisfy
the Cauchy equation if

x(s+t) = x(s) + (), 5,t>0. (1.37)

An example of such a function is x(t) = at, where a € R, and it turns out
that there are no other simple examples (see 1.6.11 and 1.6.12 below).
Functions that satisfy (1.37) and are not of this form are very strange
(and thus very interesting for many mathematicians). In particular, it is
easy to see that (1.37) implies that

x (kt> = ﬁ:E(t), teRT k,neN. (1.38)
n n

Therefore, if x satisfies (1.37) and is continuous we may take ¢ = 1 in
(1.38) and approximate a given s € RT by rational numbers to obtain
z(s) = z(1)s. (1.39)

We need, however, a stronger result. Specifically, we want to show that
all measurable functions that satisfy (1.37) are of the form (1.39). To this
end, we need the Steinhaus Theorem and the lemmas presented below.
The reader should start by solving the next exercise.

1.6.6 Exercise Prove that (1.37) implies (1.38).
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1.6.7 Lemma  Suppose that x satisfies (1.37) and is bounded from
above in an interval (tg — d,t9 + J), where § < to, i.e. z(t) < M for
some M € R and all ¢ in this interval. Then x is bounded from below in
(to — d,t0 + 0), i.e. z(t) > N for some N € R and ¢ in this interval.

Proof For t € (tg—0,to+0), let t' =2ty —t € (to — J,tp + ). We have
z(to) = [z(t) + z(')], so that z(t) = 2z(to) — z(t') > 2x(to) — M. In
other words, we may choose N = 2z(ty) — M. O

1.6.8 Exercise  Show that if x satisfies (1.37) and is bounded from
below in an interval, then it is bounded from above in this interval.

1.6.9 Lemma  Suppose that x satisfies (1.37) and is bounded in an
interval (tg — d,t0 + 9), i.e. |z(t)] < M for some M € R and all ¢ in this
interval. Then

M
|$(t)—$(t0)| < 7|t—t0|, te (to—(s,to—i-é). (140)

In particular, z is continuous at t.

Proof Observe that if t and ¢’ are as in the proof of Lemma 1.6.7, then
|x(t)—x(to)| = |z (t") —x(tg)] and |t—tg| = |[t' —to|. Thus, we may restrict
our attention to t € (to — d,%g). Let t,, € (to — d,t9),n > 1, converge to
to — 6. We may choose t, in such a way that «, = tzo:ti, n > 1, are
rational. Since t = (1 — ay)to + Antn, z(t) = (1 — an)z(to) + anz(ts),
and we obtain

2M

x(t) - J?(to) - an[:ﬂ(tn) - :E(to)] <2Ma, = ra—
0 n

(to —t). (1.41)
Letting t, — tg — 9,

2M
2(t) = a(to) < =5 (to — 1). (1.42)
Analogously, if ¢/, € (tg,to + 0) tends to tp + § in such a way that
ay = :P:i is rational, then to = ot/ + (1 — o)t, and x(to) — z(t) =
a (z(t)) — x(t)). Moreover,

M o=ty = 2 . (1.43)

z(to) — z(t) < lim 5

/I
n—oo ], t

O
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1.6.10 Lemma  If x satisfies (1.37) and is bounded from above in an
interval (tg — 0,to + 9), where g > ¢ > 0, then it is also bounded from
above in intervals (t; — d1,t1 + 01), where t; € R, and 6; = §1(¢1) =
min(ty,0).

Proof Let t € (t; — 0,t1 + ), where t; > 0. Define t/ =t +tg —t1 €
(to — 0,t0 + d). We have
x(t) = z(t") + sgn(ty — to)z(|t1 — tol) (1.44)

< sup x(t") +sgn(t; — to)x(|ty — tol), (1.45)
t,e(t()*(s,t()%»(;)

i.e. z is bounded from above in ¢t € (t; — §,t1 + 0). Recall that

1, T>0,
sgn(7) = < 0, T=0, (1.46)
-1, 7<0.
The case t; < § is proved similarly. O

1.6.11 Theorem If a measurable function x satisfies (1.37) then it is
of the form (1.39).

Proof 1t suffices to show that  is continuous. Since RT = [J77 {t; z(¢) <
n}, there exists an n € N such that leb{t;z(t) < n} > 0. Let A =
{t;zx(t) < n} +{t;z(t) < n}. Fort € A C RY, x(t) < 2n. By the
Steinhaus Theorem, A contains an interval (tg — d,%9 + d), and so z is
bounded from above in this interval. By Lemma 1.6.10, for any ¢; >
0 there exists an interval (t; — d1,¢1 + 01) where §; > 0 in which x
is bounded. By Lemma 1.6.7, this implies that = is bounded in these
intervals, and by Lemma 1.6.9, z is continuous at every ¢; > 0. |

1.6.12 Corollary  Our argument shows that a function x that satisfies
(1.37) and is not measurable must be unbounded in any open interval.

1.6.13 Exercise Let y : Rt — R be a measurable function such that

y;t(t)s ) exists for all s > 0. Show that we must have

z(s) = e** for some real a.

z(s) == limy_
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Basic notions in functional analysis

A characteristic of functional analysis is that it does not see functions,
sequences, or measures as isolated objects but as elements or points
in a space of functions, a space of sequences, or a space of measures.
In a sense, for a functional analyst, particular properties of a certain
probability measure are not important; rather, properties of the whole
space or of a certain subspace of such measures are important. To prove
existence or a property of an object or a group of objects, we would
like to do it by examining general properties of the whole space, not
by examining these objects separately. There is both beauty and power
in this approach. We hope that this crucial point of view will become
evident to the reader while he/she progresses through this chapter and
through the whole book.

2.1 Linear spaces

The central notion of functional analysis is that of a Banach space. There
are two components of this notion: algebraic and topological. The alge-
braic component describes the fact that elements of a Banach space may
be meaningfully added together and multiplied by scalars. For example,
given two random variables, X and Y, say, we may think of random
variables X +Y and aX (and oY) where a € R. In a similar way, we
may think of the sum of two measures and the product of a scalar and
a measure. Abstract sets with such algebraic structure, introduced in
more detail in this section, are known as linear spaces. The topological
component of the notion of a Banach space will be discussed in Section
2.2.

37
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2.1.1 Definition Let X be a set; its elements will be denoted x,y, z,
ete. A triple (X, +,-), where + isamap +: X x X - X (z,y) — 2z +y
and - is a map - : R x X — X (a,z) — auw, is called a (real) linear
space if the following conditions are satisfied:

(al) (x+y)+z=2+4 (y+2), for all z,y,z € X
(a2) there exists © € X such that v + © =z, for all z € X
(a3) for all x € X there exists an 2’ € X such that x + 2’ = ©,
(ad) x+y=y+a, foral z,y €X,
(ml) a(fz) = (af)z, for all o, f € R,z € X
(m2) 1z =z, for all x € X,
(d) a(z+y) = ax + ay, and (o + B)r = az + Pz for all o, 5 € R and

z,y € X.

Conditions (al)—(a4) mean that (X, +) is a commutative group. Quite
often, for the sake of simplicity, when no confusion ensues, we will say
that X itself is a linear space.

2.1.2 Exercise  Conditions (a2) and (a4) imply that the element O,
called the zero vector, or the zero, is unique.

2.1.3 Exercise Conditions (al) and (a3)—(a4) imply that for any = €
X, 2’ is determined uniquely.

2.1.4 Exercise Conditions (d), (al) and (a3) imply that for any = €
X, 0x = O.

2.1.5 Exercise 2.1.3, and 2.1.1 (d), (m2) imply that for any =z € X,
2’ = (—1)x. Because of this fact, we will adopt the commonly used

notation z’ = —z.

2.1.6 Example Let S be a set. The set X = R® of real-valued func-
tions defined on S is a linear space, if addition and multiplication are
defined as follows: (z + y)(p) = z(p) + y(p), (ax)(p) = azx(p), for all
z(:),y(-) € RY, a € R, and p € S. In particular, the zero vector © is a
function z(p) = 0, and —z is defined by (—z)(p) = —z(p). This example
includes a number of interesting subcases: (a) if S = N, RY is the space
of real-valued sequences, (b) if S = R, R® is the space of real functions
on R, (c) if § = {1,...,n} x {1,2,...,k}, R is the space of real n x k
matrices, etc.
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2.1.7 Linear maps A map L from a non-empty subset D(L) (the do-
main of L) of a linear space X to a linear space Y is linear if for all
a,8 € Rand z,y in D(L), ax + By belongs to D(A), and L(ax + By) =
aL(z) + BL(y). Note that the operations +,- on the left-hand side of
this equation are performed in X while those on the right-hand side are
operations in Y. With linear operations it is customary to omit paren-
theses for the argument so that we write Lz instead L(x). Note that the
definition implies that © belongs to D(L) and LO = ©, where again the
O on the left hand-side is the zero in X, while that on the right-hand
side is in Y. In the sequel we shall write such equations without making
these distinctions, and if the reader keeps these remarks in mind, there
should be no confusion. A linear map L : X — Y is called an algebraic
isomorphism of X and Y, if it is one-to-one and onto. (In particular,
L~ exists and is linear.) If such a map exists, X and Y are said to be
algebraically isomorphic.

2.1.8 Example The collection L(X,Y) of linear maps from a linear
space X (with domain equal to X) to a linear space Y is a linear space
itself, provided we define

(al)r = aLx and (L+M)x=Lx+ Mz
for L, M € L(X,Y) and a € R. The reader is encouraged to check this.

2.1.9 Algebraic subspace A subset Y of a linear space X is called an
algebraic subspace of X if for all ,y € Y, and o € R, z 4+ y and ax
belong to Y. Observe that Y with addition and multiplication restricted
to Y is itself a linear space.

2.1.10 Example Let [P, p > 0 denote the space of sequences =z =
(Zn)n>1, such that > 07 | [2,|P < cc. [P is a subspace of the space R".
Indeed, denoting f(z) = Yo" |zn|P < oo, we have f(az) = |aff f(z)
and f(z+y) < 2P(f(z)+f(y)), where x = (zn)n>1,y = (Yn)n>1. The last
inequality follows directly from the estimate |z + y|P < 2P(|z|? + |y|P),
which can be proved by considering the cases |y| > |z| and |z| < |y|

separately.

2.1.11 Example Recall that a function x : S — R is said to be
bounded if there exists an M > 0 such that sup,cg [z(p)] < M. The
space B(S) of bounded functions is an algebraic subspace of R® since
if x and y are bounded by M, and M,, respectively, then ax + [y is
bounded by |a|M, + |3|M,.
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2.1.12 Example Let S be a topological space. The space C(S) of real
continuous functions is an algebraic subspace of R®. Similarly, if S is a
measurable space (S, F), then the space M(S,F) (or M(S) if there is
one obvious choice for F) of real measurable functions is a subspace of
RS, This just says that the sum of two continuous (measurable) functions
is continuous (measurable), and that a continuous (measurable) function
multiplied by a number is again continuous (measurable).

2.1.13 Example Let C1(R) denote the set of differentiable functions.
C1(R) is an algebraic subspace of R® and differentiation is a linear map
from C1(R) to RE.

2.1.14 Exercise Let L be a linear map from X to Y. Show that (a)
the domain D(L) is an algebraic subspace of X, (b) the set Ker L =
{z € X|Lxz = 0}, called the kernel of L, is an algebraic subspace of X,
and (c) the set Range L = {y € Y|y = Lz, for some z € X}, called the
range, is an algebraic subspace of Y.

2.1.15 Definition Let X be a linear space and let Y be an algebraic
subspace of X. Consider the relation ~ in X, defined by

T~y itz —yeY.

Since Y is an algebraic subspace of X, for any z,y and z € X, we have
(a) z ~yiff y ~ 2z, (b) z ~y and y ~ z implies & ~ z, and (c) = ~ =.
This means that ~ is an equivalence relation. Let

[z] = {y € X|z ~ y}

be the equivalence class of z. (Note that for any = and y in X, the
classes [z] and [y] are either identical or disjoint, and that the union of
all classes equals X.) The set of equivalence classes is called the quotient
space and denoted X/Y. We note that X/Y is a linear space itself. Indeed,
since Y is a subspace of X, the classes [x + y] and [z’ + ] coincide if
x ~ 2’ and y ~ ¢/, so that we may put [z] + [y] = [z + y]. Analogously,
we note that we may put afz] = [az] (in particular, that the definition
does not depend on the choice of = but only on [z]). It is easy to show
that the conditions of Definition 2.1.1 are fulfilled; the zero of X/Y is
the space Y. The map = — [z] is called the canonical map (canonical
homomorphism) of X onto X/Y. Notice that this map is linear.
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2.1.16 Definition If A and B are subsets of a linear subspace of
X, and a and (8 are real numbers, then the set «A + 3B is defined as
{z € X|z = ax + By, for some x € A,y € B}. In particular, if A = {x},
we write x + 8B, instead of {z} + OB.

2.1.17 Exercise Prove that any class in X/Y, different from Y, may
be represented as x + Y where = ¢ Y.

2.1.18 Exercise Let A and B, A C B be subsets of a linear space X,
and let z € X. Show that (B\ A) —x = (B —z) \ (A —x).

2.1.19 Example Let R¥ be the space of real-valued functions defined
on R, and let R¥ be its subset of even functions. We may check that R¥
is an algebraic subspace of R®. What is the quotient space R® /R®? Note
first that two functions are in the equivalence relation iff their difference
is even. Secondly, in any equivalence class there exists at least one odd
function. Indeed, any class contains at least one function x; and any
function can be represented as & = x+x, where z.(t) = [z(t)+x(—t)]/2
is even and z,(t) = [x(t)—xz(—t)]/2 is odd, so that x is in relation with an
odd function z, (note that x, may be zero, if x itself is even). Moreover,
there may not be more than one odd function in any class, for if there
were two, their difference would have to be both even (by the definition
of the equivalence relation) and odd (by the properties of odd functions),
and hence zero. This suggests that R® /RE is algebraically isomorphic to
the space R¥ of odd functions on R. The isomorphism maps a class to
the unique odd function that belongs to the class. We have proved that
this map is a one-to-one map and obviously it is onto. The reader is
encouraged to check that it is linear.

2.1.20 Exercise Let S be a set and let Y € R be the subspace of
constant functions. Characterize R® /Y.

2.1.21 Exercise Let L:X — Y be a linear map. Show that Range L
is algebraically isomorphic to X/Ker L.

2.1.22 Example Suppose that (2, F) and (', F’) are two measur-
able spaces, and let f be a measurable map from Q to €. Let L :
M) — M() be given by (Lz)(w) = x(f(w)). L is a linear map,
and its range is the algebraic subspace M;(Q2) of M(Q) of functions
y(w) of the form y(w) = z(f(w)) where z € M(Q'). What is the kernel
of L? It is the subspace of M(Q) of functions with the property that
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z(w') = 0 for all ' € Ry (the range of f). The equivalence relation
defined by means of KerL identifies two functions that are equal on
R;. This suggests that M(QY')/KerL is algebraically isomorphic to the
space of measurable functions on R;. We have to be careful in stating
this result, though, since R; may happen to be non-measurable in €'.
A natural way to make Ry a measurable space is to equip it with the
o-algebra Fp, of subsets of the form RyNB where B € F'. Using 2.1.21,
we can then show that My () is isomorphic to M(Ry, Fr,).

2.1.23 Exercise Take Q@ = Q' = [0,1], and let F be the Lebesgue
measurable subsets, 7' = {Q, 0}, and f(w) = % and check to see that f
is measurable and that the range of f is not measurable in (', F').

2.1.24 Doob—Dynkin Lemma A more fruitful and deeper result con-
cerning M(€2) is the following lemma due to Doob and Dynkin (see e.g.
3.2.5). With the notations of 2.1.22, M;(Q) equals M(Q,o(f)).

Proof (Observe how the lattice structure of R is employed in the proof.)
The relation M;(Q) C M(Q,o(f)) is obvious. To prove the opposite in-
clusion it is enough to show that any positive function from M(Q,o(f))
belongs to M(£2), since any function in this space is a difference of
two positive functions. Now, the claim is true for simple functions y =
>, aila, where the a; are constants and the A; belong to o(f). Indeed,
the A; are of the form f~1(B;) where the B; belong to F’, so that we
have y(w) = x(f(w)) where = > | a;1p,. Finally, if y € M(Q,0(f))
is non-negative, then there exists a non-decreasing sequence of simple
functions y, that converges pointwise to y. Let x,, be the correspond-
ing sequence of simple functions in M(€') such that z,,(f(w)) = yn(w).
Certainly, the idea is to prove that x, converges to some z € M(Y)
that satisfies z o f = y, so that y = M(Q). Note first that z,, is non-
decreasing on R;. Indeed, for any w’ in this set there exists an w € €
such that w’ = f(w) and we have

(W) = Ya(f(W)) < Ynr1(f(W)) = Tns1(w).

However, it is hard to tell what happens outside of Ry; in particular we
should not think that the sets B; defined above (for simple functions)
are subsets of R¢; as a result z,, may happen to be divergent outside
of R¢. Certainly, the values of the limit function = outside of Ry do
not matter as long as we make sure that x is measurable. Were R
measurable we could bypass the difficulty by taking x,1g, instead of
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Zn. If Ry is not measurable, we may consider the measurable set C' =
{w'|limy, 00 Zp (W) exists } and define z(w) = lim, o0 Tn(w') for ' €
C, and zero otherwise. We already know that Ry C C, so that for w € Q,
x(f(w)) = lim, xn(f(w)) = limy, 0 yn(w) = y(w) U

2.1.25 Linear combinations Let x; € X,i = 1,...,n be given vectors,
and let a; € R be real numbers. A vector y = 3" | a;x; is called a linear
combination of z; € X,i = 1,...,n. If a; are non-negative and satisfy
Z:-L:l a; = 1, y is called a convex combination of xz; € X,i =1, ..., n.
If Y is a subset of X, then its linear span, or simply span spanY is
defined to be the set of all linear combinations of vectors x; € Y,i =
1,...,n (where n € N and the vectors z; may vary from combination
to combination). Certainly, spanY is an algebraic subspace of X. The
reader may check that it is actually the smallest algebraic subspace of
X that contains Y in the sense that if Z is an algebraic subspace of
X that contains Y then spanY C Z. Analogously, the convex hull
of Y, denoted convY is the set of all convex combinations of vectors
z; €Y,2=1,...,n,n € N and is the smallest convex set that contains Y.
We say that Y is convex if convY = Y. Note that we always have Y C
convY C spanY, and Y is an algebraic subspace of X iff spanY =Y, in
which case Y = convY = span Y.

2.1.26 Example Let X = R?, and let A and B be two points in the

plane R2. If 0 denotes the origin, then the interval AB is the convex hull
— — — — — — —

of two vectors: 0A and 0B. Indeed, C' € AB iff 0C = 0B + BC = 0B +

— — — —

aBA where 0 < a < 1. This means, however, that 0C' = (1—a)0B+a0A

—

—
since BA=0A - 0B.
2.1.27 Exercise Let X = R? and Y; = {(z,y)|z? + (y — 2)? < 1},

Y2 = {(x,y)|2? + y* < 1}. Find the span and the convex hull of Y;,i =
1,2.

2.1.28 Exercise Let X = [!. Prove that Y1 = {(2)n>1 € I*|z, > 0}
is convex. Define Yo = {(2y)n>1 € Y1|D>. o, = 1}. Find the convex
hull and the span of Ys.

2.1.29 Exercise Let Y;,i =1,...,n be convex subsets of a linear space
X. Prove that the convex hull of (!, Y; equals the set of z € X of the
form

z = iawh (2.1)
i=1
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where «; are non-negative, Y .- ; o; = 1 and y; € Y;. Show by example
that the claim is not true if Y; are not convex.

2.1.30 Exercise Let f:R — R be a function. Show that the subset
of points in R? lying above the graph of f is convex iff f is convex.

2.1.31 Exercise Show that the functions of bounded variation on R
form an algebraic subspace of RE, and that the subset of non-decreasing
functions is convex. Similarly, the set of signed measures on a measure
space (w, F) is a linear space, and probability measures form its convex
subset.

2.1.32 Exercise  Let mon x(s) = n(2%s — k), s € RT,0 < k < 27,
where

0, $ € (—00,0) UL, 00),

n(s) = 1, s €0, %),
-1, sel3,1).

Define vectors on X = RIOD by 2, = (Mm))0,1),m > 1 (restriction
of 7, to [0,1)) and 29 = 1jg.1y. Also, let yp,, = 1[ ko kL) Finally, let

27 21

Zy = {20 < k < 2"} and Y,, = {ypn|0 < k < 2"}. Prove that
span Ly, = span Y.

2.2 Banach spaces

As we have mentioned already, the notion of a Banach space is crucial
in functional analysis and in this book. Having covered the algebraic
aspects of Banach space in the previous section, we now turn to dis-
cussing topological aspects. A natural way of introducing topology in a
linear space is by defining a norm. Hence, we begin this section with the
definition of a normed space (which is a linear space with a norm) and
continue with discussion of Cauchy sequences that leads to the definition
of a Banach space, as a normed space “without holes”. Next, we give a
number of examples of Banach spaces (mostly those that are important
in probability theory) and introduce the notion of isomorphic Banach
spaces. Then we show how to immerse a normed space in a Banach space
and provide examples of dense algebraic subspaces of Banach spaces. We
close by showing how the completeness of a Banach space may be used
to prove existence of an element that satisfies some required property.
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2.2.1 Normed linear spaces Let X be a linear space. A function || - || :

X = R,z — ||z|| is called a norm, if for all z,y € X and o € R,

(nl) [lzf} =0,

(n2) ||lzf| =0, iff z = ©,
(03) [laz]| = |af [|z],
(n4)

nd) |z +yll < [lz]l + [yl
If (n2) does not necessarily hold, || - | is called a semi-norm. Note that
if || - || is a semi-norm, then ||| = 0 by (n3) and 2.1.4. A pair (X, - |]),
where X is a linear space and || - || is a norm in X called a normed

linear space, and for simplicity we say that X itself is a normed linear
space (or just normed space).

2.2.2 Exercise (n3)—(n4) imply that for z,y € X,

[zl = llyll| < lle £ yll.

2.2.3 Theorem Suppose X is a linear space, and || - || is a semi-norm.
Then Yo = {z € X: ||z|| = 0} is an algebraic subspace of X and the pair
(X/Yo, ([l - II), where

=l = inf |lyl| = [l]], (22)
y€[z]
is a normed linear space.

Proof That Yy is an algebraic subspace of X follows directly from (n3)-
(nd). By 2.2.2, if ¢ ~ y then |[|lz]| — |ly||| < [l= — yl| = 0, so that (2.2)
holds. We need to show (n2)—(n4) of the definition for the function ||| |||,
(n1) being trivial. Condition (n2) follows directly from (2.2). Conditions
(n3) and (n4) now follow from the fact that || - || is a semi-norm: indeed,
for any «’ € [z] and ¢ € [y],

2] + [l = [l + vl < ="+ ' < 21+ Dyl = T+ -

and

llafllll = llexll| < ez’ = lof 12| = |adlll[=]]I]
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2.2.4 Exercise Suppose that Y is a subspace of a normed linear space
X. Extend the argument used in 2.2.3 to show that the quotient space
X/Y is a normed linear space if we introduce

I[z]ll« = inf {|y[|. (2.3)

y€Elx]
2.2.5 Example Let (Q,F, u) be a measure space, and p > 1 be a real
number. Let LP(§2, F, ) be the set of measurable functions z on §2 such

that (fQ ||P dﬂ)l/p < 00. An analogous argument to that presented for
[P in 2.1.10 may be used to show that LP(Q, F, u) is a linear space. We

claim that
1/p
ol = ( / x|pdu)
Q

is a semi-norm on this space. Indeed, (nl) and (n3) are trivial, and (n4)
reduces to the Minkowski inequality (see 1.5.9) if p > 1. For p = 1, (n4)
follows from the triangle inequality: |z + y| < |z| + |y|.

However, || - || is not a norm since ||z|| = 0 implies merely that z = 0
1 a.e. Thus, to obtain a normed linear space we need to proceed as in
2.2.3 and consider the quotient space LP(Q2, F, u)/Y, where Y = {x|z =
0p a.e.}. In other words we do not distinguish two functions that differ
on a set of measure zero.

It is customary, however, to write LP(Q), F, u) for both LP(Q2,F, u)
itself and for its quotient space defined above. Moreover, for simplicity,
it is often said that a function x belongs to LP(Q, F, u) even though what
is meant is that x represents a class of functions in LP(Q, F, 1)/Y. This
should not lead to confusion, although it requires using caution, at least
initially. As a by-product of this notational (in)convenience we often
encounter phrases like “Let LP(Q,F,u) be the space of (equivalence
classes of) functions integrable with the pth power”.

2.2.6 Normed spaces as metric spaces  Note that if || - || is a norm, then
d(z,y) = ||z — y|| is a metric. This means that (X, d) is a metric space.
We may thus introduce topological notions in X; such as convergence of
a sequence, open and closed sets etc. However, the structure of a normed
linear space is richer than that of a metric space.

A subset Y of a normed linear space X is said to be linearly dense iff
its linear span is dense in X. Y is called a subspace of X if it is a closed
algebraic subspace of X. Note that a closure of an algebraic subspace is
a subspace.
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2.2.7 Exercise Let x and x,,n > 1 be elements of normed linear
space. Suppose that z = lim,, .o ,; show that

Jall = tim_ [l

2.2.8 Cauchy sequences A sequence (z,)n>1 of elements of a normed
linear space X is said to be Cauchy if for all ¢ > 0 there exists an
ng = ng(€) such that d(x,, Tm) = ||[2n — xm|| < € for all n,m > ng.
We claim that every convergent sequence is Cauchy. For the proof, let
€ > 0 be given and let z = lim,,_,, x,,. Choose ng large enough to have
|z — z|| < € for all n > ng. If n,m > ng, then

[2n — T < 20 — 2l + [l — 2m || < 26

2.2.9 Exercise Show that every Cauchy sequence (n)n>1, Tn € X,
is bounded, i.e. there exists an M > 0 such that ||z,|| < M for all
n > 1. Moreover, the limit lim,,_,« ||z, exists for all Cauchy sequences

(xn)nZL

2.2.10 Not every Cauchy sequence is convergent Let X = C([0,1]) be
the linear space of continuous real-valued functions on [0, 1] equipped
with the usual topology (see 2.1.12). Let ||z()|| = fo |z(s)| ds (see 2.2.5)
and define a sequence in X whose elements are given by

0, 0<s<3—q,
ols)={ h+3G-1, b-t<sid,
1, i+i<s<1
For m > n, ||zm — x| = 5[+ — &] (look at the graphs!), so that the se-

quence is Cauchy. However, it is not convergent. Indeed, if lim,, o, ||z, —

l—E
z|| = 0 for some x € C([0,1]), then for all € > 0, limy, o0 [~ |2n(s) —
z(s)|ds = 0. Since for n > 1, we have z,,(s) = 0 whenever s € [0, £ — ¢,
l—e . . . .
we have [27°|z(s)] = 0, i.e. z(s) = 0 a.e. in [0, 5 — ¢). By continuity,
z(s) = 0 for all s < %. The same argument shows that z(s) = 1, for

2
s € (3,1]. This contradicts continuity of z.

2.2.11 Remark There are at least two ways of explaining why, in the
previous example, (z,,),>1 failed to be convergent. Both are fruitful and
lead to a better understanding of the phenomenon in question (actually,
they are just different sides of the same coin). Note that the notion of
convergence (and of a Cauchy sequence) depends both on X and on the
norm. Thus, the first way of explaining 2.2.10 is to say that the norm
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lz()]] = fol |z(s)|ds is not appropriate for X = C([0,1]). This norm
is too weak in the sense that it admits more Cauchy sequences than
it should. If we define ||z|/sup = SUPg<s<1 [2(S)], then ||z, — Tm|lsup =
% — 5 for m > n, so that the seque;lcg is not Cauchy any more, and
the problem with this sequence disappears. Moreover, we will not have
problems with other sequences since any sequence that is Cauchy in
this norm is convergent in this norm to an element of C([0,1]) (see
2.2.16 below). The second way of explaining 2.2.10 is to say that the
space is not appropriate for the norm. Indeed, if we stick to this norm
and, instead of C([0, 1]) take the space L'[0, 1] of (equivalence classes of)
Lebesgue integrable functions, (x,),>1 will not only be Cauchy, but also
convergent. Indeed, we have actually found the limit = of our sequence:
@ = 1¢1 4)-F The fact is that it does not belong to C([0,1]), but it does
belong to L![0,1]. Moreover, we may prove that any Cauchy sequence
in L'[0,1] is convergent (see below).

2.2.12 Definition If every Cauchy sequence in a normed linear space
X is convergent, X is called a Banach space. If we recall that a met-
ric space is termed complete if every Cauchy sequence of its elements
is convergent (see 2.2.6), we may say that a Banach space is a com-
plete normed linear space. Note again that this notion involves both the
space and the norm; and that this pair becomes a Banach space if both
elements “fit” with each another.

Before we continue with examples of Banach spaces, the reader should
solve the following two “warm-up” problems.

2.2.13 Exercise  Suppose that Y is a subspace of a Banach space.
Show that Y is itself a Banach space, equipped with the norm inherited
from X.

2.2.14 Exercise Let X be a normed linear space and (x,,),>1 be a se-
quence of its elements. We say that a series >~ | z,, converges, if the
sequence y, = >, x; converges. We say that this series converges
absolutely if > | ||z, | < co. Show that a normed linear space is a
Banach space iff every absolutely convergent series converges.

2.2.15 The space of bounded functions Let S be a set and let B(S) be
the linear space of bounded functions on S. Define the norm

||| = sup |z(p)]
peS

t We have not proven yet that lim x,, = x, but this is a simple exercise.
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(the supremum is finite by the definition of a bounded function; see
2.1.11). B(S) is a Banach space.

Proof We check easily that conditions (nl)—(n4) of the definition of
the norm are satisfied. The only non-trivial statement is that about
completeness. Let, therefore, x,, be the Cauchy sequence in B(S). Let p
be a member of S. By the definition of the supremum norm the sequence
2n(p) is a Cauchy sequence in R. Let z(p) = lim,, o0 2 (p). We claim
that = belongs to B(S) and xz,, converges to x in this space. Indeed,
since x, is a Cauchy sequence in B(S), given € > 0, we may choose
an ng such that for all p € S and n,m > ng, |z2,(p) — T (p)| < e
Taking the limit m — oo, we get |z(p) — z,(p)| < e. In particular
supyes [2(p)] < supyes{[z(p) — 2a(p) + [2a(p)]} < 0, e @ € B(S),
and ||z, — z|| < e. This means that z,, converges to z in the supremum
norm. U

2.2.16 The space of continuous functions Let S be a compact Haus-
dorff topological space. The space C(S) of continuous functions x on S,
equipped with the supremum norm:

||| = sup |z(p)]
peS

is a Banach space.

Proof 1t is enough to show that C'(S) is a subspace of B(S). Note that
continuous functions on a compact set are bounded, for the image of a
compact set via a continuous function is compact and compact sets in R
are necessarily bounded. It remains to show that the limit of a sequence
xn, € C(5) does belong not only to B(S) but also to C'(S). But this just
means that the uniform limit of a sequence of continuous functions is
continuous, which may be proven as follows. For p € S and € > 0, take
n such that [z, (p) — z(p)] < § for all p € S. Moreover, let U be the
neighborhood of p such that ¢ € U implies |z, (p) — z,(¢q)| < §. The
triangle inequality shows that

[z(p) — 2(q)| < |z(p) — 2n(P)| + [2n(P) — Zn ()] + |2n(q) — z(g)] < ¢,
as desired. n
2.2.17 Exercise (a) Let S be a Hausdorff topological space. The space

BC(S) of bounded continuous functions z on S equipped with the supre-
mum norm is a Banach space. (b) Let (€2, F) be a measurable space. The
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space BM () of bounded measurable functions on  equipped with the
same norm is a Banach space.

2.2.18 The space L= (Q, F,u) Let (2, F, 1) be a measure space. As
noted in Exercise 2.2.17 above, the space BM () of bounded measurable
functions on €2, with the supremum norm is a Banach space. The fact
that there exists a measure p on (£2, F) allows introducing a new Banach
space that is closely related to BM (€2). In many situations it is desirable
to identify measurable functions that differ only on a set of p-measure
zero. In other words, we introduce an equivalence relation: two measur-
able functions z and y are in this equivalence relation iff z(w) = y(w)
for all w € Q except maybe for a set of u-measure zero. Note that an
unbounded function may belong to the equivalence class of a bounded
function. Such functions are said to be essentially bounded, and we
define the norm of the equivalence class [z] of an essentially bounded
function = to be

[z]l =  inf  [yllzaco-
y € [z]

y € BM(Q)

We shall prove later that the infimum in this definition is attained for a
bounded y € [z]. The space of (classes of) essentially bounded functions
is denoted L™ (Q, F, u).

The reader may have noticed the similarity of the procedure that we
are using here to the one in 2.2.3. Let us remark, however, that these
procedures are not identical. Specifically, the linear space of essentially
bounded measurable functions on (2, F), where the equivalence class
was introduced above, is not a normed linear space in the sense of Def-
inition 2.2.1, since [|x||par(n) may be infinite for an x in this space.
Nevertheless, an argument almost identical to the one presented in 2.2.3
proves that L>°(Q, F, u) is a normed linear space.

Let us note that for any = € L*™(Q,F,u) there exists a bounded
€ [a] such that (o]l (0.5 = Iollmarca)- Indeed, let y, € BM(Q)
be such that y,, = x for all w € Q\ A,, where u(A4,) =0 and

nILHOIO lynllBar) = 2]l e (2,7 1)

Define y(w) = 0 for w € A = {J,5; Ay and y(w) = z(w) for w ¢ A.
Certainly, u(A) =0, and so y € [z]. Moreover, y is bounded because for
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any n € N we have

sup  [y(w)]

Hy||BM(Q) = sup |y(w)|
weN weQ\A,

< sup |yn(W)] = llynllBar)-

we\A,

Taking the limit as n — oo, this inequality also shows that
llyll Bao) < nlglgo lynllBare) = @l Lo (.7 1)

Since the reverse inequality is obvious, our claim is proved.

To show that L>(Q,F,u) is complete, we use Exercise 2.2.14. Let
[2n] € L>°(0, F, 1) be a sequence such that Y7, ||[zy]|| oo (0,7, < 00
Let y, € BM(Q2) be such that |ly,l|sar) = [ll@n]llz=@ 7, Then
the series > ° |y, is absolutely convergent, and because BM (1) is a
Banach space, ZZO=1 yn, converges to a y in this space. Since the class of
i yiequals D1 [2;] we infer that Y, [x;] converges to the class of
1y, as desired.

2.2.19 The space LP(Q, F,u), p >1 Let (Q,F, 1) be a measure space.
The space LP(Q, F, 1), p > 1, is a Banach space.

Proof We shall use 2.2.14. Let z,, € LP(Q, F, u) be such that
Z ZnllLe (@70 < oo
n=1

Consider the function zg = > 7, |2, | which takes values in the extended
positive half-line. By Fatou’s Lemma and Minkowski’s inequality

n p n
1o du < im [ (Dml) dp< fim 3 lell” < oc.
i=1 i=1

In particular, the set of w where xg(w) = 0o has measure zero. Therefore,
the series z(w) = Yo, z,(w) converges absolutely except maybe on a
set of measure zero, where we put z(w) = 0. With such a definition, we
have

n
/33— E xZ;
i=1

Hence, x € LP(Q, F, 1) and lim, 00 2, = 2. O

p k o]
auz jim [ 3l dn< Y el

i=n+1 i=n+1
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2.2.20 Remark In the proof of 2.2.19 we have used 2.2.14. This was a
nice shortcut but because of its use we have lost valuable information (see
the proof of 3.7.5 for instance). The result we are referring to says that
any convergent sequence x, € LP(, F, 1), n > 1 has a subsequence that
converges almost surely; this result is a by-product of a direct proof of
2.2.19 (see e.g. [103]). To prove it, we note first that x,,,n > 1 is Cauchy.
Next, we proceed as in the hint to 2.2.14 and find a subsequence z,,, , k >
1 such ||y, , — @n,|| < 55. Then the series Y77 (Zn,, — Tn,) + Tn,
converges both a.s. and in the norm in LP({, F, ). Since the partial
sums of this series equal z,,, , the sum of this series must be the limit of
ZTn,n > 1, which proves our claim.

2.2.21 Corollary  Let (2, F,P) be a measure space, and let G be a
sub-o-algebra of F. The space LP(Q2, G,P) is a subspace of LP(Q), F,P),
p=>1

2.2.22 Remark The proof of our Corollary is obvious, is it not? If a
random variable is G measurable then it is also F measurable and since
L?(9Q,G,P) is a Banach space itself, then it is a subspace of LP(§2, F,P).
Yes? No. We forgot that LP(Q, G, P) is a space of equivalence classes and
not functions. If G does not contain all of the sets A € F with P(A) =0,
then the equivalence classes in LP(£2, G, P) are not equivalence classes of
LP(Q2, F,P) and we may not even claim that LP(£2,G,P) is a subset of
L?(Q, F,P)! In other words, Corollary 2.2.21 is not true unless G contains
all measurable sets of probability zero.

Without this assumption, the correct statement of Corollary 2.2.21 is
that LP(Q, G, P) is isometrically isomorphic to a subspace of LP(£2, F,P)
in the sense of 2.2.30, see 2.2.33 below.

2.2.23 Corollary  Suppose that X, is a subspace of a Banach space
LP(Q, F, 1), where p > 1 and p is a finite measure such that 1o € X.
Then the collection G of events A such that 14 € X is a A-system.

Proof Q and ) belong to G by assumption. Moreover, if A and B belong
to G and A C B then B\ A belongs to G since 1g\4 = 1p — 14 € Xo.
Finally, if A, € G,n > 1, is a non-decreasing sequence of events, then

Uz, e = Lan [l e = n(J Ax \ An)
k=1

converges to zero, as n — o0. Since Xy is closed (being a subspace)
1ye , a, belongs to X, proving that Uiozl Ag, belongs to G. |
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2.2.24 The space of signed Borel measures For any Borel charge u
let = M(J)r — 1ty be its minimal representation, as described in 1.3.6.
Define ||u|| = |p|(R) = pg (R) + pg (R). Equivalently, let y be a regular
function of bounded variation such that (1.22) holds and define |y|| to
be the variation of y on (—oo,00). The space BM(R) of Borel charges
(the space of regular functions of bounded variation such that (1.22)
holds) with this norm is a Banach space.

Proof Note that by definition p = pu* — p~, where y™ and p~ are
positive measures, implies

el < 17 (R) + 17 (R). (2.4)

We need to start by showing that BM(R) is a normed space. If ||| =
|u|(R) = 0, then pd (R) = 0 and pg (R) = 0, so that ud (4) = 0 and
to (A) = 0, for all Borel subsets of R, proving that g = 0. Of course
= 0 implies ||u|| = 0.

If o € R and g € BM(R), then the variation of y(t) = apu(—o0,t] on
(—o00,00) equals || times the variation of pu(—oo,t] in this interval. In
other words ||au|| = |af||u|. Finally, if p = ud — pg and v = v — vy,
then p+v = (ug +vg) — (g + 14 ), so that by (2.4),

I+ VIl < pg (R) + g (R) + g (R) + 15 (R)
= [lpll + Il

Turning to completeness of BM(R), let p,,n > 1 be a sequence of
charges such that > ° | [|un|l < co. Let p, = /,L:;O — H,, o be the minimal
representation of u,. By definition, for any Borel subset A of R,

D o o(A) + g o (A)] < Yl o (R) + p1 0(R)] < o0,
n=1 n=1
so that both series on the left converge absolutely. We may thus define
N+(A) = Z N:,O(A)y po(A) = Z N;,O(A)~
n=1 n=1

Functions p* and p~ are countably additive (this statement is a par-
ticular case of the Fubini Theorem). Thus we may introduce the charge
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p=p*—p". By (24)

n
= il
i=1

o0 o0
1> whe—= >0 mio

1=n+1 1=n+1
00 0o
< Z HIO(R)+ Z 1;.0(R)
i=n+1 i=n+1

which tends to zero, as n — oo. This proves that p is the sum of the
series Y0 | fip. O

2.2.25 Exercise  Suppose that X is a linear normed space. Consider
the set b(X) of sequences (z,)n>1 with values in X, that are bounded,
ie. ||(zn)n>1ll« = sup,>1 ||zl < co. Prove that b(X) is a linear, in fact
normed space when equipped with I - |«. Moreover, it is a Banach space
iff X is a Banach space. Finally, Cauchy sequences in X form a subspace,
say b.(X), of b(X).

2.2.26 Exercise Show directly that the following spaces of sequences
are Banach spaces: (a) ¢ : the space of convergent sequences with the
norm ||(xy)n>1]| = sup,,>1 |Znl, (b) I : the space of absolutely conver-

1
gent sequences with the norm [|(2,)n>1]] = (Xre; [#4[P)”, p > 1. Show
also that the space ¢y of sequences converging to zero is a subspace of c.

2.2.27 Exercise  Cartesian product Prove that if X and Y are two
Banach spaces then the space of ordered pairs (z,y) where € X
and y € Y is a Banach space with the norm ||(z,y)| = |lz| + vl
or [[(z, y) Il = V/IlzlI* + lyll*, or [|(z,y)Il = [|z[| V [lyll, where [lz|| V [|ly|| =

max{||z(], [ly[|}-

2.2.28 Exercise Let S be a set and let p € S. Show that the set of
members z of B(S) such that z(p) = 0 is a subspace of B(S).

2.2.29 Exercise Repeat 2.2.28 for a compact, Hausdorff topological
space, with B(S) replaced with C'(S). May we make a similar statement
for L*>(R) and some p € R?

2.2.30 Definition A linear map I from a linear normed space (X,
I - llx) onto a linear normed space (X,| - [ly) is an isomorphism if
there exist two positive constants m and M, such that m|z| < |[Tz|y <
M]||z||x. In particular, isomorphisms are bijections. In such a case, X
and Y are said to be isomorphic. If M =m =1, i.e. if ||Iz]y = |z|x,
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I is said to be an isometric isomorphism and X and Y are said to be
isometrically isomorphic.

2.2.31 Example For any a < b € R, the space Cla,b] is isometri-
cally isomorphic to C[0,1]. The isomorphism is given by I : Cla,b] —
C[0,1],y(r) = Iz(r) = ((1 —7)a+ 7b) . (What is the inverse of I7?)
Analogously, C[0,1] is isometrically isomorphic to the space C[—o0, c0]
of continuous functions with limits at plus and minus infinity. The iso-
morphism is given by y(7) = Iz(r) = z(% arctant + ).

This result may be generalized as follows: if S and S’ are two topolog-
ical spaces such that there exists a homeomorphism f : S — S’ and if
a € BC(S) is such that |a(p)| = 1, then Iz(p) = a(p)z(f(p)) is an iso-
metric isomorphism of BC(S) and BC(S’). The famous Banach—Stone
Theorem says that if S and S’ are compact, the inverse statement is true
as well, i.e. all isometric isomorphisms have this form (see [22]).

2.2.32 Exercise Let S and S’ be two sets. Suppose that f: S — S’
is a bijection. Show that B(S) is isometrically isomorphic to B(S’). In
the case where (S, F) and (S, F’) are measurable spaces what additional
requirement(s) on f will guarantee that BM(S) and BM(S’) are iso-
metrically isomorphic?

2.2.33 Example Let G be a sub-g-algebra of the c-algebra F of
events in a probability space (Q, F,P). In general LP(Q,G,P) is not a
subspace of LP(Q, F,P), p > 1 (see 2.2.22). However, LP(2,G,P) is iso-
metrically isomorphic to the subspace L{ (€2, G,P) of equivalence classes
in LP(Q, F,P) corresponding to integrable with pth power G measurable
functions. To see this let us consider an equivalence class in LP(Q, G, P).
If X is its representative, then X is G measurable and all other elements
of this class differ from X on P-null events that belong to G. The equiv-
alence class of X in LP(Q, F,P) is composed of all functions that differ
from X on P-null events that are not necessarily in G. Nevertheless, the
norms of these classes of X in LP(Q,G,P) and LP(Q, F,P) are equal.
Let I map the equivalence class of X in LP(Q, G,P) into the equivalence
class of X in LP(Q, F,P). Since the range of I is L5(Q, G, P), our claim
is proven.

Remark 2.2.11 suggests the following procedure for constructing Ba-
nach spaces from normed linear spaces: find the “limits” of Cauchy se-
quences and add them to the original space. Let us explain this idea in
more detail. Since some Cauchy sequences in our normed linear space
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X “cause trouble” by not being convergent, first we may immerse X
in the space of Cauchy sequences b. by noting that an = € X may be
represented as a constant sequence in b.. Next, we may note that we
are really not interested in Cauchy sequences themselves but in their
“limits”, which may be thought of as equivalence classes of Cauchy se-
quences that become arbitrarily close to each other as n — oo. Some of
these equivalence classes correspond to elements of x and some do not.
The point is however that they form “the smallest” Banach space that
contains X. We make this idea rigorous in the following theorem.

2.2.34 “Filling holes” in a normed linear space  Let X be a normed
space. There exists a Banach space Y and a linear operator L : X — Y
satisfying the following two conditions:

[Lzlly = [lzllx,  cl(R(L)) =Y. (2.5)

Proof Consider the space of Cauchy sequences from Exercise 2.2.25, and
its subspace bg(X) of sequences converging to ©. Let Y = b.(X)/bo(X)
be the quotient space, and for any = € X, let Lz be the equivalence
class of a constant sequence (z),>1. Two elements, (2, ),>1 and (z],)n>1
of b.(X) are equivalent if lim, o ||z, — || = 0. This implies that
limy, o0 ||Zn || = limp,— o0 ||27, ]|, and this limit is the norm of the equiva-
lence class to which they belong (see Exercise 2.2.4). In particular, the
first condition in (2.5) holds. The map L is linear, as a composition of
two linear maps.

To complete the proof of (2.5), assume that (z,)n>1 € be(X). Let y
be the class of (z),>1 in the quotient space Y, and let y; = Lx; be a
sequence of elements of Y. We have

lyi = ylle = T [l — o (2.6)

which implies that lim;_. ||y; — y|ly = 0, as desired.

It remains to prove that Y is a Banach space. Let vy, be a Cauchy
sequence in Y. There exists a sequence z,, € X such that || Lz, —y, || < +.
The sequence (x,,),>1 is Cauchy in X, for

1 1
|20 — Zmllx = | Lxn — Lemlly < =+ [|yn — Yl + —-
n m

Let y be the class of (x,)n,>1 in Y. Arguing as in (2.6) we see that
lim,, o0 || L2y — y||ly = 0 and hence lim,,_, ¥, = y as well. |
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2.2.35 Corollary The space Y from the previous subsection is unique
in the sense that if Y’ is another space that satisfies the requirements
of this theorem, then Y’ is isometrically isomorphic to Y. Therefore, we
may meaningfully speak of the completion of a normed space.

Proof Let L’ : X — Y’ be a map such that ||L'z|y = ||z||x, (R(L)) =
Y’. For 3/ € Y', there exists a sequence z,, € X such that lim,,_ || Lz}, —
y'|ly» = 0. Since |L'z, — L'z |ly' = |20 — Zm|| = | Lxn — Lam ||y, Lz, is
then a Cauchy sequence in Y. Since Y is a Banach space, there exists a
y in Y such that lim,, .., Lz, = y. This y does not depend on the choice
of the sequence z,, but solely on ¥/, for if 2/, is another sequence such
that L'z, tends to y’ then

[Lan — L, Iy = llzn — 7 llx = [[L'2n — L'af, [l

tends to zero as n — oo.

Let us thus define I : Y — Y by Iy’ = y. Obviously, I is linear.
Moreover, it is onto for we could repeat the argument given above after
changing the roles of Y’ and Y. Finally,

Hy'lly = lim [[Lan|ly = lim [lzn]lx = o (|L2n]lv = [ly'[lv.
n—oo n— oo n—oo

O

2.2.36 Example If X is the space of sequences « = (§,),>1 that are

eventually zero, with the norm |jz|| = (32, |§n|p)% , where the sum
above is actually finite for each x, then X is a normed linear space but
it is not complete. Its completion is [P. Similarly, if in X we introduce
the norm ||z|| = sup,,~; |€x], then the completion of the normed space
X is the space ¢y of gequences converging to zero equipped with the
supremum norm.

These two statements are equivalent to saying that X, when equipped
with the appropriate norm, is an algebraic subspace of I? and ¢y that is
dense in these spaces.

2.2.37 The spaces C.(S) and Cy(S) Let S be a locally compact Haus-
dorff space, and let C.(S) be the space of continuous functions z on
S such that z(p) # 0 only on a compact subset K of S. Note that
K = K(x) may be different for different x. The space C.(S) equipped
with the supremum norm ||z|| = sup,cg [z(p)| = suppex () 2(P)] is a
normed linear space. In general, though, it is not complete. Its comple-
tion Cp(S) and called the space of functions vanishing at infinity.
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To explain this terminology, consider S = N equipped with discrete
topology. The discrete topology is that one in which all subsets of N
are open. Compact sets in N are sets with a finite number of elements.
Therefore, C.(S5) is a space of sequences x = (&,),,~, such that &, =0
for all but a finite number of n. In 2.2.36 we saw that Co(N) may be
identified with the space ¢y of sequences converging to zero.

Similarly we may check that Cy(R™) is the space of continuous func-
tions x such that limy_o 2(s) = 0. Here s = (s1,....,5,) and [s| =
Vi1 5i

If S is compact, then Cy(S) coincides with C(S). As an example one
may take S = NU{oo} with the topology defined by choosing its base to
be the family of all singletons {n} and neighborhoods of infinity of the
form {n € N:n >k} U{occ},k > 1. S is then compact, and continuous
functions on S may be identified with convergent sequences (&,),~,- The
value of such a function at {oo} is the limit of the appropriate sequence.
In topology, S is called the one-point compactification of N. O

2.2.38 Exercise  Show that Cy(G) where G is the Kisynski group is
isometrically isomorphic to the Cartesian product of two copies of Cy(R)
with the norm [|(z1, z—1)[| = [[zllcom) V ]l cor)-

We now continue with examples of dense algebraic subspaces of some
Banach spaces.

2.2.39 Proposition Let (Q,F,u) be a measure space. The simple
functions that are non-zero only on a set of finite measure form a dense
algebraic subspace of L*(£, F, ).

Proof Tt suffices to show that for a non-negative z € L*(£2, F, 1), there
exists a sequence of simple functions approximating x that are non-zero
only on a set of finite measure. We know, however, that the integral of a
non-negative function z equals the supremum of the integrals of simple
functions bounded above by x. In particular, for any n > 0 we may find
a simple function z, such that , < x and [,z,dp > [yzdu — L.
This implies that ||z — @nl|p .7 = [o(@ — 2n)dp < = as desired.
Furthermore, the set where z,, is non-zero must be finite, for [z, du <
Jadu < oo

O

2.2.40 Exercise Prove an analogous result for LP(Q, F, u), 00 > p >
1.
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2.2.41 Proposition Let (Q,F,u) be a measure space with a finite
measure 1, and let 1 < p < oo be a given number. The space LP (2, F, i)
is dense in L1(Q, F, u).

Proof We need to show first that LP(Q, F, u) is a subset of the space
LY(Q, F,p); this follows from the Hélder inequality; if = belongs to
LP(Q, F,u) then it belongs to L*(, F, 1) since

[ bl = [ fal-todn < [/Q x|pdufm<m]é.

Since p is finite, any indicator function of a set A € F belongs to
L?(Q, F, 1), and any simple function belongs to LP (2, F, i), as the linear
combination of indicator functions. Thus, the claim follows from 2.2.39.

O

is finite.

2.2.42 Exercise Find a counterexample showing that the last propo-
sition is not true if p is not finite.

2.2.43 Exercise Use the Holder inequality to show that L"(Q2, F, u) C
L#(Q, F,p) for all 1 < s <r < oo, provided p is finite.

2.2.44 Proposition Let  be a finite or an infinite interval in R (open
or closed). Then C,(Q?) is dense in LP(2, M(A),leb), co > p > 1.

Proof By 2.2.39 and 2.2.40 it suffices to show that a function 14, where
A is measurable with finite leb(A), belongs to the closure of C.(Q2). By
1.2.9, we may restrict our attention to compact sets A.

Let A be a compact set and let k be a number such that A C [k, k].
Let B = (—o0,—(k+1)]U[k+1,00), and z,, (1) = %, where
d(1,B) = minyep |T—0o| and d(1, A) = minye 4 |7 —o|. Note that d(r, A)
and d(7, B) may not be simultaneously zero, and that x,(7) = 0 for
7 € B, and z,(7) = 1 for 7 € A. Finally, x,, are uniformly bounded by
1, supported in [—(k + 1),k + 1] and tend to 14 pointwise, for if 7 & A,
then d(r, A) # 0. By the Lebesgue Dominated Convergence Theorem

hmnﬁw ||£En — 1A||Lp(Q7M(A)7leb) = 0 D

2.2.45 Corollary  The completion of the space C[0, 1] equipped with
the norm ||| = [ |«|dleb is L'[0,1].
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2.2.46 Corollary  Another well-known conbequence of the above the-
orem is that for any z € L*(R™T) the function y(7) = [~ z(7 + o) do is
continuous in 7 € RT. This result is obvious for contmuous 2 with com-
pact support; if the support of z is contained in the interval [0, K], K > 0,
then

(T +<) =y <K suwp |o(r+c+0)—a(r+o0)] — 0,

0<o<K c—0
by uniform continuity of x. To prove the general case, let x,, be a se-
quence of continuous functions with compact support approximating z
and let y, (7 fo % (7 4+ o) do. Then

suply(7) = yu(r)| < / j2(7 + 0) — &a(r + 0)|do

<o = zpll L1 ®+),

and y is continuous as a uniform limit of continuous functions.

We close by exhibiting some examples illustrating how the fact that X
is a Banach space may be used to show existence of a particular element
in X. We shall use such arguments quite often later: see e.g. 2.3.13 and
7.1.2.

2.2.47 Example Suppose that RT > ¢ +— x; € X is a function taking
values in a Banach space X, and that for every ¢ > 0 there exists a v > 0
such that ||z —zs|| < € provided s,t > v. Then there exists an x € X such
that for any € > 0 there exists a § > 0 such that ||z, — z|| < € for t > v.
We then write, certainly, x = lim;_, o, x¢. To prove this note first that if
Uy is a numerical sequence such that lim, . u, = 00, then y, = x,,
is a Cauchy sequence. Let x be its limit. For ¢ > 0 choose v in such a
way that ¢t,u > v implies ||z; — x| < e. Since limu,, = oo, almost all
numbers u,, belong to (v,00) so that ||z —z|| = limy, o ||2: — Za,, || < €
This implies the claim. Finally, note that there may be no two distinct
elements = with the required property.

2.2.48 Riemann integral in a Banach space  The completeness of Ba-
nach spaces allows us to extend the notion of the Riemann integral to the
case of Banach space valued functions. Let a < b be two real numbers.
Suppose that z. : [0,1] — X, t — a is function on [a,b] taking values
in a normed linear space X. Consider two sequences, 7 = (¢;);=0, .5 and
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= = (&)i=o0,... .k—1 of points of [a, ], where k is an integer, such that

a=ty<t1 < - <tp=0b  to<& <t < <tpo1 < Ep—1 < e
(2.7)
Define the related number A(7) = supg<;<;(t; — ti—1) and the element
of X given by o

k
E,x) =) g (tip1 — ti)
=0

If the limit lim,,— o S(75, Zp, x.) exists for any sequence of pairs (7,,, =)
such that lim,,_,, A(7,) = 0, and does not depend on the choice of the
sequence of (7, E,,), function z is said to be Riemann integrable. The
above limit is denoted ff x¢dt and called the (Riemann) integral of
2. We shall prove that continuous functions taking values in a Banach
space are Riemann integrable.

To this end, consider a continuous function [a,b] 2 t — a; € X, and
let ¢ > 0 be given. Since z is continuous on a compact interval, it is
uniformly continuous and we may choose a 6 > 0 such that |s —t| < 0
and s,t € [a,b] implies ||zs — ]| < €. Let sequences T = (t;)i=o,....x and
T' = (t})i=o0,...k be such that A(7) < § and A(7’) < 6. Also, let 7" be
a sequence that contains all elements of 7 and 77 : 7" = (t])i=1,... k
We have A(7") < § and k¥ < k + k' — 2, for besides tg = to =
and ty = tj, = b there may be some t; = t}, i = 1,..k - 1,j =

k" — 1. An interval [t;,t;11], @ = 0, ..., k either coincides with some

[t;’ ,t;’ 11),J € {0,...,k"” — 1} or is a finite union of such intervals, say,
[ti,tiy1] = [t;’,t;’H]U [t g0t 4] for some I For any = = (&)i=o,....k

such that (2.7) holds,

"
xfz l-‘rl Z :Etj'er _7+7n+1 - tj+m)

MN

[ze, — xt;'+m](t;/+m+l - t;‘/+m)

3
g

MN

IA

€ (t3‘1+m+1 - t;'/+m) = e(tiy1 —ti),

m=0

since both §; and t;+m

Summing over ¢ we obtain

belong to [t;,t;41], so that | — ¢/

Teml < 6.

||S(T7E7I) - S(T”a E”a 33)” < G(b - (1),
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where =" = (¢/)i=o,... k-1 = (t/)i=0,... k—1. This argument works for
T’ and 7", as well. Hence

||S(T,E,£L’) —S(T/,E,/,{E)” < 2€(b_a)a (28)

for all sequences 7 and 7" such that A(7) < ¢ and A(7’) < 6 and any
sequences = and Z’ of appropriate midpoints. This proves that for any
sequence (7, E,,) such that lim,, . A(7,) =0, S(7,, Z,, x) is a Cauchy
sequence, and thus converges. Using (2.8) we prove that this limit does
not depend on the choice of (7,,Z,).

More general, Lebesgue-type integrals may be introduced for functions
with values in Banach spaces. We need to mention the Bochner and
Pettis integrals here, see [54] for example. For our purposes, though, the
Riemann integral suffices.

2.2.49 Example Consider the elements ey, A > 0, and u(t),¢ > 0 of
L'(RT) defined by their representatives ex(7) = ™™ and u(t) = 1o,
respectively. Let RT 3 ¢ — u(t) = 1jp) be the function with values in
L' (RT). We will check that

oo
A/ e Mu(t)dt =eyx  in L'(RT), for A > 0.
0
The above integral is an improper Riemann integral, i.e. we have

oo T
/ e Mu(t)dt == lim e Mu(t) dt.
0 T—o0 0

We start by noting that ||u(t) —u(s)|| L1 w+) = [[1[s.0)ll 1) = fst dr =
(t —s),t > s so that u is continuous, and so is the integrand above. Fix
T > 0. We have:

T n
T
/ e Mu(t)dt = lim — E e M (Tkn™') =t lim fr,
0 n—oo M P n— oo
with the limit taken in L'(RT). Note that fr.(7) equals

T

T - _ ATk n _ATrrn _
— E e n 1[0,T)(T) = 7£” [e W] e ’\T} Lo, 1) (7).
[ e —1

T

Certainly, the expression in brackets does not exceed e=*7 and tends to

e " — e * as n — oo, while the sequence before the brackets tends

to % Hence, by the Dominated Convergence Theorem, lim,, o fr.n =
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f(ex — e D)u(T) in L*(RT). Thus,

T
)\/O e Mu(t)dt = (ex — e M u(T).

Finally, ||(ex — e *T)u(T) — ex| 11 ®+) does not exceed
lexu(T) — exllprg+) + e_ATHU(T)HLl(Rﬂ

= / e MAdr+Te M = (14 T)e M
T

which converges to 0 as T" — oo.

2.2.50 Exercise Let X be a Banach space, and suppose that t +— x; €
X is continuous in an interval [a, b]. The scalar-valued function t — ||z||

is then continuous, and therefore integrable. Show that f; Tt dtH <

b
Jo el dt.

2.3 The space of bounded linear operators

Throughout this section, (X, |- |lx) and (Y,] - ||y) are two linear normed
spaces. From now on, to simplify notation, we will denote the zero vector
in both spaces by 0.

2.3.1 Definition A linear map L : X — Y is said to be bounded if
|ILz||y < M]z||x for some M > 0. If M can be chosen equal to 1, L
is called a contraction. In particular, isometric isomorphisms are con-
tractions. Linear contractions, i.e. linear operators that are contractions
are very important for the theory of stochastic processes, and appear
often.

2.3.2 Definition  As in 2.1.12, we show that the collection £(X,Y)
of continuous linear operators from X to Y is an algebraic subspace
of L(X,Y). £(X,Y) is called the space of bounded (or continuous)
linear operators on X with values in Y. The first of these names is
justified by the fact that a linear operator is bounded iff it is continuous,
as proved below. If X = Y we write £(X) instead of £(X,Y) and call
this space the space of bounded linear operators on X. If Y = R,
we write X* instead of £(X,Y) and call it the space of bounded linear
functionals on X.
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2.3.3 Theorem Let L belong to L(X,Y) (see 2.1.7). The following
conditions are equivalent:

a) L is continuous (L € L(X,Y)),
b

L is continuous at some x € X,

d) supjyj,=1 [|L(|y is finite,

)
)
(¢) L is continuous at zero,
)
)

(e) L is bounded.

Moreover, sup| ;=1 [Lz|ly = min{M € M} where M is the set of
constants such that ||Lz|y < M||z||x holds for all z € X.

Proof The implication (a) = (b) is trivial. If a sequence z,, converges to
zero, then x,, +x converges to x. Thus, if (b) holds, then L(x,,+x), which
equals Lx,,+ Lz, converges to Lz, i.e. Lz, converges to 0, showing (c). To
prove that (c) implies (d), assume that (d) does not hold, i.e. there exists
a sequence x, of elements of X such that ||z,|x = 1 and || Lz,| > n.
Then the sequence y, = ﬁxn converges to zero, but |[Ly,|y > v/n
must not converge to zero, so that (c¢) does not hold. That (d) implies
(e) is seen by putting M = sup,, [[Lx||y; indeed, the inequality in the
definition 2.3.1 is trivial for x = 0, and for a non-zero vector x, the
norm of ﬁx equals one, so that ||Lﬁf£||y < M, from which (e) follows
by multiplying both sides by ||z||. Finally, (a) follows from (e), since
|Len — Lol < L — )| < Mz, — 2.

To prove the second part of the theorem, note that in the proof of the
implication (d)=(e) we showed that M; = sup,, =1 [|Lz||v belongs to
M. On the other hand, if ||Lz|y < M|z||x holds for all # € X, then
considering only x with ||z||x = 1 we see that My < M so that M, is
the minimum of M. O

2.3.4 Exercise Suppose that a < b are two real numbers and that
[a,b] 2 t — x; is a Riemann integrable function taking values in a
Banach space X. Let A be a bounded linear operator mapping X into a
Banach space Y. Prove that [a,b] 3 t — Axz; € Y is Riemann integrable,
and A f: xpdt = fab Az, dt.

2.3.5 Example Let (,F,u) and (¥, F',v) be two measure spa-
ces. Suppose that k(w,w’) is bounded (say, by M) and measurable with
respect to the product o-algebra F @ F in Q ® Q. Consider the lin-
ear operator K : LY(QV,F' ,v) — L*®(Q,F,pu) given by (Kz)(w) =
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Jor K( w')dv(w'). The estimate

(Kz)(w)| < [ [k(w,0)z(w)]dv(w') < M|z]|L @7 0)
Q/
shows that K is a bounded linear operator from the space L'(Q, F',v)
to L (Q, F, ).

2.3.6 Example For /\ > 0 define Ay : BM(RT) — BM(R") by
(Axz) (1) = e A3 2 0 n, 2 (%) . This series converges uniformly on
all compact subintervals of RT and its sum does not exceed ||z||. Thus,
Ajx belongs to BM(R™) for all A > 0; in fact it belongs to BC(R™).
Moreover, Ay maps the space Co(RT) of continuous functions on R™ that
vanish at infinity into itself. To prove this, note that for any z € Co(R™)
and € > 0, we may find 7' > 0 and a function z7 € Co(R™) such that
xp(T) = 0 whenever 7 > T and ||z — z7| < e. Moreover, Ayzr (1) =
ZBTA xr (%) e ™ ()‘T,) is a finite sum of members of Cyh(RT) and we
have ||Axz — Ayzr|| < e. This proves that Ay belongs to the closure of
Co(R™), which equals Co(R™).

Finally, Ay maps the space C(R¥) of continuous functions with limit
at infinity into itself. To prove this consider an z € C(R¥) and let
k = lim; oo (7). Then x — klg+ € Co(RT) and

Ayx = A)\($ — /ﬁ?lRJr) + kA g+ = A)\(IE — H1R+) + klg+
belongs to C(R*), as desired.
Thus A, is a linear contraction in BM (R*), Co(R*) and C(R¥).

2.3.7 Definition Let L € £L(X,Y) be a bounded linear operator. The
number [|L|| = supy,, =1 [[Lx |y, often denoted ||L||z(x,yy or simply || L],
is called the norm of the operator.

2.3.8 Example In 2 2.46 we showed that for any z € L'(RT) the
function Tz(7 fo (7 4+ o) do is continuous. Obviously,

sup [Tz(7)| < [|z(| 1 g+
7>0

Hence T maps L'(RT) into BC(R*) and ||T|| < 1. Moreover, Tz = x
since (1) = e~ and ||z|| po®+) = ||2[/ L1 (m+) = 1, proving that ||T']| = 1.
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2.3.9 Exercise Let [! be the space of absolutely summable sequences
T = (§n)n21 with the norm ||z|| = Y77 | |€,]. Let

L(gn)n21 = (§n+1)n21’ R(g’ﬂ)nzl = (fnfl)rel

(&0 = 0, L and R stand for “left” and “right”, respectively) be translation
operators, and let I be the identity in ['. Show that ||aL + bR + cI|| =
la] + |b] + |¢|, where a,b and ¢ are real numbers.

2.3.10 Proposition  The space L(X,Y) of bounded linear operators
equipped with the norm || - ||z(x,v) is a normed linear space. Moreover,
if Y is a Banach space, then so is £(X,Y).

Proof We need to check conditions (n1)—(n4) of the definition of a norm.

(n1)—(n3) are immediate. To prove (nd) we calculate:

IL+ M| = sup [|[Lo+ Mz|y < sup {||[Lz|y + [[Mz|v}
l=llx=1 lz|lx=1
< sup [Lafy+ sup [[Mzlly = L]+ [M].
llz]lx=1 llz]lx=1

Let L,, be a Cauchy sequence in £(X,Y). For any =z € X, the sequence
Lyx is Cauchy in Y, since || L,z — Lnz|ly < ||[Ln — L 2cx,v||2]]x. Let
Lx = lim,, ., Lyx. It may be checked directly that L is a linear operator.
We repeat the argument from 2.2.15 to show that L is the limit of L,
in £(X,Y). For arbitrary € > 0 there exists an ng such that || L,z —
Lx|y < €||z]x, for n,m > ng. Taking the limit, as m — oo, we obtain
[Lnx — Lally < €|lz[x, for 2 € X;n > ng. Thus, sup) = [Lzlly < e+
SUP||z =1 [ Lnz[ly < 00, s0that L € L(X,Y). Also ||Lyz—Lz|ly < ellz|x
for 2 € Xis equivalent to ||L — Ly || £(x,v) < €, which completes the proof.

O

2.3.11 Exercise  Assume that X,Y and Z are normed linear spaces,
and let L € £(X,Y) and K € L£(Y,Z). Then the composition K o L of K
and L (in the sequel denoted simply K L) is a bounded linear operator
from X to Z and

KLl cx,zy) < K cxny I Ll 2ev,z)-

2.3.12 Exercise Let A;,B;,i = 1,...,n be linear operators in a Ba-
nach space and let M = max;=1.. ,{||4:|, ||B:l|}- Then

|AnAn_1..A1 = ByBy_1..Bi| < M"' > || A; - Bill. (2.9)
i=1
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In particular, for any A and B and M = max{||Al, | B|},
|A" — B < M" || A - B|. (2.10)

2.3.13 Exercise Let A be a bounded linear operator in a Banach

space X, and let A” = Ao A" 1 n > 2 be its nth power. Prove that the

series >~ tnn‘?n converges for all ¢ € R in the operator topology, i.e.

with respect to norm [|- || zx). Let €' denote its sum. Show that for any
real numbers s and t, e(*T9)4 = ¢t4es4, In other words, {e!4,t € R} is

a group of operators (see Chapter 7). We often write exp(tA) instead of
etA.

2.3.14 Exercise Let A and B be two bounded linear operators in

a Banach space such that AB = BA. Show that e!(A+t5) = ¢t4etB —
ot BotA

2.3.15 Exercise  Suppose that A € L£(X) is an operator such that
[I — All < 1. Then, we may define log A = —> > L(I — A)". Prove
that exp(log A) = A.

2.3.16 Exercise Under notations of 2.3.9 show that

||eaL+bR+cIH — ea+b+c
where a,b € RT and c € R.

2.3.17 Measures as operators In what follows BM (R) will denote the
space of bounded Borel measurable functions on R, equipped with the
supremum norm, and BC(R) its subspace composed of bounded contin-
uous functions. BUC(R) will denote the subspace of bounded uniformly
continuous functions on R, and Cy(R) the space of continuous functions
that vanish at infinity.

Given a finite measure p on (R, B(R)) we may define an operator T},
acting in BM (R) by the formula

(T,)(7) = / £(r + 5) du(s). (2.11)

Let us first check that 7}, indeed maps BM (R) into itself. If 2 = 1(, ) for
some real numbers a < b, then T,,2(7) = p(—00,b—7] — p(—o00,a — 7] is
of bounded variation and hence measurable. The class G of measurable
sets such that 7),14 is measurable may be shown to be a A-system. This
class contains a m-system of intervals (a,b] (plus the empty set). By the
Sierpinski m—\ theorem, the o-algebra generated by such intervals is a



68 Basic notions in functional analysis

subset of G, and on the other hand, by 1.2.17 it is equal to the Borel
o-algebra. Hence, T,z is measurable for any = 14, where A € B(R).
By linearity of the integral this is also true for simple functions z. Since
pointwise limits of measurable functions are measurable, we extend this
result to all x € BM(R). That T,z is bounded follows directly from
the estimate given below. We have also noted that the map is linear
(integration being linear). As for its boundedness, we have

[Tzl < sup [(T,z)(7)| < supsup |z(7 + <) |[u(R) = [|z[|w(R), (2.12)
TER TER ¢eR

with equality for z = 1g. Thus, ||7,|| = ©(R) and in particular ||T),| =1
for a probability measure ;. We note also that 7}, leaves the subspaces
BC(R) and BUC(R) invariant, meaning that 7}, maps these spaces into
themselves. The former assertion follows from the Lebesgue Dominated
Convergence Theorem, and the latter from the estimate

[(Thz)(7) = (Tuz) ()| < sup lz(r +v) —2(c + V)| u(R), 7,¢€R.

veE
Analogously, we may prove that 7, maps Co(R) into itself.

An important property of 7, (as an operator in Cy(R)) is that it
determines p, meaning that if 7, = T, for two measures p and v, then
p = v. Indeed, T,, = T, implies in particular that for any z € Cy(R),
(T,z)(0) = (T,x)(0), ie. [pxdu = [pxdy, which implies p = v by
1.2.20. In other words, the map p +— T}, is a linear invertible map from
BM(R) into L(BM(R)) (right now this map is defined only on a subset
of BM(R), see 2.3.20 below, however). The same is true for T, as an
operator in BUC(R), BC(R) and BM (R).

Another important property of the map p +— T, is related to the
notion of the convolution of two finite measures on R. Note that we
have:

@La0) = [@ar )= [ [arrct v

= [ alr+ )4 1)(dp) = T, (2.13)

In words, p — T}, changes convolution into operator composition. Func-
tional analysts say that this map is a homomorphism of two Banach
algebras (see Exercise 2.3.20 and Chapter 6).

2.3.18 Exercise  Find (a) the operator T}, related to the normal dis-
tribution with parameters m and o, (b) the operator related to a uniform
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distribution, and (c) the operator related to the exponential distribution
with parameter A > 0.

2.3.19 Exercise Let X be a non-negative integer-valued random vari-
able. Prove that X is a Poisson variable with parameter a > 0 iff for any
bounded function g on the non-negative integers, X¢g(X) is integrable
and F Xg(X) = aF g(X + 1). Analogously, show that X has the geo-
metric distribution with parameter p iff for all bounded functions g on
the non-negative integers with g(0) =0, E g(X) = ¢E g(X + 1), where
q=1-p.

2.3.20 Exercise Introduce the bounded linear operator related to a
Borel charge p on R and prove that for any two such Borel charges u
and v, T, T, = T}, where

+

puxv=ptxvt LT xrT —pm kvt —pT T (2.14)

with obvious notation. Of course, relation (2.14) is a result of viewing a
signed measure as a difference of two positive measures and extending
the operation of convolution by linearity. Note that for all u, v € BM(R)
the operators 7), and T, commute:

T,T, = T,T,.

In particular, taking v to be the Dirac measure at some point ¢t € R, we
see that all 7}, commute with translations. See 5.2.13 in Chapter 5 for a
converse of this statement.

2.3.21 Operators related to random wvariables If X is a random vari-
able, we may assign to it the operator T'x defined by Tx = Tp, where
Px is the distribution of X. We thus have

Txx(T):/Rx(T—i—g)]P’X(dg):/Qx(T—i—X)dIP’:Ex(T—i—X).

Note that if random variables X and Y are independent, then Px 1y =
]P)X * Py. ThllS, Tx+y = TXTy.

However, while the map u — T, preserves all information about ,
T'x does not determine X. In particular, we are not able to recover any
information about the original probability space where X was defined.
In fact, as suggested by the very definition, all we can recover from T'x
is the distribution of X.

As an example, observe that the operator Ayx(7) described in 2.3.6
is related to the random variable %X »r, where X, has the Poisson
distribution with parameter Ar.
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2.3.22 Exercise Find operators related to the random variables X,
and S,, described in 1.4.6. Prove that T, = (T'x,)".

2.3.23 Measure as an operator on BM(R)  With a Borel charge 1 on R
we may also associate the operator S, on BM(R) defined by the formula
Suv = p+v. Using (2.14) we show that ||p = v|| < ||| |||l so that S,
is bounded and ||S,|| < ||p||. Moreover, S, 69 = p where &y is the Dirac
measure at 0, proving that [|S,| = ||u||. Certainly, 5,5, = Sy

2.3.24 Exercise Find (a) the operator S, related to the normal dis-
tribution with parameters m and o, (b) the operator related to a uniform
distribution, and (c) the operator related to the exponential distribution
with parameter A > 0.

2.3.25 Borel measures as operators on a locally compact group  The
results of the foregoing subsections may be generalized as follows. For a
finite, possibly signed, measure p on a locally compact group we define
an operator S, on BM(G) as S,v = p * v. Arguing as in 2.3.23, it can
be shown that S, is a bounded linear operator with ||S,|| = ||x| and
SuSy = Sy )

We may also define the operators T}, and T}, by the formulae

T,a(g) = / £(hg) p( dh)

and

T,(g) = / £(gh) u( dh).

Note that these formulae define two different operators unless G is com-
mutative. In 5.3.1 we shall see that S, is related to T}, as the operator
S’“I/ = v % p is related to Tw

For now, we need only determine where the operator 7}, is defined.
It may be shown that it maps BM(G) into itself. The operator also
maps the space BUC(G) into itself. The space BUC(G) is the space
of bounded functions = on G such that for every ¢ > 0 there exists a
neighborhood U of e (the neutral element of G) such that {

|z(g1) — x(g2)| <€, whenever g1g; ' € U. (2.15)

t The space BUC(G) thus defined is actually the space of bounded functions that
are uniformly continuous with respect to the right uniform structure on G; the
space of functions that are uniformly continuous with respect to the left uniform
structure is defined by replacing glggl in (2.15) with gglgl - see [51]. We will not
distinguish between the two notions of uniform continuity because at all groups
considered in this book these two notions are equivalent.
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BUC(G) is a Banach space, and to prove that T,, maps BUC(G) into
itself it suffices to note that

Tu(91) = Tuw(g2)| < llull sup [2(g1h) = 2(g2h)]
S

and that g;h(geh)™" = g1g5 ', so that the right-hand side above does
not exceed ||p||e, if g1 and go are chosen as in (2.15).

It turns out that Cy(G) C BUC(G) and that T, maps Cy into itself.
Since the proof, although simple, requires more knowledge of topology
of locally compact spaces we shall omit it here. Besides, the techniques
used in it are not crucial here and the statement in question is obvious
in the examples we consider below.

Note finally that if g and v are two finite measures on G, then as in
(2.13), we may calculate

Ts)a) = [ o) sv)(an) = [ [ alhanag) pianvians)

/(}Tux(hgg)u(dhg) =T,T,x(g9), v € BM(G). (2.16)

The reader will check similarly that T#*U = T#T,,.

2.3.26 Example  Consider the space BM(G) of signed measures p
defined on the Klein group G. Each measure p on G may be identified
with four real numbers a; = p({g;}), ¢ = 1,2,3,4. The norm in this
space is

ai ay

4
=12 =l w=]®
,Lt a3 — 119 a3
ay4 ay4

Treating elements of this space as differences of two positive measures
on G, we define the convolution of two charges p * v as in (2.14) and
prove that (1.12) still holds. The operator S, (v) = p * v is a bounded
linear operator given by

by ap az asz aq by ay
by a2 ap a4 ag by a2
Sy = ) where = . (2.17)
b3 az a4 a1 A b3 as
b4 a4 as a2 ai b4 a4

What is the form of T,,? A member x of Cy(G) may also be identified
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with four numbers &; = 2(g;),% = 1,2, 3,4, but the norm in this space is
§z| Now

|zl = max;—1,2,3,4

m = @) = [ aloih)u(ah) = Y x(gigy)as.

j=1

Using the multiplication table from 1.2.23 we see that

m a; az a3 a4 &1

12 az a1 a4 a3 &2
T,x = =

73 as a4 a1 a &3

74 as az az a1 a4

Thus, except for acting in different spaces, 7}, and S,, are represented by
the same matrix. In general, if G is a finite but non-commutative group,
the matrix that represents S, is the transpose of the matrix of T},.

2.3.27 Example In 1.2.24 we saw that any positive measure on the
Kisynski group G may be identified with a pair of measures on R. On
the other hand, any signed measure on G is a difference of two posi-
tive measures. Hence, any charge on G may be identified with a pair of
charges on R. In other words, the space BM(G) is isometrically isomor-
phic to the Cartesian product of two copies of BM(R), with the norm
(1, i—1)|l = llpeal] + |lpe—1]]- An easy argument shows that both (1.14)
and (1.15) hold for charges as well. As a result of the latter equation

SNV =p*V= (Smyl + Sﬂ—l’/*l’ S#—1l/1 + Sﬂl”fl)v

where S, and Sj;, are operators in BM(R) related to charges y; and fi;,
i=1,—1 on R (i is defined in 1.2.24). This formula may be written in
the matrix form as

_ Sm Sﬂ—1
S, = (S g ) . (2.18)

H—1 M1
As BM(G) is isometrically isomorphic to BM(R) x BM(R), so Cy(G)
isometrically isomorphic to Co(R) x Co(R), with the norm ||(x1,z_1)||
|21 ]|V ||z—1]| where z; € Cy(R), i = —1,1 (Exercise 2.2.38). Using (1.14)
we see that

is

T,x(&1) = /Gx(Tl + & kD) p(d(r, k)
equals

[ar+@man + [ a9
R

R



2.8 The space of bounded linear operators 73

for [ =1 and
[ort-r+Qua(an+ [oa(-r+m(dn)
R R
for [ = —1. Hence, using matrix notation
T T
T, = p “‘1> 2.19
: (Tﬂ—1 Tﬂl ( )

where T),, and T}, are operators on Cy(R) related to measures p; and
fi; on R. Notice that the matrix in (2.18) is a “conjugate” matrix to
the matrix in (2.19), if we agree that the conjugate to T, is S, for any
v € BM(R).

2.3.28 Exercise  Find the form of the operators Tu and Su on the
Kisynski group.

2.3.29 Uniform topology versus strong topology. Weierstrass’ Theorem
Although it is nice to know that £(X,Y) is a Banach space, in applica-
tions the mode of convergence related to the norm in £(X,Y) is not very
useful. The reason is that the requirement that operators A, converge
to an operator A in the norm of £L(X,Y) is very restrictive, and there
are few interesting examples of such behavior. More often we encounter
sequences such that ||A,z — Az|ly — 0 as n — oo for all z € X. This
mode of convergence is called strong convergence, in contrast to the
one discussed above, called convergence in the operator norm, or
uniform convergence. Indeed, convergence in the operator norm is a
strong convergence that is uniform in any ball — see the definition of the
norm in £(X,Y). See also 5.4.18 in Chapter 5.

As an example consider the space C[0,1] of continuous functions on
the unit interval, and a sequence of operators A, € L(C[0,1]),n > 1,
defined by

zn:x (j/n) () s7(1 —s)" . (2.20)

Linearity of A,,n > 1, is obvious, and

n n . i

Auell = s [(Ana)(o)l < el Y- (1) 9108 = ), (220
s€[0,1] =1 J

so that A, are linear contractions in L£(C[0,1]). Taking z(s) = 1, we

see that actually ||A|| = 1. We shall show that A,, converges strongly

but not uniformly to the identity operator I. For n > 1 let z,(s) =
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0V (1—1|2ns—1|). We see that ||z,| = 1, but 2,(j/n) =0, j =0,1,...,n,
so that Az, = 0. Thus ||A, — I|| > ||An®n — n|| = ||zn]] = 1 and we
cannot have lim,,_, ||An, — I]| = 0. On the other hand, from (2.21) we
see that

(Anz)(s) = Ex(Xn/n)

where X,, is a binomial variable B(s,n). Recall that E X,,/n = s, and
D*(X,/n) = S(ln;s) By Chebyshev’s inequality

D*(X,/n) s(1—2s) 1
= < .
62 néd?  ~ 4nd?
Moreover, x, as a continuous function on a compact interval, is uniformly

continuous, i.e. for any € > 0 there exists a 6 > 0 such that |z(s)—z(t)| <
€/2 provided s,t € [0,1], |s — t| < d. Therefore,

[(Anz)(s) —x(s)] < E |o(Xn/n) —x(s)]
S E 1{\Xn/nfs|26} |a:(Xn/n) — l‘(8)|
TEL{|x,, /n—s|<s} [2(Xn/n) — x(s)]
< 2l + 5

Note that the § on the right-hand side does not depend on s but solely on
2 and e. (Although the random variables X,, and the events {|X,,/n — s|
< 4} do!) Thus

€

[Anz — xf| < 2] t3

1
4né?
and our claim follows: if we want to have ||A,x — || less than €, we take
n > Ll%l.

This proves also that polynomials form a dense set in C]0, 1]; indeed
A,x is a polynomial regardless of what x is, and A,z converges to x in
the supremum norm. This is the famous Weierstrass Theorem. The
polynomials (2.20) were introduced by S. Bernstein, who also gave the
proof of the Weierstrass Theorem reproduced above, and therefore are
called Bernstein polynomials.

2.3.30 Corollary If x € C[0,1], and fol Tx(T)dr =0, for all n > 0,
then z = 0.

Proof By 2.3.29, for any = € X, and any € > 0 there exists a polynomial
x. such that ||z—z.|| < e. Our assumption implies that fol ze(T)x(T)dr =
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/01 (1) dr

0. Since

/01 2?(7)dr — /01 xe(T)x(T)dr
[ 1) i) o

[ =zl [l2]] < el]],

IN

and since € is arbitrary, fol 22(7)dr = 0. Therefore, z(7) = 0 almost
surely, and by continuity, for all = € [0, 1]. O

2.3.31 Exercise Prove that Iz(7) = 2(—In 1) with convention In0 =
—o0o maps C(R) (the space of continuous functions with limit at infin-
ity) isometrically isomorphically onto C[0,1]. Conclude that the func-
tions ex(1) = e ", A > 0 form a linearly dense subset of C(RT),
and consequently that fooo e *x(7)dr = 0, A > 0, implies x = 0, for
x € C(RT).

2.3.32 Two linear and continuous operators that coincide on a linearly
dense subset are equal  Suppose Xg is a subset of a normed linear
space X and span Xg = X. Let L;,i = 1,2, be two linear and continuous
operators with values in a normed linear space Y. If Lix = Loz for all
z € Xo, then L1 = Ls.

Proof If x € spanXg, then x = Z?:l a;x; for some scalars «; € R and
vectors x; € Xg. Thus Lix = Lox by linearity of Ly and Ls. For z € X|
we may find a sequence of vectors x, € Xy such that lim,, .., =, = x.
Thus, L1z = Loz by continuity. |

2.3.33 Euzistence of the extension of a linear operator defined on a lin-
early dense set  Suppose Xy is a subset of a normed linear space X
span Xo = Xg, and Xy = X. Let L be a linear map from Xg into a Banach
space Y, and suppose that there exists a constant C' > 0 such that for all
x € Xo, ||Lz|ly < Cllz||x, where || - ||x and || - ||y are norms in X and Y,
respectively. Then, there exists a unique linear and continuous operator
M : X — Y such that Lz = Mz for € Xy and ||[Mz|y < C||z|x,z € X.
(For obvious reasons, the operator M is usually denoted simply by L.)

Proof For any x € X there exists a sequence of vectors z,, € Xg such
that lim,,_ x, = x. The sequence y,, = Lz, is a Cauchy sequence in
X, since z,, is a Cauchy sequence, because ||yn — ym|ly < Cllxn — Tm||x-
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Thus, Lz, converges to an element in Y, since Y is complete. Moreover,
the limit does not depend on the choice of the sequence x,, but solely on
x. Indeed, if for another sequence z/, we have lim,,_,o 2, = z, then by
|Lzy, — L, ||y < Cllzn — 2,||x, we have limy,_,o0 L, = lim, oo La),.
We may thus put Mz = lim,,_,, Lz,. In particular, if x € Xy we may
take a constant sequence x, = x to see that Mx = Lx. The operator
M is linear: if z,y € X, then we pick sequences x,,,y, € Xg such that
lim, oo p, = x, lim,,_,~ Y = y; by linearity of L, we have

M(az+ py) = lim L(az, + Py,) =« lim Lz, + § lim Ly,
= aMz+ fMy.
Similarly,

|Mally = lim [ Laally < C lim [z = Cllals.
Uniqueness of M follows from 2.3.32. UJ

2.3.34 Exercise Prove that if A,,n > 0 are bounded linear operators
A, € L(X,Y) such that [|4,] < M,n > 0 for some M > 0 and A,z
converges to Apx, for all  in a linearly dense set of z € X, then A,
converges strongly to Ayp.

2.3.35 Definition A family A;,t € T of bounded linear operators
where T is an index set is said to be a family of equibounded opera-
tors iff there exists a constant M > 0 such that || 4] < M.

2.3.36 Definition An operator L € L(X) is said to preserve a func-
tional f € X*, if f(Lx) = f(z) for all z € X. Note that, by 2.3.32, to
check if L preserves f it is enough to prove that f(Lx) = f(z) holds on
a linearly dense set.

2.3.37 Markov operators — Let (2, F, u) be a measure space. Let Y be
an algebraic subspace of L'(Q, F, u) which is dense in L*(£2, F, u), and
such that z* = max(z,0) belongs to Y for z € Y. Suppose that P is a
linear operator in L(Y, L*(2, F, u)) such that Pz > 0 and

/Pa:d,u:/xdu, (2.22)
Q Q

for all x € Y such that > 0. Then there exists a unique extension of P
to a contraction, denoted by the same letter, P € E(Ll(Q, F, p)), such
that Px > 0 if z > 0 and (2.22) holds for all z € L(Q, F, ).
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Proof Let us write # = ¥ — 27, where 27 = max(x,0) and 2~ =
max(—x,0). For z € Y, we have P(x%) — Pz > 0, since 2+ — 2 > 0.
Thus,

(Px)T = max(Pz,0) < P(x™).
Since = = (—x)T, we also have

(Pz)” = (=Pz)" = [P(=2)]" < [P(-2)"] = P(2").

Therefore,

/Q Prldy = / (P2)* + (Pr) ] du < / [P(a+) + P(a~)] dp

Q

= /{2[x++x_]du=/§2|$|du~

Thus, the existence of the extension to a contraction is secured by 2.3.33.
Using linearity, we show that (2.22) holds for all 2 € Y, and not just for
x > 0in Y, so that the bounded linear functional F : x — fQ xdy is
preserved on Y, and thus on LY(Q, F, u1).

It remains to show that Px > 0ifz > 0. If x > 0 and z,, € Y converges
to x, then ;| belongs to Y and ||z — ;7 || 110,74 < |2 — 2nllLr .7 0
(since f{anO} |z — 2, dp = f{xngo}(x + z,) dp > f{wn§0} xdp). Thus,
Pz >0 as a limit of non-negative functions z;'. U

2.3.38 Remark In 2.3.37, we may take Y to be the algebraic subspace
of simple functions. If 4 is finite, we may take Y = L?(Q, F, u1).

2.3.39 Definition  Suppose L'(Q,F,u) is a space of absolutely in-
tegrable functions on a measure space (Q,F,u). A linear map P :
LY(Q, F,p) — LY(Q, F, 1) such that

(a) Pz >0 for z >0,
b Pxdyu= |,xduforx >0
(b) JoPrdp= [qzdu

is called a Markov operator. As we have seen, Markov operators are
linear contractions. Condition (b) implies that Markov operators pre-
serve the integral (which is a linear functional on L!(Q, F, p)).

2.3.40 Exercise Let y be a non-negative element of L!(R, M, leb)
such that [ ydleb = 1. Prove that P, defined on L'(R, M, leb) by P,z =
y * x is a Markov operator.
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2.3.41 Example The operator from 2.3.26 is a Markov operator in
the space L'(G) of absolutely integrable functions with respect to the
counting measure on the measure space 2 = G composed of four ele-
ments, provided p is non-negative and its coordinates add up to one. In
other words, S, = u*v is a Markov operator provided p is a probability
measure.

Observe that the space L'(G) coincides with the space BM(G) of
signed measures on G, since all measures on G are absolutely continuous
with respect to the counting measure.

2.3.42 Exercise Provide a similar example of a Markov operator on
the space L' (G) of functions that are absolutely integrable with respect
to Lebesgue measure on the Kisynski group G; here we treat G as two
parallel lines both equipped with one-dimensional Lebesgue measure.

2.3.43 Exercise Let k(7,0) ba a non-negative function on R? such
that [ k(7,0) do = 1, for almost all 7. Prove that the operator K defined
on L'(R, M, leb) by Kz(r) = [k(r,0)do is a Markov operator.

2.3.44 Exercise Let (Q,F,p) be a measure space and let f be a
measurable map into a measurable space (2, F'). Find a measure p’ on
(¥, F') such that the operator P : L' (Y, F', /) — LY (Q, F,u) given
by (Px)(w) = z(f(w)), w € Q, is Markov. For another example of a
Markov operator, see 3.4.5 below.

2.3.45 Campbell’s Theorem  We often encounter operators that map
the space L'(Q,F, ) into the space of integrable functions on another
measure space (', F’, ). If the operator P maps (classes of) non-
negative functions into (classes of) non-negative functions and the rela-
tion [, Pxdy’ = [,z dp holds we shall still call P a Markov operator.
Here is a famous example. Let (2, F,P) be a probability space where a
sequence X,, of independent exponentially distributed random variables
with parameter a is defined. Let S,, = Z?Zl X;. S, has the gamma
distribution with parameters n and a. For any absolutely integrable
function z on the right half-axis, let (Pz)(w) = > o, 2(Sp(w)). P is
a Markov operator mapping the space L'(R*, M(RT),a - leb) of func-
tions that are absolutely integrable with respect to Lebesgue measure
multiplied by a (with the norm ||z|| = a [ |z(s)|ds) into L'(2, F, P). No-
tice that for two functions, say = and y, from the same equivalence class
in LY(RT, M(RT),a-leb) the values of Pz and Py evaluated at some w
may differ. Nevertheless, we may check that P maps classes into classes.
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We leave the proof as an exercise. It is clear that P maps non-negative
functions into non-negative functions. Moreover, for non-negative z,

[e@ar= [ 3 a(sne) s

n=1

ntn—l

:/Oooge_at(i_l)!x(t)dt:/Ooox(t)adt.

We have proved a (small) part of Campbell’s Theorem — see [41, 66].
We shall come back to this subject in 6.4.9.

2.3.46 Exercise Consider the operator D that maps the joint distri-
bution of two random integer-valued variables into the distribution of
their difference. Extend D to the whole of I1(Z x Z), where Z x Z is
equipped with the counting measure, find an explicit formula for D, and
show that this operator is Markov.
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Conditional expectation

The space L?(Q, F,P) of square integrable random variables on a proba-
bility space (2, F,P) is a natural example of a Hilbert space. Moreover,
for X € L?(Q, F,P) and a o-algebra G C F, the conditional expectation
E(X|G) of X is the projection of X onto the subspace of G measurable
square integrable random variables. Hence, we start by studying Hilbert
spaces and projections in Hilbert spaces in Section 3.1 to introduce con-
ditional expectation in Section 3.2. Then we go on to properties and
examples of conditional expectation and all-important martingales.

3.1 Projections in Hilbert spaces

3.1.1 Definition A linear space with the binary operation XxX — R,
mapping any pair in XxX into a scalar denoted (z, y), is called a unitary
space or an inner product space iff for all x,y,z € X, and o, € R,
the following conditions are satisfied:

x—l—y,z) = (.’E,Z) + (y,z),
ax,y) = az,y),

The number (x,y) is called the scalar product of x and y. The
vectors x and y in a unitary space are termed orthogonal iff their
scalar product is 0.

3.1.2 Example The space [? of square summable sequences with the
scalar product (z,y) = >_.°, &.1n is a unitary space; here z = (&,),,51
Yy = (Mn),>1- The space Cjg 1) of continuous functions on [0, 1] with

80
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the scalar product (z,y) fo s)ds is a unitary space. Another
important example is the space L2(Q ]—' u) where (2, F,p) is a mea-
sure space, with (z,y) = fQ xydp. The reader is encouraged to check
conditions (s1)—(s5) of the definition.

In particular, if p is a probability space, we have (X,Y) = E XY. Note
that defining, as customary, the covariance of two square integrable ran-
dom variables X and Y as cov(X,Y) = E(X — (EX)1g)(Y —(EY)lq)
we obtain cov(X,Y) = (X,Y) - EXFEY.

3.1.3 Cauchy—Schwartz—Bunyakovski inequality ~ For any x and y in a
unitary space,

(z,9)* < (z,2)(y, y).

Proof Define the real function f(t) = (x + ty,x + ty); by (s3) it admits
non-negative values. Using (s1)—(s2) and (s5):

Ft) = (z,2) + 2t(z, y) + (5, y); (3.1)
so f(t) is a second order polynomial in ¢. Thus, its discriminant must be
non-positive, i.e. 4(x,y)? — 4(x,z)(y,y) < 0. O

3.1.4 Theorem A unitary space becomes a normed space if we define
||lz|| = v/ (z,x). This norm is often called the unitary norm.

Proof (nl) follows from (s3), and (n2) follows from (s4). To show (n3)
we calculate:

laz|l = /(az, ax) = v/a2(z,2) = |a|/(z,2) = |a]|],

where we have used (s2) and (s5). Moreover, by (3.1) and 3.1.3,

o+ yl? = (z,2) +2(z,y) + (y,9) < > + 2]z [yl + 9],
as desired. O

3.1.5 Example In the case of L?(Q, F, 1) the norm introduced above
is the usual norm in this space, ||z||* = [, 2% dp.

3.1.6 Law of large numbers. First attempt Suppose that X, are iden-
tically distributed, uncorrelated, square integrable random variables in
a probability space (2, F,P), i.e. that cov(X;, X;) = 0 for ¢ # j. Then
Sn — HttXn converges in L2(€, F,P) to (E X)lg.

n
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Proof It suffices to note that the squared distance between % and

(EX)lqg equals [|[£ 3" | (X; — (E X)1q)||?, which by a direct compu-
tlati20n based on assumption of lack of correlation equals 3 Y% | 0% =
EUX1 . ]

3.1.7 Remark Note that the Markov inequality implies that under

the above assumptions, for any € > 0, P(|22 — E X| > ¢) < U;? tends to
zero. This means by definition that ST" converges to E X in probability
(see Chapter 5).
3.1.8 Parallelogram law  In any unitary space H,

lz +l* + llz — yl* = 2[ll]* + llyl°],
where x,y € H, and || - || is a unitary norm.
Proof Taket=1and t =—1 in (3.1) and add up both sides. O

3.1.9 Exercise (polarization formula) In any unitary space

lz + yl* — [l — yl”
i :

(x7y> =

3.1.10 Definition Let H be a unitary space, and let ||-|| be the unitary
norm. If (H, || -]|) is a Banach space, this pair is called a Hilbert space.
Again, quite often we will say that H itself is a Hilbert space. A leading
example of a Hilbert space is the space L?(€), F, u) where (2, F, ) is a
measure space.

3.1.11 Euzistence of the closest element from a closed conver set  Let
C be a closed convex subset of a Hilbert space H, and let « ¢ C. There
exists a unique element y € C, such that

—yl|=d:= inf ||z — z|.
Iz~ yll = d = ing flo — =]

Proof For any z, 2z’ € C, we have by 3.1.8,

Iz =2'1” = l(z — ) + (z — 2)|?
=2 — a1 — 2P} — [z 4 — 2]
z+ 2 2
2 —1‘”
< 2{|z —z|® + ||z — x|} — 4d, (3.2)

=2{llz —a|® + Iz — z[*} - 4
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since %‘ZI belongs to C. By definition of d there exists a sequence z,, € C,
such that lim, . ||z, — z|| = d. We will show that z, is a Cauchy
sequence. Choose ng such that ||z, —z||* < d?+£, for n > ng. Then, using
(3.2) with 2z = z, 2 = 2z, we see that for n,m > ng, ||z, — zm|* <€,

which proves our claim. Define y = lim, . 2,; we have ||z — y| =
lim,, oo ||& — 2n|| = d. Moreover, if ||y’ — z|| = d, then (3.2) with z =y
and 2z’ =y’ shows that ||y —y'|| = 0. O

3.1.12 Ezistence of projection  Let Hj be a subspace of a Hilbert space
H. For any « in H, there exists a unique vector Px € Hj such that for
any z € Hy, (x — Pz, z) = 0. Px is called the projection of x in Hj.

Proof If x belongs to H; we take Px = x, and it is trivial to check that
this is the only element we can choose. Suppose thus that = ¢ H; and
put Pz = y where y is the element that minimizes the distance between
x and elements of H;. Let z belong to H;. The function

F@) =llz =y +tel* = |z — yl* + 2t(2, 2 — y) + || ],

attains its minimum at t,;, = 0. On the other hand ¢, = — Q‘I(;fy_”%) )

that (z — y,z) = 0. Suppose that (z — ¢, z) = 0 for some y' in H; and
all z € Hy, and y # y'. Then

lz—yll> ===y |P+2(x -y, ¥ =)+ Iy —y|* = llz— ' II>+ Iy -yl

since y' — y belongs to Hy. Thus ||z — y|| > ||z — ¢'||, a contradiction.
O

3.1.13 Corollary  Under assumptions and notations of 3.1.12, for all
z,y € X and o, f € R, P(ax + fy) = aPx + Py, and || Pz| < ||z[. In
other words, P is a linear contraction.

Proof For the first part it suffices to show that (ax + Sy — aPx —
BPy,z) = 0 for z € H;, but this follows directly from the definition of
Pz and Py and conditions (s1)—(s2) in 3.1.1. To complete the proof note
that ||z|? = ||z — Px||? + 2t(x — Pz, Px) + || Pz|? = ||z — Px||* + || Pz

O

3.1.14 Exercise Show that for any projection P, | P|| = 1.

3.1.15 Corollary Let H; be a proper subspace of a Hilbert space H.
There exists a non-zero vector y € H such that (y,z) = 0 for all z € Hj.
We say that y is perpendicular to Hj.
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3.1.16 Exercise Let H; be the subspace of a Hilbert space H. Define
H; as the set of all y such that (x,%) = 0 for all € H;. Prove that Hj-
is a subspace of H and that any z € H may be represented in a unique
way in the form z = o +y where 2 € H; and y = Hj. Also, if P is the
projection on H; then I — P is the projection on Hj-.

3.1.17 Example Let H = L?(Q, F,P) and H; = L?(Q,G,P) where G
is a sub-g-algebra of F. If X € L?(Q, F,P) is independent of G then for
any Y € L?(Q,G,P) we have EXY = EX - EY. Hence, X — (E X)lgq
is perpendicular to L?(Q, G, P). In particular, (E X)1g is the projection
of X onto L?(Q,G,P). Example 1.4.9 shows that it may happen that
X — (E X)l1gq belongs to L?(2,G,P)* and yet X is not independent of
g.

3.1.18 Properties of projections Let H; and Hs be subspaces of a
Hilbert space H, and let P;,7 = 1,2, denote corresponding projection
operators. H; C Hy iff ||Piz|| < ||Pyz| for all z € H. In such a case
P1P2 = P2P1 = Pl-

Proof For any = € H, ||z]|> = ||z — Piz||* + ||Piz||? since z — Pz
is perpendicular to Pyz. Similarly, ||z||? = ||z — Pz + || Pz||?. By
definition, Pox is the element of Hy that minimizes the distance between
x and an element of this subspace. Hence if H; C Hy then |z — Pax|? <
|z — Piz||?, and so ||Pyz||* < || P2z||?. Conversely, if the last inequality
holds, then for x € Hy,

|z = Pz ||* = laf| = [ Poarl|® < [ll = | Pra|® = |l = Pra|® = 0,

proving that x = Pyx € Hs.

If Hy C Hs, then P,P, = Py, since Pix € H; C Hs for any x € H.
To calculate P; P,x note that Pjx belongs to H; and for any z € Hy,
(Pox — Piz,2) = (Pax — z,2) + (x — Piz,2). Now, (Pax — z,2) = 0
since z € Hy, and (x — Piz,z) = 0 since z € H;. This implies that
Pla? = P1P2.7,‘. |

3.1.19 Definition A bounded linear operator A in a Hilbert space H
is said to be self-adjoint (see 5.3.1) if for any z and y in H, (Az,y) =

(z, Ay).

3.1.20 Example Let H be the space R with the norm |[(&;)i=1,.»| =
Vo €. A linear operator in this space may be identified with the
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nxn matrix (o ;)i j=1,..» With a; ; being the ith coordinate in the vec-
tor A(d;,j)i=1,....n. Such an operator is self-adjoint if the corresponding
matrix is symmetric (see the proof of Theorem 4.1.3).

3.1.21 Exercise Prove that for any projection P and vectors x and
y in H we have

(Pl‘,y) = (Pl‘,Py) = (I,Py); (33)

in particular, projections are self-adjoint.

3.1.22 The norm of a self-adjoint operator Let A be a self-adjoint
operator in a Hilbert space H. Then [|A|| = sup) ;= [(Az, 2)|.

Proof Denote the supremum above by ||Al|o. By the Cauchy inequality,
[[Allo < supjzy=1 [|All llz[| = ||A]. To prove the converse fix x € H such
that Az # 0 and ||z]| =1, and let y = mAx. Then

Az] = (Ax,9) = 5[(Az,p) + (2, Ay)]

[(Az +y),z +y) — (Alz —y),x — y)]

IN

1
4
1 2 2 1 2 2
7l Allolllz +ylI* + llz = ylI°] = Sl Allo[lll1” + [ly]7]-

Hence, || A|| = supy,; [ Az]| < supyg =y 5llAllollz]* + llyl*] = [|Allo,
since ||ly|| = 1. O

3.1.23 A characterization of a projection operator ~ We have seen that
any projection P is self-adjoint and that P? = P. The converse is also
true: if P is a self-adjoint operator in a Hilbert space H and if P? = P
then H; = Range P is a subspace of H and P is the projection on Hj.

Proof Certainly, H; is an algebraic subspace of H. By definition, if z,,
belongs to H; then there exists y, in H such that Py, = x,. Hence
if x, converges to an x then the calculation Px = lim, .. Pz, =
limy,—00 P2y, = limy,— oo Py, = lim, oo Tn = 2, proves that x belongs
to H;. Therefore, H is a subspace of H.

Let P; be the projection on H;. By 3.1.16 it suffices to show that
Pz = Px for all x € H; and for all x € H% The first claim is true since
for x € H; both Pixz and Pz are equal to x. Since Pyx = 0 for all Hll
we are left with proving that Pz = 0 if x belongs to Hi . For such an x,
however, we have ||Pz||? = (Pz, Pr) = (z, P2x) = (x, Px) = 0 since Px
belongs to Hy. O
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3.1.24 Exercise Suppose that P; and P, are two projections on the
subspaces H; and Hy of a Hilbert space H, respectively. Prove that the
following conditions are equivalent:

(a) PPy = PP,
(b) Py = P + P, — P, P, is a projection operator,
(¢) Py = Py P is a projection operator.

If one of these conditions holds, then H; + Hs is a subspace of H and Ps
is the projection on this subspace, and Py is a projection on H; N Hs.

3.1.25 Example Suppose that G; and G- are independent o-algebras
of events in a probability space (2, F,P). Let P; and P, denote the pro-
jections in L?(Q, F,P) on the subspaces L?(Q,G1,P) and L?(€, Go, P),
respectively. For any X in L?(Q, F,P), P, X is G; measurable and so by
Exercise 3.1.17, PP X = (E X) 1. Similarly, PP, = (E X) 1g. Thus
Hy = L*(Q,G1,P) + L?(Q,Gs,P) is a subspace of L?(Q2,F,P), and in
particular it is closed. The projection on this subspace is the operator
P1 + P2 — P1 PQ.

3.1.26 Direct sum  Another important example is the case where H; N
Hs contains only the zero vector. In this case, Hy + Hs is termed the
direct sum of H; and Hs. The representation of an x € Hy + Hy as the
sum of vectors 1 € Hy and x5 € Hs is then unique.

3.1.27 Exercise = Show that in the situation of 3.1.25, the A-system of
events A such that 14 € L?(Q,G;,P) N L?(Q, Gy, P) is trivial, i.e. that
P(A) equals either 0 or 1. In particular, if P is complete, G is a o-algebra.

3.1.28 The form of a bounded linear functional on a Hilbert space
Suppose that H is a Hilbert space and f is a linear and continuous
functional on H. There exists a unique y € H such that f(z) = (x,y).
In particular ||z|| = || f]].

Proof Suppose that for y,y" € H we have (z,y) = (z,y’) for all € H.
Put x = y — ¢/, to see that ||y — y’|| = 0, which implies the uniqueness
assertion.

Next, consider Ker f = {a € H|f(x) = 0}. This is a linear subspace of
H, since f is linear and continuous. If Ker f = H, we put y = 0. In the
other case, there exists a z ¢ Ker f. The non-zero vector yp = z — Pz is
our candidate for y. (Just think: if we really have f(z) = (z,y) then y is
orthogonal to Ker f.) If this is to work, we must have (z — Pz, z— Pz) =
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llvoll?> = f(yo). If this formula does not hold, a little scaling will do the
job: specifically, we take y = tyg where t = ﬁtégﬁg so that [|y||? = f(y).
It remains to prove that f(z) = (z,y) for all z € H. Take x € H, and

write z = (x — @ﬁg y) + ﬁ;ﬁg y. The first term belongs to Ker f, which

is orthogonal to y. Thus, (z,y) = (%y,y) = f(x). Finally, |f(z)| <
l[[[ly]| shows that [|f]| < [|z[|, and [lz]|* = (z,z) = f(=) < [[f]|[l] gives
lzll < I f1I- O

3.2 Definition and existence of conditional expectation

3.2.1 Motivation Let (2, F,P) be a probability space. If B € F is such
that P(B) > 0 then for any A € F we define conditional probability
P(A|B) (probability of A given B) as

P(AN B)

PAIB) = 515

(3.4)

As all basic courses in probability explain, this quantity expresses the
fact that a partial knowledge of a random experiment (“B happened”)
influences probabilities we assign to events. To take a simple example,
in tossing a die, the knowledge that an even number turned up excludes
three events, so that we assign to them conditional probability zero, and
makes the probabilities of getting 2,4 or 6 twice as big. Or, if three balls
are chosen at random from a box containing four red, four white and
four blue balls, then the probability of the event A that all three of them
are of the same color is 3@) / (132) = % However, if we know that at least
one of the balls that were chosen is red, the probability of A decreases
and becomes (g) [(132) - (2)]*1 = %. By the way, if this result does not
agree with the reader’s intuition, it may be helpful to remark that the
knowledge that there is no red ball among the chosen ones increases the
probability of A, and that it is precisely the reason why the knowledge
that at least one red ball was chosen decreases the probability of A.
An almost obvious property of P(A|B) is that, as a function of A, it
constitutes a new probability measure on the measurable space (2, F).
It enjoys also other, less obvious, and maybe even somewhat surpris-
ing properties. To see that, let B;,;i = 1,...,n,n € N be a collection
of mutually disjoint measurable subsets of € such that JI_, B; = Q
and P(B;) > 0. Such collections, not necessarily finite, are often called
dissections, or decompositions, of ). Also, let A € F. Consider all
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functions Y of the form
Y = Z bilp, (3.5)
i=1

where b; are arbitrary constants. How should the constants b;,i = 1,...,n
be chosen for Y to be the closest to X = 147 The answer depends, of
course, on the way “closeness” is defined. We consider the distance

AY.X) = [(F = X2 =Y - Xlpore: (30
Q

In other words, we are looking for constants b; such that the distance
Y — X||£2(0,7,p) is minimal; in terms of 3.1.12 we want to find a pro-
jection of X onto the linear span of {1p,,7 = 1,...,n}. Calculations are
easy; the expression under the square-root sign in (3.6) is

Z/ (Y —14)% dP Z/ (bi —14)% dP
i=1 "/ Bi i=1/Bi

= > [0P(Bi) — 2bP(B; N A) + P(4)] ,

i=1

and its minimum is attained when b; are chosen to be the minima of the
binomials b?P(B;) — 2b;P(B; N A) + P(A), i.e. if
b P(AN B;)
O P(By)
Now, this is very interesting! Our simple reasoning shows that in or-
der to minimize the distance (3.6), we have to choose b; in (3.5) to be
conditional probabilities of A given B;. Or: the conditional probabilities
P(A|B;) are the coefficients in the projection of X onto the linear span
of {1p,,% =1,...,n}. This is not obvious from the original definition at
all.
This observation suggests both the way of generalizing the notion of

= P(A|B;). (3.7)

conditional probability and the way of constructing it in much more
complex situations. Why should we look for generalizations of the no-
tion of conditional probability? First of all, the definition (3.4) is valid
only under the condition that P(B) > 0, which is very unpleasant in
applications. Secondly, we want to have a way of constructing condi-
tional probability of random variables more complex than X = 14 (in
such cases we speak of conditional expectation). Lastly, we want to
have a way of constructing conditional expectations with respect to o-
algebras.
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To understand the modern concept of conditional expectation, the
reader is advised to take notice that our analysis involves a fundamen-
tal change in approach. Specifically, instead of looking at P(A|B;),i =
1,...,n separately, we gather all information about them in one func-
tion Y. In a sense, Y is more intrinsic to the problem, and, certainly, it
conveys information in a more compact form. Thus, the modern theory
focuses on Y instead of P(A|B;).

The function Y defined by (3.5) and (3.7) is a prototype of such a
conditional expectation; it is in fact the conditional expectation of X =
14 with respect to the o-algebra G generated by the dissection B;,i =
1,2,...,n. Let us, therefore, look closer at its properties. Notice that
while X is measurable with respect to the original o-algebra F, Y is
measurable with respect to a smaller o-algebra G. On the other hand,
even though Y is clearly different from X, on the o-algebra G it mimics
X in the sense that the integrals of X and Y over any event B € G are
equal. Indeed, it suffices to check this claim for B = B;, and we have

/de:/ P(A|Bi)dP:IP(AmBi)=/ 14 dP.

It suggests that the notion of conditional expectation should be con-
sidered in L*(, F,P) rather than L?(2, F,P) and leads to Definition
3.2.5 below. Before it is presented, however, the reader should solve the
following two exercises.

3.2.2 Exercise Let X be an exponential random variable. Check to
see that P(X >t + s|X > s) = P(X > t), where s,¢t > 0. This is often
referred to as the memoryless property of the exponential distribu-
tion. Prove also the converse: if a non-negative random variable T has
the memoryless property, then it is exponential.

3.2.3 Exercise Let B;,i > 0 be a decomposition of €2, and let A and
C with P(C) > 0 be two events. Show that P(A) =) .., P(A|B;)P(B;)
(the total probability formula) and P(A|C) = 3=, P(A|B; N C)P(B;|C),
where we sum over all 4 such that P(B; N C) > 0.

3.2.4 Exercise It is interesting to note that the reasoning presented
at the beginning of 3.2.1 does not work in the context of the spaces
LP(Q, F,P) where 1 < p < oo and p # 2. To be more exact, prove that
(a) for 1 < p < 00, p # 2, the minimum of the distance || X =Y || 1» 0,7 p)

is attained for b; = [P(ANB,)]7/ ([P(AN By)]7T + [P(A° N B)}77 ),
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(b) for p = 1, b; must be chosen to be equal 1 or 0 according as P(AN
B;) > P(APNB)) or P(ANB;) < P(ASNB,); if P(ANB;) = P(ANB;) the
choice of b; does not matter as long as 0 < b; < 1, and (c) for p = oo the
best approximation is b; = % for any A and B; (unless the probability
of the symmetric difference between A and one of the events B; is zero).

3.2.5 Definition Let (Q, F,P) be a probability space, X belong to
LY(Q,F,P), and G C F be a o-algebra. A variable Y € L'(Q,G,P) such
that for all A € G,

AXW:AY@ (3.8)

is termed the conditional expectation (of X with respect to G) and
denoted E(X|G). In words: the operator P : X — E(X|G) is a Markov
operator in L'(Q, F,P), with values in L'(Q,G,P) C LY(Q,F,P), that
preserves all functionals Fy : X — [ 4 X dP where A € G. Note that
E(X|G) depends on P as well (see e.g. 3.3.11 and 3.3.12, below) and if we
want to stress that dependence we write Ep(X|G). For X € L1(Q, F,P)
and a random variable Y we define E(X|Y) as E(X|o(Y)). By the Doob—
Dynkin Lemma 2.1.24 E(X|Y) = f(Y) for a Lebesgue measurable func-
tion f. The conditional probability P(A|G) is defined as E(14|G). Note
that P(A|G) is not a number, but a function (to be more specific: a class
of functions).

3.2.6 Theorem Forany X € L!(Q, F,P), the conditional expectation
exists. Moreover, the map P : X — E(X|G) is a Markov operator and,
when restricted to L?(Q2, F,P), is a projection onto L?(2,G,P).

Proof Let X € L?(Q,F,P), and Y = PX be the projection of X on the
subspace L?(2,G,P). For any Z € L*(Q,G,P), (X — PX,Z) = 0, i.e.
Jo(X = PX)ZdP = 0. Taking Z = 14, A € G we obtain (3.8). We have
thus proved existence of conditional expectation for X € L*(Q,F,P).
By 2.3.37-2.3.38, we will be able to extend the operator P to a Markov
operator on L'(Q, F,P) if we prove that P maps non-negative X €
L?(Q, F,P) into a non-negative PX. Moreover, by 2.3.37, the extension
of P will preserve the integrals over A € G. Therefore, we will be done
once we show the claim about images of non-negative X € L%(Q, F,P).

Let X € L?(Q,F,P) and X > 0. Assume the probability of the event
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A = {w|PX(w) < 0} is not zero. Since

A= U Ay = U{w|PX < f%},

n=1

we have P(A,,) = § > 0 for some n > 1. Thus, since 4,, € G we have by
(3.5),

—§>/ PXdIP:/ XdP >0,
n A, An

a contradiction. O

3.3 Properties and examples

3.3.1 Theorem Let o,08 € R, X,Y and X,,, n > 1, belong to the
space L'(Q, F,P), and let H,G, H C G be sub-o-algebras of F. Then,

(a) E(X]G) is G measurable,

(b) [LE(X|G)dP = [, X dP, for A € G,

(c) E[E(X|G)] = EX,

(4) E(aX + BY|G) = aE(X|G) + AE(Y|0),
(e) E(X|G)>0if X >0,

(f) E|E(X|G)| < E|X]|, or, which is the same:

IEX[9) 1 .7.p) < 1 X L1 0,7,m),

(¢) E(E(X|9)[H) = E(E(X[H)|F) = E(X|H),

(h) E(X|G) = (E X)1g if X is independent of G,

(i) if X is G measurable, then E(X|G) = X; in particular, E(1o|G) = 1q,
(j) if G and H are independent then E(X|o(GUH)) = E(X|G)+E(X|H)—

(E X)1gq; if, additionally, X is independent of H then E(X |0 (GUH)) =
E(X]9),
(k) if lim, oo X, = X in LY(Q,F,P), then lim, ., E(X,|G) = E(X|G)
in L1(Q,G,P),
(1) [E(X]G)] < E(|X][9),
(m) if X,, > 0and X,, /X (a.s.), then E(X,|G) / E(X|G),
(n) if XY is integrable, and X is G measurable, then

E(XY|G) = XE(YG),

(o) X isindependent of G iff for any Lebesgue measurable function f such
that f(X) € L(Q, F,P), E(f(X)|G) = (Ef(X))la.
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(p) If ¢ is convex and ¢(X) is integrable, then
S(E(X]9)) < E(6(X)|).
Conditions (d)—(e),(g)—(k), and (m)—(p) hold P a.s.

Proof (a)—(b) is the definition, repeated here for completeness of the list.
It is worth noting here in particular that (a)-(b) imply that E(X|G) €
LY(Q, F,P). (d)—(f) have already been proved. (c) follows from (b) on
putting A = Q.

(g) If we introduce the notation P, X = E(X|G), P.X = E(X|H), (g)
reads PLP,X = P,PAX = P,X. Our claim follows thus by 3.1.18, for
X € L?(Q, F,P). To complete the proof we apply 2.3.33 and 2.2.41.

(h) By density argument it suffices to show that our formula holds for
all square integrable X. This, however, has been proved in 3.1.17.

(i) The first part is obvious by definition. For the second part note
that 1g is G measurable for any G.

(j) Again, it is enough to consider square integrable X. Under this
assumption the first part follows from Example 3.1.25 and the second
from (h).

(k) By (£),

IE(Xn|9) — E(X[G)|L1@op) < Xn = XllL1(0.7.8)-
(1) Apply (e) to |X| £ X and use linearity.
(m) By (e), E(X,|G) / to some G measurable Y (be careful, these
inequalities hold only a.s.!) Moreover, for A € G,

/Yd]P’: lim [ E(X,|G)dP = lim Xnd]P’:/XdIE”.

This implies that Y € L'(Q,G,P), and Y = E(X|G).

(n) This result may be proved by considering indicator functions first,
and then applying linearity and continuity of conditional expectation.
Let us, however, take another approach and prove that (n) is actually
(i) in a different probability space.

Note that we may assume that ¥ > 0. Let P¥ be the probability
measure in {Q, F} defined by P*(A) = ¢ [, Y dP, where k = [, Y dP.
A random variable Z on Q belongs to L'(Q, F,P%) iff ZY belongs to
LY(Q, F,P), and we have

/Zd[@ﬁ = %/ZYdIP’.
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For Aeg,

PH(A4) = %/AEpmg)dP;

i.e. the restriction of P* to G has a density tEp(Y|G). As above, a
G measurable random variable Z belongs to L'(Q,G,P#) iff ZEp(Y|G)
belongs to L(£2,G,P), and we have

/deﬂ = %/Z]Ep(mg) dP.

By assumption, X € L'(Q, F,P%). Let Z = Ep:(X|G). We have

/Zdﬂvﬁ:/XdPﬁ, Aeg.
A A

The right-hand side equals % f 4 XY dP, and since Z is G measurable,
the left-hand side equals ¢ [ ZEp(Y|G)dP. Moreover, ZEp(Y|G) is G
measurable. Thus Ep(XY|G) equals ZEp(Y'|G). Furthermore, Z = X
(P* a.s.), X being G measurable. Therefore, Ep(XY|G) = XEp(Y|G) P
a.s., since if P#(A) = 0, for some A € G, then either P(4) =0, or Y =0
on A (P a.s.); and in this last case Ep(Y|G) =0 (P a.s.).

(0) The necessity follows from (h), f(X) being independent of G if X
is. If X is not independent of G, then there exist sets A € 0(X),B € G
such that P(AN B) # P(A)P(B). Let f = 1¢, where X 1(C) = A. We
have f(X) =14, so that Ef(X) = P(A)lq. Taking B introduced above
we have [,P(A)lgdP = P(A)P(B) while [, f(X)dP = [514dP =
P(AN B). Thus

E(f(X)|G) # (Ef(X)1a.

(p) If ¢ is linear, (p) reduces to (d). In the other case, for ¢ € Sp, (see
1.5.6 for notations), we have ¢(X) < ¢(X), thus

Y(E(X]9)) = E((X)|9) < E(¢(X)[G),

almost surely. Since Sy is countable, the set of w € ) where the last
inequality does not hold for some ¥ € Sy also has probability zero.
Taking the supremum over ¥ € Sy, we obtain the claim. |

3.3.2 Remark Point (h) above says that conditioning X on a o-
algebra that is independent from o(X) is the same as conditioning on
a trivial o-algebra {€,0}. This is related to the so-called 0-1 law; see
3.6.11. Condition (g), called the tower property, is quite important and
useful in proving results pertaining to the conditional expectation. Note
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that (¢) may be viewed as a particular case of (g). Condition (p) is called
Jensen’s inequality; note that (f) is a particular case of (p) for ¢(t) = |¢|.

3.3.3 Conditional expectation in LP(Q, F,P) Let X be in LP(Q, F,P)
where p > 1 and G be a sub-c-algebra of F. By the Holder inequality,
X € LYQ,F,P), too, and so E(X|G) exists. By Jensen’s inequality
[E(X|G)|P < E(]X|P|G). Therefore,

[rexigra < [E(xpig)ar = [1xX7ap = x|,

This shows that E(X|G) € LP(Q, F,P) and that conditional expectation
is a contraction operator from LP(§2, F,P) to LP(Q, F,P).

3.3.4 Exercise In 3.2.1 we have seen that if G is generated by a finite
dissection (B;)i=1,...n, then E(X|G) = " | b;1p, where X = 14,b; =

]P(]P,?gj_g)”). Prove that for X € L1(Q, F,P) the formula is the same except
that b; = 5y [, X dP.

3.3.5 Example A die is tossed twice. Let X;,7 = 1,2, be the number
on the die in the ith toss. We will find E(X;]|X; + X2). The space Q is a
set of ordered pairs (7,7), 1 < 4,5 < 6. 0(X;7 + X2) is generated by the
dissection (B;)i=2,... .12 where B; is composed of pairs with coordinates
adding up to 7. In other words B; are diagonals in the “square” . We
have

12
1
]E(Xl\XlJng):E bilp,, bi_]P’(B)/B X, dP.
i=2 ¢ i

For example by = 1; which means that if X; + X5 = 2, then X; = 1.
Similarly, bs = %, which can be interpreted by saying that if X;+ X5 = 3,
then X7 =1 or 2 with equal probability. Similarly, bs = 4, which means
that the knowledge that X; + X5 = 8 increases the expected result on
the first die.

3.3.6 Exercise Let B;,i = 1,2,..., be an infinite dissection of (2.
Consider A € F, and functions of the form

¢=> bilp,. (3.9)
1=1

What are necessary and sufficient conditions for ¢ € L*(Q2,F,P) (in
terms of b;)? Choose b; in such a way that the distance in (3.6) is min-
imal. Check to see that ¢ with such coefficients belongs to L?(€2, F,P)
and satisfies fBi 14dP = fBi ¢ dP.
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3.3.7 Exercise Imitating the proof of the Cauchy—Schwartz— Bunya-
kovski inequality (see 3.1.3) show that

E(XY|G)* <E(X?}G)E(Y?G) Pas., (3.10)

for X,Y € L*(Q, F,P).

3.3.8 Exercise State and prove analogs of the Lebesgue Dominated
Convergence Theorem and Fatou’s Lemma for conditional expectation.

3.3.9 Exercise Prove the following Markov inequality (c.f. 1.2.36):

1
P(X >alG) < EIE(X|Q), a>0,X>0Pas.

3.3.10 Exercise Let VAR(X|G) = E(X?|G) — E(X|G)?. Show that
D*(X) = E [VAR(X|G)] + D*[E(X|G)].

In calculating conditional expectation, quite often the difficult part is
to guess the answer; checking that this is a correct one is usually a much
easier matter. The fact that conditional expectation is a projection in a
Hilbert space of square integrable functions may facilitate such guessing.
We hope the following examples illustrate this idea. By the way, we do
not have to check that our answer is correct since conditional expectation
in LY(Q, F,P) is uniquely determined by its values in L?(Q, F,P).

3.3.11 Example Let Q =[0,1], F be the o-algebra of Lebesgue mea-
surable subsets of [0,1], and let P be the restriction of the Lebesgue
measure to this interval. Let G be the collection of Lebesgue measurable
subsets such that 1 — A = A (P a.s.). By definition, 1 — A = {w|w =
1-w',w' € A}, and A = B (P a.s.) iff the probability of the symmetric
difference of A and B is 0. In other words G is the family of sets that
are symmetric with respect to % We claim that G is a o-algebra.

(a) Obviously 1 — Q =, so that Q € G.

(b) Notethat we 1 —Al o 1-—weAdlol-—wdAdcwdl— A ie
1— A% = (1 — A)®. Moreover, A® = BC (P a.s.) whenever A = B (P
a.s.). Thus, Ac G= Al e G for 1 — AC = (1 — A) = AC (P as.).

(c) As above we show that 1 —J,,~; An = U,,>1(1 — Ay). Moreover, if
A, =B, (Pas.), then U,~; An = U,,>; Bn (P as.). Thus A, € G =
Un21 A, €G.
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What is L2(Q, G, P)? Because any Y € L?(Q,G,P) is a pointwise limit of
a sequence of linear combinations of indicator functions of sets in G, and
14, A € G satisfies 14(w) = 14(1 —w), (P a.s.), Y belongs to L?(Q2,G,P)
iff Y(w) =Y (1-w), (Pas). Let X € L?(Q,F,P). What is Z = E(X|G)?
Z must belong to L?(£2,G,P) and minimize the integral

1
/0 (X(w) — Z())* dw
1

_ /E(X(w) - Z(w))de+/1 (X(w) = Z(w))? dw
0

2

- / TI(X (@) - Z@) + (X1 - w) — Z(@))?} dw;

the last equality resulting from the change of variables and Z(w) = Z(1—
w) (P a.s.). Now, for two numbers a, b € R, (a—7)?+(b—7)? is minimal for

T = %t Thus, we must have E(X|G)(w) = Z(w) = $[X (w)+ X (1-w)],

(P a.s.). Certainly, this formula holds also for X € L(Q,F,P), which
can be checked directly.

3.3.12 Conditional expectation depends on probability measure  Let the
space (Q,F) and the o-algebra G be as in 3.3.11, and let P(4) =
2 [,wdw. To calculate Y = E(X|G), X € L*(Q,F,P), observe that
we must have Y (1 —w) = Y (w), P a.s. Noting that P a.s. is the same as
leb a.s., we consider the distance

d(X,Y) = /Q(X —Y)*dP

and choose Y in such a way that this distance is minimal. Calculating
as in 3.3.11, we see that this distance equals

2/05 {[X(w) = Y(W)Pw+2X(1-w) - YW1 -w)} dw. (3.11)

For fixed w, we treat X (w) and X (1 — w) as given and minimize the
integrand. The minimum will be attained for

EX|9)(w) =Y (w) =wX(w)+ (1 —w)X(1 —w).
To check that this formula is valid for X € L}(Q, F,P) we calculate:

/ Y(w)dP(w) = 2/ {wXw)+(1-w)X(1—-w)}wdw
A A

= w2 w w w — W — W w
J/A X(w)d +2/17A X(1-w)(1-w)d



3.8 Properties and examples 97

where the last relation holds since A € G; changing variables, this equals:

2/Aw2X(w)dw+2/A(w—w2)X(w) dw

:2/AwX(w)dw:/AX(w)dIF’.

3.3.13 Example Let Q = {(z,y)||z|+|y| < 1}, F be the o-algebra of
its Lebesgue subsets, and let P be % times the restriction of the Lebesgue
measure to Q. Let X(w) = 2,Y(w) = y where w = (z,y). The problem
is to find E(X?|Y). To this end, we will find a function F(y) such that
E(X?|Y)(w) = F(Y (w)). Note that X € L?(Q, F,P). We have

|y -xpae= [ 11 / T ) - ey

~1+lal
_ /_1 {2F(y)(1 ) - gp(y)(l e da- |y|>5} "

The minimum of the integrand is attained if F(y) equals §(1 — |y|)? for
|z| < 1. For |z| > 1 the value of the function F' can be defined arbitrar-
ily. It remains to check that F(Y (w)) equals E(X?|G); calculations are

straightforward.

3.3.14 Example Suppose that random variables X,Y have a joint
density f(z,y), which is a Lebesgue measurable function, and g(z) is a
Lebesgue measurable function such that g(X) € L*(Q, F,P). Again, the
problem is to find E(g(X)|Y"). To see what our guess should be, assume
first that g(X) € L?(Q, F,P), and minimize the distance d(Z, X') where
Z € L*(Q,G,P). Recalling that Z must be of the form Z = 2(Y), we
minimize

12.%) = [[ )~ s@) s asdy
/R [2(y) / F(y) de — 22(y) / o) f () dz
+/92(33)f(x,y) dx} dy. (3.12)
R

Jr9(@)f(z,y)da
Je f(zy) dz
provided [, f(x,y)dz # 0. If this last integral is zero, then f(z,y) =0

for almost all x € R. Thus, the integral (3.12), taken over the set of

The minimum of the integrand is attained for z(y) =
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y € R such that [, f(z,y)dz = 0, equals zero regardless of what z(y) is
defined to be. For example, we may put

Jr9(@)f(zy)de
) =1 Tfepa o Jef(@y)de#0, (3.13)
0, otherwise.

3.3.15 Exercise State and prove an analogous proposition for discrete
random variables.

3.3.16 Exercise Let 71 =X;+Y and Zy = X5 4+ Y where £ X; =
E X5, and X1, X5 and Y are independent absolutely integrable random
variables. Show that E(Z1]|Z:) equals Zs.

3.3.17 Conditional distribution  So far, we have interpreted the formula
(3.13) to mean that if Y is known, then the “average” outcome of g(X)
is 2(Y"). Notice that class of functions g is quite large here, and therefore
should determine more than just the expected value of X: it should
determine “the distribution of X given Y = y”. Note that we may not
speak of “the distribution of X given ¥ = y” in terms of (3.4) since
P{Y = y} is quite often zero. In particular, right now it is unclear where
the variable (X|Y = y) (in words:“X given that Y = y”) is defined. It
is convenient and reasonable, though, to interpret the first formula in
(3.13) to be [, g(x)h(x,y) dz where

f(m )

.14
(2,y)dz’ (3.14)

Wz, y) = T iy dz
R
is a density of (X|Y = y). Here is an example. Let X;, i = 1,2, be
two exponential random variables with parameter A. It is often said
that if Y = X3 + Xo is known to be y then X = X; is uniformly
distributed on [0, y]. This is a simple case of (3.13). To see this note that
the joint distribution of X; and Xs is given by the density fo(z1,22) =
A2eAM@1t@2) 2025 > 0, and that, by the change of variables formula,
the density of X and Y is given by f(z,y) = \2e Y,y > = > 0. The
numerator in (3.13), where g(z) = z, is therefore equal to \2e=*¥y2/2
and the denominator equals A2e~*¥y. Thus, in the first interpretation
we infer that if Y = y then X is on average expected to be y/2. In the
second however, we calculate h(z,y) given in (3.14) to be 1/y for z <y
and 0 for = > y. This is exactly what we have claimed.
Note, finally, that even though the probability space where (XY = y)
is defined may have nothing to do with the probability space where
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X; were defined, the existence of such a probability space follows from
the bingle fact that h(xz,y) is a density function for all y such that

Jg f(x,y)dz # 0.

3.3.18 Use of symmetries  Suppose that random variables X7, ..., X,
are integrable and that their joint distribution Px, . x, does not change
when the random variables are permuted, i.e. that they are exchange-
able. In particular, for any Borel measurable set C' C R™ we have

/ xX; dPX17~»-,Xn :/ SUj dPXl,...,Xn, 1 S i,j S n. (315)
C c

Suppose now that in an experiment we are not able to observe the vari-
ables X; themselves but only their sum S. Since the random variables
are exchangeable, our best bet on the value of X;, given S| is of course
%S. This is an intuitive guess that E(X;|S) = %S, i=1,...,n. To prove
that our intuition is right we note first that

E(Xil9) =E(X;]5), 1<ij<n (3.16)

Indeed, it suffices to show that for any A € o(S)
/XidIP’:/deIP’, 1<i,j<n. (3.17)
A A

Now, if A € o(S) then there exists a Borel measurable B C R such
that A = {w € Q;S(w) € B} and so there exists a Borel measurable
C C R™ such that A = {w € & (X;(w),...,Xn(w)) € C}. By the
change of variables formula [, X;dP = [, z;dPx, .. x,. Hence (3.15)
forces (3.17) and (3.16).

Hence, as predicted:

1
E(X;|S) = ZX |5) = —E(S]8) = —S.

This result is particularly useful when applied to an infinite sequence
X,,n > 1 of independent, identically distributed random variables. The
assumption of independence forces X1, ..., X, to be exchangeable for any
n and our result gives

S,

E(X;lSn) = —, 1<i<n, (3.18)
n
where S, Ez 1 X;. The same assumption implies also a stronger
result:
S”L .
E(Xilo(Sn, Snt1, ) = Y I<i<n. (3.19)
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Indeed, o(Sy, Sp+1,-..) = 0(Sn, Xns1, Xnto,...) because Sg, k > n may
be expressed as linear combinations of S,, and Xy, k > n, and vice versa.
Moreover, o(Sy, Xn+t1, Xnt2,-..) = 0(Sn, 0(Xnt1, Xnt2,...)) and the o-
algebra o(X,,4+1, Xn12,...) is independent of both S,, and X;,1 < i < n.
Hence (3.19) follows from 3.3.1 (j).

What is nice about (3.19), and what is its advantage over (3.18) is
that it shows that “%“ is a sequence of conditional expectations of X,
with respect to a non-increasing sequence of o-algebras, for there are
well-known theorems concerning convergence of such sequences. Later
on, in 3.7.5, we will be able to use (3.19) to prove the all-important
Strong Law of Large Numbers.

In the remainder of this section we focus on the tower property.

3.3.19 Exercise Using (c), (h), and (n) in 3.3.1 show that if X and
Y are independent and X,Y, and XY are integrable then F XY =
EX-FEY.

3.3.20 Example Let G, H, and Z be o-algebras in (Q2, F,P) such that
Z C HNG. We say that given Z, G and ‘H are independent iff:

P(ANB|Z) =P(A|Z7)P(B|Z), A€gG,BeH. (3.20)

We will show that this condition is equivalent to each of the following
two:

P(B|G) = P(B|7), B eH, (3.21)

P(A/H) = P(A|Z), Aeg. (3.22)

These conditions are often expressed by saying that H depends on G
only through 7 and G depends on H only through Z, respectively.

By symmetry, it is enough to prove that (3.20) is equivalent to (3.21).
To prove that (3.20) implies (3.21), note first that P(B|Z) is a G mea-
surable function, so it suffices to show that

/IA]P’(B|Q)d]P’:/ 14P(B|IT)dP, A€g
Q Q

(this is obvious for A € T C G). Since 14 is G measurable, the left-hand
side equals

/E(1Am3|g)d11>:/ 14n5dP =P(ANB),
Q Q
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and the right-hand side, by (3.20),

/IA]E(13|Z)d]P> = /E[lAE(IB|I) 7] dP:/E(1A|I)]E(13|Z)d]P>
Q Q Q

= / E(14n5|T)dP = P(AN B).
Q
Conversely, if (3.21) holds, the left-hand side in (3.20) equals:

E(lanslT) = E{E(1unsl9)] [T} = E{E(1415(0)|T}
E(14E(15/9)|T) = E(LaE(15|D)T)
— E(L.DE(15]2).

3.3.21 Exercise The previous example is important in the theory of
Markov processes. To consider the simplest case; a sequence X,,,n > 0
of random variables with values in N is said to be a Markov chain if it
enjoys the Markov property: for all n > 0, and i, € N0 < k <n+1,
P[Xn-i-l == in+1|Xk == Zk70 S k S n] - P[Xn-i-l == in+1|Xn == in]
= Pininga
provided P[X}, = ix,0 < k < n] > 0. Here the p; j, i,j € N are called the
transition probabilities (or jump probabilities) of the chain and satisfy
ZjeNpm» = 1,7 € N and p; ; > 0. Existence of a Markov chain with a
given matrix of transition probabilities is proved by a straightforward
construction, e.g. in [5]. The reader will show that the Markov prop-

erty may be defined in an equivalent way by any of the following three
conditions:

P(AN B|X,) =P(A|X,)P(B|X,), A€qg,,BecH,,
P(B|G,) = P(B|X,), BeH,,
P(A[Hn) = P(A|Xy), Aeg,,
where G,, = 0(X,,, Xnt1,...) and H,, = o0(Xo, ..., Xp).

3.4 The Radon—Nikodym Theorem

3.4.1 Lebesgue decomposition  Let A\, u be two finite measures on a
measurable space (2, F). Then, there exists a non-negative function f €
LY(Q, F,p) and a measure v singular to u (i.e. such that there exists a
set S € F with p(S) =0 and v(©2\ S) = 0) such that

/\(A):/fd,u—l—u(A), for all A € F.
A
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Proof Consider a linear functional Fz = [ d\, acting in the space
L2(Q, F, A\ + p). The estimate

Fi| < VAQ) / 22 A < VA |2 220 F b0
Q

shows that F' is well-defined and bounded. Therefore, there exists a
function y € L*(Q,F,A + p) such that Fz = [, zyd(X + p). Taking
x=14,A € F, we see that

AA) = /A Y+ /A ydu. (3.23)

This in turn proves that y > 0, (A + u) ae., and y < 1, X a.e. Let
S = {wly(w) =1} € F. By (3.23), u(S) = 0. Rewriting (3.23) in the form
fQ(l—y)lA d\ = fQ y1 4 dp, we see that for any non-negative measurable

function z on Q, [,(1—y)zdX = [, yx du. Define f(w) = 132‘&) on S,

and zeroon S. If A € F, and A C SC, we may take r = 1Aﬁ to see
that A(4) = [, fdu. Also, let v(A) = A\(S N A). Thus, v(S%) =0, i.e. p

and v are singular. Moreover,

AA) = AANSY) +A(ANS) :/

fdp+v(A) = / fdu+v(A).
Ans® A

Finally, f belongs to L'(€, F, 1), since it is non-negative and [, fdp =
Joo fdu=A(S%) < cc. O

3.4.2 The Radon—Nikodym Theorem  Under assumptions of 3.4.1, sup-
pose additionally that p(A) = 0 for some A € F implies that A\(A) = 0.
Then v = 0; i.e. A is absolutely continuous with respect to u.

Proof We know that u(S) = 0, so that v(S) = A(S) = 0. On the other
hand, »(S%) = 0 so that v = 0. O

3.4.3 Remark With the Radon—Nikodym Theorem at hand, we may
prove existence of conditional expectation very easily. We note first that
it is enough to restrict ourselves to non-negative variables. Consider the
space (€2,G,P) and the measure p(A) = [, X dP where X > 0,X €
L'(Q, F,P). The measure yu is absolutely continuous with respect to P
and so there exists a non-negative Y € L'(Q, G, P) such that

/Xd}P’:/Yd}P’,
A A
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as desired. This method of approaching conditional expectations is found
in most probabilistic monographs. (Following Kolmogorov, who was the
first to investigate conditional expectation in this generality and used
the Radon-Nikodym Theorem to prove its existence.) See e.g. [5, 46, 57].
Analysts, however, prefer the approach via projections [107]. We should
mention that there are of course purely measure-theoretic proofs of the
Lebesgue decomposition theorem and the Radon—-Nikodym Theorem [49,
103].

3.4.4 Exercise Using the Radon-Nikodym Theorem prove that the
conditional expectation E(X|Y") equals f(Y) for some Lebesgue mea-
surable function f. (We have proved it before using the Doob-Dynkin
Lemma.)

3.4.5 Application: Frobenius—Perron operators Let (2, F, i) be a mea-
sure space. Suppose that a measurable map f : ) — 2 is non-singular,
i.e. that for any A € F such that u(A) = 0, we also have u(f~1(4)) =
0. In studying asymptotic behavior of iterates fo"*1(w) = fo(f(w)),
n>1, w € Q, we may use a linear operator in L*(2, F, u), called the
Frobenius—Perron operator, related to f [80]. To define it, assume
first that (a representation of) an element of x € L'(Q,F,u) is non-
negative, and define a set function on F by p,(A) = ff—l(A) xdp. It is
easy to see that pu, is a measure. Furthermore, since f is non-singular,
1o is absolutely continuous with respect to p. Hence, there exists a non-
negative element Pz of L'(Q, F, i) such that ff—l(A) zdp = [, Prdpu.
Note that Px is defined only as an equivalence class of functions and
that P maps the set of (equivalence classes of) non-negative functions
into itself. For arbitrary x € LY(Q, F, 1) we define Pz as the difference
of Pzt and Px~. It is easy to check that Pz is linear. Moreover, for
non-negative x we have [, zdy = ff,IQa:d,u = [, Pxdp, so that P
preserves the integral, and therefore is a Markov operator.

3.5 Examples of discrete martingales

3.5.1 Definition Let (2, F,P) be a probability space and let F,,,n >
1, be an increasing sequence of o-algebras of measurable sets: F, C
Fn+1 C F; such a sequence is called a filtration. A sequence X,,,n > 1
of random variables X,, € L'(Q,F,P) is termed a martingale if X,
is F,, measurable and E(X,|F,—1) = X,_1 for all n > 1. To be more
specific, we should say that X,, is a martingale with respect to F,, and
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P. However, F,, and P are often clear from the context and for simplicity
we omit the phrase “with respect to F,, and P”. Similarly, a sequence
X, € LY(Q,F,P),n > 1 is termed a submartingale (with respect to
F. and P) if X,, are F,, measurable and E(X,,41|F,) > X,,n > 1. If
—X,, is a submartingale, X, is called a supermartingale. Filtrations,
martingales, supermartingales and submartingales indexed by a finite
ordered set are defined similarly.

3.5.2 Exercise  Show that X,.,n > 1, is a submartingale iff there
exists a martingale M,,,n > 1, and a previsible sequence A,,n > 1
(ie. Ay = 0 and A,41,n > 1, is F,, measurable) such that A,1; >
A, (a.s.) and X,, = M, + A,,. This decomposition, called the Doob
decomposition, is unique in L'(Q, F, P).

3.5.3 Sum of independent random wvariables If X,,n > 1 are (mu-
tually) independent random variables, and E X,, = 0 for n > 1, then
S, = Y."_, X, is a martingale with respect to F,, = o(Xq,..., X,,). In-
deed, by 3.3.1 (h)*(l)7 E(S7L+1‘Fn) = E(Xn+1 —|—Sn|.7:n) = E(X,L+1|.7:n) +
Sp=E X411+ S, = Sy, since X,,11 is independent of o(Xj, ..., X,).

3.5.4 Polya’s urn scheme  Suppose that in a box there are w white
balls and b black balls. One ball is drawn at random and returned to the
box together with k balls of the same color. Let X,, be the proportion
of white balls in the box after the nth draw. We will show that X,
is a martingale with respect to the filtration F,, = o(Xy, ..., X;,). Note
that we do not know (2, F,P); all we know (by description) is a joint
distribution of (X, X, 11).

X, is a simple function (in particular: bounded and integrable) that

admits n + 1 values —2E~_ 5 — 0,1,....n, on sets B;, and any set in

w+b+nk’ "
Fn is{ a finite disjoint union of B;s. If X, = %, then X, 1 =
% with probability ibﬁ’; - and X, = #jﬁl)k with
probability % Therefore,
/ X1 dP =
B;
w4+ (i + 1)k w+ ik w+ ik b+ (n—1i)k P(B)
w+b+m+Dkw+b+nk w+b+(n+ 1Dk w+b+nk ’

which by simple algebra equals

(w + k) (w + b+ (n + 1)k)  w+ik
(w+b+(n+1)k)(w+b+nk)]P(Bi)_w+b+nk / X, dP
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3.5.5 Galton-Watson process The famous Galton—Watson process
describes the number of individuals in a population of descendants of
a single ancestor in which individuals give birth, independently from
other individuals of this population, to a random number of children;
the distribution of the number of children is the same for all individuals.

Formally, let X?,n,k > 1, be an infinite matrix of independent, identi-
cally distributed random variables with values in {0, 1, ...}. Assume that
E X! = m < oo. The Galton-Watson process is defined inductively by
Zo =1and Zyy = 2 X0 >0, f Z, > 1, and Z,q = 0 if
Zy, = 0.

Let F,, = o(Z1,...,2Zn), n > 1. We will prove that M, = ,in is a
martingale. Indeed,

) k

EZpi1 =Y EZnilg,—=>» EY X"z (3.24)
k=0 k=1 i=1

[eS) k 9]

= Elz,—xEY X!'""'=mY kP{Z, =k} =mEZ,.
k=1 i=1 k=1

Thus, FE Z, is integrable and EZ,, = m™ for all n > 0. Therefore M, is

integrable and E M,, = 1.

Now, each member of the o-algebra o(Z1, ..., Z,) is a disjoint union
of sets of the form {Z; = ki, ..., Z, = kyn}. The random variable M,, is
o(Z1, ..., Z,) measurable and equals % on such sets. Also, since XZ-"+1
are independent of 71, ..., Z,,

k
1 n
My dP = ——E> X"z 4 20—k,
/{Zl—kl,...,zn—kn} mrt Tt st
mk
= m’ﬂfl P{Zl = k‘l, ceey Z’I’L == kn}

= / M, dP
{lekl,.wZ":kn}

provided k,, > 1. In the other case both the first and the last integrals
in this formula are zero. This proves our claim.

3.5.6 Wright—Fisher model of population genetics Imagine a popula-
tion of 2N, N € N, individuals; each individual belonging to either of two
distinct classes, say a and A. (Individuals are actually chromosomes —
that’s why we have 2N of them — and a and A denote two possible alleles
at a particular locus.) The population evolves in discrete time: a next
generation is formed by selecting its 2N members from the previous one
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independently and with replacement. The state of such a population in
generation n is conveniently described by a single random variable X (n)
equal to the number of individuals of type a, say. Note that if X(n) =k
then X (n + 1) is a binomial random variable with parameters 5% and
2N:

2N

P{X(n+1)=I|X(t) =k} = ( z

)pl(l —p)*N

In particular E (X (n +1)|X(n)) = 2N XQ(](,L) This proves that X (n) is a

non-negative martingale. See 3.7.6 for an application.

3.5.7 Exercise  Calculating as in (3.24) show that if X', n,k > 1 are
square integrable then

D*(Z,41) = m*D?*(Z,) + o*m™ (3.25)

where 02 = D*(X') and m = E X?. In particular Z, € L*(Q,F,P),
n > 1. Conclude that for m # 1,

2 2 2, ,n—1 n_1
D*(Znya) = - m?" — > mn =" (m ),
m(m —1) m(m — 1) m—1
(3.26)
and when m =1,
D*(Zp41) = no’. (3.27)

3.5.8 Exercise Let X € L'(Q,F,P) and F, be a filtration. Show
that X,, = F (X|F,) is a martingale with respect to F,.

3.5.9 Exercise  Suppose that X, is a martingale with respect to fil-
tration F,,. Let Fy be the trivial o-algebra and assume that Y,,,n > 0
are JF, measurable, absolutely integrable random variables such that
Y, (Xnt+1 — X,) are absolutely integrable. Show that Z,,n > 1, defined
by Z, =" Yi1(X; — X;-1),n > 0, where Xy = 0, is a martingale.

3.6 Convergence of self-adjoint operators

3.6.1 Motivation In the previous section we have already encountered
examples of theorems concerning convergence of conditional expecta-
tions. In Theorem 3.3.1 point (m) and in Exercise 3.3.8 we saw that if
the o-algebra G is fixed, then the conditional expectation with respect
to this o-algebra behaves very much like an integral. In this section we
devote ourselves to a short study of theorems that involve limit behavior
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of conditional expectation E (X|F,) where X is fixed and F,, is a family
of g-algebras. This will lead us in a natural way to convergence theorems
for martingales presented in Section 3.7.

If F,, is a filtration in a probability space (€2, F,P), then L!(Q, F,,,P) is
a non-decreasing sequence of subspaces of L!(Q, F,P), and L?(Q, F,,,P)
is a non-decreasing sequence of subspaces of L?(£2, F,P). If X is a square
integrable random variable, then the sequence X,, = E (X|F,) of con-
ditional expectations of X is simply the sequence of projections of X
onto this sequence of subspaces. Thus, it is worth taking a closer look
at asymptotic behavior of a sequence x,, = P,x, where = is a member of
an abstract Hilbert space H and P, are projections on a non-decreasing
sequence of subspaces H,, of this space. In view of Theorem 3.1.18, the
assumption that H,, is a non-decreasing sequence may be conveniently
expressed as (Ppz,x) < (Ppy1z,z) < (z,2).

As an aid in our study we will use the fact that projections are self-
adjoint operators (see 3.1.19). Self-adjoint operators are especially im-
portant in quantum mechanics, and were extensively studied for decades.
Below, we will prove a well-known theorem on convergence of self-adjoint
operators and then use it to our case of projections. Before we do that,
however, we need to introduce the notion of a non-negative operator
and establish a lemma.

3.6.2 Definition A self-adjoint operator A is said to be non-negative
if (Az,z) > 0 for all z € H; we write then A > 0. If A and B are two
self-adjoint operators such that A — B > 0 we often write A > B or
B < A.

3.6.3 Exercise  Prove that if A is non-negative then so are all its
powers. Moreover, all even powers of any self-adjoint operator are non-
negative.

3.6.4 Lemma Let A be a non-negative, self-adjoint operator in a
Hilbert space H. Then (A%z,z) < || Al|(Ax, ).

Proof 1If ||A]| = 0, there is nothing to prove. In the other case our
relation is equivalent to (B2z,z) < (Bx,z) where B = mA is a self-
adjoint contraction. Certainly, (Bx,z) > 0. Note that I — B, where
Ix = z, is also self-adjoint as a difference of two self-adjoint operators,
and ((I — B)y,y) = (y,y) — (By,y) > 0, for any y € H. Since B — B? =
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B(I — B)B+ (I — B)B(I — B), we have
(B - B*)x,z) = (I — B)Bz, Bx) + (B(I — B)z,(I — B)x) >0

which proves our claim. |

3.6.5 Convergence theorem for a monotone sequence of self-adjoint op-
erators  If A, is a sequence of self-adjoint operators in a Hilbert space
H, such that A, < A, +1 < M1, for all natural n, where M is a constant
and Iz = x, then there exists the strong limit Az = lim,, .., A,z of A,
and A is self-adjoint.

Proof For any x, the numerical series (A,x,z) is non-decreasing and
bounded by M ||x||?, and therefore converges to a real number, say F(z).
Hence, for all x and y in H there exists the limit

G(z,y) = lim (Apz,y) (3.28)
since (A,z,y) equals
1
7 (At + Any, 2 +y) — (Anz — Apy,z — y)] (3.29)

which tends to 1 [F(z +y) — F(z — y)]. Since for any n > 1
=l Al [l2]? < (Anz, ) < M|z, (3.30)

3.1.22 shows that || 4,|| < M’, where M’ = MV ||A;]|. Thus, |G(z,y)| <
M'||z|| ly|l- Fix z. As a function of y, G(z,y) is a linear functional on
H. Moreover, by (3.28), this functional is bounded with norm less than
M'||z||. Therefore, there exists an element Ax of H such that G(x,y) =
(Az,y). By (3.28) the map = — Az is linear. Since ||Az| < M|z,
A is bounded and ||A|| < M’. A is also self-adjoint since (Az,y) =
limy, oo (Anx,y) = lim, oo (Any, z) = (Ay,x). Finally, A — A,, is self-
adjoint and by Lemma 3.6.4, for any = € H,

Az — Apz])? = (A — 4,)%2,2) < A~ A, || (A~ An)z, 2)
<2M'((A - Ap)z, @)
and the last sequence converges to zero, as n — oo. |

3.6.6 Exercise Show that if A, is a sequence of self-adjoint operators
in a Hilbert space, such that (A,z,z) > (Appiz,z) and (A,z,z) >

M||z||? for all x € H and natural n, then there exists the strong limit
Ax = lim, o, A,z of A, and A is self-adjoint.
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3.6.7 An application: the square root If A is a self-adjoint operator
such that (Az,z) > 0 for all £ > 0 then there exists a self-adjoint
operator B that commutes with all operators that commute with A and
such that B? = A.f

Proof Without loss of generality we may assume that 0 < A < [, for
if this is not the case then either A = 0 (in which case the theorem is
obvious) or the operator A’ = mA satisfies this condition and then

the square root of A may be found as /|| A|| times the square root of
A’. Let C = I — A; observe that 0 < C' < I. Consider the following
sequence of operators defined inductively: Ag = 0, 4,41 = %(C + A2).
An induction argument shows that A,, are self-adjoint and non-negative,
and commute with A. Since

1 ) 1

An+1 - An = i(AEL - An_l) == i(An - An—l)(An + An—l)»

Ap+1— A, is a linear combination of powers of the operator C' with pos-
itive coefficients and hence A, > A,. An induction argument shows
also that A,, < I. Indeed, Ag < I, and if A, < I then ||4,] < 1 and
by 3.6.4 we have A2 < ||A,||A, < A, which in turn implies A,; <
3(C + A,,) < I. Hence, there exists the strong limit A, of A,,n > 1,
and Agx = limy, o Api1x = %C’a: + %limn_,Oo A2y = %C’x + %Agox
Let B=1— As. Then B?z = v — 2Ax + A2z =z — Cz = Ax, as
desired. Finally, B commutes with all operators commuting with A since
A,,m>1and Ay do. O

3.6.8 Corollary  (a) Suppose that H,, is an increasing sequence of
subspaces of a Hilbert space H. Projections P, on H,, converge strongly
to the projection Py, on Hog = cl({J,,~, Hy,). (b) If H = L*(©2, F,P) and
H, = L*(Q,F,,P) where F, is a filtration, then Ho = L?(Q, Fuo,P)
where Foo = 0(U,,>1 Fn)-

Proof (a) The strong convergence of P, to a self-adjoint operator A,
has been proved in 3.6.5, so it suffices to identify A, as the projection
P.

Note first that we have A% z = lim,, o0 PpAce® = lim,, .o, P, Ppx =
lim,, o0 Prz = Ao since P2 = P, and |P,Pyx — PyAsox|| < ||Pox —
Asoz|| tends to zero. By 3.1.23, the range H.. of Ay is closed and Ay
is the projection on He.

t See e.g. Theorem 4.1.3 for an application. This operator is uniquely determined
[90], but we will not need this fact here and will not prove it either.
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We need to prove that H,, = H.. It is clear that all H,, are subsets
of He, for if z € H,, then Pn,z = z for all m > n and so Az =
lim,,—.o00 Pz = x forces z € Ho. Hence, H,, C H.. On the other
hand, if = € ]I:]IOO, then x = lim,,_, o, P, where P, belong to H,,. Thus,
Hy D ]I:}Ioo and so H,, = H:}IOO.

(b) The inclusion Hy, C L?(£2, Fao, P) is easy to prove: the limit of a
sequence X, of random variables that are J,, measurable, respectively,
must be F,, measurable. To prove the other inclusion we note that
lg € Hy (for 1g € Hy,,n > 1) and recall that by 2.2.23 the collection
G of events A such that 14 € Hy is a A-system. On the other hand,
H, C He, ie. F, C G and so (oo, F» C G. By the 7\ theorem,
Foo C G, and 2.2.39 forces L?(Q, Fuo,P) C Heo. O

3.6.9 Corollary Let F,,,n > 1, be a filtration in a probability space
(Q,F,P). For any X € L'(Q,F,P) the sequence X,, = E(X|F,) con-
verges in L'(Q, F,P) to Xoo = E(X|Fu) where Foo = (U, 51 Fn)-

Proof If X is square integrable then || X,, — Xo||r1, which is less than
| X7, — Xool| L2 by the Holder inequality, converges to zero by 3.6.8. Since
conditional expectation is a Markov operator in L!(€, F,P), and in par-
ticular has norm one, convergence of a sequence of conditional expec-
tations on a dense set such as L?({, F,P) implies convergence on the
whole of LY(2, F,P). O

3.6.10 Exercise Let (2, F,P) be a standard probability space. For
n > 1, let F, be the o-algebra generated by the partition 4y = [%,1),
A, =[5 L), i =1,..,2"" 1 In other words, the space L(€2, F,,P)
consists of (equivalence classes of) bounded functions that are con-
stant on each of A;, i = 0,...,2""1. Show that E(X|F,) converges in

L} w, F.P) to Xoo = X1pp 3+ fis 1) X dPLyy ).

3.6.11 The 0-1 law Corollary 3.6.9 has the following nice application
known as the 0-1 law: if G, is a sequence of independent o-algebras, then
the tail algebra 7 = (., 0(Uy_,, Gx) contains only events A such that
P(A) is either zero or one. To prove this law it suffices to show that all
X € LY(Q,7,P) are constants a.e., and this follows from the following
calculation:

oo n

X =EX|o(|J Gn) = lim E(X|o(|JG) = (EX)la.  (331)
n=1 =1
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The first equality above follows from the fact that 7 C o(UU;—, G»), the
second one from Corollary 3.6.9 and the fact that o(|J,~, o(U!—, G;)) =
o(U,—, Gn) and the third one from the fact that X is independent of
o(Ui_; i) being o(UU;2,, 1, Gi) measurable.

3.6.12 Example Let X,,,n > 1 be independent random variables. We
claim that S = limsup,,_, Sﬂ—" where S,, = > | X; is tail measurable.
Indeed, first of all for any a € R, {S < a} = Uy, ﬂnzk{% < a}is

o(Xp,n > 1) measurable. Secondly, for any k > 1, limsup,,_, ., 5; is

()
equal to the upper limit of "T’k% where Sr(l’i)k = Xgy1 + -+ Xa
Since Sflk_)k is the (n — k)th sum of the sequence Xj4,,n > 1, the upper

- —k Sp_pn®) . . .
limit of 2-£22=E" s o(X, 11, n > 1) measurable and so is S. Since k

is arbitrary, the claim is proved.

The random variable liminf,, .., % is also tail measurable, being
equal to (—1) times the upper limit of the sequence —X,,,n > 1. There-
fore, the set {w] lim,— S”é“’) exists} has probability either zero or one,
for it belongs to the tail o-algebra as the set where liminf and lim sup
are equal.

3.6.13 Corollary  Suppose that F,, O F,,+1,n > 1is a non-decreasing
sequence of o-algebras of events in a probability space (Q, F,P).

Exercise 3.6.6 and the argument used in 3.6.8 prove that for any
X € L*(Q,F,P), E(X|F,) converges in L?(Q2, F,P) to PX where PX
is the projection on Hyo = (o, H,, = L?(Q, (N2, Fn,P). Thus PX =
E(X|N,_, Fn). Arguing as in 3.6.9, we obtain that for any integrable
X, E(X|F,) converges to E(X|(°_, Fy) in L1(Q, F,P).

3.6.14 Almost sure convergence  Although it is proper to view 3.6.8
and 3.6.13 as particular cases of 3.6.5, such a broader view comes at
the cost of losing important details of the picture. To see what we have
overlooked, let us consider again a sequence of projections P, on a non-
decreasing sequence of subspaces H,, of a Hilbert space H. Given = € H,
let y1 = Pz and y, = Pz — Po_yz,n > 2. Then Pz = >y
and y, L P,_12 so that ||[P,z||*> = Y1, |lyil|* and hence Y o0 [lyi[* <
|z]|> < co. Thus, if H = L?(£2, F,P) for some probability space (2, F,P)
then lim,,_,o P,z = Z;’il y; converges to Px not only in the norm but
also a.s. (see the proof of 2.2.19). In other words, convergence in 3.6.8
and the first part of 3.6.13 is not only in L?(Q, F,P) but also a.s. It is
worth stressing here that in general convergence in LP does not imply
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a.s. convergence, as it may be seen from Example 3.6.15 below, and
that neither does a.s. convergence imply convergence in LP. Hence the
information that convergence in 3.6.8 is both in L? and a.s. is non-trivial.

Similarly, under assumptions of 3.6.13, P, = I — P, is a sequence
of non-decreasing projections and thus converges a.s. and in L? to a
projection P’. Therefore, P, = I — P, converge to P = I — P’ not only
in L? but also a.s.

3.6.15 Example  Convergence in L' does not imply a.s. convergence
Let z, = 1[2%_’%), 0 <k<2"—-1n € N, be a doubly indexed
triangular array of vectors in L'(0,1). Note that ||xx | = 27™. Hence,
if we reorder these vectors in a natural way (going row by row), we
obtain a sequence converging to zero. On the other hand, for 7 € [0,1)
the values of corresponding functions do not converge to zero, attaining
the value 1 infinitely many times.

3.6.16 Example By Exercise 3.5.7, if Z,, is the Galton—Watson pro-
cess with square integrable X;' then Z,,n > 1 are square integrable
also. Moreover, if n > 1, (3.26) and (3.27) show that the martingale
M, = %n is bounded in L2, for lim,, o, D*(M,,) = Wil) Therefore,
M, converges pointwise and in L? to a random variable M.

3.6.17 The Law of Large Numbers. Second attempt As a consequence
of 3.6.13 we obtain the following form of the Law of Large Numbers.

Suppose that X,,,n > 1 are independent, square integrable, identically
& =
n

distributed random variables in a probability space (Q, F,P). Then

% converges to £ X11q in L? and a.s.

Proof By (3.19), % =E(X1|0(Sn, Sn+1,-..)) and Fp, = (S, Sny1,---)

is a non-increasing sequence of o-algebras. Thus ST; converges a.s. and

in L2. Since limsup,, ., % = limy, 00 % is tail 7 measurable, it must

be constant, and this constant must be £ X. ]

3.7 ... and of martingales

A natural way to generalize 3.6.17 is to abandon the assumption that
X, are square integrable and suppose that they are absolutely integrable
instead. Then Corollary 3.6.13 still applies to show that %” converges
to (EX)1q in L'. However, our argument does not prove that the con-
vergence is also a.s. We could try to prove a.s. convergence using trun-
cation/density arguments, the most elegant proof, however, and the one
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that leads to a more general result, namely the Martingale Convergence
Theorem, leads through Doob’s Upcrossing Inequality to be presented
below. The situation is typical in that there is much more to probability
theory than functional analysis (at least in the narrow sense of a mixture
of linear algebra and topology) can explain in a straightforward way. In
fact, probability theory is a beautiful and independent field of mathe-
matics, and the rapid development of direct probabilistic methods that
was witnessed in the past century allows the use of them in an essential
way in other branches of mathematics to obtain new deep results and to
give new surprisingly short proofs of old results or to make old reason-
ings more transparent. Therefore, even in this book, functional analytic
argument should sometimes give way to a purely probabilistic one ...

3.7.1 Upcrossing Inequality —Let N be a natural number, X,,,1 <n <
N, be a martingale with respect to a filtration F,,1 < n < N, and
let @ < b be two real numbers. We will be interested in the number
U, =Up,(a,b),1 <n < N, of times the value of X,, crosses from below a
up above b. To be more specific U,, = m if m is the largest integer such
that we may find 1 <y < k1 <ly < kg < ... < I, < Ky, = n such that
X, <aand Xy, > bfori=1,...,m. The reader should convince himself
that U, termed the number of upcrossings, is a random variable.
This variable is related to a betting strategy in the following hazard
game. Suppose that at time k, 1 < k < N, only numbers X, (w),0 <
n < k — 1 are known to a player, who basing on this knowledge decides
to take or not to take part in the game at this moment of time; by
definition we put Xg = F X;. If the player chooses to play, he places
a bet and gains or loses X — Xj_1 dollars, depending on the sign of
X — Xp—1. Consider the following betting strategy. We do not bet at
time k£ until Xj_q is less than a, and from that time on we bet until
X1 is more than b, at which time we stop betting and wait until Xj_4
is less than a to repeat the whole procedure. In other words, we bet at
time 1 only if X¢o = F X7 < a and then bet at time k& > 2 if we did bet
at time k — 1 and X _1 is less than b or if we did not bet at £ — 1 and
Xi—1 is less than a. With this strategy, our total gain or loss at time
nis Z, = Z?:l Y;(XZ — Xi—l); where Y1 = 1if FX <aand Y73 =0
if FX; > a,and Y, = 1{Yn—1:1}]‘{Xn71Sb} + 1{Yn—1=0}1{Xn—1<a}’ 1<
n < N.By 3.5.9, Z,,1 <n < N is a martingale and we have F Z,, = 0.
Suppose now that we play only up to time n and that up to that
time there were m upcrossings. Suppose also that the last upcrossing
has ended at time k,,, so that we stopped betting at k,, + 1. Up to



114 Conditional expectation

time k,, we have gained at least $(b — a)m, but what has happened
after that? There are two possible scenarios. In the first scenario, all
Xk, km < k < n are bigger than or equal to a. In this case, we do not
bet after time k,, and hence our total gain is the same as it was at time
k.. As a consequence:

Zp > (b—a)U,. (3.32)

In the second scenario one of the numbers X, k,, < k < n is less than
a, say that ¢ is the smallest number with this property. In this case, we
start betting at time ¢ + 1 and bet for the rest of the game, since there
can be no more upcrossings. In the last part of the game we gain or lose
X, — X, dollars. Therefore,

Zn>(b—a)Uy+ X, — X; > (b—a)U, + X,, — a. (3.33)
Consequently, in both scenarios we have:
Zn > (b=-a)U, — (X, —a)”. (3.34)
Taking expectations, we obtain the upcrossing inequality:

(b—a)EU, <E(X,—a)” <E|X,—a|<E|X,|+a  (3.35)

3.7.2 Exercise = Show that the upcrossing inequality is true also for
supermartingales.

3.7.3 Martingale Convergence Theorem  Suppose that X,,n > 1is a
martingale such that E'|X,,| < M for some M > 0 and all n > 1. Then
there exists an absolutely integrable X, such that X,, converges to X,
a.s.

Proof By the upcrossing inequality, for any a < b the number of upcross-
ings U(a, b) = lim,, . Un(a,b) from below a up above b is an integrable
random variable. In particular, U(a, b) is finite a.s. so that the set A(a, b)
of all w such that U(a,b) = oo has probability zero. On the other hand,
if the limit lim, o X, (w) does not exist then the upper limit of the
sequence X, (w),n > 1 is strictly larger than its lower limit. As a con-
sequence, for some rational numbers a and b there are infinitely many
upcrossings of the sequence X,,(w),n > 1 from below a up above b, i.e. w
belongs to A(a,b). In other words, the set of all w such that X,,(w) does
not converge is contained in the set |, ,cq A(a,b) which has measure
zero as a countable union of sets of measure zero. The assertion that
X is absolutely integrable follows by Fatou’s Lemma. |
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3.7.4 Remark Note that we do not claim that X, converges to X,
in LY(Q, F,P).

3.7.5 The Strong Law of Large Numbers  Suppose that X,,,n > 1 are
independent, integrable, identically distributed random variables in a
probability space (2, F,P). Then 57" = % converges to (F X1)1g
in L' and a.s.

Proof We proceed as in 3.6.17, and write %’” as the conditional expec-
tation of X; with respect to the non-increasing sequence of o-algebras
o(Sn, Snt1,.--),n > 1. Corollary 3.6.13 allows us then to prove conver-
gence of % to (E X1)lg in LY(Q,F,P). We check that for any natu-
ral N, F, = o(S—m, S—mt1, ), —N < m < —1, is a filtration, and
Yin,-N <m < —1, where Y,,, = S_;nql is a martingale with respect to
this filtration. Moreover, sup,,«_ E [Y;,| = sup,>, E |5;L < E|Xy).
Hence, arguing as in 3.7.3, we see that, as m — —o0, Y_,,, converges al-

most surely to an absolutely integrable random variable X .. This means
that as n — oo, % it converges almost surely to X.. By 2.2.20, % has
a subsequence that converges a.s. to (F X1)1lg and so (F X1)lg = Xoo
almost surely. O

3.7.6 Example The Wright—Fisher model 3.5.6 describes one of the
forces of population genetics, called genetic drift, which is, roughly
speaking, a random loss of variation in a population. In our simple case
genetic drift is expressed in the fact that the states X =0 and X = 2N
are absorbing, i.e. genetic drift forces one of the alleles to be fixed in the
population. The Martingale Convergence Theorem may be used to find
the probability py of fixation of allele a given that X (0) = k. Indeed, its
assumptions are satisfied, so that X (o0) = lim, . X (n) exists almost
surely and we have p; - 2N + (1 — pr) -0 =E X(c0) = EX(0) = k and,
consequently, py = .

3.7.7 Martingale convergence in L'  As we have seen, a martingale
that is bounded in L' converges almost surely but not necessarily in L'.
To ensure convergence in L' one needs to assume additionally that the
random variables involved are uniformly integrable. There are two
equivalent definitions of uniform integrability of a sequence X,,n > 1
of absolutely integrable functions on a measure space L'(Q, F, u) with
finite measure u. The first definition requires that the numerical sequence
sup,,>1 £ |Xn|1|x, >k converges to zero, as k — oc. The second requires
that X,,,n > 1 be bounded in L' and that for every € > 0 there would
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exist a § > 0 such that F|X,|14 < € for all n > 1 provided p(A4) <
6. In problem 3.7.9 the reader is asked to prove equivalence of these
definitions.

It is easy to see that uniform integrability is a necessary condition for
convergence of a sequence in L'. Indeed, for any measurable set A we
have

E|Xn‘1A < E|Xn - X|1A +E|X|1A
< X0 = Xl + B [X[1a.

Hence, if X,, converges to X in L', then given ¢ > 0 we may choose
no such that [|X,, — X||z1 < § for all n > ng, and for such n make
E|X,,|14 less than e by choosing A of small measure. For the remaining
finite number of variables X,,,1 < n < ng, F|X,|la may be made
small uniformly in n by choosing sets A of possibly smaller measure (see
Exercise 3.7.10).

In general, the sole uniform integrability of a sequence does not im-
ply its convergence in L'.t Nevertheless, uniform integrability implies
convergence when coupled with convergence in measure. A sequence
X, on (Q,F, ) is said to converge in measure to X if for every ¢ > 0,
the measure of the set where | X,, — X| is greater than e converges to 0,
as n — oo. As it was with uniform integrability, convergence in measure
is necessary for convergence in L'; this can be seen from the Markov
inequality 1.2.36:

E|X, — X|

€

/u'{|Xn - X| > 6} S (336)

Furthermore, we have the following criterion for convergence in L :

a sequence X, € L',n > 1 converges to an X € L' iff it is uniformly
integrable and converges to X in measure.

We have already proved the “only if part” of this theorem. Before
giving the proof of the “if part”, let us note that as a direct consequence
we obtain that

if a martingale X,,n > 1 (with respect to a filtration F,,n > 1) is
uniformly integrable then it converges to an integrable limit Xoo almost
surely and in L'; in such a case, X,, = E(X|Fn).

1 Rather than with convergence, uniform integrability is related to compactness and
weak compactness [32, 37]. See e.g. [5] for more information on uniform integra-
bility. We will come back to this question and in particular explain the notion of
weak compactness in Chapter 5 — see 5.7.1. In Subsection 5.8 of that same chapter
we will also give more information on convergence in measure, to be mentioned in
the next sentence.
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Indeed, since X,,,n > 1, is bounded, it converges a.s. Hence, P{| X,, —
Xoo| > €} = Eljx,_x_|>c converges to 0, as n — oo, by the inequality
Iix,—x.|>e < lo and Dominated Convergence Theorem. This proves
convergence in measure (i.e. convergence in probability), and since uni-
form integrability is given, our criterion applies, proving convergence in
L'. Finally, since X,, = E(X,,|F,) for all m > n, Theorem 3.3.1 (k)
shows that X,, = lim,,, oo E(X,,,|F,) = E(Xo|Fn), as desired.

We are left with proving that convergence in measure and uniform
integrability of a sequence imply its convergence. Thus, let us assume
that X,, € L',n > 1 is uniformly integrable and converges in measure
to an X € L'. For k > 1, define the function ¢ : R — R by ¢p(7) = 7
for |7| < k and ¢x(7) = k or —k according as 7 > k or 7 < —k.
Random variables X, , = ¢x(X,) are thus bounded by k. Moreover,
limy, oo sUp,, 51 | Xnx — Xullzr < sup,s; E|Xa|lx, >k = 0, and it is
easy to see that ¢ (X) converges in L' to X, as k — oo. Hence, of the
three terms appearing on the right-hand side of the inequality

[ Xn = X0 < (1 Xn = Xngllr + ([ Xk — o(X)[[2r + [[0x(X) — X,

the first and the last may be made arbitrarily small by choosing a large
k and this can be done uniformly with respect to n. In other words,
given € > 0 we may choose a k such that

€
1% = Xllzr < 5+ Xk = 66 (X)) 12

Let us fix this k. Since |¢x(7) — ¢r(0)| < |7 — o, the event {| X, —
¢r(X)| > €} is a subset of {|X,, — X| > €}, which proves that X,
converges to ¢ (X) in measure. Hence, we may choose an ng so that for
all n > ng, p{|Xnx — or(X)| > m} < 43+ As a result,

1 X s — 6e(X) L2 = B Xk — Sr(X)|L1x,0 -0 (X) > 1507
+ E Xk — o(X)1X,, =00 (X)|< 15

< 2| Xk — 54(X) b+ Q) <

= !

and we are done.

3.7.8 Corollary Let X,,n > 1 be a martingale with respect to a
filtration F,,,n > 1. The following are equivalent:

(a) there exists an X € L! such that X,, = E(X|F,),
(b) X,,n > 1 converges a.s. and in L! to X, € L%,
(¢) X,,n >1is uniformly integrable.
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Proof By 3.6.9, condition (a) implies that X,,,n > 1 converges to some
X in L. In particular, our martingale is bounded in L' and so 3.7.3
proves almost sure convergence (we use 2.2.20 to make sure that the lim-
its spoken of in 3.6.9 and 3.7.3 are the same a.s.). Implications (b)=-(c)
and (c¢)=-(a) have been proved in 3.7.7. O

3.7.9 Exercise Prove equivalence of the two definitions of uniform
integrability.

3.7.10 Exercise Prove that a constant sequence X, = X € L', n > 1,
is uniformly integrable. More generally, a sequence that admits only a
finite number of values is uniformly integrable. Deduce that if a sequence
X,,n > 1, is dominated by an integrable non-negative random variable
Y, ie. |X,| €Y a.s., then it is uniformly integrable.

3.7.11 Doob’s Optional Sampling Theorem  Let F,,n > 1, be a fil-
tration in a measurable space (2, F), and let Foo := {J,,»; Fn. An Fuo
measurable random variable 7 with values in N U {co} is said to be a
Markov time (or optional time, or stopping time) if {r = n} € F,.
Intuitively, if the filtration comes from a random process X,,,n > 1, then
by observing the process up to time n, we are able to tell whether 7 has
happened yet, i.e. iff 7 < n or not. A straightforward argument shows
that the collection F, of events A € F such that AN {r =k} € Fj
for all k is a o-algebra. Intuitively, for A € F,, by time 7 we are able
to tell if A happened or not. Some properties of F, are almost obvious.
For example, if 7 = n, then F, = F,,. Moreover, 7 is F,; measurable and
if 7 and o are two Markov times with 7 < ¢ then F, C F,. Indeed, if
A € F, then

An{oc=n}= U An{r=m}n{oc=n}
m=1
with AN{r =m} e F,, C F, and {oc =n} € F,.

Let X,,, Fn,n > 1 be a uniformly integrable martingale so that there
exists an integrable X, such that E(X.|F,) = X,. Moreover, let 7
and o be two Markov times with 7 < o. The random variable X, =
ZnGNU{oo} 1r=n X, is well-defined with || X, |1 < || Xoollr1; Xo is de-
fined similarly. The Optional Sampling Theorem says that in such
circumstances E(X,|F;) = X,. Since X, is integrable and F, measur-
able, to prove this theorem it suffices to check that [, X, dP = [, X, dP
for all A € F,. Fix n < m. By assumption AN {r = n} € F, and
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An{r =n}n{o =m} € F. Hence, [, _ 1 XndP = [, 0, XoodP
and fAﬁ{T:n}ﬁ{o:m} X, dP = fAm{T:n}m{a:m} X oo dP. Consequently,

/AXUdIP’: > >

neNU{co} me{n,...,o0o

= 2

neNU{oo} me{n,...,00}

= > / Xoo dP
neNU{oco} An{r=n}

— Z / Xnd}P’:/XTdIP,
neNU{oo} An{r=n} A

/ X dP
) An{r=n}n{oc=m}

/ Xoo dP
An{r=n}n{oc=m}

as desired.

3.7.12 Exercise Let X,,,n > 1, be a sequence of integer-valued ran-
dom variables and F,,,n > 1 be the natural filtration. Fix a number
k € N. Show that 7, = min{n € N|X,, = k} is a Markov time while
or = max{n € N|X,, = k}, in general, is not. (We put min = cc.)

3.7.13 Exercise Let F,,n > 1 be a filtration in a measurable space
(Q,F). (a) Show that an F,, measurable random variable 7 is a Markov
time iff {7 <n} € F,,n > 1. (b) Show that if a sequence X,,,n > 1, of
random variables is adapted in that X, is F,, measurable for n > 1, and
7 is a finite Markov time, then X, = > >°  1,_,X,, is an F, measurable
random variable. (¢) Show that for any finite Markov time F is the o-
algebra generated by all X constructed from adapted processes X,,,n >
1.

3.7.14 The mazimal inequality — Suppose that X,,,n > 1 is a positive
submartingale with respect to a filtration F,,n > 1, and let X} =
SUPy <i<n Xk,n > 1. Then for any number ¢ > 0,

t]P{X:; > t} < Ean{X,,*L>t}-

Proof The event { X > t} is a disjoint union of sets Ax, 1 < k < n where
w € A iff Xi(w) is the first variable with the property that X (w) > t.
Since on Ay, X, is greater than ¢, we have tP{X* >t} = >/ tP(A4;) <
Yoot EXila, <300 EXyla, = E X, 1{xx~s where in the second-
to-the-last step we have used the submartingale property and the fact
that Ay are Fj measurable. O
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3.7.15 Martingale convergence in LP, p > 1  Suppose that there exists
a p > 1 such that a martingale X,,n > 1, is integrable with the pth
power and sup,~; E |X,|P =1 M < oco. Then, by the Holder inequal-
ity, this marting_ale is also bounded in L'. Moreover, it is uniformly
integrable. Indeed, if 7 > k then 1 < (§)P7', and 7 < k;—: Hence,
E|Xulx, 5k € 1B |XuP < 245 — 0 as k — oo. Therefore, by
3.7.3 and 3.7.7 the martingale converges a.s. and in L' to an integrable
variable X.,. By Fatou’s Lemma, X, € LP. Is it true that X,,,n > 1
converges to X, in LP as well? The answer in the affirmative follows

from the following Doob’s LP inequality:
| sup | XnlllLr < qM, (3.37)

which implies in particular that X* = sup,,~; |X,| is finite a.s. and
belongs to LP; g, as always, is such that % —l—% = 1. If (3.37) is estab-
lished, our claim follows by | X,, — X|P < 2P(X*)P and the Dominated
Convergence Theorem.

We have done all the toil needed to prove (3.37) in 3.7.14 and Exercise
1.2.37. To complete the proof note that by Jensen’s inequality Y,, = | X,,|
is a submartingale. Hence, if we let Y, = sup;<j<, Y%, then by 3.7.14
we have {P{Y;* >t} < EY,1{y-~;. By (1.18) and (1.20),

oo

V2, = B (V)P = / PP IPLYE > 1) dt

< Ll (p— V)P 2E Yy lgyosyy dt
p—~Jo

=GB Y, (V) < a(BY])F (B (v;)® )"
< qM(E(Y;))")'"

n

where we have used the Holder inequality and (p — 1)g = p. Since Y}?
1
belongs to LP we may divide by (E (Y;*)?)'"% to obtain

(E(Y,)")? < qM,

which implies (3.37) by lim, . ¥,* = X* and the Monotone Conver-
gence Theorem.

Since all convergent sequences are bounded, the main result of this
subsection can be phrased as follows: a martingale in LP converges in
LP iff it is bounded in LP.
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Brownian motion and Hilbert spaces

The Wiener mathematical model of the phenomenon observed by an
English botanist Robert Brown in 1828 has been and still is one of
the most interesting stochastic processes. Kingman [66] writes that the
deepest results in the theory of random processes are concerned with
the interplay of the two most fundamental processes: Brownian motion
and the Poisson process. Revuz and Yor [100] point out that the Wiener
process “is a good topic to center a discussion around because Brownian
motion is in the intersection of many fundamental classes of processes.
It is a continuous martingale, a Gaussian process, a Markov process or
more specifically a process with independent increments”. Moreover, it
belongs to the important class of diffusion processes [58]. It is actually
quite hard to find a book on probability and stochastic processes that
does not describe this process at least in a heuristic way. Not a serious
book, anyway.

Historically, Brown noted that pollen grains suspended in water per-
form a continuous swarming motion. Years (almost a century) later
Bachelier and Einstein derived the probability distribution of a position
of a particle performing such a motion (the Gaussian distribution) and
pointed out its Markovian nature — lack of memory, roughly speaking.
But it took another giant, notably Wiener, to provide a rigorous math-
ematical construction of a process that would satisfy the postulates of
Einstein and Bachelier.

It is hard to overestimate the importance of this process. Even outside
of mathematics, as Karatzas and Shreve [64] point out “the range of ap-
plication of Brownian motion (...) goes far beyond a study of microscopic
particles in suspension and includes modelling of stock prices, of thermal
noise in electric circuits (...) and of random perturbations in a variety
of other physical, biological, economic and management systems”. In

121
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mathematics, Wiener’s argument involved a construction of a measure
in the infinite-dimensional space of continuous functions on R¥, and this
construction was given even before establishing firm foundations for the
mathematical measure theory.

To mention just the most elementary and yet so amazing properties
of this measure let us note that it is concentrated on functions that
are not differentiable at any point. Hence, from its perspective, func-
tions that are differentiable at a point form a negligible set in the space
of continuous functions. This should be contrasted with quite involved
proofs of existence of a single function that is nowhere differentiable and
a once quite common belief (even among the greatest mathematicians)
that nowhere differentiable functions are not an interesting object for a
mathematician to study and, even worse, that all continuous functions
should be differentiable somewhere. On the other hand, if the reader
expects this process to have only strange and even peculiar properties,
he will be surprised to learn that, to the contrary, on the macroscopic
level it has strong smoothing properties. For example, if we take any, say
bounded, function z : R — R and for a given ¢ > 0 consider the func-
tion z;(7) = Ex(7 + w(t)),™ € R where w(t) is the value of a Wiener
process at time ¢, this new function turns out to be infinitely differen-
tiable! Moreover, x(t, 7) = () is the solution of a famous heat equation
%7; = const.g%‘ with the initial condition u(0,7) = z(7). And this fact is
just a peak of a huge iceberg of connections between stochastic processes
and partial differential equations of second order.

Finally, let us mention that the notion of Itd stochastic integral (to be
discussed in brief in the final section of this chapter) would not emerge
if there was no model of Brownian motion and its properties were not
described. And without stochastic integral there would be no stochastic
analysis and no way for a mathematician to approach important prob-
lems in physics, biology, economy etc.

For more information on Brownian motion see the excellent introduc-
tory chapter to Rogers and Williams’s book [102].

We will define Brownian motion in the first section and then in Section
3 use Hilbert space theory to rewrite the original Wiener’s proof of the
existence of Brownian motion thus defined. The necessary background
from the Hilbert space is provided in Section 2. The final Section 4 is
devoted to a discussion of the It6 integral.
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4.1 Gaussian families & the definition of Brownian motion

4.1.1 Definition A family {X;,t € T} of random variables defined
on a probability space (2, F,P) where T is an abstract set of indexes is
called a stochastic process. The cases T = N,R,R™, [a, ], [a,b), (a,b],
(a,b) are very important but do not exhaust all cases of importance. For
example, in the theory of point processes, T is a family of measurable sets
in a measurable space [24, 66]. If T = N (or Z), we say that our process
is time-discrete (hence, a time-discrete process is a sequence of random
variables). If T = R, R etc. we speak of time-continuous processes. For
any w € €, the function ¢t — X;(w) is referred to as realization/sample
path/trajectory/path of the process.

4.1.2 Gaussian random variables An n-dimensional random vector
K = (X17 AR Xn)

is said to be normal or Gaussian iff for any a = (ay,...,a,) € R"
the random variable Z?:1 a;X; is normal. It is said to be standard
normal if X; are independent and normal N(0,1). A straightforward
calculation (see 1.4.7) shows that convolution of normal densities is nor-
mal, so that the standard normal vector is indeed normal. In general,
however, for a vector to be normal it is not enough for its coordinates
to be normal. For instance, let us consider a 0 < p < 1 and a vector
(X1, X2) with the density

1 22422 124/3 224z wgtal
f(l‘l,.TQ):p*e_ 122+(1_p)7 fe_% S REZE 2.

T T 3
Then X; and X5 are normal but (X7, X5) is not. To see that one checks
for example that X; — %Xg is not normal.

4.1.3 Theorem  An n-dimensional vector X is normal iff there ex-
ists an m X n matrix A and a vector m such that for any n-dimensional
standard normal vector Y, vectors X and AY + m have the same dis-
tribution. The vector m and the matrix R = AAT are determined, by
m = (pi)i<isn = (B Xi)ici<n and R = (cov(Xi, Xj) )1<ij<n-

Proof The space R™ is a Hilbert space when equipped with scalar prod-
uct (a, ) = S B a= (ai)1<i<n, B = (Bi)1<i<n- The space of lin-
ear operators on the Hilbert space R” is isometrically isomorphic to the
space of n x n matrices (a;;)1<i j<n With the norm |[(a; ;)1<ij<nl|l =
Dy 2?21 af,j. The isomorphism maps an operator A into a matrix
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(@i,j)1<i,j<n, Where a; ; is the ith coordinate of the vector Ae;, e; =
(5i,j)1§i§na and we have AQ = (Z?:l Cli7j()éj)1§i7j§n. N[OI‘QOVGI‘7 A is
self-adjoint iff the corresponding matrix is symmetric.

Consider the symmetric matrix R = (cov(X;, X;))i<i j<n, and let the
same letter R denote the corresponding operator in R”. For any a € R”,
by linearity of expectation,

2

3

n

(Ra, @) ZZ — pj)o; = F Zak(Xk - Nk)]
i=1 j=1 k=1

— D (. X). (4.1)

Hence, (Ra, «) is non-negative and by 3.6.7 there exists a non-negative
square root of R, i.e. a symmetric matrix A such that R = A% and
(Aa, ) > 0, € R™.

Let Y be any standard normal vector and define Z = AY +m. Clearly,
Z is Gaussian. We claim that Z has the same distribution as X. By the
result to be proved in Subsection 6.6.11, it suffices to show that the
distribution of (a, Z) is the same as that of (o, X),a € R™. Since both
variables have normal distributions, it remains to prove that E (o, Z) =
E(a,X), and D? (o, Z) = D?(a,X). The former relation is obvious,
for both its sides equal (a,m). To prove the latter, note first that by
1.4.7, D*(B1Y1 + B2Ya) = B2 + B2, 1,32 € R, and, more generally,
D?(B,Y) = D* (X1, B;Y;) = ||B]|#~. Moreover, since A is self-adjoint,

D*(a,Z) = E (&, Z) — (a,m)]” = E [(a, AY)]* = E [(Aa,Y)]?
= D? [(Aa,Y)] = || Ac|f = (Aa, Ae) = (Ra, o),

completing the proof by (4.1). O

Note As a result of our proof and 6.6.11, R and m determine the distri-
bution of X; we write X ~ N(m, R). In particular, normal variables are
independent iff they are uncorrelated, i.e. iff the appropriate covariances
are zero.

4.1.4 An auziliary result that is of its own importance — Our next theo-
rem, Theorem 4.1.5 below, concerns L? convergence of Gaussian vectors.
In its proof we will use the following result that will turn out to be of
its own importance in Chapter 5, where various modes of convergence
of random variables will be discussed.

If X and X,,,n > 1 are random variables defined on the same proba-
bility space (Q, F,P) and lim,, o, P(|X — X,,| > €) = 0 for all € > 0, then
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lim, o E f(X,) = E f(X) for all bounded uniformly continuous func-
tions f on R. Indeed, for any § > 0 the absolute value of the difference
between F f(X,) and E f(X) is estimated by

/ |f(Xn) —f(X>|dJP+/ |F(X,) — f(X)|dP.
| Xn—X][26

| X, —X|<8

Moreover, given € > 0 one may choose a ¢ so that |f(7) — f(o)| < €
provided |T — 0| < 4. For such a § the second integral above is less than
eP{| X, —X| < 6} < e while the first is less than 2|| f||supP{| X, —X| > 6},
which may be made arbitrarily small by taking large n.

4.1.5 Theorem If a sequence X,, ~ N(u,,02) of normal variables
converges in L? to a variable X, then there exist limits pu = limy,_ o tn
and 02 = lim,,_,o, 02, the variable X is Gaussian and X ~ N (u,0?).

Proof The sequence p,,n > 1 must converge because u, = E X, and
by the Holder inequality expectation is a bounded linear functional on
L?. Moreover, by continuity of the norm, the sequence || X, || Lz converges
as well. Since || X, ||7, = p2 + o2, there exists the limit of o2

By 4.1.4 and Chebyshev’s inequality (cf. 3.1.7), lim, oo Ef(Xn) =
E f(X), for any bounded uniformly continuous function f. On the other
hand,

o B (Xn) = \/2;—0/00 exp{—h;fﬁm}f(T)dT
"o { -
-

202

\ﬁ

which identifies the distribution of X by 1.2.20. To justify the passage
to the limit under the integral above, change the variable to £ = (7 —
tn)o, b, use Lebesgue’s Dominated Convergence Theorem, and come
back to the 7 variable. This calculation is valid only if o # 0. In the
other case, lim, o E f(X,) = f(1) which identifies X as a degenerate
Gaussian random variable concentrated at p. |

4.1.6 Definition A random process w;,t > 0 on a probability space
(Q, F,P) is said to be a (one-dimensional) Wiener process (Brownian
motion) on RT starting at 0, iff

(a) the vector w(ty,...,tk) = (Wey,....,wy, ) is a k-dimensional Gaussian
vector, for any k € N and all £, %o, ..., >0,
(b) Ewyws = s At, Bw, =0 for all s,¢ > 0,
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(c) the trajectories/sample paths of w; start at zero and are continuous,
i.e. the map ¢t — w;y is continuous, and wo(w) = 0, for any w € Q,
except perhaps for w in an event of probability zero.

If the process is defined only for ¢ in a subinterval [0, a],a > 0 of RT,
and conditions (a)—(c) are satisfied for ¢ € [0, a], w; is called a Brownian
motion on [0, a.

4.1.7 Fquivalent conditions 1 Condition Fw,ws = t A s implies
E (wy — ws)? = |t — s|. Conversely, if wg = 0 and E (w; — ws)? = |t — 3]
then Ew;ws =t A s. This follows directly from E (w; — ws)? = Ew? —
2F wyws + F wz

2 Condition (b) determines the vector of expectations and the co-
variance matrix of the Gaussian vector w(ty,...,tx) = (wyy, ..., wy, ). If
we assume wgy = 0, conditions (a)—(b) are equivalent to

(d) for any k € N and 0 < t; < t3... < ty, the vector

U(tl tk) _ Wi, — Wiy Wy, — Wiy
Y\l -y /7t2 —4 CRRR) ,7tk o

is a standard Gaussian vector, or, equivalently, random variables w;, —

we,_,,1 =1,..., k, are independent with normal distribution N(0,¢; —

ti—l)-

Indeed, observe that v(t1,...,tx) = Afw(t1,...,tx)] where A is a matrix

1 _ 1
—— tklftk—l O1 0 0
0 Vie—1—th-2  VTh-1-tr-2 0 0
0 .. e e 1 _ 1
to—t1 \/t27t1

and the superscript 7' denotes the transpose of a vector. Hence, if (a)
holds, v(t1,...,t,) is Gaussian. Moreover, by (b), E (%) =0,

ti—ti—1
for 1 < ¢ < k, and if ¢; > t;, then expanding the product under

i Wty W, Wty

the expectation sign we obtain that F e — equals
ti—ti—1 \/tjftj,l

2
1 1 o . We; —We; 4 _
VEti—tiot |\ ft;—t; (tj=tim1=t;=tj1) = 0. Finally, & ( ti—tioa ) =1

This shows that the vector of expectations of v(ty, ..., tx) is zero and its
covariance matrix is the identity matrix.

To prove the converse implication note first that it is enough to show
that (d) implies that (a) holds for distinct ¢; € R* and this follows from
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the fact that w(ty,...,tx) equals

\/E 0 o --- 0
Vie — 1 Via—t; 0 .- 0

[0(0,t1, ..., t%)]T.

Moreover, if (d) holds and s < ¢ then Fw; = F(w; — wg) = 0 for
wy —wg ~ N(0,t), and Ew,ws = E (w; —ws)(ws —wp) + Ew? = E (w; —
ws)E (ws —wp) + Ew? = s, which means that (d) implies (b).

4.2 Complete orthonormal sequences in a Hilbert space

4.2.1 Linear independence  Vectors x1,...,T, in a linear space X are
said to be linearly independent iff the relation

a1z, + -+ apr, =0 (4.2)

where «; € R implies a1 = ag = -+ = a,, = 0. In other words, x4, ..., x,
are independent iff none of them belongs to the subspace spanned by
the remaining vectors. In particular, none of them may be zero.

We say that elements of an infinite subset Z of a linear space are
linearly independent if any finite subset of Z is composed of linearly
independent vectors.

4.2.2 Orthogonality and independence A subset Y of a Hilbert space is
said to be composed of orthogonal vectors, or to be an orthogonal
set, if for any distinct z and y from Y, (z,y) = 0, and if 0 ¢ Y. If,
additionally ||z|| = 1 for any = € Y, the set is said to be composed of
orthonormal vectors, or to be an orthonormal set. By a usual abuse
of language, we will also say that a sequence is orthonormal (orthogonal)
if its values form an orthonormal (orthogonal) set.

Orthogonal vectors are linearly independent, for if (4.2) holds, then
0= O amy, > ax;) = > o?||lz;||?, which implies a; = 0,
for ¢+ = 1,...,n. On the other hand, if x1,...,x, are linearly indepen-
dent then one may find a sequence ¥, ...,y,, of orthonormal vectors
such that span{zi,...,z,} = span{yi,...,yn}. The proof may be car-
ried by induction. If » = 1 there is nothing to prove; all we have
to do is take y1 = 7l to make sure that lly1]] = 1. Suppose now
that vectors x1,...,x,41 are linearly independent; certainly x1,...,x,
are independent also. Let yi,...,y, be orthonormal vectors such that

Y := span{xi,...,z,} = span{yi,...,yn}. The vector x,; does not
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belong to Y and so we may take y,11 = % where P de-
notes projection on Y. (The reader will check that Y is a subspace of Hj
consult 5.1.5 if needed.) Certainly, y1, ..., yn+1 are orthonormal. More-
over, since y,+1 € span {x1,...,xny1} (since Pr,y1 € span{xyi,...,xn}),
span{y1, ..., Yn+1} C span{xy,...,ry+1}; analogously we prove the con-
verse inclusion. The above procedure of constructing orthonormal vec-
tors from linearly independent vectors is called the Gram—Schmidt
orthonormalization procedure. There are a number of examples of
sequences of orthogonal polynomials that can be obtained via the Gram—
Schmidt orthonormalization procedure, including (scalar multiples) of
Legendre, Hermite and Laguerre polynomials that are of importance
both in mathematics and in physics (see [83], [53], [75] Section 40).

4.2.3 Exercise  Let {z1,...,2,} be an orthonormal set in a Hilbert
space H, and let € H. Show that the projection Px of x on the linear
span of {1, ...,x,} is given by

n

Px = Z(z, T )T

k=1

If {z1,...,x,} is orthogonal, then

n T
Px = T, X)——=.
PP

k=1

4.2.4 Least square regression  Let X and Y be given square integrable
random variables. The problem of finding constants ¢ and b such that
the square distance between Y and aX + b is the least is known as the
problem of least square regression. An equivalent formulation of this
problem is to find the projection PY of Y on the span{lq, X }. Since this
span is the same as that of {1, X — (E X )1} and 1 and X — (E X)1gq
are orthogonal, we find that

X — (EX)lq 1o
PY =(Y, X - (EX)1 Y, 1lg)——
N P (25 9T L) TP
EXY—-FEXEY
- S (X - (B X))+ (EV)Ie
cov(X,Y)

= T(X — (EX)lQ) + (EY)lQ
X
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The quantity p = px,y = % is called the correlation coefficient.

The above formula is often written as

PY — (EY)lg = pZX(X — (E X)1q).
oy
4.2.5 Exercise Let xi,k > 1 be an orthonormal sequence in a Hilbert
space H. Prove the following Bessel’s inequality: for any = € H,

2] =) (wn, 2)*. (4.3)
k=1

4.2.6 Separability A set S is said to be denumerable or countable
if there exists a function, say f, mapping N onto S. In other words there
exists a sequence p, = f(n) whose values exhaust the set S. Of course all
finite sets are countable and so is N itself. The set of rational numbers is
countable, too, but R is not. We also note that a union of two countable
sets is countable, and, more generally, countable union (i.e. a union of
a countable number) of countable sets is countable. A metric space is
said to be separable if there exists a countable set that is dense in this
space. We say that a Banach space (Hilbert space) is separable if it is
separable as a metric space with the metric d(z,y) = ||z — y||.

4.2.7 Separability of Cla,b] The space C[0, 1] is separable. Indeed, the
set of polynomials with rational coefficients is countable, any polynomial
can be approximated by polynomials with rational coefficients, and the
set of polynomials is dense in C[0, 1] by the Weierstrass Theorem (see
2.3.29). Since C[0, 1] is isometrically isomorphic to Cla,b] where —oco <
a < b < oo, Cla,bl] is separable also.

4.2.8 The space LP[a,b] is separable Let —oo < a < b < oo, and
1 < p < oo be real numbers. From 4.2.7 and 2.2.44 it follows that
L?[a,b] is separable. The spaces LP(—o0,0), LP(—00,a) and L?(a, c0)
are separable also. We will show that the first of these spaces is sepa-
rable, leaving the reader the opportunity to show the remaining claims.
To do that, we note that L?[a,b] may be identified with a subspace of
LP(—00,00), composed of (equivalence classes with respect to the equiv-
alence relation z ~ y = f; | — y| dleb of) functions in LP(—o0, c0) that
vanish outside of [a,b]. With this identification in mind, we may con-
sider a union D of countable subsets D,, that are dense in LP[—n,n]. D
is certainly countable, and for any € > 0 and = € LP(—00,00), one may
find an n such that the restriction x,, of x to [-n,n| is within § distance
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from z, and a y € D, within the same distance from x,. Thus, D is
dense in LP(—o00, 00).

4.2.9 Exercise  Suppose that a measure space (2, F, ) is separable,
i.e. that there exists a sequence A,, of elements of F such that for every
A € F and € > 0 there exists an n € N such that (A + A,) < e. Prove
that L?(Q, F, ) is separable.

4.2.10 Theorem If a Banach space is separable then there exists a
(possibly finite) countable set composed of linearly independent vectors
that is linearly dense in this space.

Proof The argument is somewhat similar to the Gram—Schmidt or-
thonormalization procedure. Let {zj, k > 1} be dense in a Banach space
X. Using an induction argument we will construct a (possibly finite) se-
quence of linearly independent vectors yj such that

span{xzk,1 <k <n} Cspan{yr,1 <k <n}; (4.4)

this will imply that ¢l span {z,,n > 1} = cl span {y,,n > 1}, and the
theorem will follow. We use the following convention: if the sequence y,,
is finite, having say ng elements, then by definition span {yx,1 < k <
n} = span {yx, 1 <k <ng} = span{y,,n > 1} for n > ng.

For n = 1 we let y; = x1. For the induction step we suppose that
linearly independent vectors 1, ..., y, have already been defined in such
a way that (4.4) is satisfied. If

span{yg,1 <k <n} =X,

we are done; otherwise there exists at least one natural j such that
xj & span{yk,1 < k < n}, for if {z;,j > 1} is included in span {yx,1 <
k < n} so is its closure. Certainly, j > n + 1. We take the minimal j
with this property, and put y,4+1 = z;. By construction {z1,...,2p41} C
{ml,...,xj} - {yl,...,yn+1}. |

4.2.11 Complete orthonormal sequences  We will say that an orthog-
onal (orthonormal) sequence in Hilbert space is complete if its linear
span is dense in this space. 4.2.2 and 4.2.10 above show that in any
separable Hilbert space there exists a complete orthonormal sequence.
We say that a Hilbert space is infinite-dimensional if there is no finite
orthonormal set that is complete in this space.
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4.2.12 Theorem Let H be a Hilbert space and let (z,),>1 be an
orthonormal sequence. The following are equivalent:

a) (z,)n>1 is complete,

(b) for all z in H, z = limy, 0o >y (24, 2) 24,

(
(
(
(

)
)
)
d) for all z in H, ||2[|?> = 3207, (2, 7)?,
)
)

¢) for all z and y in H, (z,y) = >_.° (@, 2)(Tn, y),

n=1
e) for all z in H, ||z[|? < 307 (2, 7)?,
f) for all z in H, (x,x,) =0 for all n > 1 implies x = 0.

Proof 1f (a) holds, then H,, = span {x;,1 <14 < n} is an non-decreasing
sequence of subspaces of H with H = ¢/(|J,—, H,). By 3.6.8, projections
P,, on H,, converge strongly to the identity operator I : lim,, o, Pz =
z,x € H. Since P,z = > i (i, z)z;, (see 4.2.3 above) (b) follows.
Implications

(0) = (c) = (d) = (e) = (f)

are trivial. Finally, if (a) does not hold, then there exists an = € H,
perpendicular to the closure of the linear span of (x,)n>1, contradicting

(f). U

4.2.13 Exercise  Prove that z; = (0kn),~;,n > 1 is a complete
orthonormal sequence in [2.

4.2.14 Example Let xoniy = 2%22n+k where 0 < k£ < 2™ and z,,
where defined in 2.1.32. The random variables z,, and z,, and are
centered (Ex,, = EFz, = 0). For any n and 0 < k # k' < 27,
zon4p and zonip have disjoint support so that their product is zero
and so is their covariance. Also, if m > n then for 0 < k < 2" and
0 <1< 2™ zgnip29m 4y = 2omy provided 2™ "k <1 < 2™ "(k+1), and
Zon gk zom ) = 0 otherwise. Since Em2n+k =9on L sw = 1L,0< k<2 n >
0, 2, are orthonormal. Furthermore, if x € L?[0,1] is orthogonal to all
Ty, then by 2.1.32 it is orthogonal to all 1[%7%),0 <k<2"n>0.
Therefore, if a y € L?[0,1] is continuous, by the Lebesgue Dominated
Convergence Theorem

/0 #()y(s) ds = Tim Zf (2> /_Wx(s)dso.

This proves that x is orthogonal to all continuous functions on [0, 1],
so that by 2.2.19 it is orthogonal to all y € L?[0,1], and in particular
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to itself. Thus z = 0 and we have proven that (z,),>1 is a complete
orthonormal sequence in L?[0, 1].

4.2.15 Exercise  Let z,,n > 1, be an orthonormal sequence in a
Hilbert space H, and let (a,),~, € [%. Prove that the series Y~ | anz,
converges.

4.2.16 Any two separable infinite-dimensional Hilbert spaces are iso-
metrically isomorphic  If H and H; are infinite-dimensional separable
Hilbert spaces, then there exists an operator A mapping H onto H; such
that

(Az, Ay)m, = (z,y)m for all z,y € H.

(In particular on putting @ = y we obtain ||Az|g = ||||m,.)

Proof Let wy,,n > 1 and z,,n > 1 be complete orthonormal sequences
in H and H;, respectively. Let € H. The series > - (z,w,)3 con-
verges, so we may define Az = Y7 | (z,w,)mz, (see 4.2.15). Note that
(Az, Ay)m, = 00 (@, wn)u(y, wn)m = (z,y)m. Moreover, A is onto, for
if y is in Hy, then Y707 (y,2,)f, is finite, and by 4.2.15 we may con-
sider = >>° | (y, 2 )m, wy,. We check that (z,w;)m = (y, z;)m, so that
Az =y. O

4.2.17 Remark If H is not infinite-dimensional the theorem remains
the same except that the operator A does not have to be “onto”.

4.2.18 Corollary  All infinite-dimensional separable Hilbert spaces
are isometrically isomorphic to [2.

4.2.19 Corollary If H is a separable Hilbert space, then there exists
a probability space (Q, F,P) and a linear operator A : H — L%(Q, F,P)
such that for any = and y in H, Az is a centered Gaussian random
variable, and (Ax, Ay) 12,7 p) = cov(Ax, Ay) = (z,y)m.

Proof Let (Q,F,P) be a probability space where a sequence X, of
independent standard Gaussian random variables is defined. Note that
X, € L*(Q, F,P) since ||XTLH%2(Q}]—‘,]P) = 0%(X,) = 1. Certainly, X,, are
orthonormal. Let H; be the subspace of L2(Q, F,P) spanned by X, ( i.e.
the closure of the linear span of X,,,n > 1). Since H is separable, there
exists an operator A : H — H; described in 4.2.16. By 4.1.5, for any
x € H, Az is Gaussian as a limit of Gaussian random variables. It also
must be centered, for by the Holder inequality expectation is a bounded
linear functional in L?(Q, F,P). O
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4.3 Construction and basic properties of Brownian motion

4.3.1 Construction: first step  There exists a process {ws,t > 0} on a
probability space (2, F,P) satisfying (a)—(b) of the definition 4.1.6.

Proof Let H = L?(RT), and let A be the operator described in 4.2.19.
Let wy = A(1p,¢)). Any vector (wy,, ..., ws, ) is Gaussian, because for any
scalars «;, the random variable

D =AY ailpy,)
i=1 i=1

is Gaussian. Moreover, Ew; = 0, and Fw,ws = (ljo4), j0,s)) 22w +) =
fooo L0,6170,s) dleb = s At. |

4.3.2 Ezistence of Brownian motion on [0,1]  In general it is hard, if
possible at all, to check if the process constructed above has continu-
ous paths. We may achieve our goal, however, if we consider a specific
orthonormal system (other ways of dealing with this difficulty may be
found in [5, 61, 100, 79]1). We will construct a Brownian motion on [0, 1]
using the system z,, from 4.2.14. As in 4.2.19, we define
oo
Az = Z(wn,x)Yn (4.5)
n=0
where Y, is a sequence of standard independent random variables. Let

(oo}

wi(w) = (Aljg,n)(w) =D (2n, 1j0,))Y; Zyn Y, (w), t€[0,1].

n=0
(4.6)
The argument presented in 4.3.1 shows that w; satisfy the first two con-
ditions of the definition of Brownian motion, and it is only the question
of continuity of paths that has to be settled.

Note that y,(t) = (2n, 1jo,)) fo Zn(s)ds is a continuous function,
so that for any w, the partlal sums of the series in (4.6) are (linear
combinations of) continuous functions. We will prove that the series
converges absolutely and uniformly in ¢ € [0, 1] for almost all w € Q. To
this end write

oo 2™ —

=3 Z Yor 4k (t)Yon 11 (w) (4.7)

n=0 k=0

t Kwapien’s approach [79] described also in [59] is of particular interest because
it involves a very elegant functional-analytic argument and shows directly that
Brownian paths are Holder continuous with any parameter « € (0, %)
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and
on 1

an(w) = sup. Z Yo 41 () Yar 1 1(w)) - (4.8)

Certainly, if Y ° jan(w) < oo a.s., we are done. Observe that for any
n € N, functions yon4p, 0 < k < 2™ — 1, have disjoint supports and

sup, [Y2n 1k (t)] = sup. |yan ()] = yan (2—(n+1))
0<t< 0<t<

=232-(ntl) — o= (5+1)

so that

an(w) <27GH  sup  ([Von g (w)] .
0<k<2n—1

We want to find a convergent series > -, b, of non-negative num-
bers such that a,(w) < b, for all but a finite number of indexes n
(this number might be different for different w), except maybe for a
set of measure zero. In other words we want to show that the set of
w such that a,(w) > b, for infinite number of indexes has measure
zero. The probability of this event equals lim, oo P(U;s, {an(w) >
bn}) < limgy—oo Yoge,, P{an(w) > b,}. Thus it suffices to show that
>oo  P{an(w) > by} < oo. (In other words we are using the easy part
of the Borel-Cantelli lemma.) Write ¢, = b,2%, and

Plan(w) > by} < P{27GHD  sup  [Yonix| > by}

0<k<2n—1
= P{ sup |Yaonig|>2c,}
0<k<2n—1
2n 1
< ) P{Yargrl > 260}
k=0
2n+1 on S 52
V2T 2cn \/27TCn 20n
e
V2me,
To make the last series converge we may try 2¢2 > n or at least ¢, = 5
Then > 07 Pla,(w) > b} < >0, (%)nﬁ < 00, and the series
S b = >0’ \/%27% converges also. This completes the proof.

4.3.3 Brownian Motion on RT  To construct a Brownian motion on
R*, note that we may start with a doubly-infinite matrix Y,, ,, n,m > 0,
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of independent Gaussian variables and construct a sequence of indepen-
dent copies of Brownian motion on [0,1] : wf = 377 jy,(t)Y, k. In
other words, for any k > 2, and s1,...,8; € [0,1] and distinct inte-
gers ny, ..., ng, random variables wg) are mutually independent. Then

we define
[t]-1 ”
= Z wy + W~y (4.9)
n=0
or, which is the same,
w?, t€[0,1],
y w) +w} teltL,2, (4.10)
t 0 1 2 )
w1+w1 +wt_2, tE [2,3]7

SO Oon

In other words, w; is defined so that for any w € Q, wi(w) in the
interval [n,n+ 1] is a path that develops as a Brownian motion on [0, 1],
but starts at w, and is independent of the past (to be more specific:
wy — wy, is independent of the past).

4.3.4 Exercise Check that (4.10) defines a Brownian motion, i.e. that
conditions (a)—(c) of definition 4.1.6 are satisfied.

4.3.5 A more direct construction A less intuitive, but more elegant
way of constructing a Brownian motion w; on R¥ is to put

(1+t)( 0, _ w?) (4.11)

T _1—|—t

where w?, ¢ € [0,1] is a Brownian motion on [0, 1]. Still another way may
be found in [62].

4.3.6 Exercise  Show that (4.11) defines Brownian motion.

4.3.7 Properties of Brownian motion Let w; be a Brownian motion
on RT. Then,

(i) for any a > 0, wa2t is a Brownian motion,

(ii) for any s > 0, w; —ws is a Brownian motion, independent of w,,,u < s,

— =

iv

)
)

111) 1S a Brownian motion
)

tw1 is a Brownian motion.
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Property (i) is called the scaling property, and property (iv) is called the
time-reversal property.

Proof We need to check that conditions (a)—(c) of definition 4.1.6 are
satisfied. The proof of (a)—(b) is very similar in all cases. For example, in
proving (iv) we note that for any ¢1,...,¢, the vector (tlwﬁ,tgwi, ey
tnw 1) is Gaussian as an image of the Gaussian vector (w LW,
woa ) via the affine transformation given by the matrix with t1, . t on
the diagonal, and the remaining entries zero. Moreover, since for any
a>0,a(sNt) = (as) A (at), Etwyiswy = st(L)A () =tAs.

Continuity of paths is not a problem either; the non-trivial point in
the whole theorem is that P{lim;_o w1 = 0}. A hint that it is really so
is that F (tUJl) = t, so that tw. tends to zero in L?(Q, F,P), and, by
the Markov 1nequahty 1.2.36, we have lim;_¢ ]P’(|tw1 | > ¢€) =0, for any
€ > 0. To prove that P{lim; o tws = 0}, we need to be more careful,
Observe that, since the paths of tw1 are continuous for ¢ > 0,

{tnl%tw%zo}:ﬂ U N {|sw%|§%}. (4.12)

neN | meN 5<%’5€Q

Note that were the paths not continuous we would be able to write
merely

fimrwy =0y = () [ U ) sl < )
neN mENs<%

In (4.12), the sequence A,, of sets in brackets is decreasing: A, 11 C Ay,
SO we can write

1
P{hth)l =0} = nh_)n;oIP U m {lswi] < ﬁ}
meN 5<%)3e(@

The sequence A, ,, appearing in brackets now is increasing in m: for
any n, Apm C Ap m+1, and we may write

1
P{llmtun =0} = lim lim P ﬂ {|]sw1] < =}
n—00 Mm— 00 sl €0 s n

Now, for any m, there exists a sequence s;(m) that admits and exhausts
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all values s < %, s € Q. Thus,

P{lim tw) = 0} (4.13)
lim lim lim P{sy(m)w_ | < <, .. |s;(mw_s_| < 1}
o nLH;o mgrlmgi»m Siim 51(17”) —n 7 Sim wsj(lm) - n

Moreover, both vectors

(51w51<1m> ..,sj(m)wsj(lm)) and (W, (m); -+ W, (m))

are normal and have the same covariance matrix and the same vector of
expected values; in other words their distributions are the same. Thus,

P{s1(m)w

L 1
:P{‘wsl(mﬂ < g,...,|wsj(m)| < E}

—_

1
< — . < —
- | < o |sj(m)wsj(1m) | <=} (4.14)

3

But, repeating the argument presented above, we obtain

1
]P’{hm wy =0} = hm lim lim }P’{\wsl(m | <

—00 M—00 j— n

1.
15)

S|

- |wsJ(m)| <

—
N

Combining (4.13)—(4.15), we see that
P{}gr(l) twy =0} = P{}g% wy =0} =1

Finally, a comment is needed on independence of w; — wg, from the
o-field o(w,,0 < u < s) — this follows by condition 2 in 4.1.7 and 1.4.12.
O

4.3.8 Remark Note that the argument used in the proof of the fact
that P{lim;_¢ twy = 0} = 1 applies to a much more general situation.
In particular, we have never used the assumption that distributions are
normal. The situation we were actually dealing with was that we had two
stochastic processes w; and z; (in our case z; was equal to tw 1 ), both
with continuous paths in R, and the same joint distributions. To be
more specific: for any n € Nand t; <t, < .... <t, the joint distribution
. and 2, ..., 2, was the same. Using these assumptions we
were able to show that existence of the limit lim; o w; (a.s.) implies
existence of the limit lim;_,g z; (a.s.).

The relation to be proven in the following exercise will be needed in
4.3.10.

of wy,, ..., wy

n

4.3.9 Exercise  Prove that F |w(t)| = /2.
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4.3.10 Brownian paths have unbounded variation  We will prove that
sample paths of the Brownian motion are a.s. not of bounded variation
on any interval. Without loss of generality we will restrict our attention
to the variation of the path on [0, 1]. Let us fix w and define v, (w) =
21;1 W (w) — w%(w)’ Certainly, v, < v,4+1 and we may define
v(w) = lim, 00 Up(w). It suffices to show that v = oo a.s., or that
,0<
k < 2™, are independent and have the same distribution. Thus, by the
Lebesgue Dominated Convergence Theorem, Ee™" equals

Ee™ = 0. Notice that the random variables ‘w%ﬂ (w) — Wi (w)

gn 2"
) ‘ W —Wk—1 . —|w_1
lim Fe ™" = lim F He 2" 27 | = lim [ Ee 27 .
n—oo n—oo k 1 n—oo

Let t = 2% Since

1 o 52 [2 [ 52
Ee~lwl = e*‘sle*f ds =4/ — e fe” 2 ds
V2t
A/ = / e Vise~ ds = \[
(u = s+ +/t) then

1
[2 [ _. ‘
Ee ¥ = lim e? ( 7/ 6_72 du)
t—0+ T t
zeéexp{hm ln<1/ / )}
2 [ B 1
u2
:e%exp — lim \/7/ e 2 du —e 2——= 5 =0,
t—0+ T )i T 2\/f

where we have used de I’'Hospital’s rule.
Brownian paths are not differentiable at any point either; for a direct
proof see e.g. [5]

w\*

du

N+

4.3.11 Brownian motion is a time-continuous martingale Let (Q, F,P)
be a probability space. An increasing family F;,t > 0 of o-algebras of
measurable sets: Fy C Fyop, C F; for all t,h > 0, is called a (time-
continuous) filtration. A stochastic process X;, ¢t > 0, is termed a
(time-continuous) martingale with respect to filtration F3,¢ > 0 iff
X; is F; measurable, X; € LY(Q, 5, P) and E(X;44|F:) = Xy, t,h > 0.
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To be more specific, we should say that X;,¢ > 0 is a martingale with
respect to F¢,t > 0 and P. If filtration is not clear from the context, a
“martingale X;,t > 0” is a stochastic process that is a martingale with
respect to the natural filtration F; = o(X,,s < t).

Brownian motion is a time-continuous martingale. Indeed, E (w(t +
h)|F) =E (w(t+h) —w(t)|F) + E (wt)|F:) = 0+ w(t), for w(t+h) —
w(t) is independent of F; = o(w(s),s < t) and w(t) is F; measurable.
Similarly, X; = w?(t) — t is a martingale. To this end it suffices to show
that E (w?(t+h) —w?(t)|F,) = h. Writing w?(t+h) —w?(t) as [w(t+h)—
w(t)]2+2w(t)[w(t+h) —w(t)], since [w(t+h)—w(t)]? is independent of F;
and w(t) is F; measurable, this conditional expectation equals E [w(t +
h) —w(t)]? plus wt)E (w(t + h) —w(t)|F) = wt)E (w(t + h) —w(t)).
The former quantity equals h and the latter 0, as desired.

The celebrated Lévy Theorem (see e.g. [102]), a striking converse
to our simple calculation, states that

a continuous-time martingale w(t),t > 0, with continuous paths and
X(0) =0 such that w?(t) —t is a martingale, is a Brownian motion.

W2
4.3.12 Exercise  Show that for any real a, X; = e**()~ %t is a mar-
tingale.

4.4 Stochastic integrals

Let us consider the following hazard game related to a Brownian motion
w(t),t > 0. Suppose that at time ¢, we place an amount z(ty) as a bet,
to have x(tg)[w(to + h) — w(ty)] at time to + h. More generally, suppose
that we place amounts x(¢;) at times t; to have

z_: 7,_:,_1 w(ti)] (416)

at time t, where 0 < a =1ty <t; < --- <t, =b < oco. If we imagine that
we may change our bets in a continuous manner, we are led to considering
the limit of such sums as partitions refine to 1nﬁn1tesimal level. Such a
limit, a random variable, would be denoted f (t) dw(t). The problem
is, however, whether such a limit exists and if it enjoys properties that
we are used to associating with integrals. The problem is not a trivial
one, for as we know from 4.3.10, ¢ — w(t) is not of bounded variation
in [a,b], so that this integral may not be a Riemann—Stieltjes integral.
This new type of integral was introduced and extensively studied by K
1t6, and is now known as an It6 integral.
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The first thing the reader must keep in mind to understand this no-
tion is that we will not try to define this integral for every path sep-
arately; instead we think of w(t) as an element of the space of square
integrable functions, and the integral is to be defined as an element of
the same space. But the mere change of the point of view and the space
where we are to operate does not suffice. As a function t — w(t) €
L2(Q, F,P) where (9, F,P) is the probability space where w(t),t > 0
are defined, the Brownian motion is not of bounded variation either.
To see that consider a uniform partition ¢; = a + %(b —a),t=0,.,n
of [a,b]. Since E [w(tiy1) — w(t;)]?> = (b — a), the supremum of sums
Z;le lw(tit1) — w(ts)| L2(o,7,p) over partitions of the interval [a,b] is

at least Y7 \/% = /nvb — a, as claimed.

We will still be able to establish existence of the limit of sums (4.16)
for quite a large class of stochastic processes x(t), and will see that
T f:xdw is an isometry of two appropriate Hilbert spaces. (Note
that at present it is not even clear yet whether such sums are members
of L?(Q,F,P).) In fact the tool that we are going to use is (2.3.33),
where we proved that once we define a bounded operator on a linearly
dense subset of a Banach space, this operator may be in a unique way
extended to the whole of this space. Our linearly dense set will be the
set of so-called simple processes, which correspond to sums (4.16).

Because w(t) is not of bounded variation, properties of the It6 integral
are going to be different from the Riemann—Stieltjes integral (cf. 1.3.7).
To see one of the differences, let us recall that the approximating sums
S(T,E,z,y) = Z?;ol (&) [y(tiy1) — y(t;)] of the Riemann—Stieltjes in-
tegral [ 2 dy involved both partitions 7 : a =tg < t; < -+ < t, = b
and midpoints E : t;_1 < &1 < t;; and the limit as A(7) tends to zero
was not to depend on =. The fact that the choice of midpoints does not
matter for the Riemann—Stieltjes integral is very much related to the
fact that y is of bounded variation. Indeed, if = is continuous and = and
=’ are two sets of midpoints corresponding to one partition 7 (we may
always combine two partitions to obtain a new one that will be more
refined than the two original ones), then

n—1

|S(T, E7x>y) - S(T7 El>$7y)‘ = Z[x(gz) - x(&;)] [y(tiJrl) - y(ti)]

=0

n—1
S € Z |y(t1+1) - y(tl)‘ S evar[y,a, bL
=0
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provided A(7) < § where § is so small that |z(t) — z(s)| < € when
[t —s| <é.

Therefore, since the Brownian paths have unbounded variation, we
should expect that in the It6 integral the choice of midpoints in the ap-
proximating sum does matter. This is really so, as we shall see shortly.
Note that this is actually something that we should have predicted on
account of interpretation of the integral in terms of our hazard game.
Indeed, our betting strategy z(t),a < t < b, is in general a stochas-
tic process, for it will most likely depend on the behavior of Brownian
motion w(t). In fact, it is natural to assume that x(¢) will be F; measur-
able where F;,t > 0 is a natural filtration of the Brownian motion; in
other words, by the Doob-Dynkin Lemma, x(¢) will be a function of the
Brownian motion up to time ¢. Such processes are said to be adapted.
Now, an approximating sum with &; > ¢; would describe a strategy of a
person playing the game at time ¢; with some foreknowledge of the fu-
ture behavior of the Brownian motion, however short &; — t; may be. Of
course we should not expect that such a strategy will result in the same
gain as the strategy of a player who does not posses this knowledge.

4.4.1 The choice of midpoints: an example We will consider two ap-
proximating sums:

i (tiv1,n) —w(tin)] and

3@
,_.»—A

Z z+1 n l+1 n) - w(tl,n)L

where t;,,, = a + %(b —a),0 < i < n, and show that S,, converges

in L?(Q, F, IP’) to 3[w?(b) — w?(a)] — 4(b — a) while S, converges to

$[w?(b) — w?(a)] + (b — a). To this end, note first that by the relation
a

26— a) = 2 — o) — Han B2

N[ —

Sn =3 i (tiv1,n) — w*(tin)] — % Z[w(tﬂ—l,n) —w(tin)]?

In a similar way, by (8 — a) = 3(8? — @®) + 3 (o — B)?,
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n—1
1
S = 502 0) — w? (@) + 5 S wltisnn) — wltin)
i=1
Hence, it remains to show that
1& 1
Jim 2= Jim 5 3 fltinrn) = wltin)]* = 50—

(in L?(Q, F,P)). An elegant way of doing that was shown to me by Alex
Renwick (for a different method see e.g. [20]). Note specifically that
random variables w(tit1,) — w(tin), 0 < 4 < n — 1, are independent
and have distribution N(0, (b — a)). By 1.2.32, their squares have the
gamma distribution with parameters % and %ﬁ and, by 1.2.33, the sum

of the squares has the gamma distribution with parameters 5 and % n

-
In particular, by 1.2.35, EZ, = b—a and ||Z,, — 3(b — a)||r2(0.7p) =
2
0y = 2@, which proves our claim. O
In what follows we will focus our attention on the It6 integral, which
corresponds to the natural choice & = t;. Note however, that other
choices are of interest as well. In particular, taking the midpoint & =
5(t; + tiy1) leads to the so-called Stratonovich integral.
We fix a Brownian motion w(t),¢ > 0 on (2, F,P) and the natural

filtration F; = o(w(s),s < t).

4.4.2 The integrands  The integrands in the It6 integral will be square
integrable processes = z(t,w) that “do not depend on the future”. First
of all we require that x is jointly measurable; i.e. that it is measurable
as a function from ([a, b] x @, M([a,b]) x F) to (R, M(R)). Secondly, we
require that f; Jo 2% (t,w) dPdt is finite. Thirdly, to avoid the possibility
of strategies dictated by knowledge of a future, we will assume that x
is progressively measurable which means that for every t € [a,b],
xlp is M([a,t]) x F; measurable, where I'(t) = [0,¢] x Q.

A set A € M([a,b]) x F is said to be progressively measurable if
ANT(t) € M([a,t]) x Fi. It is easy to check that the collection Z of
progressively measurable sets forms a o-algebra. For example, to check
that a countable union of elements of Z belongs to Z we use the formula
(U2, A) NI = U, (A, N D).

Furthermore, a process x is progressively measurable iff it is measur-
able with respect to Z. Indeed, by definition x is progressively measurable
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iff for all ¢ € [a,b], z1p() is M([a, b]) x F; measurable. This means that
Y aem®)Veela) (F1r) " (A) € M([a,b]) x F
= Vaem® Viclan 2 (A) N lpg € M([a, b)) x F,
<~ VAGM(]R) 1‘71(14) IS
and this last relation means that x is 7 measurable.
An important corollary to this is that the space of square integrable
progressively measurable processes is a Hilbert space, or that it forms

a closed subset of square integrable functions on [a,b] x Q. The former
space will be denoted Lf, = Li[a, b = Li([a, b, Q, F, P, F).

The following lemma will be needed in 4.4.4, below.

4.4.3 Lemma  Consider the space L?[a,b] of real-valued, square inte-

grable functions on [a, b], and the operators T,,,n > 1 in this space given
n— n 2

by Thz(t) = Y- 2 i ()[4, b0y (1), where a;(z) = 2 fti+1 x(s)ds

and t; = a + +(b—a). Then ||T,|| = 1 and lim,, .o T,z = .

Proof We have

) n—2 ) b—a n—2 n tit1 2
T = . =
Tl = St = X ([ o as)

n-2 tit1 tit1
< / 2% (s) ds/ 12ds (Cauchy-Schwartz)
—5 b—aly t;
n—2 tit1
=3 [ e as <al
i=0 Vi

Hence, |15, < 1. For equality take ,(t) = 1jo,¢,_,)(t).

To prove the rest note that if 2 = 1(.4) where a < ¢ < d < b then
T,z (t) = z(t) for all n greater than ng = ng(t), except perhaps for ¢ = ¢
and t = d. Moreover, T, z(t) < 1{4,), and so by the Lebesgue Dominated
Convergence Theorem T, converges to x, as n — 00. Since such x form
a linearly dense subset of L?[a, b], we are done. O

4.4.4 A dense subset ofLi: the collection of simple processes A process
is called simple if there exists an n > 1, a partition a = tg <t < --- <
tn = b and x4, € L*(Q, F;,,P) such that

n—1
2(t,w) =D @, (W)L, 000 () + 21, (@)L (4.17)
=0
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We note that a simple process is of necessity progressively measurable as

a sum of progrebsively measurable processes. Moreover, it is square inte-
—1

grable. Indeed, [, 2*(t,w) dP(w) equals Y7~ ||z, ||%2(Q7]-',IP)l[tri7ti+1)(t)+

~1
[ HLQ(Q,}'P)l{b}’ and fa Jo a? dPdleb = 37775 ||, ||2L2(Q,HP) (tir1 —
t;).

To prove that simple processes form a dense set in Lf), take an x
from this space and note that for almost all w, z,,(t) = z(t,w) belongs
to L?[a,b]. Hence, we may use the operators T;, from 4.4.3 to define a
simple process z,,(t,w) as T, (t) for all such w and put zero otherwise.
Now,

b
|2n — zllrz = / / [Ta(t,w) — 2(t,w)]? dt dP(w)
QJa
= /Q 1Tz, — .TWH%Q[G’b] dP(w). (4.18)

By Lemma 4.4.3, the integrand converges to zero and is bounded above
by 4||waL2 (a,p)- Furthermore, fQ4||$wHL2 a,p) AP(w) = 4f|lzflrz < oo, so
that the 1ntegral in (4.18) converges to zero, as desired.

4.4.5 The Ité isometry  The simple process (4.17) may be thought of
as a betting strategy in which we bet the amount ¢, at times ¢; to have

th (tiv1) — w(ti)]

at time b. We will show that I(z) belongs to L?*(Q,F,P) and that
[1(z)|[z2(2,7p) = llzllrz. This is the Itd isometry. For reasons to be
explained in 4.4.8 below, all we will use in the proof is that w(t),t > 0
and w?(t) —t,t > 0 are martingales.

First, writing (w(t)—w(s))? as w?(t)—w?(s)—2w(t)w(s)+2w?(s), since
w(t) is a martingale, E ([w(t) — w(s)]?|Fs) = E (w?(t) — w?(s)|Fs) ,t >
s. This in turn equals ¢ — s since w?(t) — t,¢ > 0 is a martingale. Next,
we show that z,0;, where §; = w(t;+1) — w(t;), is square integrable
and ||xti5i|\%2(9’]_-)P) = (tig1 — ti)] p)- To this end, we note
that xfil{lfigk}éf < ké?, k € N is integrable and F;, measurable, and
calculate

Ea} 1l <iy0; = EE (xi]'{a:figk}(;?‘fti) = Eaj 12 <k (6717,)

= (tit1 —t;)E xfil{zfigk}v
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from which our claim follows by letting k& — co. Now,

n—1
(@) 2rp =Y Eaio;+2 Y Exym,6:6;,
i=0 0<i<j<n—1
and since the first sum equals Z;:Ol (tig1—t;))Eai = | 22 it remains to

show that E [x,6;][x¢,0;] = 0. Note that this last expectation exists, for
variables in brackets are square integrable. Moreover, E (5j|.7-'tj) equals
zero, w(t),t > 0 being a martingale. Hence

Extiéi xtjéj =FE (xtldl xtjdj\]-}j) = El‘tiéixtjE((Sj|ftj) = O,

for ¢ < j, as desired.

4.4.6 Definition By 4.4.4 and 4.4.5 there exists a linear isometry
between L2 and L?(Q, F,P). This isometry is called the It6 integral

and denoted I(z) = fb x dw.

a

4.4.7 It6 integral as a martingale It is not hard to see that taking
a<b<candzc€ Lf,[cuc] we have f;xdw = f:xl[a’b]xg dw. Hence, by
linearity [~ dw = f;xdw + [, xdw. Also, we have E [z dw = 0 for
simple, and hence all processes x in LZ [a, ], since E is a bounded linear
functional on L*(Q, F,P). Finally, E ([, « dw|F,) = 0 where as before
Fp = o(w(s),0 < s <b). Indeed, if = is a simple process (4.17) (with b
replaced by ¢ and a replaced by b), then E (z,;|F,) = x4, E (6;|F:,) =0,
for all 0 < ¢ < n — 1, whence by the tower property E (x,0;|F) = 0 as
well, and our formula follows.

Now, assume that z € L2[0,] for all ¢ > 0. Then we may define y(t) =
fot;vdw. The process y(t),t > 0, is a time-continuous martingale with
respect to the filtration F;,t > 0, inherited from the Brownian motion.

Indeed, E (y(t)|Fs) = E ([ 2 dw|F,) + E (fj xdw|]—'s) = [Prdwt0=
y(s), because f;azdw is Fs measurable as a limit of F, measurable
functions.

4.4.8 Information about stochastic integrals with respect to square inte-
grable martingales  There are a number of ways to generalize the notion
of It6 integral. For example, one may relax measurability and integra-
bility conditions and obtain limits of integrals of simple processes in a
weaker sense (e.g. in probability and not in L?). The most important
fact, however, seems to be that one may define integrals with respect
to processes other than Brownian motion. The most general and yet
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plausible integrators are so-called continuous local martingales, but
in this note we restrict ourselves to continuous square integrable
martingales. These are time-continuous martingales y(t),t > 0 with
Ey?(t) < oo,t > 0, and almost all trajectories continuous. Certainly,
Brownian motion is an example of such a process. It may be proven that
for any such martingale there exists an adapted, non-decreasing process
a(t) such that 3?(t) — a(t) is a martingale. A non-decreasing process
is one such that almost all paths are non-decreasing. For a Brownian
motion, a(t) does not depend on w and equals t. Now, the point is again
that one may prove that the space Lg [a,b] = LZQ, [a, b, y] of progressively

measurable processes = such that E f: 22%(s) da(s) is finite is isometri-
cally isomorphic to L?(Q, F,P). To establish this fact one needs to show

that simple processes form a linearly dense set in Lg [a,b,y] and define
the It6 integral for simple processes as I(z) = Z?;OI xe, [y(tis1) — y(&:)].
Again, the crucial step is establishing It0 isometry, and the reader now

appreciates the way we established it in 4.4.5.

4.4.9 Exercise = Make necessary changes in the argument presented
in 4.4.5 to show the Ito6 isometry in the case of a square integrable
martingale.
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Dual spaces and convergence of probability
measures

Limit theorems of probability theory constitute an integral, and beauti-
ful, part of this theory and of mathematics as a whole. They involve, of
course, the notion of convergence of random variables and the reader has
already noticed there are many modes of convergence, including almost
sure convergence, convergence in L', and convergence in probability. By
far the most important mode of convergence is so-called weak conver-
gence. Strictly speaking, this is not a mode of convergence of random
variables themselves but of their distributions, i.e. measures on R. The
famous Riesz Theorem, to be discussed in 5.2.9, says that the space
BM(S) of Borel measures on a locally compact topological space S is
isometrically isomorphic to the dual of Cy(S). This gives natural ways
of defining new topologies in BM(.S) (see Section 5.3). It is almost mag-
ical, though in fact not accidental at all, that one of these topologies is
exactly “what the doctor prescribes” and what is needed in probability.
This particular topology is, furthermore, very interesting in itself. As one
of the treats, the reader will probably enjoy looking at Helly’s principle,
so important in probability, from the broader perspective of Alaoglu’s
Theorem.

We start this chapter by learning more on linear functionals. An im-
portant step in this direction is the famous Hahn—Banach Theorem on
extending linear functionals; as an application we will introduce the no-
tion of a Banach limit. Then, in Section 5.2 we will study examples of
dual spaces, and in Section 5.3 some topologies in the dual of a Ba-
nach space. Finally, we will study compact sets in the weak topology
and approach the problem of existence of Brownian motion from this
perspective.

147
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5.1 The Hahn—Banach Theorem

5.1.1 Definition If X is a linear normed space, then the space of
linear maps from X to R is called the space of linear functionals. Its
algebraic subspace composed of bounded linear functionals is termed the
dual space and denoted X*. The elements of X* will be denoted F, G,
etc. The value of a functional F' on a vector x will be denoted Fx or
(F, z). In some contexts, the letter notation is especially useful showing
the duality between z and F' (see below).

Let us recall that boundedness of a linear functional F' means that
there exists an M > 0 such that

|Fz| < M|z, reX

Note that Fz is a number, so that we write |Fz| and not ||Fx|.

5.1.2 Theorem Let F' be a linear functional in a normed space X,
and let L = {z € X: Fz = 0}. The following are equivalent:

F' is bounded,

F' is continuous,

L is closed,

either L = X or there exists a y € X and a number r > 0 such that
Fz # 0 whenever ||z —y|| <.

b

(c
(d

(a)
(b)
)
)

Proof Implications (a) = (b) = (c¢) are immediate (see 2.3.3). If L # X
then there exists a y € X\ L, and if (c) holds then X\ L is open, so that
(d) holds also.

To prove that (d) implies (a), let B(y,r) = {z : ||z —y|| < r} and note
that the sign of Fx is the same for all z € B(y,r). Indeed, if Fz < 0

and Fz' > 0 for some z,2’ € B(y,r), then the convex combination

T, = Fa' xz -+ —Fx Fa'Fe—FxzFx'
¢ Fx'—Fxz Fz'—Fx Fz'—Fzx

to our assumption (note that B(y,r) is convex). Hence, without loss of

generality we may assume that Fz > 0 for all z € B(y,r). Let z # 0
be an arbitrary element of X, and set x4 = y + 15z € B(y,r) and

x' satisfies Fx, = = 0, contrary

To =y = qaf € B(y,r). Since Fxy > 0, —Fz < %Hz” Analogously,
Fz_ >0 implies Fz < %HZH Thus, (a) follows with M = % O

5.1.3 Ezamples of linear functionals If (Q, F,P) is a probability space
then FX = E X is a bounded linear functional on X = LY(Q, F,P).
More generally, one may consider any measure space (2, F,u) and a
functional Fz = [zdp on L' (2, F,p). If p is finite, the same formula
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defines a linear functional on the space BM(£2) of bounded measurable
functions (endowed with the supremum norm). If H is a Hilbert space
and y € H, then Fz = (x,y) is a bounded linear functional in H. In
3.1.28 we have seen that all functionals in H are of this form.

Let (Q,F,u) be a measure space, and let p > 1 be a number. As-
sume that y € LY(Q, F, p), where % + % = 1. By the Hélder inequality
the absolute value of [, zydu is no greater than |z| s F ) times
llyllLa(,7,u), and therefore is finite for all x € LP(Q, F, u). Linearity of
the map Fa = fQ zydp on X = LP(Q, F, 1) is obvious, and another ap-
plication of the Holder inequality shows that F' is bounded. In a similar
way one proves that if (2, F, u) is a measure space and y is essentially
bounded, then Fa = [zydu is a linear functional on L*(Q,F, u).

5.1.4 Duality Let X be a Banach space and X* be its dual. Fix z € X
and consider a linear map X* 3 F — F(z). This is clearly a bounded
linear functional on X* for |F(x)| < ||z||x||F||x«, so that its norm is no
greater than ||z||x. In fact we will be able to prove later that these norms
are equal, see 5.1.15 below. The main point to remember, however, is that
sometimes it is profitable to view X as a subset of X**. Equivalently, one
should remember about the duality between X and X* which is amply
expressed in the notation F(z) = (F, ). In this notation, depending on
needs, one may either interpret F' as fixed and x as arguments, or the
opposite: z as fixed and F' as arguments.

5.1.5 Lemma  Suppose that X is a normed space, Y is its algebraic
subspace and = ¢ Y. Set

Z={z€X:z=y+tx for some y € Y,¢t € R}.

Then, Z is an algebraic subspace of X, and it is closed whenever Y is
closed. The representation z = y + tx of an element of Z is unique.

Proof For uniqueness of representation, note that if z = y+tx = ¢/ +t'z
where y, 3’ € Yand t,¢ € Rand (¢,2) # (¢',3’) then we must have ¢ # ¢/,
and consequently z = tjt, (y —y) € Y, a contradiction.

Z is certainly an algebraic subspace of X; we need to prove it is closed
if Y is closed. Suppose that y, € Y and ¢,, € R and that z, = y, + t,x

converges. We claim first that ¢, is bounded; indeed if this is not the

case, then for some sequence ny, %ynk +x = %znk would converge
- -
to zero, for z, is bounded. This, however, is impossible since vectors

iynk belong to a closed set Y and —x ¢ Y. Secondly, ¢,, may not have
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two accumulation points, i.e. there are no two subsequences, say t,, and
tn, , such that ¢, converges to ¢ and ¢, converges to t’ where t # t'.
Indeed, if this was the case, y,, would converge to some y € Y and y,,
would converge to some y’ € Y. However, z,, converges, and so ¥y, +tn, &
would have to have the same limit as y,,; + t,, . Therefore, we would
have y + tx = ¢y’ + 'z, which we know is impossible.

Since t,, is bounded and has at most one accumulation point, it con-
verges to, say, t. It implies that y,, converges to, say, y. Since Y is closed,
y belongs to Y and so z, converges to y + tx € Z. |

5.1.6 Lemma  Under notations of 5.1.5, suppose that there exists
a linear functional F' € Y* and a number M > 0 such that [Fy| <
M|y|,y € Y. Then there exists an F' € Z* such that Fy = Fy,y € Y
and |Fz| < M|z||,z € Z.

Proof Note that we do not assume that Y is closed. If a linear functional
F extends F to Z, then for z = Yy + tx we must have Fz = Fy+tF:c =
Fy+tFz. Thus, by Lemma 5.1.5, F' is uniquely determined by a number
a = Fz. The lemma reduces thus to saying that one may choose an a
such that

~Mlly+tz|| < Fy+ta < My +tz|, forallyeY. (5.1)

This is trivial if ¢ = 0, and in the other case, dividing by ¢, we see after
some easy algebra that this is equivalent to

~Mlly+z|<Fy+a<M|y+z|, forallyeV. (5.2)

(Beware the case ¢ < 0!) The existence of the a we are looking for is
thus equivalent to

sup{—Fy — Mlly + z(|} < inf {—Fy + M|y + [/} (5.3)
yeY yeY

or, which is the same,
—Fy—Mlly+z| <—Fy + M|y +zf, forallyy €Y. (54)
Since F' is bounded on Y, however, we have:
—Fy+Fy = F@ —y) <My —yll <My + |+ —z—yl]
= Mlly' + ||+ Mllz + yl,

which proves our claim. Note that the inequality in (5.3) may be strict:
we may not claim that the extension of the functional F' is unique. [



5.1 The Hahn—-Banach Theorem 151

5.1.7 Exercise In the situation of the preceding lemma, assume ad-
ditionally that Y is closed and F(y) = 0 for y € Y. Take M = 1 and
check that a = inf, ey ||z — y|| > 0 does the job in the proof.

5.1.8 Partially ordered sets A set S is said to be partially ordered
if there exists a relation R in S (a relation in S is a subset of S x S),
such that (a) (p1,p2) € R and (p2,p1) € R implies p1 = pa, and (b)
(p1,p2) € R and (p2,p3) € R implies (p1,p3) € R. Instead of (p1,p2) € R
one writes then p; < ps. We say that partially ordered set S is linearly
ordered if for all p;,ps € S either p; < ps or py < py.

An element p € S is said to be an upper bound for a set S’ C S, if
p’ < p for all p’ € S’. Note that p does not have to belong to S’.

An element p,,, € S’ C S is said to be maximal in S’ if for all p’ € 5’,

/

Pm < p’ implies p,, = p'.

5.1.9 Exercise Prove by example that a maximal element may be
not unique.

5.1.10 Kuratowski—Zorn Lemma If S is partially ordered and for any
linearly ordered subset of S there exists its upper bound, then there
exists a maximal element of S. We omit the proof of this famous result.

5.1.11 Exercise Let 2 be a non-empty set, and let F be a family
of subsets of 2. Suppose that unions of elements of F belong to F. An
example of such a family is the family of all sets that contain a fixed
element py € S. Prove that there exists a set A,,, € F such that A,, C A
implies A,, = A for all A € F.

5.1.12 The Hahn-Banach Theorem Let M > 0 and Y be an algebraic
subspace of a normed space X. Suppose that F' is a linear functional
on Y such that |Fy| < M||y||, for y € Y. Then, there exists a linear
functional F on X such that Fy = Fy,y € Y and |Fz| < M|z|,z € X.

Proof We may assume that Y # X for otherwise the theorem is trivial.
Consider the family S of pairs (Z, F;) of subspaces Z and functionals
F7 on Z such that

(a) YCZ,
(b) Fz(y) = F(y), forally €Y,
(¢) |Fzz| < M|z||, for z € Z.
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By Lemma 5.1.6, S is non-empty. We will write (Z, Fz) < (Z', Fy/) if
7 C 7', and Fzz = Fyz, for z € Z. It is easy to see that S with this
relation is a partially ordered set.

Suppose for the time being that we may prove that there exists a
maximal element (Z,,, F},) of S. Then we would have Z,, = X, for
otherwise by 5.1.6 we could extend F,, to a subspace containing Z,, as
a proper subset, contrary to the maximality of (Z,,, F,,).

Thus, by the Kuratowski—Zorn Lemma it remains to prove that every
linearly ordered subset S’ of S has an upper bound. Let the elements of
S’ be indexed by an abstract set U : S’ = {(Zy, Fu),u € U}; note that
we write F, instead of Fyz, . Let Zy, = J,cy Zu (“D” is for “bound”).
If £ € Zy and y € Z, then there exist u,v € U such that =z € Z,
and y € Z,. Since S’ is linearly ordered, we either have Z, C Z, or
Zy C Zy. Thus, both x and y belong to either Z, or Z,, and so does
their linear combination. Consequently, a linear combination of elements
of Zy, belongs to Zy; Zy, is an algebraic subspace of X.

Similarly one proves that if z € Z, N Z, for some u,v € U, then
F,z = F,z. This allows us to define a functional F}, on Z}, by the formula:

Fy(2) = Fu(2), whenever z € Z,,

for the definition does not depend on the choice of u. Arguing as above
one proves that F, is linear. Of course, the pair (Zy, F},) satisfies (a)—(c)
and is an upper bound for 5’. O

5.1.13 Separating vectors from subspaces  The first application of the
Hahn-Banach Theorem is that one may separate vectors from subspaces.
To be more specific: let Y be an algebraic subspace of a Banach space,
and x ¢ Y. There exists a bounded linear functional F' on X such that
Fx # 0, and Fy = 0,y € Y. To this end, one defines first an F' on Z
from 5.1.5 by F(y + tx) = td(z,Y) = tinfyey ||z — y|. By 5.1.7 this is
a bounded linear functional on Z such that |Fz| < ||z, for z € Z, and
Fz # 0. By the Hahn—Banach Theorem this functional may be extended
to the whole of X in such a way that || F||x. < 1.

5.1.14 Exercise A map p:X — R is called a Banach functional
if p(x +y) < p(z) +p(y) and p(tz) = tp(z) for x and y in X and ¢t € R™.
An example of a Banach functional is p(z) = M||z||, M > 0. Repeat the
argument from 5.1.6 to show the following form of the Hahn-Banach
Theorem. If p is a Banach functional on X, Y is a subspace of X and F’
is a linear functional on Y such that |F(y)| < p(y), y € Y, then there
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exists a linear functional F on X such that F(y) = F(y),y € Y and
[F(z)] < p(z),z € X.

5.1.15 More on duality Let x # 0 be a vector in a Banach space. There
exists a functional F' € X* such that |F|| = 1, and Fz = ||z||. Indeed,
let Y be the subspace of X defined by Y = {y € X;y = tx,t € R}
The functional F' on y, given by F(tx) = t||z||, satisfies Flx = ||z, and
| F|lyx = maxF(|Hi£—”|7 \H’THD = 1. Therefore, the extension of F, that
exists by the Hahn—Banach Theorem, satisfies all the desired properties.
In particular we obtain

x| = sup [Fz|= sup [(F,z)]. (5.5)
17 I+ =1 [l Fllxx=1
This should be compared to the fact that by definition
|F|lx- = ”51”1p1 |Fz| = HSl”1p1 |(F,x)|, (5.6)

as this again shows the duality between X and X*. As a by-product we
obtain the fact that the norms considered in 5.1.4 are equal. In other
words, one may consider X as a subspace of X** and the norms of = as
an element of X and as a functional on X* are the same.

There is, however, an important difference between (5.5) and (5.6).
Indeed, while it is easy to show by example that the supremum in the
latter equality does not have to be attained at a vector x € X, we have
constructed the functional F' for which the supremum in the former
equality is attained. This suggests the following problem. We know that
continuous functions attain their suprema on compact sets; is there a
topology in X* under which the function F' — (F,x) is continuous for
all x, and the set of functionals with norm one is compact? The answer
is affirmative, and it turns out that this topology is simply the weakest
topology such that the functions F +— (F, z) are continuous for all z € X
called the weak* topology. This is the subject of Alaoglu’s Theorem 5.7.5,
below. This topology is exactly the topology that this chapter is devoted
to.

Before closing this subsection, we introduce the notion of a Banach
limit, a tool of great usefulness in functional analysis, ergodic theory,
etc. See e.g. 5.3.6 for a simple application.

5.1.16 Banach limit ~ Asin 2.3.9, let L be the left translation L (§,),,5,
= (€n+1),>1 In 1%, and let e be the member of [°° with all coordinates
equal to 1. There exists a functional B on [ such that ||B|| =1,
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BL =B, and Be =1,
B (§n)n>1 > 0 provided &, > 0,n > 1,

)

)

) liminf, . & < B (§n)n>1 < limsup,,_, &n,
) B (fn)n21 = lim,, o &, if this limit exists.

Such a functional is called a Banach limit.

Proof Let Y = Range(L — I) C 1°°, where I is the identity operator.
Consider

= inf [le—y|| = inf [[e—yl| = inf [le — (Lz — )]
a= inf lle—yl=infle—y]= inf fle—(Lz—u)]|

Taking z = 0, we have a < 1. Also, if we had ||e— (Lx—z)|| < 1 for some
x € 1°°, then all the coordinates of Lz —x = (§{n41 — &n),,>; would need
to be positive, so that « = (§,),,~; would be increasing. Since z € [,
(én),,>1 would need to converge and we would have limy, o0 (§nt1—6n) =
0 and, hence, |le — (Lz — x)|| = 1. This contradiction shows that a = 1.

By 5.1.7 and the Hahn—Banach Theorem there exists a functional B
such that ||B|| = 1,Be =1 and By = 0,y € clY. In particular (a) holds.

Suppose that Bx < 0 even though x # 0 has non-negative coordinates.
Then |le— Te HxH < 1 and yet B(e— Tl ” x) > 1. This contradicts | B|| = 1.
Hence, (b) follows.

We are left with proving (c), condition (d) following directly from
(c). We will show that B(&,),~; = | = limsup, _, . &y; the other
inequality will follow from this by noting that limsup, . (—&,) =
—liminf,, . &,. Take € > 0 and choose an ng such that £, >1—e€,n >
no. By (b), (fn)n>1 = BL™ (fn)n21 =B (€ﬂ0+’ﬂ)n21 - Hence by (b) we
obtain B (§ntn, — (I = €)),51 = 0, s0 that B (§1),,51 = B (§notn)p>1 =
l — €. Since € is arbitrary, we are done. O

5.1.17 Exercise Prove (d) directly without referring to (c), by noting
that ¢g C lY.

5.2 Form of linear functionals in specific Banach spaces

In 3.1.28 we saw that all bounded linear functionals on a Hilbert space
H are of the form Fx = (z,y) where y is an element of H. In this
section we will provide forms of linear functionals in some other Banach
spaces. It will be convenient to agree that from now on the phrase “a
linear functional” means “a bounded linear functional”, unless stated
otherwise.
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5.2.1 Theorem Let X = ¢y be the space of sequences = (&),
such that lim,_. & = 0, equipped with the supremum norm. F is a
functional on X if and only if there exists a unique sequence (), s, € I*
such that -

Fz =Y &oan (5.7)
n=1
where the last series converges uniformly. Also, |[F|lcs = || ()5 [lin-

In words: ¢}, is isometrically isomorphic to I'.

Proof Define e; = (din),~;- Since || 31 &ei — x| = sup;s,4q &l
which tends to zero as n — oo, we may write z = lim,,_o ZLI e, =
Yoo, &ei. In particular, (e,), ., is linearly dense in ¢. This is crucial
for the proof. B

If (an), >, belongs to I', then

D lenanl < l@lleg Y lan] = 12 ]leoll (@) 1 [l (5.8)
n=1 n=1

and the formula (5.7) defines a bounded linear functional on c¢q.

Conversely, suppose that F' is a linear functional on ¢g. Define «a,, =
Fe,, and z, = Y . (sgna;)e; € co. We have ||z,]|¢, < 1, and Fz,, =
S el Since [Fz| < ||F||, if |z| < 1, (an),, belongs to I' and its
norm in this space is does not exceed ||F||. Using continuity and linearity
of F, for any = € ¢y,

Fg = Fnh_)nfol<> Z e, = nan;o Fz; &iei
i=

=1
i=1 i=1 n=1

Estimate (5.8) proves that the last series converges absolutely and that
£ < |l (an),>; ;. Combining this with (5.8) we obtain ||F|c; =
[ (O‘n)nzl 2 U

5.2.2 Exercise State and prove an analogous theorem for the space
c of convergent sequences.
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5.2.3 Theorem Let X =[!. F is a functional on X if and only if there
exists a unique sequence (ay),,~; € (°° such that

Fr=Y &om,  x=(&),s €' (5.10)
n=1

where the last series converges uniformly. Also, we have |[F|/j1)- =
| (@) 51 llise - In other words (I*)

*

is isometrically isomorphic to [°°.

Proof 1If (cv,),~, belongs to [°° then the series (5.10) converges abso-
lutely, and the series of absolute values is no greater than ||z||;; times
I (@) - Tn particular, [[F] < || (n)ys -

Conversely, suppose that F is a linear functional on {!, and define o, =
Fe,, where as before e; = (§;n),,~, - Since |le, || = 1, sup,, [an| < || F]],
proving that (a,), -, belongs to [°°, and that its norm in {* does not
exceed || F||. Now, [lz—""" &eilln = 2.2, 1 [&] sothat . = 377° ) &ey.
Therefore, we may argue as in (5.9) to obtain (5.10). This in turn implies
that | F|| < || (an),,>1 [li=, and so the two quantities are equal. O

5.2.4 Remark The theorems proven above illustrate in particular the
fact that X may be viewed as a subspace of X**. In our case we have
co C 1. Tt is also worth noting how duality is expressed in formulae (5.7)
and (5.10).

5.2.5 Exercise  Let [}, > 0 be the space of sequences (&,),>1 such
that Y07, |&n|r™ < oo. When equipped with the norm [[(&,)n>1]] =
oo 1&nlr™, 1L is a Banach space. Prove that this space is isomorphic
to I! and use this result to find the form of a linear functional on I}.

5.2.6 Theorem Let X be the space C[0, 1] of continuous functions on
the interval [0,1]. F is a linear functional on X iff there exists a (unique)
signed Borel measure p on [0, 1] such that

1
Fr= / x duy, (5.11)
0
and [|F|| = [|pllgugo,1-

Proof Certainly, if u is a signed measure then (5.11) defines a linear
functional on C0,1] and ||F|| < ||g||. To complete the proof we show
that for a given functional F' there exists a g such that (5.11) holds and
|2l < ||F||, and then prove uniqueness.
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The space C[0, 1] is a subspace of the space BM |0, 1] of bounded mea-
surable functions on this interval. Let F' be an extension of our functional
to BM|[0, 1], which exists by the Hahn-Banach Theorem. (This exten-
sion may perhaps be not unique but this will not concern us.) Define

0, t <0,
y(t) = Flyy, 0<t<1, (5.12)
F1[0,1], t>1

Ifa<Oandb>1landa=ty<t; <..<t, =0b, wheret; <0 < t;41,
and t; <1 <tjqq, for some 1 <i < j <mn, then

n

Z ly(te) = y(tr-1)|

k=1

= ly(tir)| + Y lylte) = y(te1)| + [y(ti1) — y(t;)]
k=i+2

J
= |F1[O,ti+1]| + Z |F1(tk,1,tk]| + |F1(tj,1]|
k=i+2

J
=F </B¢+11[0,t,;+1] + Z ﬂk]‘(tk—htk’] +ﬁj+11(tja1]>

k=i+2

where fi11 = sgnFljgs, .1, Be = sgnFly, 41,k = i+ 2,...,j, and
Bj+1 =sgn Fly, ;1. Above, the argument of F is a function with norm
1 in BM]J0,1], hence, the whole expression is bounded by ||F||. This
shows that var[y,a,b] < ||F|| and so var[y, —oo,00] < ||F||. Moreover,
condition (1.22) is satisfied. Let p be the unique Borel measure on R
corresponding to the regularization of y. Even though p is a measure on
R, it is concentrated on [0,1] for y is constant outside of this interval.
Hence, p may be identified with a measure on [0,1]. Also, u({0}) =
y(0) — y(0—) = Flypy, and ||u]| = varly, o0, 50] < | F||.

For z € C[0,1] define z,, = >, x(%)l(l;l’%] on (0,1] and z,(0) =

J](%) By uniform continuity of x, x, tendgr to  in BM[0,1]. There-
fore, Fx = limy, oo Fx,. On the other hand, Fz, = > z(%)[y(%) —
y(*=1)] + z(+)1{0y. The sum here is an approximating sum of the Rie-
mann—Stieltjes integral of & with respect to y. By 1.3.8, this sum con-
verges to the same limit as the corresponding approximating sum of the
Riemann—Stieltjes integral of x with respect to the regularization y, of

y, for y(04+) = y(0). Since pu(—o0,t] = y,(t),t € R, Fx is the limit of
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S a(EH)p(EE, L] + x(2)pu({0}), which by the Lebesgue Dominated
Convergence Theorem equals f[o,1] xdu.

To prove uniqueness of representation (5.11), assume that p and v
are two measures such that this formula holds. Let y = pu* — p~ and
v =vt — v, for some positive measures p*, u~, v, and v~ on [0, 1].
Then [xzd(pt +v7) = [zd(w" + p7), for all z € C[0,1], which by
1.2.20 implies u™ +v~ =vT + p~, and so u = v. O

5.2.7 Exercise In Subsection 1.2.20 we dealt with measures on R and
in the concluding step of the proof above we needed to apply 1.2.20 to
two measures on [0, 1]. Fill out the necessary details.

5.2.8 Remark It is not true that for any functional F on C[0,1]
there exists a regular function y of bounded variation on [0, 1] such that

Fx = /xdy, for all z € C[0,1]. (5.13)

The assumption that y is right-continuous does not allow us to express
Fz = z(0) in this form. However, one may prove that for any F on
(0, 1] there exists a unique function of bounded variation on [0, 1], right-
continuous in (0,1), such that y(0) = 0 and (5.13) holds. In a similar
way, there is no one-to-one correspondence between measures on {—oo}U
RU{oo} and functions of bounded variation on R such that (1.22) holds,
for the measure of {—oco} may possibly be non-zero.

5.2.9 Riesz Theorem  In Theorem 5.2.6, the assumption that we are
dealing with functions at [0, 1] is inessential. In particular, we could con-
sider any interval [a,b], half-axis (—o0,a] or [a,+00), with or without
endpoints, or the whole of R; we could also include one or both points at
infinity (see below). From the topological point of view it is the assump-
tion that we consider functions defined on a locally compact topological
space that is important. A famous Theorem of Riesz says what fol-
lows.

Let S be a locally compact topological space, and let Cy(S) be the space
of continuous functions vanishing at infinity. F is a functional on Cy(S)
iff there exist a finite (signed) measure on S such that Fx = fsxd,u.
Moreover, ||F||cs(s) is equal to the total variation of fu.

We note that this theorem includes not only 5.2.6 but also 5.2.1 and
5.2.2 as special cases (see 2.2.37). Corollary 5.2.10 and Exercise 5.2.11
below are also instances of this result, but we will derive them from 5.2.6
without referring to the Riesz Theorem. The proof of the Riesz Theorem
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may be found e.g. in [103]. It is important to note that the measure in
the Riesz Theorem is non-negative iff F' maps the non-negative cone
Cf (9) of all non-negative numbers into R* ([103]). Moreover, it is inner
regular, i.e. for any € > 0 and any open set G there exists its compact
subset K of G such that u(G\ K) < e.

5.2.10 Corollary  For any linear functional on C[—o0, 0¢] there exists
a unique Borel measure x4 on R and two unique real numbers a and b
such that

Fx = /xd,u + ax(+00) + bx(—o0). (5.14)

Proof By 2.2.31, C[—00, 0] is isomorphic to C0, 1] and the isomorphism
I:C[0,1] — C[—o00,00] is given by Iz(r) = z(L arctan7 + 1). If F is
a functional on C[—o00,00], then F o I is a functional on C[0,1], and
thus we have F o Iz = [z dv for some measure v on [0,1]. Now, for
y e O[*OO, OO],

FyzFOIOI_ly:/I_lyduz/yOde,

where f(¢) = tan(r¢ — 7) is a map from [0,1] to [—o0,00]. Let v =
vt — v~ be a representation of v and let z/;' and vy be the transports
of measures v and v~ via f. Note that v and v~ are measures on
{—o00} UR U {oc}. Let the measures p* and p~ on R be restrictions of
vt and v~ to R, respectively. Then

Fy:/ yofdl/+—/ yo fdv™
[0,1] [0,1]

= / ydy}|r — / ydvy
{—oco}URU{oc0} {—oco}URU{o0}

= / ydp + ay(+00) + by(—o0)
R

where 1= " — i~ = v ({+0c}) ~v] ({-+oc}). and b = v} ({oc}) -
v ({—00}). Uniqueness is proven as in 5.2.6. O

5.2.11 Exercise  Using 5.2.10 find the form of linear functionals on
Co(R), and on the space of functions that vanish at infinity and have a
finite limit at —oo.

5.2.12 Exercise Find the form of a linear functional on Cy(G) where
G is the Kisynski group.
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5.2.13 Corollary If T is an operator on Cy(R) that commutes with
all translations T;,t > 0, given by Ti2(7) = z(7 + t), then there exists a
unique (signed) Borel measure p on R such that T2 (7) = [ z(7+¢)pu(ds).

Proof Define Fa = Tx(0). F is a bounded linear functional on Cp(R).
Hence (see 5.2.11) there exists a charge p such that Tz (0) = [ z(¢)u(ds).
We have

Tx(r) =T:T2(0) = TT-x(0) = /TTx(OM( de) = /fv(T +¢)p(ds).
Uniqueness is obvious. |

5.2.14 Remark By the remark at the end of 5.2.9, the measure in the
corollary above is non-negative iff 7 maps the non-negative cone C; (R)
into itself.

Our next goal is to find the form of a functional on L' (Q, F, 11). Before
we will do that, however, we need a lemma.

5.2.15 Lemma  Suppose that (Q, F, ) is a measure space and that
F is a linear functional on L(Q, F, u). There exist two functionals F'*
and F~ such that F' = FT — F~, and F*z and F~z are non-negative
whenever z is (a.e.).

Proof If z > 0, define FTz = SUPp<, <, I'y- This is a finite number,
since for 0 <y <z, |Fy| < ||F||lly|l < [|F]||||z||- Moreover,

Fte>0 and |F*a| <||F|lle]. (5.15)

We have (a) F*(z; + x2) = F*(z1) + F'(x3), for x1,22 > 0 and (b)
F*(az) = aF*(z) for z > 0 and non-negative number «. The proof
of (b) is immediate. To prove (a), for any € > 0 choose 0 < y; < x;
such that Fy; > Fta; —¢, i = 1,2. Then, 0 < y; + 92 < 71 + T, and
Ft(zy +x2) > Fly1 +y2) > FTay + Frag — 2¢. Thus F(xy + 22) >
F*z, 4+ Ftxy. For the other inequality, we note that for every ¢ > 0
there exists a 0 < y < @y + x5 such Fy > FV(xy + 22) — e. Then
y1 = min(y, x1), satisfies 0 < y; < x1. Moreover, y2 = y—y; equals either
0 or y — x1 and so is no greater than x,. Since we have y; + y2 = v,
Ftay + Fraog > Fy, + Fys = F(yr +y2) > Ft(z1 + 22) — €. This
completes the proof of (a).

Now, one checks that the functional F*z = Ftx, — FTz_ where
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x4 = max(z,0) and z_ = max(—z, 0) is linear, and F*x is non-negative
whenever & > 0. F'™ is also bounded since by (5.15),

|Frall = |Ftay — Fra_| < |Ftagl + |[Fta_|
< |F|llzs ]l + -1} = |1 [l2].

It remains to check that a bounded linear functional F~x = Ftz —
Fz maps non-negative functions into non-negative numbers, but this is
obvious by definition of F*. O

5.2.16 Theorem  Let (Q,F,u) be a o-finite measure space. F' is a
bounded linear functional on X = L(Q, F, i) iff there exists a function
y € L (Q, F, u) such that

Fx:/xydu. (5.16)
Q

In such a case, ||[F|| = [|yllLe(,7 u)-

Proof The “if part” is immediate and we will restrict ourselves to proving
the converse. Also, to prove the last statement of the theorem it suffices
to show |ly|| < || F|| since the other inequality is immediate from (5.16).

1 We will show that if the theorem is true for finite p, then it also
holds for o-finite p. To see that let Q = J,,~, 0y, where €2, are disjoint
and p(Q,) < oo. For all n > 1 let X,, = LY (Qy, Fn, jtn) where F, is
the o-algebra of measurable subsets of €),, and u, is the restriction
of p to this o-algebra. Consider the restriction F;, of F' to X,. Then
| Fullx: < [|F|lx- and hence by assumption there exists a function y,, €
L>(Qy,, Fo, pin) such that for all z € X,,, Fo = [ 2y, du, = [ 2y, du,
and |lyn| < [|Fnl||- Let us extend each y,, to the whole of 2 by putting
Yn(w) = 0forw ¢ Q,,. Define alsoy = > | y,,, which amounts to saying
that y(w) = yn(w) for w € Q,,. Take an = € X and define z,, = zlq,.
Then || Y0 i —z| = fQ\U;’;L—l o, [z dy tends to zero, which means that

lim,, o0 Y1y 2; =  in the norm in X. On the other hand, z,, may be
identified with an element of X,,. Therefore,

n n n
Fx = nlLIIolo ; Fx;, = nler;o ; Fix; = nlLII;O ; /Q yix; dpg

= lim Z/ yxdpy = lim (Zyi)xdu:/yxdﬂ,
n— o0 — Jo n—oo Jo i—1 Q
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the last step following by the Lebesgue Dominated Convergence Theo-
rem. Moreover, since ||y, || < [|Fn|| < [|F||, we have |ly|| < [|F]|.

2 Using Lemma 5.2.15, one may argue that we may further restrict
ourselves to the case where Fz > for = > 0.

3 Assume therefore that u(2) < oo, and Fz > for x > 0. Define a
set-function v on (2, F) by v(A) = Fly4. This is a (positive) bounded,
measure, since (a) v(Q) = Flg < ||F|||I1all = |F||x(R2), (b) finite ad-
ditivity follows from linearity of F, and (c) if A, are disjoint sets, then
lyr_, 4, — 1y, all = My, ., all = p(UZ, 1 Ai) tends to zero,
and thus V(U?:1 A;) = FlU?:l 4, tends to Fluzl A4, = V(U?il Ay).
Moreover, v(A) = Fla < ||F|I1all = ||F||x(A), and in particular,
u(A) = 0 implies v(A) = 0. By the Radon—Nikodym Theorem there
exists a non-negative y such that F14 = v(A) = [, ydu = [, 1aydpu.
Hence, by linearity, for any simple function =z, Fx = fﬂ zy dp. Further-
more, for non-negative x we may use an increasing sequence z,, of simple
functions converging almost everywhere to x. By the Monotone Conver-
gence Theorem such functions converge to = in the sense of the norm in
LY(Q, F, ). Hence, Fx, tends to Fx. On the other hand, by the same
theorem [, 2,y dp converges to [, zy dpu. Therefore, Fa = [xydpu for
non-negative z, and hence for all z € L'(Q, F, u).

It remains to show that ||y|| < ||F||. Suppose that on the contrary,
[lyll > || F||. This means that the measure p(A) of a measurable set A =
{ly| > ||F||} is positive. Let = 14. This is an element of L' (Q, F, ),
and ||z|| = p(A). Note that Fa = [, ydp > ||F||u(A) = || F||||=||. This,
however, contradicts the definition of || F||. O

5.2.17 Exercise Prove claim 2 made above.
5.2.18 Exercise  Show that 5.2.16 implies 5.2.3.

5.2.19 Exercise Let (2, F, 1) be a o-finite measure space. Show that
LP(Q, F,u),p > 1, is isomorphic to L4(Q, F, ), where % + % =1.

5.3 The dual of an operator
5.3.1 The dual operator Let X and Y be Banach spaces, and let A be
an operator A € L(X,Y). For any functional F on Y, the map F o A
x+ < I Fllv-lAllzx,x), the
map F' — F o A, denoted A*, is a bounded linear map from Y* to X*

is a linear functional on X. Since ||F o A]
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and ||A*|| < ||A||- The operator A* is called the dual operator or the
adjoint operator of A. Since for any x € X,

[Azl| = sup = [FAz|=  sup = [A"Fu| < [A™|z]],
Fey=,||F|j=1 FeYs | Fll=1
we see that [|A|| < ||A*||, and so |A|| = ||A*||. Furthermore, we see that

A* is adjoint to A if for any z € X and F' € Y*,
(F, Az) = (A" F, x).

By Definition 3.1.19 a linear operator in a Hilbert space is self-adjoint
if A= A*. More examples follow.

5.3.2 Exercise Let X =R". A linear operator on X may be identified
with a matrix A(n x n). Check that its adjoint is identified with the
transpose of A.

5.3.3 Example Now we can clarify the relation between the operators
T, and S, introduced in 2.3.17 and 2.3.23. For any bounded measurable
function z on R, and any measure v on R,

<Sﬂl/,$>:/l'dSHV:/l'du*V://x(T+C)M(d7’)I/(d§)

= /Tugc dv = (v, T,x). (5.17)

Since this relation holds in particular for 2 € Cy(R) this formula proves
that S, is dual to T),. Similarly, considering the operators S, and T},
introduced in 2.3.25 we see that for any © € BM(G) and in particular
for z € Cy(G),

(Suv,x) = /deHV = /xdu*uz //x(gh) p(dh)v(dg)
= /Tux dv = (v, T,x)
which proves that .S), is dual to T},. Analogously, 5’M is dual to TM. The

reader should examine Examples 2.3.26 and 2.3.27 in the light of the
above discussion.

5.3.4 Exercise Let X,Y and Z be Banach spaces and suppose that
A€ L(X,Y) and B € L(Y,Z). Show that (BA)* = A*B* € L(Z*,X*).
Use this result to show equivalence of (a) and (c) in 3.1.24.
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5.3.5 Exercise Let R be the right shift in I' : R (§,),,5; = (§n—1),51
where we set o = 0. Check that R* in [*° is the left shift R* (a,),,5; =

L (O‘n)n21 = (O‘n+1)n21 .

5.3.6 An application: invariant measures Both stochastic and deter-
ministic phenomena (such as forming of fractals, for instance) are often
described by specifying the evolution of the distribution of their particu-
lar characteristic in time. If the time is discrete, this is simply a sequence
In,n > 0 of measures on a space S. Such a sequence naturally depends
on the initial distribution gy and this dependence is often described by
means of a single operator P, for we have u,, = P"ug. Typically, S is a
compact topological space and P is a linear map from BM(S), the space
of Borel measures on S, to itself. Because of the interpretation, we also
assume that Py is a probability measure whenever p is. Such operators
are also called Markov operators (of course this is a more general
class of operators than that described in 2.3.37).

One of the questions that a mathematician may ask is that of exis-
tence of an invariant measure of a Markov operator P, i.e. of such
a probability measure p, that P, = po. If po is a distribution of our
process at time 0, this distribution does not change in time.

As we will see shortly, the search for an invariant measure may be
facilitated by a dual operator. In general, though, the dual P* of P
is defined in [BM(S)]* which in the first place is difficult to describe. A
situation that can be easily handled is that where P* leaves the subspace
C(S) of [BM(S)]* invariant. (Well, C'(S) is not a subspace of [BM(.S)]*
but it is isometrically isomorphic to a subspace of [BM(S)]*, which in a
sense is quite the same as being a subspace.) In such a case P is said to
be a Feller operator.

Quite often we actually start with a linear operator U that maps
C(S) into itself, such that Ulg = 1g, and Uz > 0 provided = > 0.
Then, the dual P of U is a Markov operator in BM(.S). Indeed, for any
non-negative z and probability measure y, [¢zdPp = [(Uzdp > 0
so that Pp is a non-negative measure, and the calculation Pu(S) =
JslsdPp = [(Ulsgdp = [¢lgdp = p(S) = 1 shows that Pu is a
probability measure.

To find an invariant measure of such an operator P it suffices to find
a non-negative invariant functional F' on C(S), i.e. a linear functional
such that Flg =1, FUx = Fx,z € C(S), and Fz > 0 whenever x > 0.
Indeed, by the Riesz Theorem, with such a linear functional F' we have a
non-negative measure /i, such that | T du, = Fux; this is a probability
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measure since p,(S) = fs 1sdue, = Flg = 1. This measure is invariant
for P since for any = € C(S) we have [z dPu, = [(Uxdp, = FUz =
Fu = [ xdp,, which implies Ppio = fio.

If S is not compact, however, this scheme fails to work. The problem
lies in the fact that in general the operator U* acts in C'(S)* and not in
BM(S). For example take a locally compact S = N. We have C(S) = [*°,
the space of bounded sequences, Cy(S) = ¢, the space of sequences
converging to zero, and BM(S) = I!, where “=" means “is isometrically
isomorphic to”. Let us take a closer look at functionals on C(S). For
any F' € C(S)* we may define a functional Fy on Cy(S) given by Fyz =
Fz,z € Cy(S). By the Riesz Theorem, there exists a measure p such
that [qazdy = Foz,z € Co(S). This formula may be used to extend
Fy to the whole of C(S). The functionals Fy and F' agree only on a
subspace of C'(S). Moreover, if F' is non-negative, then Fyx < Fa,x €
C(S). Indeed, for a natural k, Fo(zl{p<py) = F(xl{n<iy) < Fa. Hence,
by the Lebesgue Dominated Convergence Theorem, Foz = |, gxdp =
limg oo [g21n<pydp < Fax, which also may be proved using 5.2.1.
Therefore we conclude that any positive F' € C(S)* can be expressed as
a sum Fy+ Fy, where Fj is its measure-part defined above, and F} is its
positive “singular” part, Fy = F — Fy. An example of such a singular
functional is a Banach limit.

Now, given a non-negative U in C(S) with Ulg = 1g and a non-
negative p € BM(S), it is natural to define P as (U*u)g, the measure-
part of U*u, (and extend this definition in a natural way to all u €
BM(S)). Then, Pp is a non-negative measure, since for non-negative
z € Cy, [qrdPp = (Up,xz) = [godu > 0. However, in general P is
not a Markov operator, since for any probability measure s and x € C(S)
we have

Pu(S) = (U n)ols < (U'p, 1s) = (u, Uls) = (u, 1s) = p(S) =1,

and the inequality may be strict. In particular, if we find a non-negative
functional F' that is also invariant, i.e.

Flg=1, Ulg=1g, and FUz= Fr, (5.18)

the corresponding measure p may happen not to be invariant. In the
following example, due to R. Rudnicki and taken from [81], we have Py =
%u. We consider the functional Faz = F (&,),,~; = %Ba: +3 00 ﬁfn,
where B is a Banach limit, and the operator Uz = Fxlg. Clearly, (5.18)
is satisfied, since FUx = F(Fxlg) = FxFlg = Fx. It is easy to see
that the measure p on S that corresponds to Fy is given by u(A) =
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Y ones 2”% In particular, F has a natural extension to [°° given by
Fo(€n)ns1 = 2ones sr&, (which agrees with F only on the kernel of
B which is a proper subspace of [°°). Now, for any z € ¢y,

(Ppx) = (U*p,z) = (p,Uz) = (u, Frls) = Fa (u, 1s)
1 1
= P pu(S) = 5Fe = (5p,2).
as claimed.

5.3.7 Von Neumann’s Ergodic Theorem A bounded operator U in a
Hilbert space H is said to be unitary if its inverse (both left and right)
exists and equals U*. In other words we have UU* = U*U = I. Note
that U is unitary iff (Uz, Uy) = (z,y) for all x and y in H. In particular
unitary operators are isometric isomorphisms of H.

The famous von Neumann’s Ergodic Theorem says that if U is unitary,
then limy, oo 2 37 UFz = Pz,2 € H, where P is the projection on
the subspace Hy = {z|Uxz = z} = Ker(U — I). Observe that x = Uz
iff U*z = U7'z = 2. Hence H; = Ker(U* — I). The main step in the
proof is establishing that Hy is the closure of Range(U —I) or, which is
the same, that {cl Range(U — I)}*+ = H;. To this end we note that, by
continuity of the scalar product, z is perpendicular to ¢l Range(U —1I) iff
it is perpendicular to Range(U — I). Since for all y € Hy, (z, Uy —y) =
(U*x — x,y), then our claim is proven. Now, for € H; we find a y such
that 2 = Uy —y and then L 37 | Uz = 1| UFy —Uy|| < 2||y|| — 0,
as n — 00. Also, if x = Uz then %22:1 Uk = 2. This completes the
proof by 3.1.16.

An important example is the case where H = L?(2, F, i) where p is a
finite measure, and U is given by Uz = zo f for some measure-preserving
map f. A map f is said to be measure-preserving if it is measurable
and pu(f~1(B)) = u(B) for all measurable sets B C €. In other words
the transport py of the measure u via f is the same as p. To prove that
such a U is indeed unitary we calculate as follows:

@mvwz/ﬂﬂwMﬂmmmmz/

xydpy = / zydp = (x,y).
Q Q Q

5.4 Weak and weak* topologies

Distributions of random variables, i.e. probability measures on R, are
functionals on Cy(R) and we have a well-defined metric in Co(R)* which
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may be used in studying asymptotic behavior of these distributions and
hence of these random variables. However, there are very few limit the-
orems of probability that can be expressed in the language provided by
this topology. In fact I am aware of only one interesting case, namely
the Poisson approximation to binomial (see 5.8.4). This topology, the
strong topology in Co(R)*, is simply too strong to capture such delicate
phenomena like the Central Limit Theorem. In this section we give a
functional analytic view on other possible choices of topology. First, the
weak topology and then the weak™ topology are discussed.

5.4.1 Convergence determining sets Let Y be a Banach space. A set
A C Y* is said to be a convergence determining set if A separates
points in Y, i.e. if for all y; and ys in Y there exists a functional F' € A
such that F'y; # Fys. Let Up be the smallest topology in Y under which
all F' € A are continuous. The family of subsets of Y of the form

Ulyo, F,e) ={y € Y;|Fy — Fyo| < €}

where yg € Y, F € Y’ and € > 0 are given, is a subbase of this topology.
Note that U, is a Hausdorff topology for A separates points of Y. By
definition, U, is smaller than the strong topology in Y (generated by the
open balls). Note also that for any U(yo, F, €) there exists a § such that
the open ball B(yg,¢) C Ul(yo, F,¢€).

A sequence y,, converges to a y € Y in the Uy topology iff

lim Fy, =Fy

for all F € A. Of course, the same can be said of a net. Since A separates
points of Y, there may be only one y like that. The fact that the strong
topology is stronger than U, is now expressed in the implication:

lim y, =y (strongly) = lim y, =y (in Uyp),
n—oo n—oo

which can also be verified as follows: for all F' € Ux, |Fy, — Fy| <
IE My = yll-

All such topologies are termed weak topologies. From among many
weak topologies we will discuss two of (probably) greatest importance:
the weak topology and the weak* topology (or the weak-star topology).

5.4.2 The weak topology By the Hahn—Banach Theorem, Y* is a con-
vergence determining set. The resulting topology Uy in Y is called the
weak topology.

In general, weakly convergent sequences are not strongly convergent.
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In fact, the only known infinite-dimensional Banach space where weakly
convergent sequences are strongly convergent is ! (see 5.4.9). As an

example consider the sequence ex = (d,,x) in ¢g. Certainly, |ex —

n>1
el]| = 1 for k # [, and so e does not converge in the strong topology,
as k — oo. However, any F € ¢ is of the form (5.7). Hence, Fe, = ay,
tends to 0 as k — oo, which proves that e; converges weakly to the zero

functional.

2

5.4.3 Exercise Let y, € L*(R) be represented by y,, (1) = \/21771()’%.
Show that x, converges weakly, but not strongly, to 0.

5.4.4 Example Suppose that for any F' € Y*, Fy, converges. Does
it imply that y, converges weakly? The answer is in the negative; in
particular Y equipped with the weak topology is not complete. To see
that consider an example of the space C(S) of continuous functions on
a compact space, and assume that one may construct a sequence of
equibounded functions y,, € C(5), sup,,>; ||[yn]] < oo, that converges
pointwise to a function y & C(S) (as in 1.2.20 or 2.2.44 for instance;
one may also take S = [0,1] and y,(s) = s™). For any F' € C(S)* there
exists a measure p on S such that Fy, = [ 5 Yn dp which converges to
/. s ¥ du by the Lebesgue Dominated Convergence Theorem. On the other
hand, y, may not converge to a yo in C(S) because this would imply
Jydu = [yodp for all u € C(S)*, and, consequently, taking p = 4y,
y(p) = yo(p) for all p € S, which we know is impossible.

5.4.5 Exercise Let y, = > ,_, e, €5 = (Onk),>; € co. Show that
Fy,, converges for all ' € ¢, and yet y,, does not converge weakly in cy.

Let us continue with examples of criteria for weak convergence; one is
general; the other one relates to the space L”,p > 1. In both cases we
assume that a sequence y, to be proven weakly convergent is bounded.
This is a natural assumption, for in 7.1.8 we prove that weakly conver-
gent sequences are bounded.

5.4.6 Proposition Let y, be a bounded sequence in a Banach space
Y, that Y§ C Y* is linearly dense in Y*, and that lim,,_,. Fy, = F,
for I' € Y§. Then y,, converges weakly to y.

Proof Let F € Y*. Fix € > 0. There exists a linear combination G =
Zle a;F; of elements of Y such that ||F' — G|ly- < 5§ where M =
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sup,,>1 [yl V|yll. Of course, lim,, .. Gy, = Gy. Let ng be large enough
so that |G(yn, —y)| < §, for n > ng. Then

|Fyn_Fy|

IN

[(F = G)yn| + |G (yn — y)| + (G — F)y|

gl + = + =yl <
— -+ — €.
3pg 1Yl T gl =

IN

O

5.4.7 Example  Assume that (Q, F, ;1) is a o-finite measure space. A
sequence Yy, of elements of € LP(2, F, u),p > 1 is weakly convergent iff
(a) yn is bounded and (b) the numerical sequence [, 4, dp converges for
all measurable sets A with finite measure.

Proof Necessity of (a) was discussed above, and necessity of (b) fol-
lows from the fact that for any A with finite measure Fy = [ A ydp
is a bounded linear functional on L?(Q, F, i), because by the Holder
inequality

wwms(/umonwmzmmﬁwm

To prove sufficiency recall that the set of indicator functions 14 where
A is of finite measure is linearly dense in L9(§2, F, u) (see 2.2.39). Hence,
arguing as in 5.4.6 one may show that the sequence [ zy, dp converges
for all z € L1(Q, F, 1), by showing that [ zy, du is a Cauchy sequence.
Let Hz = lim,, oo [ 2y, dp. Certainly, H is linear and

[He| < [zl Lag.z.0) S0P [[ynll Lr .70
neN

Hence, H € (LP)*, and by 5.2.19 there exists a y € L? such that Hx =
Jxydp =lim, .o [ 2y, dp. |

5.4.8 Exercise The argument from 5.4.7 proves that LP(Q, F, 1) has
a property that if for some bounded sequence y, and all linear func-
tionals F' on this space, the numerical sequence F'y,, converges, then y,,
converges weakly to some y. The property of L? that makes the proof
work is that it is reflexive. A Banach space X is said to be reflexive iff
it is isometrically isomorphic to its second dual, i.e. if for any functional
™ on X* there exists an « € X such that **(F) = F(x) for all F' € X*.
State and prove the appropriate result on weak convergence in reflexive
Banach spaces.
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5.4.9 Weak and strong topologies are equivalent in I' By linearity, it
suffices to show that if a sequence xy,k > 1 of elements of I converges
weakly to 0, then it converges strongly, as well. Suppose that it is not
so. Then, ||zk|| does not converge to 0. Any sequence of non-negative
numbers that does not converge to 0 contains a positive subsequence
converging to a positive number. Moreover, a subsequence of a weakly
convergent sequence converges weakly. Hence, without loss of generality,
we may assume that limy—oo ||z | = r > 0, and that [|zx[| # 0. Taking
Yp = HTIkak we obtain a sequence y = (nkv”)nZI converging weakly to
zero and such that ||yx| = 2211 [Mk.n| = 1. We will show that such a
sequence may not exist.

By 5.2.3, for any bounded («a,), -, we have limy_,oo Y o0 | @ fpn = 0.
In particular, taking a, = 6;,,n > 1 for [ > 1 we see that

lim Nkl = 0, l Z 1. (519)
k—o0

We will define two sequences k;,7 > 1, and n;,7? > 1, of integers induc-
tively. First we put k1 = 1 and choose n; so that 221:1 N1n| > % By
(5.19), having chosen k; and n; we may choose k;11 large enough to have
kit1 > k; and 0" |0k, m| < + and then, since |jyg| = 1 for all k > 1,
we may choose an n;yq so that Y50 ) e, n| > 3.

Now, define

Q= 8gNg, n, for neA;:={ni_1+1,...,n;}

where ng := 0, and let F' be a continuous linear functional on [*° related
to this bounded sequence. Then,

Fxy, = Z O Mk n =+ Z CnTk;n = Z |77ki,n| + Z AnTlk; n

neA; ng¢A; neA; n¢A;

> Z |77kz‘,7l - Z |77ki,n| =2 Z ‘nki,nl —1> %,

neA; ng¢A; neA;

contrary to the fact that xx, converges weakly to 0, as i — oo.

5.4.10 Weak* topology  Another important example of a convergence
determining set arises if Y itself is a dual space of a Banach space, say X.
In such a case, all elements of Y are functionals on X and we may consider
the set of functionals on Y that are of the form y — y(z) for some fixed
z € X. By the Hahn—-Banach Theorem this is a convergence determining
set. The resulting topology in Y is called the weak* topology. Note
that the sets Uy, 2 = {y € Y||ly(z) — yo(x)| < €} form the subbase
of weak* topology. A sequence ¥, converges to y in this topology iff
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lim, o0 Yn(x) = y(z) for all z € X. The most important example of
such a topology is the case where X = C(.S) for some compact space S.
Then Y = X* is the space of Borel measures on S and p,, € Y converges
to p iff
lim [ xdu, = lim /xdu,

n—oo

n—00

for all x € C(S). We note here that weak* topology is weaker than the
weak topology — see the examples below.

5.4.11 Example Let S =[0,1]. If S 3 p,, — p, as n — oo, then dy,,
converges to d, in the weak® topology but not in the strong or weak
topology.

5.4.12 Weak* convergence to the Dirac measure at a point  Establish-
ing weak* convergence of, say, a sequence p,, of probability measures is
particularly simple if the limit measure is concentrated in a single point,
say sg, for in such a case it is enough to show that for any neighborhood
V of s, lim,_ o un(VC) = 0. Indeed, for an arbitrary continuous x on
S, given € > 0 we may choose a neighborhood V' = V(e) of py such
that |z(p) — x(p0)| < § for p € V. Next, for n sufficiently large, we have

)
i (VE) < T Slnce for all n, [xddy, = x(po) = [ z(po)pn(dp), wi

have
[t~ [was,|< </V+/Vc>\x<p> — 2(po)|tn( dp)

< [ 1o(0) = a(o0)ln(dp) + 2l (V).
which for V' and n described above is less than § + 5,

Certainly, this result remains true for nets as well. For example, the
probability measures p, on the unit circle C = {z € C;|z| = 1} with
densities being Poisson kernels p,,0 < r < 1 (see 1.2.29) converge, as

as desired.

r — 1, to §; in the weak™ topology. To show this, we note that for any
§ > 0, setting V5 = {e!® € C;|a| < §}, we have

1 (7 1—r? -9 1—r?
IEITEY g R L £

—
T 1—2rcosoa + r? m 1—2rcosd +1r? r-1

This implies that the same is true for any open neighborhood V of 1
and proves our claim by the previous remarks.

As another example note that in 2.3.29 we have actually proven that
the distributions of variables X,,/n tend in weak* topology to d;.
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5.4.13 Example In Example 1.4.14, we have actually proved that for
any n the distributions i, 1, converge, as k — oo, in the weak™ topology
to the Lebesgue measure on [0, 1]. Taking f(s) = 0 if s is rational and 1
otherwise we see, however, that [ fduy i does not converge to [ f dleb,
since measures fi,  are concentrated on rational numbers. Thus, f,
do not converge weakly or strongly to leb.

5.4.14 Example Let zx = (0p,n),~; € ',k > 1. By 5.2.1, 2 con-
verges in the weak® topology to 0. Since |lag|| = 1,k > 1, however, it
cannot converge to zero strongly, and hence does not converge strongly
to anything at all. By 5.4.9, this shows in particular that in I' the weak*
topology is strictly weaker than the weak topology. This can be seen
from 5.2.3, as well.

5.4.15 Measures escaping to infinity If S is locally compact, the space
Co(S) is often not the best choice of test functions to study the weak*
convergence of measures on S. It is more convenient to treat measures
on S as measures on a (say, one-point) compactification S of S and take
C(S) as the set of test functions. The reason is that it may happen
that some mass of involved measures escapes “to infinity”, as in the
example where S = RT and p, = %(50 + %(571. In this case, for any
z € Co(R), [zdp, converges to 1z(0), so that p, as functionals on
Co(RT) converge in the weak* topology to an improper distribution
%50. In this approach it is unclear what happened with the missing
mass. Taking an z € C(RT) = C([0, oo]) clarifies the situation, because
for such an x we see that [ @ du, converges to 32(0) + 2z(c0), and so
Ly, converges to %50 + %600. Working with compactification of S instead
of S itself helps avoid misunderstandings especially when it is not so
clear whether and how much measure escapes to infinity. If we work
only with probability measures, an equivalent approach is to check that
the limiting measure is a probability measure and in the case it is not,
to find out what happened with the missing mass. (See also 5.7.12.)

5.4.16 Example Let X,, be geometric random variables with param-
eters p, respectively. If p,, — 0 and np, — a > 0, as n — oo, then the
distribution p,, of %Xn converges in the weak® topology to the expo-
nential distribution.
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Proof Let x be a member of C(RT) = C(]0, oc]). Then

oo

k o [nt]
/+ xdp g T (n> Pnq np. | T - q

k=0
where [nt] denotes the integer part of nt. Since
(1—pu)™ < (1= pu) < (1= py,)" ! (5.20)

at (since (1 — p,)on

[nt]

and extreme terms in this inequality converge to e~
converges to e 1), so does the (1 — p,)"
so the integrand converges pointwise to ae™*z(t). Using the right in-
equality in (5.20) one proves that the convergence is actually dominated
and the Lebesgue theorem applies to show that fR + xdy, converges to
Jo~ ae™tx(t) dt. O

I, Similarly, — t, and

5.4.17 The role of dense sets The weak* convergence of functionals
may be viewed as a special case of strong convergence of operators where
operators have scalar values. Therefore, all theorems concerning strong
convergence of operators apply to weak™ convergence. In particular, one
may use 2.3.34, especially if we deal with weak™ convergence of probabil-
ity measures, for then the assumption of equiboundedness is automati-
cally satisfied. As an example let us consider the measures from 5.4.16.
By 2.3.31 the functions ey (7) = e~*7, A > 0, form a linearly dense sub-
set of C(RT) and so to prove 5.4.16 it suffices to show that fooo exdun

converges to a fooo e Meat q¢ = 3tz for all A > 0. On the other hand,

00 s P n
Lk — Ak n

eAdu = E Pngpe " = ————————— —

‘/O " k=0 o l—e n(l—p,)n

which converges to the desired limit since n(1 — e~ =) converges to .

The following lemma serves as a very useful tool in proving weak*
convergence of measures. We will use it in particular in establishing the
Central Limit Theorem, to be presented in the next section.

5.4.18 Lemma A sequence u, of probability measures on R converges
to a probability measure p in the weak® topology iff the corresponding
operators T}, in C[—o0,00] converge strongly to T),.

Proof The “if” part of this lemma is immediate. To prove the “only
if” part note that by assumption, for any € C[—o0, 0] any any 7 €
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(—00,00), there ex1stb the limit of Yn(1) = [pa(T —o)u(do), as n —
oo, and equals y(7) = [, z(T —o)u do') Moreover, 1111r1n_><>O Yn(F£00) =

x(£o00) = y(£o00). We will prove that yn converges to y uniformly, i.e.
strongly in C[—o00, x0].

We claim that the family y,, is bounded (by ||z||) and equicontinuous
on [—o0o, 0], so that the assumptions of the well-known Arzela—Ascoli
Theorem (see e.g. [22] or 5.7.17, below) are satisfied. To see that this
implies our result assume that ¥, does not converge to y strongly, and
choose a subsequence that stays at some distance € > 0 from y. By the
Arzela—Ascoli Theorem, there exists a subsequence of our subsequence
that converges uniformly to some z € C[—o0,0]. Being chosen from
yn this subsequence must also converge (pointwise) to y, implying that
z =y, a contradiction.

It remains to prove the claim. For a given € > 0, a § > 0 may be
chosen so that |z(0) — z(0”)| < € provided |0 —¢’| < 8, 0,0’ € R. Hence,
for any 7 € R and |h| < & we also have |y, (7 + h) — yn(7)| < [5|2(T +
h—o0) —x(r — o)|u(do) < e, proving that y,,n > 1 is equicontinuous
at 7 € R. To prove that it is equicontinuous at co we first take a 7' > 0
and define z, € C[—o0,00],k > 1 as xp(r) = m. Then,
limy o0 2k(7) = 1[7,00)(7), 7 € R. Hence

lim sup p, [T, 00) < lim [ zpdp, = / xpdp, — p[T,00).
n—oo n—oo Jr R k—o0

This implies that given an ¢ > 0 we may choose a T' > 0 so that

un|T, 00) < €, for sufficiently large n. Since such a T' may be chosen for

each n > 1 individually, as well, and = belongs to C[—o0, 00|, we may

choose a T so that u,[T,00) < € for all n > 1 and |z(7) — z(00)| < €, for

7 > T. Now, for 7 > 2T,

[yn(00) — ya(7)] < /<T+/>T 2(00) — 2(r — o) jin(do) < € + 2j]e

proving that y,, are equicontinuous at co. The case of —oc is treated in
the same way. O

5.4.19 Remark In the above proof, to use the Arzela—Ascoli Theo-
rem, it was crucial to show that y,, are uniformly continuous on [—o0, c0]
and not just on R. Note that for a given z € C[—00, 00|, the functions
yn(7) = 2(n + 7) are equicontinuous in R but not in [—oo, cc]. As a re-
sult, the Arzela—Ascoli Theorem does not apply, even though ,, are also
bounded. In fact, taking non-zero & with support contained in [0, 1], we
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have ||yn—yml|l = ||z|l,m # m, so that y,,n > 1 cannot have a converging
subsequence.

5.4.20 Corollary  Let u,,n > 1 and v,,n > 1 be two sequences of
probability measures on R converging weakly to probability measures u
and v, respectively. Then, the measures p,, *x v, converge weakly to p*v.

Proof This follows directly from 5.4.18, ||T,,, || = ||T»|| = 1 and the tri-
angle inequality applied to T}, s, 2 — Ty = Ty, (T, —T)x+T,(Ty, —
T,)z,x € C[—o0,00]. O

5.4.21 Remark In probability theory one rarely considers conver-
gence of measures in the weak topology. Although it may sound strange,
the reason for this is that the weak topology is still too strong! On the
other hand, weak™ topology is used quite often, but for historical reasons,
convergence in this topology is termed the weak convergence. (Sometimes
narrow convergence, from the French étroite.) In what follows we will
adhere to this custom. This should not lead to misunderstandings as
the “real” weak convergence will not concern us any more.

5.5 The Central Limit Theorem

By far the most important example of weak convergence is the Central
Limit Theorem. For its proof we need the following lemma, in which the
lack on dependence of the limit on X is of greatest interest; the fact that
the second derivative in the limit points out to the normal distribution
will become clear in Chapters 7 and 8 (see 8.4.18 in particular).

5.5.1 Lemma Let X be square integrable with E X = 0 and £ X? =
1. Also, let an,m > 1 be a sequence of positive numbers such that
limy, o0 an = 0. Then, for any = € D, the set of twice differentiable func-
tions z € C[—o0, 0] with 2’ € C[—o00, o], the limit of %(Tanxx —x)

exists and does not depend on X. In fact it equals %x”.

Proof By the Taylor formula, for a twice differentiable x, and numbers
T and g,

(T +¢)=2(r) + 2’ (1) + %x”(r +05), (5.21)
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where 0 < 0 < 1 depends on 7 and ¢ (and x). Thus,

T, x2(r) — 2(7)] = 5 B [o(7 + 4, X) — a(7)]

n

:al (NEX + LB [X2% (7 + 0a, X)]
=3 Ly (X2 (1 + fa, X)] , (5.22)

for EX = 0.1 Since E X? =1,

%(Tanxx —xz)(1) — %

n

2" (1)

_ ‘;E X2 (2" (7 + B, X) — 2" ()|

For x € D, and € > 0, one may choose a ¢ such that [2”(7+¢)—2"(7)| <
€, provided [¢] < 4. Calculating the last expectation on the set where
|X| > C% and its complement separately we get the estimate

‘ a

1 1
— (Ta,xv —2) — ;2"

1 " 2 1
2 S 5”7) ||EX 1{|X\2%} =+ 56. (523)

Since P{|X| > -2} — 0 as n — oo we are done by the Lebesgue Domi-
nated Convergence Theorem. O

5.5.2 The Central Limit Theorem  The Central Limit Theorem in its
classical form says that

if Xp,m > 1 is a sequence of i.i.d. (independent, identically dis-
tributed) random variables with expected value m and variance o® > 0,
then

ﬁ,;x’“

converges weakly to the standard normal distribution.

Proof (of CLT) Without loss of generality we may assume that m = 0
and 02 = 1, since the general case may be reduced to this one. Let T}, =
T% x where X is any of the variables X,,,n > 1. By the independence
assumption, Tﬁ o, x, = I and we need to show that T converges
strongly to Tz where Z is a standard normal variable. The set D of twice

t Let us observe here that although it is not obvious that the map w +— 6(r, ﬁX)

is measurable, measurability of the function w — X2 "+ 0(r, ﬁX)ﬁX] is
1
Xz

assured by the fact that this function equals z(7 + \F X)—x(r) — 7 (7).
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differentiable functions x with =" € C[—o00,00] is dense in C[—o0, 0];
hence it suffices to show convergence for € D. Now, by (2.10),

ITe = Tpall = | T3w = T7_all < nllTow = Ty_gal
2
< In(Ty o — o) = 0T g2 = o),

which by Lemma 5.5.1 converges to 0, as n — oc. ]

5.5.3 The Lindeberg condition A sequence X,,,n > 1 of independent
(not necessarily identically distributed) square integrable random vari-
ables is said to satisfy the Lindeberg condition iff for every § > 0,

= ZE Xio = 1) L{ X | 5650}
Sn k=1

tends to 0, as n — oo, where py = EX), and s2 = Y.} 07, 0f =
D? X}, > 0. In what follows we will use EX21fx,|>6s,} as a short-
hand for the sum above. Note that i.i. d variables satisfy the Lindeberg
condition; for such variables we have 5 LEX? L)X, 565, = E (X1 —

M)Ql{\er|>\/ﬁalé} which certainly converges to zero, as n — 0o.
The celebrated Lindeberg—Feller Theorem says that the Lindeberg con-
2
dition holds iff lim,_ m = 0 and the sequence i 22:1 Xy

é
converges weakly to the standard normal distribution.
We will prove merely the “only if” part which is perhaps less remark-

able but more applicable.

Proof The proof is a modification of the proof of 5.5.2. As before, we
assume without loss of generality that ¥ X,, = 0,n > 0. By the indepen-
dence assumption T’ Lyr  x, = T X, T L, . Analogously, we may
write Tz where Z is standard normal as T

Sn

T 5 where Z is nor-

n
Sn

. . 2
mal with zero mean and variance o;. Now, using (2.9), ||T% ST T

Tzl <3 et IT1 x, =T 4, || and our task reduces to showing that for
zeD, : !

2 o2 102
> 1Ty, -2 = **’“ ”II + Z ITozz—2—5- §$"II (5.24)
=1

converges to 0, as n — oo. Arguing as in (5.22) and (5.23), we obtain

s2

2 1 1
Hafi[Tixkx — ] = gw”\l < €T3 *||$N||EX1€1{|X,C|>%5}7
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where we chose  in such a way that |2”(7 +¢) — 2" (7)| < €, provided
2
|s] < 4. Multiplying both sides by and summing from k =1 to k = n,

n

D

k=1

2
lak "

T, yx—o——-—"Lx
Xk 252

1
< g6t ,%||$”||EX51{|X7L|>687L}'

This proves by the Lindeberg condition that the first sum in (5.24)
converges to zero. Since the second sum has the same form as the first
sum it suffices to show that Z,,n > 1, satisfies the Lindeberg condition.
Noting that E Z} = 302,

Ly i o 3 max(of, .., 07)
52 Z Zi 2185,y < 5462 § EZ} < 3—.
nk

2
S
k=1 n

In Exercise 5.5.4 the reader will check that this last quantity converges
to zero. Ul

5.5.4 Exercise  Complete the proof above by showing that the Lin-

max(of,...,ai) -0

deberg condition implies lim,,_,~ .

5.5.5 Exercise  Show that the Lyapunov condition

lim E X — up?te =
oo 82.»,_ ; | k Mk'

where a > 0, and s,, is defined as before, implies the Lindeberg condition.

5.6 Weak convergence in metric spaces

The assumption that the space S where our probability measures are
defined is compact (or locally compact) is quite restrictive and is not
fulfilled in many important cases of interest. On the other hand, assum-
ing just that S is a topological space leads to an unnecessarily general
class. The golden mean for probability seems to lie in separable metric
spaces, or perhaps, Polish spaces. A Polish space is by definition a
separable, complete metric space. We start with general metric spaces
to specialize to Polish spaces later when needed. As an application of
the theory developed here, in the next section we will give another proof
of the existence of Brownian motion.
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5.6.1 Definition Let (S, d) be a metric space, and let BC(S) be the

space of continuous (with respect to the metric d, of course) functions on

S. A sequence P,, of Borel probability measures on S is said to converge

weakly to a Borel probability measure P on S iff, for all z € BC(S),

lim [ zdP, = / x dP. (5.25)
s s

n—oo

It is clear that this definition agrees with the one introduced in the
previous section, as in the case where S is both metric and compact,
BC(S) coincides with C(S).

We will sometimes write E,z for [¢zdP, and Ex for [¢zdP.

5.6.2 Corollary  Suppose P,,,n > 1 is a sequence of Borel probability
measures on (S,d) and f : S — S’, where (5,d’) is another metric
space, is a continuous map. Then the transport measures (P,)s,n > 1
on S’ converge weakly. The proof is immediate by the change of variables
formula (1.6).

5.6.3 Portmanteau Theorem Let P and P,,n > 1 be probability mea-
sures on a metric space (5, d). The following are equivalent:

) P, converge weakly to PP,

) condition (5.25) holds for Lipschitz continuous = with values in [0, 1],
) limsup,,_,. Pn(F) < P(F), for closed F' C S,

) liminf, .o P,(G) > P(G), for open G C S,

) lim, 0o P, (B) = P(B), for Borel B with u(0B) = 0.

Proof Recall that 9B = cIBNcl(S\ B).

Implication (a)=-(b) is obvious. Assume (b) and for a closed F' and
s € S define d(p, F') := infycr d(p, q). Note that |d(p, F) — d(p', F)| <
d(p,p’) so that functions zx(p) = (1 + kd(p, F))~%,k > 1, are Lipschitz
continuous (with Lipschitz constant k). Also, limg_,o zx(p) = 1 or 0
according as p € F or p € F. This gives (c) by

limsup P, (F) < limsup E,zr = Ex, — P(F),
n— oo n— oo k—o0

the last relation following by the Monotone Convergence Theorem.

Taking complements we establish equivalence of (¢) and (d). Next,
that (c¢) and (d) imply (e) can be seen from

limsup P, (B) < limsup P(cl B) < P(cl B) = P(9B) + P(B°) = P(B°)

n—oo

< liminfP,(B°) < liminf P(B)

n—oo n—oo
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where the set B := S\ cl(S\ B) = cI/B\ 0B is open.

Finally, in proving that (e) implies (a), by linearity and the assumption
that P and P, are probability measures, it suffices to show 5.25 for
continuous functions with values in [0, 1]. Since « is continuous, cl{z >
t} C {& = t},t > 0, and the sets {x = t} are disjoint. Hence, the
set {t > 0;P{z = t}}, being countable, has Lebesgue measure zero. By
(1.18) with 8 =1, and the Dominated Convergence Theorem,

o'} 1
Enx:/ Pn{x>t}dt:/ P {o > t}dt
0 0

1 oo
— P{x>t}dt:/ P{z >t}dt = Ez,
0

n—oo 0

as desired. 0

5.6.4 Remark Note that we assume a prior: that the limit measure
in the above theorem is a probability measure.

5.6.5 The space of measures as a metric space If S is separable, one
may introduce a metric D in the space PM(S) of probability measures
on S in such a way that lim,_,, D(P,,P) = 0 iff P,, converges weakly
to IP. In particular, in discussing convergence of measures it is justified
to restrict our attention to sequences of measures (as opposed to general
nets). The most famous metric of such a type is the Prohorov—Lévy
metric Dpy, defined as follows: Dpy, (P, P%) is the infimum of those pos-
itive € for which both P(A) < P#(A€) + ¢, as well as P#(A) < P(A°) + e,
for any Borel subset A of S. Here A€ is the set of those p € S that
lie within the e distance from A, i.e. such that there is a p’ € A such
that d(p,p’) < e. It turns out that if S is a Polish space, then so is
(PM(S), Dpr,). This result is not only of special beauty, but also of im-
portance, especially in the theory of point processes [24].

Another example of such a metric is the Fortet—Mourier metric
Dpy 2 Dpy (P PY) = sup’f:chF’f f:z:d]P’ﬂ| where the supremum is
taken over all © € BC(S) such that |z(p) — z(p')| < d(p,p'),p,p" € S
and sup,cs |e(p)] < 1.

These results are discussed in detail in many monographs, see e.g.
Billingsley [5], Edgar [36], Ethier and Kurtz [38], Shiryaev [106]. A rich
source of further information is Dudley [31] and Zolotarev [116].

5.6.6 Weak convergence in R ... For measures on R it suffices to
check condition (e) of 5.6.3 for B of the form B = (—o0,t|,t € R. In
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other words, it is enough to check convergence of cumulative distribution
functions, Fy,(t) = P, (—o0,t] to F(t) = P(—o0, t] at every point ¢ where
P{t} = 0, i.e. at every point of continuity of F. To this end note first
that our assumption implies obviously that (e) holds for all intervals
(a,b] with a and b being points of continuity of F'. For the proof we will
need the following properties of the class Z of such intervals:

(i) Z is a m-system;
(ii) condition (e) holds for all finite unions of elements of Z;

(iii) for every s € R, and € > 0 there is an interval (a,b] € Z such that
s € (a,b), and b—a < ¢

and the fact that R is separable, and hence satisfies the following

Lindelo6f property: any open cover of a subset of R contains a de-
numerable subcover.

Condition (i) is obvious, (ii) follows by (i), induction argument and
P,(AUB)=P,(A) +P,(B) — P,(AN B). (iil) is true, since the set of
¢ € R, with P{c} > 0, is countable.

As for the Lindelof property, consider open balls with centers at ratio-
nal numbers and radii % There are countably many balls like that and
we can arrange them in a sequence B,,n > 1. Since rational numbers
form a dense set in R, any s € R belongs to at least one of B,,n > 1.
Now, let U, € I' be a cover of a set A C R. To a B,, assign one of the
U,,v € I' containing it, if such a U, exists. Since there are countably
many balls, there are countably many sets U, chosen in this process.
We will show that their union covers G. Let s belong to G; then there
is a 7y such that s € U,, and since U, is open, there is an ng such that
s € By, C G. The set of v such that B,,, C U, is non-empty and there
is a U,, assigned to this ng. We have s € B,,, C U,,, which implies our
claim.

Now, by (iii), any open G is a union of intervals (a,b), such that
(a,b] € T and (a,b] C G. By the Lindelof property, we have G =
Up>1(ak, br) = Upsq(ak, by], for some (a,bi] € Z,k > 1. By assump-
tion, for any integer I, liminf, oo Pp(G) > limy, o0 Pn(Ui@:l(a’ﬁ b)) =
IP(Ul _1(ak, bg]). Since for any € > 0 one may choose an [ such that
P(U—; (ak, bi]) > P(G) — €, we have liminf,, . P, (G) > P(G) — €. But
€ was arbitrary, and we conclude that (d) in 5.6.3 holds, as desired.
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5.6.7 Example Here is the alternative proof of 5.4.16 using 5.6.6. If
X is exponential with parameter a then for any ¢ > 0, P{X > t} = e
Taking complements we see that it suffices to show that P{1X, > t}
converges to e~*". Now, 1 X, > ¢ iff X,, > [nt]. Therefore, the involved
probability equals ZZo:[me]H Pndl = qknt]ﬂ. Arguing as in (5.20), we get
our claim.

5.6.8 ... and in R¥  For probability measures P,, in R*, we have a re-
sult analogous to 5.6.6. That is, P, converge weakly to a P if F},(a) =
P, (Hle(—oo, ai]) converges to F(a) =P (Hle(—oo, ai]) for all ¢ =
(a1, ...,ax) € R¥ with P{a} = 0. The proof is analogous to 5.6.6; first we
show that our assumption implies that (e) in 5.6.3 holds for all rect-
angles (a,b], (i.e. sets of s = (s, ..., ;) € R¥, such that a; < s; < b,
i = 1,..,k, where a = (ay,...,a;) and similarly for b), with P{a} =
P{b} = 0. Then we show that the class T of such rectangles satisfies con-
ditions (i)-(ii) of 5.6.6, and the following version of (iii): for any s € R¥,
and € > 0 there exist (a,b] in this class such that the Euclidian dis-
tance between @ and b is less than €. Since R* is separable, the Lindelof
property completes the proof.

5.6.9 Remark  We know from 1.2.20 that the values of a measure on
the sets of the form (—o0,t] determine this measure. In 5.6.6 we proved
that such sets also determine convergence of measures. We should not
expect, however, that in general a collection of sets that determines a
measure must also determine convergence — see [6]. In the same book it is
shown that conditions (i)—(iii) can be generalized to give a nice criterion
for convergence of probability measures in a (separable) metric space.

5.6.10 Example Probability measures on R* may of course escape
to infinity; and this may happen in various ways. In studying such phe-
nomena we need to be careful to keep track of how much of the mass
escapes and where it is being accumulated. The criterion given in 5.6.8
can be of assistance, if we use it in an intelligent way.

The following example originates from population genetics and de-
scribes the limit distribution of a pair (X¢,Y:), ¢ > 0, of random vari-
ables, in which the first coordinate may be interpreted as a time (mea-
sured backwards) to the first common ancestor of two individuals taken
from a large population (see [16, 17, 18]). The so-called effective pop-
ulation size 2N (-) is supposed to be known as a function of time (the
factor 2 is here for genetical reasons: individuals are in fact interpreted
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as chromosomes and chromosomes come in pairs). The larger 2N (+) is,
the longer time it takes to find the ancestor. The variable X; is trun-
cated at a t > 0, and the second coordinate is defined as Y; =t — X;.
Formally, X; is a random variable taking values in [0, ¢] with distribution
determined by 2N (-) according to the formula P[X; > u] = e~ i 2t
(in particular: P[X =t] = e~ Jo #(v)) Let P; be the distribution of the
pair (Xy,Y;) in RT x R*. We are interested in the limit of P; as t — oo
and consider the following cases:

) (t)=0,

b) lim;eo N(t) =N, 0 < N < o0,
) i (
) (

t) = oo, and [~ 213@ = 00,
t):oo,andfoom‘,if) < 0.

We will show that P; converges weakly to a measure on [0,00]2. In the
cases (a) and (c), this measure is the Dirac measure at {0} x {co} and
{oo} x {00}, respectively. In (b) and (d), it is the measure identified with
the functionals on C([0,c]?) given by

1 o0

x — N /. e ¥ z(t, 00) dt,

-Js 2N(uu) 0 / 1 e
T —e x(00,0) + e (D) ) (00, u) du,

respectively. These claims may be summarized in the form of the follow-
ing table.

Table 5.1
behavior of N(t)  variable X = X, variable Y = Y,
limy— 0o N(£) = 0 0 %0
lim; ,o, N(t) = N, exponential with
0<N <o parameter 2N 0
limy 00 N(t) = 00,
Jo 2N I = > >
lim;_, o, N(t) = o0, finite, P(Y > w) =
o 2Nu)<oo o0 1— e o =it

P(Y =0) = e Jo =¥tw

For the proof, note that for any v,w > 0 and ¢ so large that ¢t —w > v,

"t du

P,[(v, 00) x (w,00)] = Plv < Xy < t —w] = e~ Ji-v 5 — ¢~ Ju 57
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Hence, lim;_, oo P¢[(v, 00) X (w, 00)] equals 0 in the case (a), for v > 0.
It equals 1 in the case (a), for v = 0, and in the case (c). It equals
e~ 3% in the case (b), and 1 — e~ J7 2855 in the case (d). This proves
our claim in cases (b)—(d); to treat (a) we need to note additionally that
limy oo P[X < w,t — X > w] = limy,0o P[X < 0] =1,0 > 0.

5.7 Compactness everywhere

I believe saying that the notion of compactness is one of the most im-
portant ones in topology and the whole of mathematics is not an ex-
aggeration. Therefore, it is not surprising that it comes into play in a
crucial way in a number of theorems of probability theory as well (see
e.g. 5.4.18 or 6.6.12). To be sure, Helly’s principle, so familiar to all stu-
dents of probability, is simply saying that any sequence of probability
measures on R is relatively compact; in functional analysis this theorem
finds its important generalization in Alaoglu’s Theorem. We will dis-
cuss compactness of probability measures on separable metric spaces, as
well (Prohorov’s Theorem), and apply the results to give another proof
of existence of Brownian motion (Donsker’s Theorem). On our way to
Brownian motion we will prove the Arzela—Ascoli Theorem, too.

We start by looking once again at the results of Section 3.7, to con-
tinue with Alexandrov’s Lemma and Tichonov’s Theorem that will lead
directly to Alaoglu’s Theorem mentioned above.

5.7.1 Compactness and convergence of martingales  As we have seen
in 3.7.7, a martingale converges in L' iff it is uniformly integrable. More-
over, in 3.7.15 we proved that a martingale converges in LP,p > 1 iff it
is bounded. Consulting [32] p. 294 we see that uniform integrability is
necessary and sufficient for a sequence to be relatively compact in the
weak topology of L. Similarly, in [32] p. 289 it is shown that a sequence
in LP p > 1 is weakly relatively compact iff it is bounded. Hence, the re-
sults of 3.7.7 and 3.7.15 may be summarized by saying that a martingale
in LP,p > 1, converges iff it is weakly relatively compact. However, my
attempts to give a universal proof that would work in both cases covered
in 3.7.7 and 3.7.15 have failed. I was not able to find such a proof in the
literature, either.

5.7.2 Definition = We say that an open infinite cover of a topological
space S is truly infinite iff it does not contain a finite subcover.
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5.7.3 Alerxandrov’s Lemma Let V be a subbase in S. If there is an
open truly infinite cover of S, then there also is a truly infinite cover of
S build with elements of V.

Proof (i) The set of truly infinite subcovers of S is non-empty and
partially ordered by the relation of inclusion. Moreover, any linearly
ordered subset, say Ci,t € T (where T is a non-empty index set) of this
set has its upper bound; indeed Cy, = |J,cq Ct is such a bound. To prove
this assume that C}, is not truly infinite; it covers S and is infinite as
it contains at least one cover C;. Then there exists an integer n and
elements Uy, Us, ...,U, of Cy that cover S. Since C},t € T, is linearly
ordered, there exists a t such that all U; € C; which contradicts the fact
that C; is truly infinite, thus proving that Cy is truly infinite. By the
Kuratowski—Zorn Lemma, there exists a maximal element of the set of
truly infinite covers. Let Cy, be such a cover.

(i) Suppose an open set G does not belong to Cp,. Then there exist
an n € N and members Uy, Us, ..., U,, of C, such that

cGulJui=s, (5.26)
i=1

because {G} U Cy, contains Cy, as a proper subset, and hence cannot be
a truly infinite cover. Conversely, for no member G of Cy, may we find
n € N and U; in C, so that (5.26) holds, for Cy, is truly infinite. Hence,
the possibility of writing (5.26) fully characterizes open sets that do not
belong to Cy,. It follows immediately that if G; C G2 are open sets and
Gy & Cy, then Gs & Cy,. Moreover, if Gy, Gy & C,, then Gy NGy & Cyy,
either.

(iii) We will show that V' =V N Cy, is a cover of S. This will imply
that it is a truly infinite cover, as it is a subset of a truly infinite cover.
Take a p € S and its open neighborhood U € C\,. By definition, there
exists a k € N and members V7, ..., Vi of V such that p € ﬂle Vi C U.
Now, by (ii), one of V; must belong to Cy,, for otherwise their intersection
would not belong to Cy,, and neither would U. This however, shows that
V' covers S. O

5.7.4 Tichonov’s Theorem Let T be a non-empty set and let, for each
t € T, S; be a topological space. Let [],.1 S¢ be the set of functions
[+ T — U,er St such that f(t) belongs to S; for all t € T. Let us
introduce a topology in [],.p S¢ by defining its subbase to be formed
of sets of the form Viy = {f € [[,cr St|f(t) € U} where t € T and
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U C S; is open. This is the weakest topology making all the maps
[L,er St > f — f(t) € Si, t € T continuous. Tichonov’s Theorem says
that if the Sy are compact then so is HteT Si.

Proof Suppose that [ ], St is not compact.

(i) By Alexandrov’s Lemma, there exists a family V' of subsets V, i
that is a truly infinite cover of [ [, S¢. Now, fix a ¢ € T and consider the
family U; of open sets U in S; such that V; ¢ belongs to V. Then, none
of Uy is a cover of S;. Indeed, if it were, there would exist an n € N and
sets Uy, ..., Unt € Uy such that S; = |JI_; U, ;. Consequently, we would
have [T,er S = {f € Tler SilF(®) € S} © Ul € T SIFW) €
U;} = U, Vi,u,, contradicting the fact that V' is a truly infinite cover.

(ii) By (i), for any t € T there exists a p = f(t) € S; such that
p & Viu for U € U;. On the other hand, thus defined f is a member
of [[,er Si, and V' is a cover of this space. Hence, there exists a ¢ and
an open set U C Sy, U € U, such that f € V. p, i.e. f(t) € U. This
contradiction shows that [ ], S¢ must be compact. U

5.7.5 Alaoglu’s Theorem  Let X be a Banach space. The unit (closed)
ball B = {F € X*|||F|| <1} in X* is weak™ compact.

Proof By Tichonov’s Theorem, all bounded functionals of norm not
exceeding 1 are members of the compact space [[,.x S. where S, are
compact intervals [—||z||, ||z||]]. Moreover, the weak* topology in B is the
topology inherited from [],.x S.. Hence, it suffices to show that B is
closed in [, cx Sz

To this end, let us assume that an f € [] .y Sz belongs to the closure
of B. We need to show that f is a linear functional with the norm not
exceeding 1. Let us take x and y € X and the neighborhoods V¢ ; ¢, Vi 4 ¢
and Vi zyy.c, where V. o = {g € [ cx Szll9(2) — f(2)| < €}. There is
an F' € B that belongs to the intersection of these three neighborhoods.
Hence |f(z +y) — f(z) — f(y)| = |f(z +y) — f(z) — fly) - Flz+y)+
F(2)+ F(y)| < | f(z+y)— F@-+y)| +|F(z) - f(@)| +]f(y) ~ F(y)] < 3e.
Since € > 0 can be chosen arbitrarily, f(z +y) = f(z) + f(y). Similarly
one shows that f(ax) = af(x). Finally, |f(z)| < ||z|| by definition of S,

in [[,cx Se- O

5.7.6 Corollary Let S be a compact topological space, and let P,
n > 1, be a sequence of probability measures in S. By Alaoglu’s The-
orem and the Riesz Theorem there exists a subsequence of P,,n > 1,
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converging to a linear functional F' on C(S5), with ||F|| < 1. Moreover,
F is non-negative and F(1g) = 1. This implies that F' corresponds to
a probability measure P on S. Hence, for any sequence of probability
measures on S there exists a subsequence converging to a probability
measure on S.

5.7.7 Helly’s principle  Helly’s principle says (see e.g. [41]) that any
sequence P, ,n > 1, of probability measures on R has a subsequence con-
verging to some measure y; yet in general the inequality u(R) < 1 may
be strict. The reason for this last complication is probably already clear
for the reader: R is not compact. If we consider P,,,n > 1 as measures
on the one-point compactification, or the natural two-point compacti-
fication of R, and use 5.7.6 it may happen that the limit probability
measure has some mass at one of the adjoint points.

In a similar way, Helly’s principle applies to measures on any locally
compact space.

5.7.8 Exercise  Prove 5.4.20 without alluding to 5.4.18, and using
5.7.7 instead (applied to p, ® v, on R?) — cf. 6.5.6.

5.7.9 Tightness of measures Let S be a separable metric space. Then,
a sequence of probability measures P,,,n > 1, does not have to have a
converging subsequence. Well, as we shall see in the proof of 5.7.12, it
does have to, but the support of the limit measure may be partly or
totally outside of S. To make sure the limit measure is concentrated on
S we require the measures P, to “hold on tight” to S. By definition, a
family of probability measures on S is said to be tight if for every ¢ > 0
there exists a compact set K such that P(K) > 1 — € for all P in this
family.

5.7.10 Urysohn’s Theorem  The universal space where the supports of
limit measures “live” is the Hilbert cube H = [0, 1] = [];2, S; where all
Si; = [0, 1]. The topology in H is introduced in the general way described
in 5.7.4, but in this special case we may go further and introduce the
norm dy in H by

9 =3 5170 900}

It is clear that if dy(fn, f) converges to 0 then f, (i) converges to f(i).
The converse statement follows by the Lebesgue Dominated Convergence
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Theorem. As a corollary, the topology induced in H by the metric dy is
the same as the topology introduced in 5.7.4.

Urysohn’s Theorem states that any separable metric space S is home-
omorphic to a subset of H.

Proof We need to show that there is an injective map ® : S — H such
that for any members p and p,,n > 1, of S, d(p,,p) converges to 0 iff
dr(P(pr), (p)) does. Without loss of generality, we may assume that
the metric d in S is bounded by 1, i.e. that d(p,p’) < 1 for all p and p’
in S. Indeed, in the general case we introduce an equivalent metric d’
in S by d = min(d, 1). Let e;,7 > 1, be dense in S, and let ®(p) = f
be a function f : N — [0,1] given by f(i) = d(p,e;). By continuity of
metric, lim, e d(ppn,p) = 0 implies lim,, o, d(pn,e;) = d(p,e;) for all
i € N, and hence dy(®(py), ¢(p)) converges to 0. Conversely, if d(p, e;)
converges to 0 for all ¢ then, since {e;,i > 1} is dense, given € > 0 we
may find an e; such that d(p,e;) < §. Next, we may find an ng such
that |d(pn,ei) — d(p,e;)] < § for n > ng. For such an n, d(p,,p) <
d(pn,ei) + d(p,e;) < €, as desired. Finally, the same argument shows
that d(p,e;) = d(p',e;),i € N, implies d(p,p’) = 0 and hence p =p'. [

5.7.11 Corollary  The transport of a measure on S via ® together
with the transport of the measure on ®(S) via ®~! establishes a one-
to-one correspondence between Borel measures on S and on S’ = &(5).
Moreover, by the change of variables formula (1.6), a sequence of prob-
ability measures P,,,n > 1, on S converges weakly to a P iff a corre-
sponding sequence (P,)e converges weakly to Pg. Furthermore, & and
®~—! map compact sets into compact sets. Hence, P,,n > 1, is tight iff
(P,)e,n > 1, is.

5.7.12 Prohorov’s Theorem  Suppose a sequence of Borel probability
measures on a separable metric space S is tight. Then, it is relatively
compact.

Proof By Urysohn’s Theorem and 5.7.11, it suffices to show that a tight
sequence P,,n > 1, of Borel measures on a subset S of H is relatively
compact. Of course the idea is to reduce this situation to that described
in 5.7.6. We note that in general Borel subsets of S are not Borel in
H, unless S is Borel itself. We may, however, use characterization (1.3)
and given a Borel measure P on S define a Borel measure P# on H by
Pt(A) = P(S N A). Now, the sequence Pf n > 1, has a subsequence

n’
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IPEwi > 1, converging to a probability measure p on H. By 5.6.3,
lim sup IP’&H (4) < u(A), for any closed subset A of H. (5.27)
71— 00

Since P,,n > 1, is tight, there are sets Ky, k > 1, that are compact
in S (hence, compact in H as well) such that P, (K;) > 1— 1,n > 1.
Moreover, Kj are Borel subset of H and P%(Ky) = P,(Ki),n > 1.
Hence, u(K,) > 1— 1. If we let K = J;»; K, then u(K) = 1.

Let B € B(S). If A; and A, are Borel inHand B=A,NS = AsNS,
then the symmetric difference of A; and A, is contained in H\S C H\ K.
Therefore, the quantity P(B) := u(A) where A € B(S) and B= AN S
is well defined. We check that PP is a Borel measure on S and P# = p.

Finally, if B C S is closed in S, then there is an A C H that is closed
in ‘H such that B = SN A. Since P%(A) = P,(B) and P(B) = u(A),
(5.27) shows that P,,,i > 1, converge weakly to PP. U

5.7.13 Exercise = Complete the above proof by showing that if B C S
is compact in S, then it is compact in H, too. Note that an analogous
statement about closed sets is in general not true.

5.7.14 Remark  The converse to Prohorov’s Theorem is true under
the assumption that S is complete. However, we will neither use nor
prove this result here.

5.7.15 Brownian motion as a measure Let C(R™") be the space of
continuous functions z, y, ... mapping R™ into R and such that x(0) = 0.
When equipped with the metric

day) = 3 s min{l. sup.la(s) — y(s)1},
ne1 s€[0,n]

C(R™) is a metric space. Moreover, polynomials with rational coefficients
form a dense set in C(R™), i.e. C(R™) is separable. Indeed, given z €
C(RT) and 1 > € > 0, we may choose an ng € N so that 2,10%1 < e and
a polynomial y with rational coefficients such that sup,cp ,, [z(s) —
y(5)| < % Then7 d(m,y) < 220:1 2%5 + Zf:noﬂ 2Lﬂ < §+ 2%0 <
€, as claimed. A similar argument shows that lim, . d(z,,z) = 0 iff
functions z,, € C(RT) converge to z € C(R') uniformly on compact
subintervals of RT, and that C'(R™) is complete.

We will show that the Borel o-algebra B(C'(R")) is the o-algebra
generated by the maps C(R") 5 z +— m(z) := z(t) € R,¢ > 0. To this
end we note that all these maps are continuous, hence Borel measurable,
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and it suffices to show that B(C(RT)) is a subset of the o-algebra just
mentioned. By the characterization of convergence in C'(R™T) given at the
end of the previous paragraph, for y € C(R™) and positive T', the map
CRY) 3 2 fyr(x) = sup,cp 7 [2(t) — y(t)] is continuous. Hence, the
sets Vy 1. = fyf%(fe,e), where € > 0, are open in C(RT). Moreover,
these sets form a subbase of the topology in C'(RT) and belong to the

o-algebra generated by the 7, ¢ > 0, as may be seen from

Vvy’T’6 = U m A(y,t, TLLHE)

n>1teQ

where A(y,t,€) := {x € C(RT)||z(t) — y(t)] < e} = ; }[—¢, €.

Now, suppose that (Q, F,P) is a probability space where a Brownian
motion process is defined. Without loss of generality we may assume
that all trajectories w — w(t,w) are continuous and w(0,w) = 0. The
map W : Q — C(RT) that assigns a trajectory to an element of
is measurable because W™1B, 4 = {w € Qlz(t,w) € A} € F where
Bya = {z € C(R")|z(t) € A} and A is a Borel subset of R, and
the sets B; 4 generate B(C(R')). Hence, given a Brownian motion on
(Q, F,P) we may construct a measure Py, on C(RT), called the Wiener
measure, as the transport of IP via . Note that finite intersections of the
sets By 4 where ¢ > 0 and B € B(R) form a w-system. Hence the Wiener
measure is determined by its values on such intersections. In other words,
it is uniquely determined by the condition that (Pyw )z, ,, . (called a
finite-dimensional distribution of Py) is a Gaussian measure with
covariance matrix (t; At;), ;_,  (see 4.1.7), where my,, 4, : C(RT) —
R™ is given by my,, 1, @ = (x(t1),...,x(tn)) and t; < t2 < ... < t,, are
positive numbers.

On the other hand, if we could construct a measure Py, on the space
(C(RT),B(C(R")) possessing the properties listed above, the family of
random variables 7y, ¢ > 0, would be a Brownian motion. In the following
subsections we will prove existence of Py, without alluding to Chapter
4. We start by presenting the Arzela—Ascoli Theorem which plays a role
in the proof. However, the reader who wants to be sure he understands
this subsection well should not skip the following exercise.

5.7.16 Exercise  Check that the sets V, 7 form a subbase of the
topology in C'(R™).

5.7.17 Arzela—Ascoli Theorem  The Arzela—Ascoli Theorem, the fa-
mous criterion for compactness of a set A C C(S) where (5,d) is a
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compact metric space, turns out to be another direct consequence of Ti-
chonov’s Theorem. The former theorem says that the set A is relatively
compact iff it is composed of equicontinuous functions and there exists
an M > 0 such that

llzllcwsy < M, for all z € A. (5.28)

Let us recall that A is said to be composed of equicontinuous functions
iff

Ve>0VpeS36>0vp’eSVzeA d(pap/) <d= |$(p) - m(p’)\ <e. (5~29)

For the proof of the Arzela—Ascoli Theorem we need to recall two lem-
mas.

5.7.18 Lemma  Let us suppose A C C(.5) is composed of equicontin-
uous functions and (5.28) is satisfied. Let us consider A as a subset of
[I,es Sp where S, = [-M, M] for all p € S. Then, the closure of A in
this space is composed of equicontinuous functions, and (5.29) holds for
all x € cl A, too. In particular, the limit points of A are continuous.

Proof Let us fix y € ¢l A and € > 0, and choose a § > 0 so that (5.29)
holds. Let p’ be such that d(p,p’) < §. For all n > 1, there exists an
zp €V,, 1NV, 1 MNAwhereV, 1 isaneighborhood of y composed

of x € C(5) such that |z(p) — y(p)| < =. Hence,

1
ly(p) —y (") < ly(P) —2n (@) + |20 (p) — 20 (@) |+ |2, (") —y(p")] < e+%,

for all n > 1. Therefore, |y(p) — y(p')| < e O

5.7.19 Lemma  Suppose x,,n > 1, is a sequence of equicontinuous
functions on a compact metric space S, and lim,,_ . x,(p) exists for
all p € S. Then, the convergence is in fact uniform, i.e. lim, o0 ||2,, —
z|lc(s) = 0. (Note that x € C(S) by the previous lemma.)

Proof Suppose that this is not so. Then, there exists a ¢ > 0 such
that ||z, — x| > ¢ for infinitely many n > 1. On the other hand, for any
n > 1, there exists a p,, € S such that ||z, —z| = |2, (prn)—2(ps)|- Hence,
there are infinitely many n such that |z, (p,) — x(pn)| > ¢. Since S is
compact, there exists a further subsequence of p,,,n > 1, converging to a
po € S. Without loss of generality, to simplify notation, we assume that
lim,,— o0 P = Po- Then, for any € > 0 and n large enough, d(p,,p) < ¢
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where § is chosen as in (5.29). Moreover, by assumption, for n large
enough |z, (po) — z(po)| < €. Therefore, for such n,

|20 (pn) = 2(Pa)| < |20 (pn) = 2n(Po)| + |2 (po) — 2(po)| + |2(po) — 2 (pn)]

does not exceed 3¢ (we use the previous lemma here!), which contradicts
the way the p,, were chosen. |

Proof (of the “if” part of the Arzela—Ascoli Theorem) Let x,,,n > 1, be
a sequence of elements of A. By the first lemma, the closure of A in the
space || ves Sp is composed of equicontinuous functions. Since Hpe g

is compact, so is ¢l A. Moreover, the topology in this space is the topology
of pointwise convergence. Hence, there exists a subsequence of x,,,n > 1,
converging to a continuous x. By the second lemma, the convergence is
in fact uniform. |

5.7.20 Exercise  Show the “only if” part of the Arzela—Ascoli Theo-
rem.

5.7.21 Remark  Suppose S = [0,t] where t > 0, and A C C[0,¢] is
composed of equicontinuous functions = such that |z(0)] < M for some
constant M independent of the choice of x € A. Then A is relatively
compact.

Proof We may take an n > 0 such that |z(s) — z(s’)| < 1 provided
|s — s'| < L. Then, for all z € A and s € [0,], |z(s)| < |=(0)| +

D ke [ns] |as( ) —x (k—;l)|+’x(s) —x (@)’ < M+[ns]+1 < M+[nt]+1.
This shows that (5.28) holds with M replaced by M + [nt] + 1. |

5.7.22 Compact sets in C(RT) A set A C C(R") is relatively com-
pact iff it is composed of functions that are equicontinuous at every
subinterval of R,

Proof Necessity is obvious by the Arzela—Ascoli Theorem. To show suf-
ficiency, for ¢ € N, let A; be the set of y € C[0,4] such that there is an
x € A such that y = xj0;) (the restriction of x to [0,4]). Let us recall
that £(0) = 0 for all z € C(R‘*‘). Therefore, by 5.7.21, the sets A; are
compact and so is [,y Ai
There is a one-to-one corrcspondonco between elements of A and se-

quences (y;)i>1 € [[;en Ai such that (yii1)9,) = ¥i,¢ = 1. Moreover,
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a sequence Z,,n > 1 of elements of C(R1) converges in C(R") iff the
corresponding (yn,i);», »n = 1, converges in [,y 4

Ifax, € C(R"),n > 1, does not have a converging subsequence, then
there is no converging subsequence of the corresponding (yn, ;) n>1,
contradicting compactness of || 0

i>1
'LGN

5.7.23 Donsker’s Theorem  The theorem we are to discuss may be
called a “C(R™)-version of the Central Limit Theorem”. We suppose
that X;,7 > 1, is a sequence of independent, identically distributed ran-
dom variables with mean zero and variance 1 defined on (£, F,P). Let
So =0, and S,, = Z?Zl X;, n>1. For any w € Q and n € N we define
a continuous function X,,(t) = X, (t,w) of argument ¢ € RT by letting
Xn (%) = ﬁsk and requiring X, (t) to be linear in between these points.
In other words,

\/ﬁXn(t) =(1- a(t))S[m] + a(t)s[nt]Jrl = S[nt] + a(t)X[m]H (5.30)

where < a(t) =nt —[nt] <1 € [0,1]. As in 5.7.15, we prove that X, is a
measurable map from Q to C(RT). Let P,,,n > 1, denote the transport
measures on C'(R™) related to these maps. The Donsker’s Theorem
says that

the measures Pp,,n > 1 converge weakly and the limit measure is the
Wiener measure Py, on C(R™T).

In particular, the existence of Py, is a part of the theorem. For the
proof we need two lemmas, a hard one and an easy one. We start with
the former.

5.7.24 Lemma  The sequence P,,n > 1 is tight in C(R™).

Proof For x € C(RT) and ¢ > 0 let us define the functions my(h) =
me(x, h) of argument h > 0 by m¢(h) = supg<,<, |2(s) — (s + h)|. By
5.7.22, it is clear that we need to make sure that large values of my (X, h)
do not show up too often. In other words, we want to have a control over
sup,, P, {m(z, h) > €}, e > 0. We will gain it in several steps.

1 Fix 0 < s < t. Since maximum of a polygonal function is attained
at one of its vertices,

%Sk — X (s)

where "s™ denotes the smallest integer k such that k > s. Let Ls1 (= [s])
denote the largest integer dominated by s. Note that ﬁSrnsﬂ > X, (s) >

sup |X,(u) — X,(s)| < max

s<u<t T Tns'<k<Tnt?
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ﬁSLnSJ provided X ,5, > 0, and both inequalities reverse in the other
case. Hence, our supremum does not exceed
1 1
75 - 7SL 4
\/ﬁ k \/ﬁ ns \/> \/>
so that, for any € > 0, P{sup,<, <, |Xn(u) — X, (s)| > €} is no greater
1 k
ﬁ Zi:L’I’LSJJrl Xi >
bility with Lns. replaced by "ns™. Since random variables X; are in-
dependent and identically distributed, both probabilities are no greater

—Srpsm

max
s 1<k<Mnt? rnsj<k<'—nt—‘

than P {maXrnS‘\Skgr’nt‘l e} plus a similar proba-

than P{maxlgkgrntﬂ_rmﬂ ‘ﬁSk‘ > e} . Moreover, for s > and h > 0,
"n(s+h)7—"ns? <"nh™+ 1. Thus,

| > €}.

(5.31)
For m > 1, let S}, = maxi<g<m |Sk| and for a > 0 let 7, = min{k €
N||Sk| > a}. Note that 7, is a Markov time and S; is a well-defined
random variable. Moreover, the probability on the right-hand side of
(5.31) equals P{S,, > /ne} = P{r 5. < m} where m = m(n,h) =
“nh7+ 1.
2 We have the following maximal inequality of Ottaviani:

1
P X (u) — X, < 2P — |8
sup {sgig%' (u) (s)l}_ {lgkg%m\/ﬁl k

P(S* > 2y/mr) < 2Om 2 Vmr} g (5.32)

1—r—2 ’
For its proof we note that

P{|Sm| > rv/m} = P{|Sm| > rv/m, Sy, > 2rv/m}
> P{r <m,|Sm — S;| < rvm}

=Y P{r =k, [Sm — Skl < rv/m},
k=1

where 7 = Ty, /m for simplicity. Since Sy, — Sk is independent of the
variables X, ..., X} and has the same distribution as S,,_, and {7 =
k} € 0(Xy, ..., X), the last sum equals

S {r = K}B{IS, s < rv/im}
k=1
> min P{|Smi| < r\/ﬁ}ZP{T =k}

> 1?;19111 P{|S| < T\F}]P’{T < m}.
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Moreover, by Chebyshev’s inequality

min P{|Sk|<rf}—1— max P{|Sk|>rf}

1<k<m
k 1

>1- max ——=1-—.
1<k<m r?m T

Hence, P{|S,,| > ry/m} > (1 — %)P{S}, > 2r\/m} and (5.32) follows
by dividing by 1 — T% (this is where we need r > 1).

3 Let ’I“n. = %./%e. Since lim, oo 7, = ;\} for sufficiently small
h and sufficiently large n we have r, > 1. Moreover, by 1, 2 and the
Central Limit Theorem,

2P{|S:m n
limsupsupIP’{ sup | X (u) — Xn(8)|} < lim {1Sm| > /mr, }

-2
n—oo s>0 s<u<s+h n—00 1—rp

4h 2
— o= o /2
(1 €2 ) V2T / du

2
e /Qdu:07
v

1 4
2

1
lim sup — lim sup sup]P{ sup | X, (u) — X, (s)] > e} =0. (5.33)
h—0+ n—oo s>0 s<u<s+h
The first “limsup” here may be replaced by “lim” for we are dealing
with limits of non-negative functions.
4 Relation (5.33) implies that, for any ¢ > 0,

lim sup lim supIP’{ sup  sup | X, (u) — Xy(s)| > e} =0. (5.39)

h—0+4+ n—oo 0<s<t s<u<s+h

To prove this, we take a § > 0 and choose hs < 1 small enough to have

1limsupsupP{ sup | X, (u) — X, (s)] > 6} < é, for h < hs.
h n—oo s>0 s<u<s+h 3 t

Next, we take [ = Lt/hJ and divide the interval [0,¢] into [ + 1 subin-
tervals [s;, 8;4+1], ¢ = 0,...,] where sp = 0 and s;41 = ¢, such that
max;—o,... i |Si+1 — Si| < h. For s < u < ¢ with u — s < h, there ex-
ists an s; such that |s; — u| A |s; — s| < h and we either have s; < s < wu
ori > 2and s < s; < u. In the former case, |X,(u) — X, (s)| does
not exceed | X, (u) — Xpn(s;)] + |Xn(u) — X, (s;)| and in the latter it does
not exceed | X, (u) — X (8:)] + X0 (w) — Xn(si—1)|+ [ Xn(s:) — Xn(si=1)]-
Therefore, {Supg<<;SUPs<y<sin |Xn(u) — Xn(s)| > €} is contained in
the union Ué:o{SUPsigugsﬁh | (u) — Xn(s)| > £}, and its probabil-
ity is no greater than the sum of probabilities of the involved events,
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t+h
which by assumption does not exceed (Lt/hs+ 1) ht+1 < &6 <6
Since § was arbitrary, we are done.
Again, the first “limsup” in (5.34) may be replaced by “lim”. Hence,
by definition of m; and P,, we have

}hr&_ lim sup P{m(X,,h) > €} = hm limsup P, {m(z, h) > e} = 0.
(5.35)

Finally, limy, 04 m(X,(w), h) for every w € Q and n € N, the func-
tion X, (w) being continuous. Therefore, by the Dominated Convergence
Theorem,

lim P{my(X,,h) >0} = lim Elj,, 0 =0, N.
Jam P{me(Xn, h) > 0f = Hm B L, x, h)>e ne
(5.36)
This proves that the “limsup” in (5.35) may be replaced by “sup”.
5 Fix e > 0 and t > 0. For any k£ € N, there exists an hj such that

sup,, Pp{my:(x, hg) > %} < oigre Let K = ﬂk21{mkt(x,hk) < %} By
5.7.22, K is compact (it is closed by 5.7.18), and

1
minP, (K) =1 - supP, (K% >1— bupZPn {mkt(a: hi) > k}

n>1
= n>1 n>1k 1

oo

€
>1- E 2k+1:1—e.
k=1

O

5.7.25 Lemma  For any 0 < ¢t < ty < ... < tg, the distributions
(P, o, Of (Xn(t1), ..., Xn(ty)) converge weakly to the normal distri-
bution with covariance matrix (¢; V tj)m:l’m’k .
Proof By 5.6.2 and 4.1.7, it suffices to show that

X — (Xn(tl) Xn(tZ) - Xn(tl) Xn(tk) - Xn(tk1)>

- Vi V=t 7T V=t
converges weakly to the standard normal distribution. To this end, we
show that

g 1 (S[ntl] Sints] — Sints] S[ntk]_s[ntk—1]>

converges to the standard normal distribution, and that

lim |Ex0X E$OS’—0

n—oo
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for any continuous 2 on R with compact support. The reasons why we
may restrict our attention to continuous functions with compact support
are (a) continuous functions with compact support form a dense set in
Co(R*) and (b) by the first claim we know that the the limit measure is
a probability measure, so that no mass escapes to infinity.

To prove the first claim we note that the coordinates of S, are in-
dependent and that the ith coordinate has the same distribution as

%ﬁsw.},[mi . (we put to = 0) which by the Central Limit

Theorem and lim,,_, o M = t; — t;—1 converges weakly to the
N(0,1) distribution. Hence, for any a; € Ryi=1,...k,

k
[n _Snt ]
Pl S, € foo,a, I[D tl][“<ai}

converges to Hle \/%7 e e="/2 dy, as desired.
To prove the second claim we argue similarly as in 4.1.4. Let R, :=

X, — Sn. By definition (5.30), the ith coordinate of R,, equals

1 a(ts) X1 — ati=1) Xppe,_y)1
Vn t; — 11

and the variance of this coordinate is no greater than

7n(tifti,1)' Let
| R, | denote the sum of absolute values of coordinates of R,,. For § > 0,
the probability P { | Ry | >0 } does not exceed

ZIP ti) Xinti+1 — a(tio1) Xpne, 141 é
N =

2
i=1 (t1_tl 1)

Given € > 0 we may find a § such that |x(t) — x( )| < § provided
|t —s| < 0, t,s € R¥. Moreover, we may find an n such that P{|R,| >
i} < 777+ Calculating E|zoS, —x0X,| on the set where |R,| < §
and its complement, we see that this expectation is no greater than
5+2lzllgey =e O

which, by Chebyshev’s inequality, is dominated by —k2 Z

Proof (of Donsker’s Theorem) This is a typical argument using com-
pactness — compare e.g. 6.6.12.

The first lemma shows that there exists a subsequence of P,,n > 1
that converges weakly to a probability measure on C(RT). By 5.6.2 and
the second lemma, the finite-dimensional distributions of this measure
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are normal with appropriate covariance matrix. Hence, this limit mea-
sure is the Wiener measure Pyy. It remains to prove that the measures
P,, converge to Pyy.

Suppose that this is not so. Then there exists a subsequence of our
sequence that stays at some distance € > 0 away from Pyy. On the other
hand, this subsequence has a further subsequence that converges to some
probability measure. Using 5.6.2 and the second lemma again, we see
that this limit measure must be the Wiener measure — a contradiction.

O

5.8 Notes on other modes of convergence
5.8.1 Modes of convergence of random variables Throughout the
book, we have encountered various modes of convergence of random
variables. To list the most prominent ones, we have the following defini-
tions:

a converges to X a.s. if P{w|lim, . Xp(w) = X(w)} =1,

c converges to X in probability if lim,, ., P{|X,, — X| > €} =0,

(a) X,

(b) X, converges to X in L' norm if lim, . || X, — X[z =0,
) Xn
) Xn

converges to X weakly iff Px, converges weakly to Px.

Note that in the first three cases we need to assume that X,, and X are
random variables defined on the same probability space (92, F); addi-
tionally, in the third case these random variables need to be absolutely
integrable. In the fourth case such an assumption is not needed.

It is easy to see that a.s. convergence does not imply convergence
in L' norm, even if all the involved variables are absolutely integrable.
Conversely, convergence in L' norm does not imply a.s. convergence (see
3.6.15).

If the random variables X,, and X are defined on the same proba-
bility space (2, F,P), and are absolutely integrable, and X,, converge
to X in LY(Q, F,P), then they converge to X in probability also — see
(3.36). Similarly, a.s. convergence implies convergence in probability. In-
deed, P{|X,, — X| > €} = Eljx,—x|>¢} and the claim follows by the
Dominated Convergence Theorem (compare (5.36)).

Finally, if X,;,n > 1, converge to X in probability then they converge
to X weakly. This has been proved in 4.1.4, but we offer another proof
here. To this end we note first that if a is a point of continuity of the
cumulative distribution function of X then for any € > 0 one may find a
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d such that the difference between P{X < a} and P{X < a — 4} is less
than e. Therefore, |P{X,, < a} —P{X < a}| is less than

P{X,>anX<a}+P{X, <aAX>a}
<P{X,>anNX<a—-0}+P{X,<aANX>a+0}+e¢
<2P{|X,, — X|> 6} +e.

This implies that the upper limit of [P{X,, < a} — P{X < a}| is less
than e and thus proves our claim.

In general, weak convergence does not imply convergence in proba-
bility even if all involved variables are defined on the same probability
space. However, if they converge weakly to a constant, then they con-
verge in probability also; the reader should prove it.

5.8.2 Exercise Prove the last claim.

5.8.3 Scheffé’s Theorem In general a.s. convergence does not imply L'
convergence. We have, however, the following Scheffé’s Theorem. Let
(Q, F, 1) be a measure space, and let ¢ and ¢, n > 1 be non-negative
functions on 2 such that ¢,(w) converges to ¢(w) a.s. and ¢, = [ ¢, dp
converges to ¢ = [¢dp. Then [ |¢, — ¢[du converges to 0, i.e. the
measures p, with densities ¢, converge strongly to the measure with
density ¢.

Proof Let A, = {¢ > ¢, }. We have

/¢n¢|du/An|¢n¢|du+/Q\ 60 — 6l du

n

:2/ |prn, — Sl dps + ¢ — c.
A

n

Since (¢ — ¢n)1a, < ¢, the theorem follows by the Lebesgue Dominated
Convergence Theorem. O

5.8.4 The Poisson Theorem as an example of strong convergence By
1.2.31 and Scheffé’s Theorem, binomial distributions with parameters n
and p,, converge strongly to the Poisson distribution with parameter A
provided np,, converges to A, as n — co.

5.8.5 Example Let Q = N, ¢, (i) = din, ¢(4) = 0 and p be the count-
ing measure. The requirements of Scheffé’s Theorem are satisfied except
for the one concerning integrals. We see that Dirac measures §,, of which
¢n, are densities do not converge to zero measure strongly.
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5.8.6 Corollary Let g and p,,n > 1, be probability measures on a
set S with countably many elements. The following are equivalent:

a) pp converges strongly to p,

—~ —~
o

L converges weakly to u,
L, converges to p in weak™ topology,

tn({p}) converges to u({p}) for all p € S.

7 NN
[o7ate)
R NI PN

Proof Implications, (a) =-(b)=-(c) are obvious. To show that (c) implies
(d) we note that the function xp,(p) = 1 for p = py and zero otherwise
is continuous on S (with discrete topology). (d) implies (a) by Scheffé’s
Theorem. U
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The Gelfand transform and its applications

6.1 Banach algebras

6.1.1 Motivating ezamples Let S be a locally compact Hausdorff topo-
logical space, and Cy(.S) be the space of continuous functions on S that
vanish at infinity, equipped with the supremum norm. Until now, we
treated Cy(S) as a merely Banach space. This space, however, unlike
general Banach spaces, has an additional algebraic structure: two func-
tions on S may not only be added, they may be multiplied. The product
of two functions, say x and y, is another function, a member of Cy(.S)
given by

(zy)(p) = z(p)y(p)- (6.1)

The operation so defined is associative and enjoys the following proper-
ties that relate it to the algebraic and topological structure introduced
before:

@) lzyll < =y,

(b) (ax)y = a(zy) = z(ay), a € R,
(¢) x(y1 +y2) = zy1 + TY2,

(d) zy=yz.

Moreover, if S is compact, then Cy(S) = C(S) has a unit, an element
u = 1g such that ux = zu = x for all x € C(S). We have |Jul| = 1.

For another example, let X be a Banach space and let £(X) be the
space of bounded linear operators on X. If we define zy as the composi-
tion of two linear maps x and y € X, it will be easy to see that conditions
(a)—(c) above are satisfied (use 2.3.11), and that the identity operator is
a unit. Such multiplication does not, however, satisfy condition (d).

Yet another example is the space [1(Z) of absolutely summable se-
quences (&,),,cz - If we define the product of two sequences x = (£,),,¢5,

201
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and y = (1n),,cz as their convolution

( > fnﬁh’) ; (6.2)
neZ

1=—00

then conditions (a) — (d) are satisfied. Also, the sequence ey = (d,,,0)n>0
plays the role of the unit.

The final, very important example is the space BM(R) of (signed)
Borel measures on R with convolution (2.14) as multiplication.

As a generalization of these examples, let us introduce the following
definition.

6.1.2 Definition A Banach algebra A is a Banach space, equipped
with an additional associative operation A x A 3 (z,y) — zy € A, such
that conditions (a)—(c) above hold, and additionally

(c) (1 +y2)z =117 + Y2

6.1.3 Various comments and more definitions If (d) holds, A is said to
be a commutative Banach algebra and condition (¢’) is superfluous.
If there is a unit u satisfying the properties listed above for u = 1g,
A is said to be a Banach algebra with unit. All Banach algebras
described above have units, except perhaps for Cy(.S), which has a unit
iff S is compact.

We will say that a subspace B of a Banach algebra A is a subalgebra
of A if B is a Banach algebra itself, or that, in other words, the product
of two elements of B lies in B. As an example one may take A = BM(R)
and B = [1(Z); the elements of [*(Z) may be viewed as charges on R
that are concentrated on integers Z; it is almost obvious that for two
such charges their convolution is concentrated on Z as well, and that
(2.14) becomes (6.2).

A bounded linear map H from an algebra A to an algebra B is said
to be a homomorphism if H(zy) = (Hz)(Hy), for all x and y in A. If B
is the algebra of bounded linear operators on a Banach space X, we say
that H is a representation of A in £(X).

Two Banach algebras A and B are said to be (isometrically) isomorphic
if there exists a map J : A — B that is an (isometric) isomorphism
between them as Banach spaces and, additionally, for all elements « and
y of A, J(zy) = J(2)J(y).

We will illustrate these notions with examples and exercises given
below. Before we do that, though, let us note that Exercises 2.3.12,
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2.3.13, 2.3.14 and 2.3.15 are actually ones on Banach algebras. In other
words, instead of operators A, B € L£(X) one may consider elements a, b
of an abstract Banach algebra with a unit u, define exp(a) and exp(b) as
sums of the appropriate series and prove that exp(a) exp(b) = exp(a+b),
provided a commutes with b. Similarly, if ||u — a|| < 1, one may define
loga and check that exp(loga) = a. We start by providing two more
examples of this type.

6.1.4 Exercise Let A be a Banach algebra. Suppose that ||z| < 1.
Prove that the series > >~ | 2™ converges to an element, say y, of A, and
that zy+2x —y=yr+2x —y =0.

6.1.5 Exercise Let A be a Banach algebra with unit . Suppose that
|lz]| < 1. Prove that the series > - 2™, where 2% = u converges to an
element, say y, of A, and that (v — z)y = y(u — z) = u.

6.1.6 Example The left canonical representation of a Banach algebra
A in the space L(A) of bounded linear operators in A is the map A >
a— L, € L(A) where L,b = ab for all b € A; certainly L,Ly = Lqp. The
right canonical representation is a similar map a — R, with R, given by
R.b = ba, and we have R, R, = Rp,. The reader will note that operators
Sy and Su from 2.3.25 are the left and right canonical representations
of the algebra BM(R), respectively.

The inequality ||L,|| < |la|| holds always, but to make sure that it
is not strict it suffices to assume that A has a unit, or that it has a
right approximate unit bounded by 1, i.e. that there exists a sequence
Up € A |luy]| < 1,n > 1 such that lim, ., au, = a,a € X. (Similarly,
|Ra|| = |la|| if A has a left approximate unit bounded by 1, i.e. that
there exists a sequence u,, € A, ||u,|| < 1,n > 1 such that lim,,_, u,a =
a,a € X))

6.1.7 Exercise Let A be a Banach algebra without unit. Check that
the set A, = L*(R") x R equipped with multiplication (a,«)(b, 3) =
(ab+ Ba+ab,af) and the norm ||(a, a)|| = ||a|]| + || is a Banach algebra
with unit (0,1). It is commutative iff A is commutative. Moreover, the

map a — (a,0) is an isometric isomorphism of A and the subalgebra
A x {0} of A,,.

6.1.8 Example Let L'(R) be the Banach space of (equivalence classes
of) absolutely integrable functions on R with the usual norm. As the
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reader will easily check, L!'(R) is a commutative Banach algebra with
convolution as multiplication:

o0
zxy(T) = / (1 —<)y(s) ds. (6.3)
— 00

This algebra may be viewed as a subalgebra of BM(R) composed of
signed measures that are absolutely continuous with respect to the Leb-
esgue measure. Here “may be viewed” actually means that there exists
an isometric isomorphism between L!(R) and the said subalgebra of
measures (see Exercise 1.2.18). This isomorphism maps a measure into
its density with respect to Lebesgue measure.

From the same exercise we see that if x and y are representatives
of two elements of L'(R) such that x(7) = y(7) = 0, for 7 < 0, then
xxy(r) =0 for 7 < 0 and

xxy(T) = /OT (1 — ¢)y(s) dg, 7> 0. (6.4)

This proves that the set of (equivalence classes) of integrable functions
that vanish on the left half-axis is a subalgebra of L!(R), for obviously it
is also a subspace of L*(IR). This subalgebra is isometrically isomorphic
to the algebra L'(R™) of (classes of) absolutely integrable functions on
RT with convolution given by (6.4). The isomorphism maps (a class of)
a function from L!(R™) into (a class) of its natural extension Z to the
whole axis given by Z(7) = z(7),7 > 0, 2(7) = 0,7 < 0.

In a similar fashion one proves that the space L!(R) of (equivalence
classes of) even functions that are absolutely integrable on R is a sub-
algebra of L'(R). To this end it is enough to show that if z and y are
even then z * y defined in (6.3) is even also.

6.1.9 Exercise Prove that the subspace of ['(Z) formed by absolutely
summable sequences (&, )nez such that &, = 0 for n < 0 is a subalgebra
of I}(Z). Show that this subalgebra is isometrically isomorphic to the
algebra [*(Np) of absolutely summable sequences (£,,),>0 with convolu-
tion

(gn)TLZO * (Un)nzo = (Z gnﬂ?z> (6.5)
n>0

=0

as multiplication.
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6.1.10 Example  Consider the elements ey, A > 0, of L}(R*) defined
by their representatives ey(7) = e~*7. One checks that the following
Hilbert equation is satisfied:

(A—p)exxe, =e, —ex, A, 1> 0. (6.6)

Now, let us note that as a Banach space, L'(RT) is isometrically
isomorphic to the space L!(R) of (equivalence classes of) even functions
that are absolutely integrable on R. The isomorphism J : L!(R) —
LY(RY) is given by Jz(r) = 2z(r),7 € R, and J-ly(r) = Ly(|7])
for y € LY(R") and 7 € R. Even though Banach algebras L!(R™T) and
LL(R) are isometrically isomorphic as Banach spaces, it turns out that
as Banach algebras they are quite different. In particular, one checks
that €y = Jey € LL(R), A > 0, instead of satisfying (6.6), satisfy

(1% — N2)éx % €, = puéx — Néy, A p > 0. (6.7)

(Note, though, that we did not prove that L'(R*) and L.(R) are not iso-
morphic; relations (6.6)—(6.7) show merely that the natural isomorphism
of Banach spaces introduced above is not an isomorphism of Banach al-
gebras.)

6.1.11 Exercise Show that the space [!(Z) of even absolutely summa-
ble sequences (&, )nez forms a subalgebra of I1(Z). Show that as a Banach
space [}(Z) is isomorphic to I'(Np), but that the natural isomorphism of
these Banach spaces is not an isometric isomorphism of Banach algebras.

6.1.12 Exercise  Prove that the family u; = 1, € L(R+),t > 0,
satisfies the so-called “integrated semigroup equation”

t+s t S
ut*usz/ urdr—/ u7.dr—/ U, dr,
0 0 0

and that @, = Ju; = 31(_; ) € LL(R) satisfies the so-called “sine func-

t+s |[t—s]|
Utlhg :/ Uy dr —/ U, dr.
0 0

6.1.13 Exercise  Show that e,(7) = ne™ (a.s.), n > 1, is an ap-
proximate unit in L'(RT).

tion equation”:



206 The Gelfand transform and its applications
6.2 The Gelfand transform

6.2.1 Multiplicative functionals — As we have seen in the previous chap-
ter, one may successfully study Banach spaces with the help of bounded
linear functionals. However, to study Banach algebras, linear functionals
will not suffice for they do not reflect the structure of multiplication in
such algebras. We need to use linear multiplicative functionals. By defi-
nition, a linear multiplicative functional on a Banach algebra is a linear
functional F', not necessarily bounded, such that, F'(zy) = Fa Fy. In
other words F' is a homomorphism of A and the algebra R equipped with
the usual multiplication. To avoid trivial examples, we assume that F' is
not identically equal to 0.

6.2.2 Exercise  Prove that if F' is a multiplicative functional on a
Banach algebra with unit v then Fu = 1.

6.2.3 Lemma  Linear multiplicative functionals are bounded; their
norms never exceed 1.

Proof Suppose that for some xg, |Fxg| > ||zg||. Then for = %mo €
A we have that ||z]| < 1 and Fx = 1. Let y be defined as in 6.1.4. We have
F(zy+x—y) =0, but on the other hand this equals F(zy)+ Fz—Fy =
(Fz)(Fy)+ Fx — Fy = 1, a contradiction. O

6.2.4 Remark The idea of the above proof becomes even more clear
if A has a unit. We construct x as before but then take y defined in 6.1.5
to arrive at the contradiction:

1=Fu=Fy(Fu—Fz)=Fy(1-1)=0.

6.2.5 Exercise Suppose that an algebra A has a right or left approx-
imate unit. Show that multiplicative functionals on A have norm 1.

6.2.6 Example Let C(S) be the algebra of continuous functions on a
compact topological space. A linear functional on C(S) is multiplicative
iff there exists a point p € S such that Faz = z(p) for all x € C(S5).

Proof As always in such cases, the non-trivial part is the “only if” part.
Let F' be a multiplicative functional. We claim first that there exists a
p € S such that for all x € C(S), Fx = 0 implies z(p) = 0. Suppose
that this is not so. Then for all p € S, there exist a neighborhood U,
of p and a continuous function z, € C(S) such that Fz, = 0 but z, is
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non-zero in U,. Consequently, y, = x is positive in U, and Fy, = 0.
Since S is compact there exist p1, ..., p, such that S C |J_, Up,. Defining
z =30,y and 2 = 1 (recall that z > 0), we obtain a contradiction:
1=F(lg) = F(2)F () =0.

Now, let p € S be such that Fx = 0 implies z(p) = 0. For any
xz € C(S), we have F(z—F(x)1lg) = 0. Hence, z(p) = F(z)F(ls) = F(x)
as claimed. |

6.2.7 The Gelfand transform  Let us look once again at the definition
of a multiplicative functional using the duality notation: a multiplicative
functional on a Banach algebra is a bounded linear functional satisfying:

(F,zy) = (F,z)(F,y), for all z,y € A. (6.8)

In this definition, F' is fixed, while x and y vary. We will think differently
now, however: we fix x and y, and vary F. As we have seen, multiplicative
functionals form a subset M of a unit ball in A*, which is compact in
the weak* topology. One may prove (Exercise 6.2.8) that M U{0} where
0 is a zero functional on A is closed in this topology, and thus M itself
is locally compact (0 plays the role of “infinity” here). Hence, in (6.8)
the elements z and y may be viewed as functions defined on the locally
compact set of multiplicative functionals. In such an interpretation, (6.8)
may be written down in a still more clear way:

zy(F) = 2(F)y(F);

which is just (6.1) with p replaced by F! So, if we forget about the fact
that F's are “really” functionals and treat them as points of a topological
space, we will be able to view our abstract algebra A in a much simpler
way. In other words, we have succeeded in transforming an abstract
Banach algebra into a subset of the algebra Cy(M). (We need to talk
about a subset of Cy(M) for there might be some functions in Cy(M)
that do not correspond to any element of A; see e.g. 6.3.1 further on.) A
map described above, transforming elements = € A into functions z(F)
defined on M, is called the Gelfand transform. Certainly, the Gelfand
transform is a homomorphism of Banach algebras A and Cy(M). As we
will see shortly by looking at a number of examples, the set M, though
defined in an abstract way, in many cases forms a very nice and simple
topological space. This method of viewing Banach algebras has proven
useful in many situations; see e.g. [27, 51, 82, 103, 104, 112, 115].
Unfortunately, in our presentation we did not take care of one impor-
tant fact. Specifically, in contrast to the rich spaces of linear functionals
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that allowed us to describe a Banach space in such a pleasant way, the
space of multiplicative functionals may be too small to describe the
Banach algebra well. In fact, there are Banach algebras with no mul-
tiplicative functionals, and the only general condition for existence of
a rich space of multiplicative functionals is that the Banach algebra is
commutative, with identity and — complex. This means in particular
that multiplication of vectors by complex scalars is allowed. Technically,
the situation is not much different from the real case; all that happens is
that in all the involved definitions the real field R must be replaced by a
complex field C. An example of a complex Banach space (and a complex
algebra) is the space of complex-valued functions on a compact topo-
logical space. On the other hand, properties of real and complex spaces
differ considerably. In particular, as we have said, a complex, commuta-
tive Banach algebra has a rich space of multiplicative functionals, while
a real Banach algebra may have none, even if it is commutative and has
a unit.

Nevertheless, there are a good number of real Banach algebras for
which the space of multiplicative functionals is rich enough for the
Gelfand transform to preserve the most important properties of the el-
ement of this algebra. The examples presented in the next section, all
of them often used in probability, explain this idea in more detail. As
we shall see, a function mapping a measure on N into the related prob-
ability generating function is an example of the Gelfand transform, and
so are the Fourier and Laplace transforms of (densities of) measures on
the real axis and positive half-axis, respectively. The reader should not,
however, jump to the examples before solving the problems presented
below.

6.2.8 Exercise Let A be a Banach algebra. Prove that M U {0} is
closed in the weak™ topology of A*. Moreover, if A has a unit then M
is closed.

6.2.9 Exercise Let A be a Banach algebra with a unit v and let z € A.
Show that for any multiplicative functional ' on A, F'(exp z) = exp(Fx).
In other words, the Gelfand transform of exp x equals exp &, where Z is
the Gelfand transform of z.

6.3 Examples of Gelfand transform

6.3.1 Probability generating function  The space I* = [*(Ng) of abso-
lutely summable sequences = = (fn)nZO is a Banach algebra with con-
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volution (6.5) as multiplication. We already know (see 5.2.3 or 5.2.16)
that a linear functional on I* has to be of the form

Fz =Y &oan (6.9)
n=0

where a; = Fe; = F(; n)n>0, and sup,,>q |a,| < 00. To determine the
form of a multiplicative functional, observe first that es = e1 * e; and,
more generally, e,, = e1*,n > 0 where the last symbol denotes the nth
convolution power of e1. Also, F'eg = 1. Hence «,, = o™, n > 0, where
a = ap. Therefore, if F is multiplicative, then there exists a real «
such that Fz = > 7  a"&,. This o must belong to the interval [—1, 1]
for otherwise the sequence a,, would be unbounded. Conversely, any
functional of this form is multiplicative.

This proves that a multiplicative functional on ! may be identified
with a number o € [—1,1]. Moreover, one may check that the weak*
topology restricted to the set of multiplicative functionals is just the
usual topology in the interval [—1, 1]. In other words, the image via the
Gelfand transform of the vector € [! is a function  on [—1,1] given
by #(a) = Y 0, a'&,;. However, in this case, the space of multiplicative
functionals is “too rich”; the information provided by « € [—1,0) is
superfluous. Therefore, in probability theory it is customary to restrict
the domain of & to the interval [0, 1].

We note that the interval [—1,1] is compact, and that this is related
to the fact that {! has a unit. It is also worth noting that the image
via Gelfand transform of a sequence in [' is not just “any” continuous
function on [—1, 1]; this function must be expandable into a series (o) =
>0 o&na™ and in particular be infinitely differentiable and analytic.
This illustrates the fact that the image of a Banach algebra via the
Gelfand transform is usually a subset of the algebra Cy(M).

6.3.2 Exercise  Consider the space [*(Ny x Ny) of infinite matrices
r = (fi,j)i,jzo such that Zfio ZJOZO |§i,j| < 0o with the norm ||$H =
o Z;io |&;,5]- Prove that this is a Banach space and a Banach algebra
with multiplication defined as
i J
(&ig)ig=0% (ig)ig=0 = O > &anivkj—1)ij>0-
k=0 1=0

Prove that all multiplicative functionals on this space are of the form
Fr=3%272, Z;io a'7¢; ;, where o and 3 are in [—1, 1]. In other words,
the topological space M of multiplicative functionals may be identified
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(i.e. it is homeomorphic) with [—1,1] x [—1,1]. As in 6.3.1 we note that
in probability theory one usually uses only non-negative values of o and
B. If x is a distribution, the function

« ﬁ) = Zzaiﬂjgi,ﬁ OZ,/B € [07 1]

i=0 j=0

is termed the joint probability generating function.

6.3.3 The Laplace transform  Let L'(RT) be the Banach algebra of ab-
solutely integrable functions on R* with the usual norm and convolution
as multiplication. From 5.2.16 we know that if F' is a linear functional
on L'(RT), then there exists a bounded function, say a(-), on R* such
that

Fr= / zadleb, r e LY(RT). (6.10)
0
Assume that F' is multiplicative. We have

Flzxy) = /000 alt)zxy(r)dr

= [ atn) [ 2t - uto asar
- / " a(r)a(r — oyls) drds
/ alr

= /000 ()y(s)dr ds (6.11)

FaxFy = /000 /000 a(m)a(s)z(T)y(s) dr ds. (6.12)

and

First we show that a may be chosen to be continuous, i.e. that there
is a continuous function in the equivalence class of a. By 2.2.44, there
exists a continuous function xy with compact support such that Fzg =
Jo° axgdleb # 0. Using (6.11) and (6.12),

/OOO y(s)a(s) /0°° a(r)zo(r)drds = /OOO (<) /OOO T +<)zo(r) dr ds.

Since y € L'(RT) is arbitrary, a(s) = Ww for almost all

¢ € R*. Hence it suffices to show that 3(c) = [~ a(r + ¢)zo() dr =
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fgoo a(T)xo(T — ) dr is continuous. To this end, note that for ¢,h > 0
we have

oo

V%+M—MMS/ ()| z0(r — ¢ — h) — zo(r — ¢)] ds

st+h
st+h

[ la@) aor - 9ldr,
S

that the second integral tends to zero as h — 0, and that the first may be
estimated by ||| o (r+) SUP,ep+ [To(0+h)—2(0)| which also converges
to zero by virtue of uniform continuity of xg.

Let us assume thus that « is continuous. Using (6.11) and (6.12), we
see now that a linear functional F' is multiplicative if a(74<¢) = a(7)a(s),
for almost all 7,5 € R". Since « is continuous this relation holds for all
7 and ¢ in R*. In particular, taking 7 = ¢ = %0 we see that for any
o >0, a(o) = a(a)? > 0. Moreover, we may not have a(o) = 0 for some
o € RT for this would imply a(r) = 0 for all 7 € Rt and Fz = 0 for
all z € L'(R*). Thus we may consider 3(7) = In a(7) (In is the natural
logarithm). We have (7 4+ <) = B(7) + 8(¢). In Section 1.6 we have
proven that this implies §(7) = p7 for some p € R. Thus, a(r) = /7.
Since a must be bounded, we must have p = —A, A > 0.

We have proven that all multiplicative functionals on L!(R*) are of
the form

Fx z/ e (1) dr;
0

in other words, the set M of multiplicative functionals on L!(RT) may
be identified with RT. One still needs to check that topologies in R* and
in the space M agree, but this is not difficult. We remark that the fact
that L'(R*) does not have a unit has its reflection in the fact that RT
is not compact; the point at infinity corresponds to the zero functional
on L'(R™).

6.3.4 The Fourier cosine series ~ What is the general form a multiplica-
tive functional on the algebra [!(Z) defined in Exercise 6.1.11? We know
that as a Banach space [}(Z) is isometrically isomorphic to I'(Np) and
the isomorphism is given by

1
Iz =1(&)nz0 =y = ()nez, where 0, = S&ja,n # 0,m0 = &o
and

Iily = Iﬁl("?n)nEZ =T = (gn)nZOa where &, = 2n,,n > 0,& = no.
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If F is a linear functional on I}(Z), then FI is a linear functional on
I'(Np) which must be of the form (6.9). Hence FIz = > a,&, for all
z = (&)n>0 in x € 1'(Np), and

Fy=FIx = Zanfn :aofo-l-QZOln??n

n=0 n=1
= 04060 + Z Anlln = Z Qpln- (613)
neZ,n#0 neZ

Here we put a_,, = a,, for n > 1, making «,, an even sequence.

Now, assume that F'is multiplicative. Since e is a unit for our algebra,
ag = F(eg) = 1. Note that e,,n # 0, do not belong to I}(Z) but
%(e_n + e,) do. Also, o, = F%(e_n + e,). If m and n are both odd or
both even, then

200mem Qngm = S F(e g nom) + €3 (n-m)) (€~ L (nm) T €L (ntm))

1
iF(e—n +ente—m+ em) = apn + ap.

Let a = . Since ||2(e—_1 +e1)|| = 1, o belongs to [—1,1], and one may
choose a t € [0, 27) such that o = cost. We claim that o, = cosnt,n €
Z. To prove this note first that there is only one even sequence a,,, n € Z,
such that

20 n—m Qnim = Oty + O, and ag = 1,7 = cost (6.14)
2 2

where n and m are either both even or both odd. In other words the
sequence oy, n € Z is uniquely determined by the functional equa-
tion and initial conditions (6.14). This fact is left as an exercise for the
reader. Secondly, using the well-known trigonometric identity we check
that a,, = cosnt satisfies (6.14). As a result, invoking (6.13) we see that
all multiplicative functionals on [!(Z) are of the form

F(nn)nez = Z T, COS N, t € [0,2m).

n=—oo

The reader may notice, however, that the topological space M is not
isomorphic to [0,27); it may not be since [0, 27) is not compact, while
M is, for I1(Z) has a unit. Moreover, if a sequence t, € [0,27) tends to
27 then the corresponding functionals Fy, =Y 02 1, cosntj tend in
the weak* topology to Fy = Y>>~ n,. This suggests that instead of
the interval [0, 27) we should think of a unit circle in the complex plane



6.3 Examples of Gelfand transform 213

C = {z;2 = ¢it,t € [0,27)}, which, for the one thing, is compact. The
reader will check that M may indeed be identified with this set.

6.3.5 Exercise  Show that (6.14) determines the sequence a,,n € Z
uniquely.

6.3.6 The Fourier series  Let us consider the algebra ['(Z). By 5.2.16,
all linear functionals on this space have to be of the form

o0

n=-—oo

where a,,n € 7Z is bounded. As in 6.3.1, we see that «, = Fe, =
(Fe1)™ = a™; this time however this relation holds for all n € Z. Hence,
the only multiplicative functionals in [*(Z) are

oo

F(&n)nez = Z &n,s and F(&n)nez = Z (=1)"&n-

n—=—oo n—=—oo

The situation changes if we allow sequences in I*(Z) to have complex
values. Repeating the argument from 5.2.3 one proves that linear func-
tionals on ['(Z) (that are complex-valued now) have to be of the form
(6.15) with a bounded, complex sequence «,,. In such case, there are
infinitely many bounded solutions to a,, = «a™, all of them of the form
a, = e t € [0,27). In other words, the image of the element of the
complex [*(Z) via the Gelfand transform is a function # on [0, 27) given
by

Bt)= Y &e'™, tel0,2m),

n=-—oo

called the Fourier series of . As in the previous subsection we note,
however, that the topological space M of multiplicative functionals may
not be identified with the interval [0, 27) but rather with the unit circle.

6.3.7 The Fourier transform  Let L'(R) be the Banach algebra of ab-
solutely integrable functions on R with the usual norm and convolution
as multiplication. Arguing as in 6.3.3 we obtain that all multiplicative
functionals on this algebra have to be of the form

o
Fx = / axdleb (6.16)

—00
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where « is continuous and satisfies
a(t +¢) = a(r)als), for all 7,¢ € R. (6.17)

This implies that a(7) = a” where a = «(1). Since a(1) = a(1/2)a(1/2)
is non-negative we may choose a real u such that a(r) = e*”. The
requirement that o be bounded forces now p = 0, so that the only
multiplicative functional on L*(R) is

Fx :/ x dleb.

—00

If we allow the members of L'(R) to have complex values, the analysis
presented above does not change except that a(7) turns out to be of the
form a(7) = e where u is complex. The boundedness condition leads
now to p = it where t € R. As a result, all multiplicative functionals on
the complex space L'(R) are of the form:

oo
Fz = / e Tx(r)dr, teR.
—0o0

One proves that M is indeed topologically isomorphic to R. The image
# of an element z of the complex L!(R) is its Fourier transform. Note
that R is not compact and that L!(R) does not have a unit. As a bonus
we obtain the fact that the Fourier transform of an absolutely integrable
function belongs to Cp(R).

6.3.8 The Fourier cosine transform  Let L!(R) be the Banach algebra
of even, absolutely integrable functions on R with the usual norm and
convolution as multiplication. As a Banach space L.(R) is isometrically
isomorphic to L!'(R*). Hence arguing as in 6.3.4, one proves that all
linear functionals on L!(RR) are of the form

Fx = /OO z(t)a(r)dr = 2/0Oo x(7)a(r)dr, (6.18)

— 00

where « is a bounded, even function. Calculating as in (6.11) and (6.12),
we obtain

F(z xy) / / a(T +¢)x(r)y(s)dr dg (6.19)
and

FxFy= /_OO /_OO a(m)a(s)z(r)y(s) dr ds. (6.20)
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Even though these two equations are formally the same as (6.11) and
(6.12), we may not claim that they imply that a(7+¢) = a(7)a(s) since
x and y are not arbitrary: they are even. Nevertheless, rewriting the
right-hand side of (6.19) as

/ / a(T 4+ ¢)x(r)y( dec—/ / a(r —<)z(r)y(s) dr ds

we obtain

(z*xy) / / )+ a(r —9)|x(r)y(s)drds.  (6.21)
Observe that
altT+e)+a(t—¢)=alt+¢)+a(-T7+¢)=a(-7—¢)+a(-7+%)
—a(—7—¢) +alr )

so that (6.21) equals

/ / a7 +<) + a(r = <)]a(r)y(<) dr ds.

FaxFy = 4/0 /0 a(m)a(s)z(r)y(s) dr ds.

Since z and y restricted to R may be arbitrary members of L'(R) we
infer that if F' is a multiplicative functional then

a(T+¢) + a(t —¢) =2a(r)als) (6.22)

Using (6.18),

for almost all 7 and ¢ in R*. This is the famous cosine equation, a con-
tinuous equivalent of the equation which we have encountered in 6.3.4.
Arguing as in 6.2.6 we prove that o may be chosen to be continuous,
and thus that (6.22) holds for all 7 and ¢ in R*. The reader will not be
surprised to learn that all continuous solutions to (6.22) are of the form
a(7) = cos(tt),t € R. Hence, all multiplicative functionals on L!(R) are
of the form
o0
Fz= / cos(tr) z(7) dr.
—00
Also, the locally compact topological space M may be identified with
R. The image
o0
z(t) = / cos(tr) z(7) dr
—0o0

of a member of L!(R) is termed the Fourier cosine transform.
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6.3.9 The Gelfand transform on the Klein group  Consider the space
L (G) of functions on the Klein group that are absolutely summable with
respect to the counting measure. This space coincides with the space of
all signed measures on the Klein group. The convolution in this space was
discussed in 2.2.19. The space L'(G) with multiplication thus defined is
a Banach algebra with unit identified with a sequence (1,0, 0,0); which
is just the Dirac measure on the unit of the Klein group. (The elements
of this space will be written as column vectors or row vectors.)

Let us find all multiplicative functionals on L!(G). To this end, note
first that by 5.2.16 all linear functionals on L'(G) are of the form
F(a;)i=1,234 = 2?21 o;a; where oy are real numbers. If F' is to be
multiplicative, we must have

4 4 4
Z o;C; = lz aiail lz aibi]
i=1 i=1 i=1

for all (a;)i=1,2,34 and (b;)i=1,2,34 where ¢; are defined by (1.12). A
direct calculation shows that the possible choices for a; are

= (+1,+1,+1,+1),

= (+1,—-1,-1,+1),

= (+1,-1,+1,-1),

Fy = (+1,41,-1,-1).

We could write this as follows:
Fiu +1, +1, 41, 417 [a1 aq
FQ,LL +17 _17 _17 +1 az a2
= = h =
Fzp Gu +1, =1, +1, —1| |as|’ e
F4,LL +17 +17 _17 -1 a4 aq
(6.23)

In other words, M = {Fy, F», F5, F4} is a finite set, and the Gelfand
transform of an element of u of L'(G) may be identified with

(N(Fi))i:1,2,3,4 = (Fi/‘)izl-,?v&‘l’

treated as members of the algebra R* with coordinatewise multiplication.
Note that the matrix G, appearing in (6.23), is invertible and that
Gl=1a
1G.
We will apply this result in 7.8.4 below.
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6.3.10 Remark As asimple calculation shows, the functions 7 — e'*",
t € R, generate multiplicative functionals on the algebra BM(R) and
7 — e~ generate multiplicative functionals on the algebra BM(R™).
Finding the general form of multiplicative functionals on the algebra
BM(R) or BM(R™") is a more difficult task. We will not pursue this sub-
ject because fortunately we do not need all multiplicative functionals to
describe members of these algebras. All we need is the Fourier trans-
form of a member of BM(R) and the Laplace transform of a member of
BM(R™) (of course it requires a proof, see Section 6.6). In a sense, the
situation is similar to that in 6.3.1 where we remarked that although
the space of multiplicative functionals on I*(Ny) is isomorphic to [—1,1]
it suffices to consider the functionals corresponding to « € [0, 1]. This
is not only fortunate but also very useful, and we will have plenty of
examples that illustrate this.

6.4 Examples of explicit calculations of Gelfand transform

6.4.1 Exercise Let Z,, be the Galton—Watson process described in
3.5.5 and let f be the common probability generating function of the
(distribution of) random variables X* used in the construction of Z,.
Show that the probability generating function of the (distribution of) Z,
is the nth composition f°" of f, where fo("+1) = f(f°") and f°! = f.

6.4.2 Exercise Find the probability generating function of (a) the
binomial distribution, (b) the Poisson distribution, and (c) the geometric
distribution.

6.4.3 Exercise Let X and Y be two independent random variables
with values in the set of non-negative integers, with probability generat-
ing functions fx and fy, respectively. Let fx y be the joint probability
generating function of the (distribution of the) pair (X,Y"). Show that

fX,Y(Oéﬁ) = fx(a)fy(B).

6.4.4 Exercise Let fx be the probability generating function of a
random variable X with values in non-negative integers. Show that the
joint probability generating function of the pair (X, X) is fx x(«a, ) =
fx(a+p).
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6.4.5 Example Let us recall that for any 0 < o < 1 and a positive
number 7,

§3<"+;_i>a"=(1jay (6.24)

n=0
where ("+£_1) = W This may be checked by expanding

the right-hand side into Maclaurin’s series. In particular, if 0 < p < 1,

and r = k is a positive integer, then p,, = (Zj)q” kpk g =1—p,n=
k,k+1,... is a distribution of a random variable, because
oo oo
n—1\ ,_r & & n—1+k\ , pF
> ()= (e -
n=~k n=0

The quantity p, is the probability that in a series of independent Berno-
ulli trials with parameter p the kth success will occur at the nth trial
[40]. In other words (py),,», is the distribution of the time 7" to the kth
success. The distribution (pn)n>0 where p,, = 0 for n < k is termed the
negative binomial distribution with parameters p and k. The proba-
bility generating function of this distribution is given by

:pki<7]z—1> n—k n_pakz<n_1+k) non
n==k

_ (ap)®
(1 —ag)*
This result becomes obvious if we note that 7" is the sum of k independent
times T; to the first success, and that T; — 1 is geometrically distributed:
P(T; = n) = pg"~',n > 1. Indeed, this implies that the probability

generating function of T is the kth power of the probability generating
po
—aq”

function of T3, which equals 7

6.4.6 Exercise Let X,,,n > 1, be independent Bernoulli random
variables with parameter p. Define a random walk S,,,n > 0, by Sp =0
and S, = > ; X;,n > 1. Let p,, = P(S,, = 0), and let r, = P(S; #
0,...,58,-1 # 0,5, = 0) be the probability that at time n the random
walk returns to 0 for the first time. Note that a priori we may not exclude
the case Y -, pp, =00 or Y-, 7, < 1. Show that

(a) Pon = (ZS)PTLQ"?pszrl =0,n>0,
(b) fla) = >°0°  pana™ equals (1 — dapq)~7 for a € [0,1] if p # ¢; if
p =q =3 the formula holds for a € [0,1),

(¢) S0 i pn = ﬁ so that (pn),>, belongs to I' iff p # g,
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(d) pn =}, TkPn—k,n > 1 (this is almost (Pn)n>0 = Pr)ns0*(Tn)ns0 s
but not quite!), and so g(a) = Y07 r,a” satisfies f(a) = 1 +
fla)g(a),

(e) gla) =1—(1—4apg)?,

(f) Xotira=1-Ip—dl

n=1

2

6.4.7 Exercise For 7 € R and t > 0 let g(7,t) = \/éqe_%t and

9(7,0) = lim;_q g(7,t) = 0. Show that the Laplace transform of g(r,t),

G(T,)\):/ efAtg(T,t) dt
0

equals

L —vax
VR A s
V2

Hint: check that G is differentiable in 7 and c’fﬁ =2)\G.

6.4.8 Exercise  Calculate the Fourier transform (the characteristic
function) ¢(a) = Ee'®X of a standard normal random variable X, by
checking that it satisfies the following differential equation:

< h(a) = —ad(a), 6(0)=1. (6.25)

6.4.9 Campbell’s Theorem  Let us come back to the random variable
(Pz)(w) = >°0°  #(Sp(w)) discussed in 2.3.45, where z € L'(RT,a x
leb), and try to find its characteristic function. Assume first that x is
continuous with support in [0, K], say, and define z,(7) = x(Z~ ) for
% <7< %, 1<j<n-1 20) = 2(£). Then, z, converges
to x pointwise (even uniformly) and so for any w, Pz, (w) converges
to Pz(w). By the Lebesgue Dominated Convergence Theorem charac-
teristic functions ¢,(«) of Pz, converge to that of Px. On the other
hand,

n—1

Pz, = Zx (f) Yo

=0

where Y, ; is a number of S in the interval (JK (]H) ]. In Exercise 7.5.7
in Chapter 7 the reader will show that Y,, ; are mdependent Poisson

distributed random variables with parameter A = ﬂ. Hence

Hexp{ (o 71>}fexp{ﬁ2<em< 1),

7=0 7=0
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The sum in the exponent above is an approximating sum of the Riemann
integral

K 0
a/ [eler(W) _ 1] du = a/ [eler(®) _ 1] du,
0 0

and thus the characteristic function of Px equals
exp{a/ [l _ 1] du}. (6.26)
0

This result may be extended to all z € L' (R, a x leb). To this end, one
approximates x in the strong topology of L'(R™, a x leb) by a sequence
Z,, of continuous functions with compact support (see 2.2.44). Since P
is a Markov operator, Px, converge to Pz in L'(2, F,P), and hence
weakly also (see 5.8.1). Therefore, the characteristic functions of Px,,
converge to that of Px. Our claim follows now by the Lebesgue Dom-
inated Convergence Theorem and the estimate |1 — (W) < |ax(u)]
(see the solution to 6.4.8).

Note that « in equation (6.26) is redundant in the sense that it appears
only together with x, while z is an arbitrary element of L'(R*,a x
leb) anyway. In other words we may restate our (actually, Campbell’s)
theorem by saying that

EetP? = exp{a / [ — 1] du} (6.27)
0

and if necessary recover (6.26) by substituting ax for . Formula (6.27) is
a particular case of the so-called characteristic functional of a point
process. In this setting, {S,,n > 1} is viewed as a random subset
P2 (which is not a linear
functional) describes the distribution of such a random set in a quite
similar way to that in which the characteristic function describes the
distribution of a random variable (see [24], [66]). In the case of a single
random variable Z we describe its distribution by means of expected
values Ee!Y of a family Y = aZ of random variables indexed by o € R.

of RT. The characteristic functional z — Ee

Since a random set is a more complex entity than a random variable
we need more “test-variables” Y to describe it and need to take, for
example, Y = Pz indexed by z € L'(R*,a x leb). The random set
{Sn,n > 1} is called the Poisson (point) process with parameter a
(see also 7.5.5).

The characteristic functional (6.27) reveals much more than is seen
at a first glance. For example, taking = > | a;x; where o; € R and
x; € LY(R*,a x leb) we obtain from it the joint characteristic function
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of Pr;,0 < ¢ < n. In particular, taking x; to be indicators of mea-
surable disjoint subsets A; of RT with finite measure we see that the
number of points of our random set in each A; is Poisson distributed
with parameter aleb(4;) and independent of a number of such points in
Aj,j # i. Moreover, if z1 and z2 belong to L?(RT), we differentiate the
joint characteristic function

(25(011, Oéz) _ eXp{a/ [eia1x1(u)+ia2m2(u) _ 1] du}
0
of Pxy and Pxs at (0,0) to obtain

E Pz Pxy = a? / x119 dleb + a? / x1 dleb / xy dleb. (6.28)

6.4.10 Exercise Let a,b > 0, and P, be the Markov operator related
to a Poisson process with parameter at. There is a probability space
(Q, F,P) where one may construct a random subset] S of RT such that
for x € L'*(R*, a x leb), the expected value F(z) = Ee'’® where

Pz(w) = Z z(s)
seS(w)
is given by
b
b+a [°[1—e*®]du

F(z)=b / e VM E Tt =
0

Such random sets are called geometric point processes and are of
importance in population genetics — see [18]. Show that for any bounded
measurable A, the number of elements of this random set in A is geo-
metrically distributed with parameter p = m. Also, show that P
is a Markov operator and that for x; and x5 in L?(R*) we have

a? a?
FE Px{Pxy = 2b—2/;v1 dleb/xg dleb + ?/le'g dleb.

Deduce in particular that random variables P14 and Plpg are not inde-
pendent even if the sets A and B are disjoint.

6.4.11 Exercise  The bilateral exponential measure with parameter
a > 0 is the probability measure with density z(7) = %e"T'a. Show by
direct calculation that the Fourier cosine transform of the density of the

bilateral exponential distribution with parameter a equals Note

_a®
a?+t2"

1 The phrase random set means here that one may introduce a o-algebra in the set
of (countable) subsets in Rt such that the map w — S(w) is measurable.
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that since the bilateral exponential is symmetric its Fourier transform
and Fourier cosine transform coincide.

6.4.12 Exercise = The Cauchy measure with parameter a > 0 is the
probability measure with density x(7) = %aziﬁ Use the calculus of
residues to show that the Fourier transform (and the Fourier cosine

transform) of the density of the Cauchy measure with parameter a is
—[tla
e .

6.5 Dense subalgebras of C(S5)

In this short section we present the Kakutani—-Krein Theorem and derive
from it the Stone—Weierstrass Theorem. Of course, in functional analysis
this last theorem is of great interest by itself, but the main reason to
present it here is that it constitutes a tool in proving inversion theorems
of the next section section (Theorem 6.6.7).

6.5.1 Definition Let S be a topological space. A subset of the set
of continuous functions on S is said to be a lattice if both = V y and
x Ay belong to this subset whenever x and y do. It is said to separate
points if for any p,q € S, there exists a z in this set with z(p) # z(q).

6.5.2 The Kakutani—Krein Theorem  Let C(S) be the space of continu-
ous functions on a compact topological space S and let A be an algebraic
subspace of C'(S) which contains 1g and is a lattice. If A separates points,
then the closure of A is the whole of C(S5).

Proof Fix x € C(S). For any p, ¢ € S, take a z € A such that z(q) # z(p).
Then there is exactly one pair of numbers «, 3 such that a+8z(p) = z(p)
and a+ Bz(q) = z(q). Writing y, , = alg+ 0z € A we see that at p and
g the values of y, , and = are the same.

Now, fix e > 0 and p € S. Functions y, , and = being continuous, we
may find an open neighborhood U, 4 of ¢ such that y, ,(r) < z(r) + €,
7 € Ucq. These neighborhoods cover S. Since S is compact, one may find
a finite subcover of this cover. Let ¢y, ..., g, be the points defining this
subcover. Note that y, = Yp.q, AUp,go N ---AYp.q., € A satisfies y, < x+elg
because any r belongs to Uy, . for some i = i(r) and for this ¢ we have
Yp(r) < Yp,q, (1) < a(r) + €. Also, y,(p) = z(p).

Finally, let V,, be open neighborhoods of p such that y,(r) > z(r) — €
for r € V. Again, V,,p € S form an open cover of S. Let p,...,px be
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the points defining a finite subcover of this cover. Writing y = y,, V
Ypo V... VYp. € A and arguing as above we see that y > x — elg. Since,
obviously, y < x + €lg, we obtain ||z — y|| < e. This proves that A is
dense in C(5), as desired. O

6.5.3 The Stone—Weierstrass Theorem  Let C(S) be the space of real
continuous functions on a compact topological space S, and let B be its

subalgebra. If B separates points and contains 1g, then the closure of B
equals C(95).

Proof Let A be the closure of B. Since A separates points and contains
1g it suffices to show that it is a lattice, and by Exercise 6.5.4 it suffices
to show that |x| belongs to A whenever x does. Without loss of generality
we may assume ||z|| < 1. By the Weierstrass Theorem 2.3.29, for any
€ > 0 there exists a polynomial p,, such that sup ¢ 1|7 = pu(7)] <e.
Hence, for any p € S, | |z(p)| — pn(x(p))| < €. This shows that |z| can
be uniformly approximated by a polynomial in . But A is an algebra,
as the reader will easily check, and contains 1g so that a polynomial in
x belongs to A. Hence, |z| belongs to the closure of A, equal to A, as
claimed. Ul

6.5.4 Exercise Show that an algebraic subspace of C(.9) is a lattice
iff |y| belongs to this subspace whenever y does.

6.5.5 Exercise  Prove the following complex version of the Stone—
Weierstrass Theorem. If A is a subalgebra of the space C(5) of complex
continuous functions on a compact space S satisfying conditions of 6.5.3
and such that the complex conjugate T of any = € A belongs to A then
the closure of A equals C(S).

6.5.6 Exercise Let C(R2) be the algebra of functions 2 on R? such
that the limit lim,2, 42 2(7,0) exists, and let C(R) be the algebra
of functions y such that the limit lim|,|_,, y(7) exists. Show that linear
combinations of functions of the form x(7,0) = y1(7)y2(c) where y; €
C(R),i = 1,2, are dense in C'(R2). Use this to offer yet another proof of
5.4.20 (cf. 5.7.8).

6.5.7 Exercise (Continuation) Use the previous exercise to show that
if X and Y are random variables, X is independent from a o-algebra F
and Y is F measurable, then E(x(X,Y)|F) = [, z(7,Y) Px(dr) for any
z € C(R?).
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6.6 Inverting the abstract Fourier transform

In probability theory, three examples of a Banach algebra seem to be of
particular importance. These are: the algebra BM(R) of Borel measures
on R, the algebra BM(R™) of Borel measures on RT and the algebra
BM(Np) of Borel measures on Ny (isometrically isomorphic to I*(Np)).
This is because we are interested in random variables in general, but
quite often our interest focuses on positive random variables or random
variables with natural values. From 6.3.10 we know that the Gelfand
transform in the first two of these algebras is related to the Fourier
transform and the Laplace transform, respectively. The Gelfand trans-
form in the third algebra is a probability generating function, except
that it is defined on [—1,1] and not on [0, 1] as customary in probabil-
ity. The reader may be familiar with the fact that there are well-known
inversion theorems for the Fourier transform, for the Laplace transform
and for the probability generating function; all serious books in proba-
bility discuss them (or at least one of them). Such theorems assert that
the values of the Fourier or Laplace transform or the probability gener-
ating function of a (probability) measure determine this measure. This
section is devoted to proving these results.

At this point it is crucial to recall that the set of multiplicative func-
tionals on a Banach algebra A may be empty. Hence, in general the
Gelfand transform does not determine a member of this algebra and
there is no “inversion theorem” for the abstract Gelfand transform. Our
case is not hopeless, however, since we may restrict ourselves to abelian
algebras. Moreover, we are not dealing with general Banach algebras but
rather with convolution algebras of measures. Inspecting the arguments
used in the previous section we discover that the notion of a multiplica-
tive functional on the algebra of Borel measures on a locally compact
commutative topological semigroup G with multiplication o is closely
related to that of a semicharacter of G, defined to be a bounded, real
or complex, continuous function « on G such that

a(g1 0 g2) = a(g1)a(ge);

a semicharacter on a group is called a character. To be more specific,

we check that given a semicharacter a we may define a multiplicative
functional on BM(G) by

Fou= / aduy.
G

As a subset of a locally compact space, the set A of such functionals is
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a locally compact space itself. Following [52], the map
BM(S) 3 p € C(A),

where [i(a) = Fpu will be called the abstract Fourier transform.

Hence, inversion theorems of probability theory say that for many
locally compact semigroups G, a measure in BM(G) is determined by its
abstract Fourier transform.

Unfortunately, it is not clear whether this theorem is true for all lo-
cally compact commutative semigroups. It is definitely true for locally
compact commutative groups, but the proof is based on the results of
Gelfand and Raikov concerning unitary representations of a locally com-
pact commutative group [52], and cannot be presented in this elementary
treatise. Therefore, we need to take up a still more modest course. Specif-
ically, we will prove that the theorem is true for compact commutative
semigroups, provided that semicharacters separate their points (this will
follow immediately from the Stone~Weierstrass Theorem) and then treat
the remaining cases that are important from the probabilistic point of
view separately.

We start, though, with examples and exercises on characters and the
elementary inversion theorem for probability generating function.

6.6.1 Example In Section 6.3 we have showed that a(n) = o™, « €
[~1,+1], and a(7) = e"*", X > 0, are the only real semicharacters of
the semigroups N and RT, respectively. Moreover, a(1) = €'t € R,
are the only complex characters of the group R.

6.6.2 Exercise Show that semicharacters of a semigroup G have val-
ues in the complex unit disc (i.e. |a(g)| < 1,9 € G) and that characters
of a group have values in a unit circle.

6.6.3 Exercise Show that characters of a group form a group (called
the dual group or the character group). Show that the dual group
to Z is (izomorphic to) the unit circle with complex multiplication. Con-
versely, the dual of this last group is Z. This is a simple example of the
general theorem of Pontryagin and Van Kampen saying that the dual of
the dual group is the original group — [51] p. 378.

6.6.4 Inversion theorem for the probability generating function  The
values of &(a) = Y707 €™ determine x = (&), € I'(No).
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Proof The function & is analytic with right-hand derivatives at 0 equal
d"&(0) _ 0
o = nl&.

6.6.5 Exercise Prove the inversion theorem for the joint probability
generating function (see 6.3.2).

6.6.6 Exercise  Prove that the values of #(t) = Y7 __&,e'™ deter-
mine z = (&,),,cz € 1'(Z).

6.6.7 Theorem  Suppose G is a compact topological semigroup and
the set of its semicharacters separates points. Then, a Borel measure p
on G is determined by its abstract Fourier transform.

Note: as a corollary to the important theorem of Gelfand and Raikov
mentioned earlier one may show that the set of characters of a commu-
tative locally compact group separates points — [51] pp. 343-345.

Proof By the Riesz Theorem, it suffices to show that the linear span Y
of characters is dense in C(G). Y is a subalgebra of C(G). Moreover, it
separates points and contains 1g. Hence, if all semicharacters are real,
our claim follows by the Stone—Weierstrass Theorem. In the general case,
we note that Y also has the property of being closed under complex
conjugation — a function belongs to Y iff its complex conjugate does.
Hence, the theorem follows by 6.5.5. 0

6.6.8 Example The unit circle C with complex multiplication is a
compact commutative group. All its characters are of the form «a(z) =
z", z € C,n > 0. Obviously, the set of characters separates points of
C. Hence, a measure g on C is determined by fi(n) = [52"u(dz).
More generally, all characters on the compact group CX¥ are of the form
21,y 2) = 2702y > 0,4 = 1,..., k, and a measure p on C¥ is
determined by fi(n1,...,nk) = [qi 21"z p( dzy . zp).

6.6.9 Inversion theorem for the Laplace transform A measure p €
BM(R™) is determined by its Laplace transform, fi(A) = [, exdu, A >
0,ex(T) =e ™, 7 >0.

Proof This is a direct consequence of 2.3.31. We may also derive it
from 6.6.7 by noting that G = RT U {oo}, with the usual addition and
supplementary rule a + 0o = 0o, a € RT U{oo}, is a compact semigroup,
so that p may be treated as an element of BM(G), with p({co}) = 0.
Moreover, all semicharacters on R™ may be continuously extended to the
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whole of G to form semicharacters of G. These semicharacters separate
points of G. O

6.6.10 Inversion theorem for the Fourier transform  All characters of
RF k > 1 are of the form RF > 5 = (s1,...,55) — ei(s) = et where
t = (t1,...,tx) € RF and “-” denotes the scalar product s-t = Zle siti.
Hence, the multidimensional Fourier transform of a measure i € BM(R)
is given by fi(t) = [« e¢ dp. The inversion theorem for the Fourier trans-
form does not follow from 6.6.7, since R¥ is not compact. The compact-
ification argument of 6.6.9 does not work either, since the characters of
R* do not have limits at infinity. To prove that a measure u € BM(RF)
is determined by its Fourier transform, ji(t) = ka et dp, we proceed as
follows.

We assume, without loss of generality, that p is a probability measure.
It suffices to show that for any @ € Co(R¥) and ||lz|| > € > 0 there exists
a linear (complex) combination y of e; such that

/ xd,u—/ ydﬂ’ < €. (6.29)
Rk REk

Let n be large enough so that u(S,) > 1 —

€
—<— where
6l

S, ={s=(s1,....s1) ERF |s;| <m,i=1,...,k}.

The linear combinations of &, = (ewn”m)w ,m € ZF are, by 6.5.5,

dense in C(S,). Let yo be a linear combination of e, such that |z|g, —
vollc(s,) < §. Since the &, are periodic with period 2n (in each co-
ordinate), yo has the 2n-periodic extension y, defined on R. We have
Iollos,y = Illmarey. o particular, [lylpares) < lloll + ¢ < 2lal].
Hence, integrating |z — y| over S,, and its complement we see that the

left-hand side of (6.29) is less than (S, )§ + M(Hxﬂ +2|z|)) < e.

We conclude this section with applications.

6.6.11 Distributions of linear combinations of coordinates determine the
distribution of a random vector

Proof If X = (Xq,..., X)), then for u = Py,

i) = / erdp = / et X dP = / rdP; x
Rk Q R

where z(s) = e, s € R. O
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6.6.12 Continuity theorem  Let u and uy,,n > 1, be probability mea-
sures on a locally compact semigroup G. If u, converge weakly to pu,
then fi,, converges pointwise to 1. Conversely, if we assume that the ab-
stract Fourier transform determines a measure, and that fi,, converges
pointwise to i, then u, converges weakly to p.

Proof The first part is immediate. For the other part observe that, by
Alaoglu’s Theorem, any subsequence of the sequence p,,n > 1, con-
tains a further subsequence converging to some po (perhaps not a prob-
ability measure, but definitely a non-negative measure). By the first
part, the abstract Fourier transforms of the measures forming this sub-
subsequence converge to jig. On the other hand, by assumption they con-
verge to fi. In particular pg(G) = u(G) = 1, so that pg is a probability
measure. Since the abstract Fourier transform is assumed to determine
the measure, we must have g = p. This shows that pu,, converges to u.

O

6.6.13 Corollary In view of 6.6.4 and 5.8.6 a sequence z,, = (&i,n);>¢ »
n > 1, of distributions in I*(Ng) converges strongly, weakly or in the
weak® topology to a density z = (&),50 Uff limy oo D iog @& =
Yoo g for all a € [0, 1]. -

6.6.14 Exercise Use the continuity theorem for the generating func-
tion to prove the Poisson approximation to binomial 1.2.34.

6.6.15 Negative binomial approximates gamma Let X,,,n > 1, be neg-
ative binomial random variables with parameters (p,, k), respectively. If
pn — 0 and np, — a > 0, as n — oo, then the distribution u,, of %Xn
converges weakly to the gamma distribution with parameters k£ and a.
Indeed, all measures may be considered as elements of BM(RT). The
Laplace transform of %Xn equals

Xn
6,00 = B exp(-2%,) = F (e -2)) .

which is the probability generating function of X,, at a = exp{—% .

_EAyk
Therefore, ¢, (A) = % X :lT: converges to ﬁ, which is

the Laplace transform of the gamma distribution with prescribed pa-
rameters:

%) k k
At —at @ k—1 a
—t dt = ——.
A R (T (A +a)F
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Note that we have once again established 5.4.16 (take k = 1).

6.6.16 Another proof of the Central Limit Theoremm  The continuity
theorem is a powerful tool in proving weak convergence of probability
measures. The point is that we need to consider merely integrals [ adu
with a continuous and having nice algebraic properties. In particular,
the proof of CLT (in its classical form 5.5.2) is now an easy exercise in

calculus.

Recall that for any continuously differentiable function ¢ on R we
have ¢(t) ) + fo s)ds. Using this, if ¢ is twice continuously
d1fferent1able

o) =00+ | (¢’<o>+ [ ot du) as
=¢(0)+t¢’(0)+/ (t —s)¢" (s)ds (6.30)
0

by Fubini’s Theorem. (This is a particular case of the Taylor formula
with integral remainder.) Also, one checks that for continuous function
¢, limy_o ¢ fo s)ds = ¢(0). In a similar way,

limz/ot(t—s)qﬁ( ds_hm—/ / 6(u) duds = 6(0).  (6.31)

t—0 2

Now, without loss of generality we may assume that m = 0 and 02 = 1,
since the general case may be reduced to this one. Then, arguing as in
1.2.12 we see that the (common) characteristic function ¢(t) = E eitX» of
all X,, is twice differentiable with ¢'(0) = iy = 0 and ¢”(0) = —E X% =

—02 = —1. Moreover, the characteristic function of ﬁ ZZ:1 X} equals

¢"(-%). By (6.30),

o ()= /f (L)oo

and (6.31) implies that nfo " (== —$)¢"(s) ds tends to —% as n — oo.

2
Recalling lim, o4 (1—7)7 = e 1 we obtain (b”(ﬁ) — e~ 7, as desired.

6.6.17 Central Limit Theorem with (Poisson distributed) random num-

ber of terms Let X,,n > 1, be the i.i.d. random variables from the

previous subsection. Let Z,, be Poisson random variables with F Z,, =

an,a > 0, independent of X,,,n > 1. Defining Y,, = f;l X we have
Y,—anm .. .

that o3 converges weakly to the standard normal distribution.
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Proof Again, we may assume m = 0 and 02 = 1. Let p and ¢ be
the (common) distribution and characteristic function of the X,,,n > 1,
respectively. The key step in the proof is that the distribution of Y,
equals

o (an)*
— *k —
e MZ o K= " exp(ang)
k=0
where *xk denotes the kth convolution power and exp is the exponent

in the algebra BM(R). Hence, the characteristic function of \/%Yn is
¢~ exp {am;ﬁ (\/;fn)} . By (6.30) and (6.31),

and (\;%) anan/oﬁ (\/% s) ' (s) ds

as claimed. ]

tends to — 2 ,

6.6.18 Example In 8.4.31 we show that, for a > 0 and ¢t > 0,

e~ |coshva? — 72t + % coshva? — 7'24 , Tl <a,

Gat(T) = T2 — a?t + \/”i 0s V712 — aQt] |7] > a,
_at(lilat—l—at), T = +a,
(6.32)
is the characteristic function of a random variable, say &,(t). (To be
more specific, &,(t) fo $) ds where N,(t),t > 0, is the Poisson

process to be introduced in 7 5.5, but this is of no importance for now.)
We will show that, as a — 00, \/a&,(t) converges to an N(0,t) variable.

7,2
To this end, it suffices to prove that lim,—.c ¢ ¢(v/a7) = e~ T . Let
7 € R be fixed. For a > 72, ¢, 4(1/aT) is calculated using the first formula
in the definition above, and some algebra shows that it equals

2 1 +1
exp < at 1-= 7+\f7
a 2 9 f1_ =2
\/ Ja
2 1 +1
+explat |— 1-= 1 f—fi
a 2 2 1_L
\/ Ja

Observe that the expressions in square brackets tend to 1 and 0, respec-
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tively. Next, 0 < exp {at |:1/1 — %2 - 1]} <1,and
2 at [1 % ] )
hmat[q/l—T—llzhm Tt
a—00 a a—00 / T2 2

as desired.

6.7 The Factorization Theorem

This section is devoted to Cohen’s Factorization Theorem, later gener-
alized independently by E. Hewitt, P. C. Curtis and A. Figd-Talamanca,
and S.L. Gulik, T.S. Liu and A.C.M. van Rooij, see [52] and the
overview article [72]. This is one of the fundamental theorems of the
theory of Banach algebras but this is not the main reason why we dis-
cuss it here. Rather, we are motivated by the fact that this theorem
constitutes an integral part of the structure of the Kisynski’s algebraic
version of the Hille-Yosida Theorem to be discussed in Chapter 8. On
the other hand, Cohen’s Theorem is not crucial for the proof of the
Hille-Yosida Theorem. Hence, a casual reader may take my advice from
Section 1.6.

6.7.1 The Factorization Theorem Let H be a representation of L' (R™T)
by bounded linear operators in a Banach space X, and let R C X be
defined as

R = {x € X|z = H(¢)y for some ¢ € L'(R"),y € X}.

Then, for every x in the closed linear span X, of R there exists a y € X
and a non-negative ¢ € L'(RT) such that x = H(¢#)y. In particular, R
is an algebraic subspace of X and is closed.

Proof

(a) Let A, = L'(RT) xR be the algebra with unit u = (0, 1) described
in 6.1.7. For notational convenience, we will write ¢ and ¢ to denote
(¢,0) and (¢,0)(¢0,0) € A,, respectively. In other words we identify
L'(RT) with a subalgebra L'(R*) x {0} of A,. Define H : A, — L(X)

H(¢p,a) = H(¢) + alx. H is now a representation of A,,.
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(b) Let iy € L*(R™) be given by iy(7) = Ae ™7, 7 > 0. Note that
Jim ixg=¢, e LY(RY), (6.33)
Jiall = 1. (6.34)
This implies that if z = H(¢)y, ¢ € L'(RT),y € X, then limy_,o H(ix)x

= limy 00 H(ix)H(¢)y = limy_,00 H(ixd)y = H(p)y = x. By linearity
and continuity,

lim H(iy)z =z, (6.35)
A—00

for all z € X.
(c) Let x € Xo and (An),,», be a sequence of positive numbers. Define
b, € A, and y, € Xy by

H (2u—a;)" ", Yn = H H (2u —qj) | =, (6.36)

Jj=1

where a; = iy,. Note that H (b, )y, = H(u)x = x. Since (see 6.1.5)

-1 o
I 1 1 _
(2u—a;)"t = 3 (u — 2aj> =gut E 2 (k'H)a?,
k=1

(6.34) implies ||(2u — a;) 7| <1 and ||b,|| < 1. Moreover,
by = 2"u + b (6.37)

for appropriate choice of ¢,, € L*(R*), and b,, converges (in A,) iff ¢,
converges (in L'(R™)). Note that ¢,, > 0. Since ¢,, 11 — ¢, equals

bpt1 — by + 2= (1), = {(2u —ap+1) — u} b, + 2ty
={(u—an+1)"" —u} (¢n +27"u) + 2~ (nt1)y,
= (2u = ant1) " H(ani1 — W)y
+ 27 (2 — a4 1) T (20041 — 2u)
+ 27D (2 — ay 1) TH2u — ang),
= (20— ant1) i, On — O} + 27" QU= ang1) tanga,
we have
lént1 = Gnll = i, s * @0 = énll +27CF. (6.38)
Also, Yni1 — yYn = (I - H(ikn+1)) Yn SO that

lYns1 — ynll < ||H(i>\n+1)y7l — Ynll- (6.39)
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(d) By (6.33), (6.35), (6.38) and (6.39), the sequence (\,),~; can
be constructed inductively in such a way that both ||y,41 — yn|| and
[¢n+1—dnl| are less than . Consequently, the series Yoo | [[Yn+1—Ynll
and Y07 | [|¢nt1— ¢n|| are convergent and, consequently, there exist the
limits lim,, o0 ¥» = v and lim,, o ¢, = ¢. We have ¢ > 0 since ¢,, > 0.
Finally,

1
v = lim H(b)yn = lim | Zyn+ H(bn)ya| = H(d)y

n—oo

as desired. ]

6.7.2 Corollary  For any ¢ € L'(R™) there exists a ¢ € L'(RT) and
a nonnegative ¢ € L*(RT) such that ¢ = ¢ * 1).

Proof Take X = L*(RT) and H(¢) = Ly. By (6.33), the closure of R
equals L' (RT). O
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Semigroups of operators and Lévy processes

Our plan is to prepare a functional-analytic background for the semi-
group-theoretical treatment of Markov processes. We start with the
Banach—Steinhaus uniform boundedness principle, the result that on its
own is one of the most important theorems in functional analysis as well
as one of its most powerful tools. In Section 7.2 we prove basic facts from
the calculus of Banach space valued functions. Section 7.3 is crucial: as
we shall see from the Hille—Yosida theorem to be presented in Chap-
ter 8, there is a one-to-one correspondence between Markov processes
and a class of linear operators — the class of generators of corresponding
semigroups. In general, these operators are not bounded, but are closed.
Hence, Section 7.3 presents the definition and basic properties of closed
operators. Section 7.4 is devoted to the rudiments of the theory of semi-
groups of operators, and in 7.5 we study Lévy processes (a particular
type of Markov processes) with the aid of the theory introduced in the
foregoing sections. Following the example of Feller [41], we postpone the
treatment of general Markov processes to the next chapter.

7.1 The Banach—Steinhaus Theorem

We start with the following exercise.

7.1.1 Exercise Letr,,n > 1, be a non-increasing sequence of positive
numbers and z,,n > 1, a sequence of elements of a Banach space X,
and let clB,, = clB(xy, ) be the closed ball with radius 7, and center
Zp. Assume that clB,,,n > 1, is a decreasing sequence of sets: cI/B,+1 C
clB,,. Show that (1, .y /B, is non-empty.

234



7.1 The Banach—Steinhaus Theorem 235

7.1.2 Baire’s Category Theorem A subset, say S, of a normed space
X is termed nowhere dense iff its closure does not contain any open ball.
It turns out that if S is nowhere dense, then any open ball B contains
a ball B’ such that B’ N S is empty. Indeed, if we suppose that any
ball B’ that is a subset of a certain ball B contains an element of S,
then it is easy to see that every point of B belongs to the closure of S.
To this end it suffices to consider, for every point x of B, the sequence
of balls B(z, 1) with n large enough to have B(z, 1) C B. This leads
us to the following important statement about Banach spaces: a Banach
space may not be represented as a countable union of nowhere dense sets.
This is the famous Baire’s Category Theorem. The name comes from the
fact that sets that may be represented as a countable union of nowhere
dense sets (e.g. countable sets) are termed sets of the first category. In
this terminology, Baire’s Theorem states that Banach spaces are not of
the first category; they are sets of the second category. To prove this

theorem, assume that we have X = Sy, where X is a Banach space

neN
and S,, are nowhere dense sets. Let By be the open ball with radius
1 and center 0. Since S; is nowhere dense, By contains an open ball

B, that is disjoint with S;. We may actually assume that the radius
3
and disjoint with S7; it is just a matter of taking a smaller radius, if
necessary. This procedure may be repeated: we may find an open ball
By of radius lesser than % such that its closure is contained in B; and
is disjoint with S;. More generally, having found an open ball B,,, we
may find an open ball B, with radius less than +2,
contained in B,, and yet is disjoint with S, +1. This, however, leads to a
contradiction. Specifically, we may use 7.1.1 for the sequence of closures
of balls B,, to see that there exists an x that belongs to all the closed
balls ¢l B,,. On the other hand, ¢lB,, is disjoint with S,,, and therefore, x
does not belong to the union of S, which is impossible by assumption

that X =

of By is smaller than 3, and that the closure of By is contained in By

whose closure is

nEN

7.1.3 The Banach—Steinhaus Theorem (uniform boundedness principle)

Suppose that X is a Banach space and that A,,,n > 1, is a sequence of
bounded linear operators. Assume that for every z € X, the supremum
of || A, || is finite. Then sup,,cy ||Ax]| is finite also.

Proof Let S, = {z € X;sup,cy ||Arx| < n}. Since the operators A,
are continuous, the sets 5,, are closed. Our assumption states that X =
Unen Sn- Therefore, by Baire’s Category Theorem, there exists an I €
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N, such that there exists a closed ball B contained in S;. Let z be the
center of this ball and let » > 0 be its radius. Consider a non-zero y € X
and a vector z = x + ﬁy € B. We have

[yl [yl [yl Iyl 2l
sl = 1z = 0 < g D < 2
(7.1)
since both z and z belong to B C S;. Thus, sup,cy [|[An| < 27[ O

7.1.4 Corollary  Suppose that A,,n > 1, is a sequence of continuous
linear operators in a Banach space X, and that the limit lim,, .., A,z
exists for all x € X. Then the operator Az = lim,, ., A,z is linear and
bounded.

Proof Linearity of A is obvious; it is its boundedness that is non-trivial
and needs to be proven. It follows, however, from the Banach—Steinhaus
Theorem. Indeed, by assumption the sequence ||A,z| is bounded for
all z € X, and so the sequence of norms ||A,| must be bounded by
a constant, say K. Therefore, ||Az| = lim,— o ||Anz| < K|z| for all
z € X, as desired. |

7.1.5 Remark It is worthwhile saying that the above theorem is true
only for linear operators. The reader should contrast this situation with
the fact that, for example, functions z,(7) = 7™ converge pointwise on
[0, 1] but their limit is not continuous.

7.1.6 Corollary  Suppose that A, t € (0,1], is a family of bounded
linear operators such that for every x € X, the limit lim;_o A;x exists.
Then there exists a d > 0 such that supg_,<4 [| 4[| is finite.

Proof The difficulty lies in the fact that we are now dealing with an
uncountable family of operators. We may argue, however, in this way: if
the thesis of the theorem is not true, then for any n there exists t,, < %
such that ||As, || > n. On the other hand, lim, o A¢, & = lim; g Az
exists for all z € X. This is a contradiction, by 7.1.3. |

7.1.7 Exercise Following the argument from the previous subsection
show that if A;,t € T, is a family of bounded linear operators in a
Banach space, indexed by an abstract set T, and if sup, ¢y || A¢x|| is finite
for any = € X, then sup,cr || A¢|| is finite, too.
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7.1.8 Corollary = Weakly™ convergent sequences are bounded. In par-
ticular, weakly convergent sequences are bounded.

Proof Let F,, € X* converge in weak® topology. Then for every = €
X, F,x converges and therefore is bounded. The uniform boundedness
principle completes the proof. |

7.1.9 Exercise If A,,n > 1, and A are bounded linear operators in a
Banach space X, with values in a normed space Y, and if A,, converges
strongly to A then

lim A,xz, = Ax

n—oo

for each sequence x,, € X;n > 1, that converges to x.

7.1.10 Corollary Let Y be a compact subset of a Banach space X.
Suppose that A and A,,,n > 1, are bounded linear operators in X with
values in a normed space Z, and that lim,, .. A,z = Az for all x € X.
Then

lim sup |4,y — Ay|| =0,
yeyY

n—oo

i.e. the convergence is uniform on Y.

Proof Let ¢ > 0 be given. Since Y is compact, there exist k¥ € N and
Y1, .., Yk € Y such that for any y € Y there exists a 1 < i < k such that
lly — yill < 557- For any y € Y, the norm of A,y — Ay is less than the
minimal value of ||A,y — Apyi|l + || Anyi — Ay:l|| + || Ay; — Ayl|- By the
Banach—Steinhaus Theorem A,, are equibounded by, say, M. Hence we
may estimate this quantity by

..........

The first term above is less than § and the second may be made that

small by choosing n large enough. O

7.1.11 Corollary  Suppose that z;,t € T, where T is an abstract index
set, is a family of equicontinuous functions on R such that

supsup |x¢(7)] = ¢

teT T€R
is finite. Suppose that u,,n > 1, is a sequence of probability measures
converging weakly to a probability measure p. Then, lim,,_ o fR e dpy,
= [ z¢ dpe uniformly in ¢ € T.
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Proof By 5.7.17, for any T' > 0, the functions (z¢)|—7,7) form a compact
set in C[—T, T]. Applying 7.1.10 to the functionals = f[iT’T] x du, we
see that
lim xedp, = / xedp (7.2)
=0 JI-1,1) [-T,7)
uniformly in ¢ € T.

On the other hand, for any ¢ > 0 we may find a T" > 0 such that
w({~T,T}) = 0 and u(~T,T)C < . Then, for large n, (=T, T) is
< ec. This, together with (7.2)
completes the proof. O

less than €, too. Hence, f(_T )8 Tt dus,

7.1.12 Corollary A sequence p,, of probability measures on R con-
verges weakly to a probability measure p iff the corresponding operators
Ty, in BUC(R) converge strongly to T),.

Proof If © € BUC(R), then the functions z,,0 € R defined as z,(7) =
z(o + 7) are equicontinuous on R. O

7.2 Calculus of Banach space valued functions

7.2.1 The derivative Let a < b be two numbers. A function (a,b) — z;
taking values in a normed space is said to be differentiable at a point
to € (a,b) iff the limit limj,_o4 “0H—0
called the derivative of x; at tg. Analogously one defines the right-hand
(left-hand) derivative at a point ¢, if the function is defined in [to, to+h)
((to — h,tg]) for some positive h, and the appropriate limit exists.

_ / 4 / 3
= x;, exists, and x}  is then

Many results from the calculus of real-valued functions remain valid
with this definition. For example, one proves that if a function (a,b) 3
t — x; is differentiable, and the derivative equals zero, then the function
is constant. Let us carry out the proof, for it illustrates well the method
of proving this sort of theorem. Let z* € X* be a linear functional. Since
* is linear and continuous, the scalar-valued function ¢t — a*(z;) is
differentiable with derivative z*(x}), which by assumption equals zero.
Thus, z*(x) is constant for any functional z*. Choose a ty € (a,b). For
any t in this interval, |lz; — ¢, || = supg«ex jjor =1 [27 (21 — 24,)[ = 0, as

T

desired.

7.2.2 Example Here is another example of a generalization of a clas-
sical result that is often found useful. If ¢ — x; is continuous in an
interval [a,b] (right-continuous at ¢ and left-continuous at b), then for
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any x € X, the function t — y; = = + fcf xsds is differentiable and

y; = @ (with right-hand derivative at a etc.).

Proof For any t < b and h > 0 sufficiently small,

1 t+h
‘ 7 / (xs —x¢)ds
t

which tends to zero, as h — 0. For ¢ > a and sufficiently small 1 < 0 the
argument is similar. |

Yt+h — Yt
e
h t

< suplzs — @],
sE[t,t+h]

7.2.3 Corollary A function [a,b] > t — = is continuously differen-
tiable iff there exists a continuous function [a, b] 3 ¢ — ; such that

t
T = g —|—/ ys ds, t € [a,b]. (7.3)

Proof If t — x; is continuously differentiable in [a, b], then the function
t— 2z =1y —xa—f; x%, ds is differentiable in (a, b) with z; = x} —x} = 0,
and thus it is constant. Since ||z|| < [lzr — 2ol + (£ — @) sup,e (o 1751,
we have lim;_,, z; = 0, implying z; = 0 for all ¢ € [a, b], by continuity.
On the other hand, by 7.2.2, if (7.3) holds, then z; is continuously
differentiable, and x} = y;. O

7.2.4 Example  Certainly, not all theorems from calculus are true
for Banach space valued functions. For instance, the Lagrange Theorem
fails, i.e. for a continuously differentiable function x; on an interval (a, b),
with values in a Banach space X, continuous on [a, b], there may be no
6 € (a,b) such that (b — a)zy = xp — z,. To see that consider z; =
(sint,cost),t € [0,%] with values in the Hilbert space R?. Then zj, =
(cos@, —sin®) and |zp|| = 7, for all & € [0,5], while [[xz — zof =
(-1, D] = v2.

We may prove, however, the following useful estimate: if x; satisfies the
above assumption and ||z}|| < M for some M > 0 and all ¢ € (a,b) then
|2y — zal] < M(b—a). To this end, for a functional F' on X consider the
scalar-valued function ¢ — Fz;. This function satisfies the assumptions
of Lagrange’s Theorem and therefore there exists a 6 € (a,b) such that
Fzy, — Fx, = Fxjp(b— a); note that § depends on F' and that is why we
may not omit the functional F in this relation. Nevertheless,

|F(zp — za)| < [F[ |25]1(b — a) < [|F|M (b - a),

and our claim follows by (5.5).
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7.3 Closed operators

7.3.1 Definition Let X be a Banach space. A linear operator A with
domain D(A) C X and values in X is termed closed iff for any converging
sequence x,, of elements of its domain such that Az, converges, the limit
x = lim,,— o x,, belongs to D(A) and Az = lim,,_,, Ax,. It is clear that
all continuous operators are closed; there are, however, many examples
of linear operators that are closed but not continuous.

7.3.2 Example Consider C[0,1], the space of continuous functions
on [0,1] (with supremum norm). Let the operator A be defined on the
algebraic subspace D(A) of continuously differentiable functions (with
right-hand derivative at 7 = 0 and left-hand derivative at 7 = 1), by
Axr = z’. A is not bounded. Indeed, first of all it is not defined on
the entire space. But, since the domain of A is dense in C[0,1] maybe
we could extend A to a bounded linear operator? The answer is no.
Extending A to a bounded linear operator is possible only if there exists
a constant K such that ||Az| < K||z| for all z € D(A) (cf. 2.3.33)
Defining, however, the functions x,,(7) = 7", n > 1, we see that ||z,| = 1
and Az, = nx,_1, so that ||Az,| = n.

On the other hand, if for a converging sequence z,, of elements of
D(A), there also exists the limit lim,, o, 2/, then x is continuously dif-
ferentiable and ' = lim,,—.» «,. This is a well-known fact from calculus;
to reproduce its proof note that for 7 € [0,1] and any n > 1, we have
2n(1) = 2n(0) + [, 2},(0) do. Since 2/, converges to some continuous
y (even uniformly), the integral above converges to fOT y(o)do, while
Zn(T) converges to z(7) and x,(0) converges to x(0). Thus, z(r) =
2(0) + [y y(c)do. This implies our result.

7.3.3 Exercise Let A be a linear operator in a Banach space X. Equip
the algebraic subspace D(A) with the norm ||z||4 = ||z| + ||Az|]. Prove
that D(A) with this norm is a Banach space iff A is closed.

7.3.4 Example Suppose that A is a closed linear operator in a Banach
space X, and that ¢t — x; € D(A) is a Riemann integrable function on
an interval [a, b]. If t — Az, is integrable also, then f; xsds belongs to

D(A), and
b b
A/ T ds=/ Az ds. (7.4)
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Proof Let (7,,Z,),n > 1, be a sequence of pairs considered in defini-
tion 2.2.48. Since z; € D(A), for all t € [a,b], S(7p,En, z.) belongs to
D(A) also, and we see that AS(7,,Z,,z.) = S(7,,Z,, Az.). If, addi-
tionally, lim,, o, A(7,) = 0, then the limit of S(7,,Z,,z.) exists and
equals f; x5 ds. Similarly, the limit of S(7,,,Z,, Az.) exists and equals
f; Azgds. Closedness of A implies that fab x5 ds belongs to D(A) and
that (7.4) holds. O

7.3.5 Exercise  Assume that A is a closed operator in a Banach space
X, and B € L(X). Prove that C = A + B with domain D(C) = D(A)
is closed. In particular, a linear operator A is closed iff for some A € R,
Mx — A is closed.

7.3.6 Example Conslder the space BUC(R) and the operator A =
I & with domain D(L 2) composed of all twice differentiable functions
x with 2" € BUC(R). We claim that A is closed. It may seem that the
way to prove this claim is simply to follow the argument given in 7.3.2.
Thus, we would assume that a sequence of z,, € D(%) converges to
some z and that the sequence z], of derivatives converges to some y, and

xn (1) = 2,(0) + T2, // "(s)dsdo

— 2(0) + 7, (0) + /0 (1 — 0)a! () do. (7.5)

write

The reader already perceives, however, that there is going to be a prob-
lem with passage to the limit as n — co. The question is: does the nu-
merical sequence z/,(0) converge? Or, perhaps, we have not defined our
operator properly? We have not assumed that 2’ belongs to BUC(R);
maybe we should have done it? The answer is in the negative: it turns
out that the assumption that x and z” belong to BUC(R) implies that «’
does belong to BUC(R), too. This follows from formula (7.8), below. We
will prove this formula first, and then complete the proof of the fact that
A is closed. Note that uniform continuity of 2’ follows from boundedness
of " and that it is only boundedness of x’ that is in question.

Let x be a twice differentiable function on the interval [0,n], n € N.
Integrating by parts twice we see that for any 7 € (0,n],

n—1

Ta_n+1 " 717/7_7._“ ol nin T
/0 (o) do = 2'(r) (+1><>+<+1>/0

™n
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Therefore, for 7 € [0,n),

/T T )" ) e = /0 o (""Hx"(n — o)do (7.7)

(n—1)n n—71)"
" (n—o) !

(n—T1)"

=-2(1)(n—7)— (n+ Dz(r) + n(n + 1)/

T

Subtracting (7.7) from (7.6), after some algebra,

(1) = /0 an(t,0)2" (o) do +/0 by (1, 0)z(0) do, 7€ (0,n),

where
Lol c<rT
an(’T, o’) = n 17—(7;1_’0)n+1 -
—;W, n Z g > T,
and
—(n+ 1)L;17 o<,
bp(T,0) = (n—o)n—1
Since
n 1 n+2 o=1 1 _ n+24o0=n
J T e B S U
o nn+2) ™ lo=o nn+2) (n—7)" lo=r
1 9 9 1 n
= 5 - < o5 - 9 € 07 ’
n(n+2)[T+(n 7—)}*Zn—|—2 7€ (0,n)

and

n
/ |by (7, 0)| do =
0

we have, by continuity,

)

n—l—lo"rzf n—i—l(n—a)”r:” 2(n+1)

n 7"lo=0 n (n—7)"

n

sup o)+ 20D e,

| /( )| < !
sup |2'(T
2n+2 T7€[0,n] n T€[0,n]

T€[0,n]
Arguing similarly on the negative half-axis, we obtain

n 2(n+1)

1
sup |z'(7)| < 5 sup |z"(7)| + =———= sup |z(7)].
TE[—n,n| 2n+2 TE[—n,n] n TE[—n,n|
Therefore,
1
2| Bucm) < §Hx//”BUC(1R) +2[|z|| pro®)- (7.8)

This implies that the first derivative of a member of D(%) belongs
to BUC(R). Moreover, it implies that if x,, converges to an z, and z!/
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converges to a z, then z, is a Cauchy sequence, and thus converges to a
y. As in 7.3.2 we prove that this forces z to be differentiable and z’ = v.
Now, the sequence y,, = x], converges to y and y], = z/ converges to z,
thus y is differentiable with 3’ = z, so that x is twice differentiable with
7’ = 2.

7.3.7 The left inverse of a closed linear operator is closed  Suppose
that X is a Banach space and that A is a closed linear operator in X.
Let

R ={y € X;y = Az for some x € X}

denote its range, and suppose that A is injective, i.e. that for any x €
D(A), condition Az = 0 implies x = 0. This forces A to map D(A) onto
R in a one-to-one fashion. Indeed, if there are two elements of D(A),
say w1 and o, such that Azy = Axs, then we have A(x; — x2) = 0, and
so z1 equals xo. Define the operator A~! (often called the left inverse of
A) with domain D(A~!) = R, and range equal to D(A), by

A7y =z iff Az =y, for y € R,z € D(A).

We claim that A~ is closed. To prove this, suppose that a sequence ,, of
elements of R converges to y and that A1y, converges to some . Then,
elements z,, = A~ !y, belong to D(A) and converge to . Furthermore,
the sequence Az, = y, converges also. Since A is closed, x belongs to
D(A) and Az = y. This means, however, that y belongs to the domain
of A7! and that A~'y = z, as desired.

As a corollary, we obtain that the left inverse of a bounded linear op-
erator is closed. In general, the left inverse of a bounded linear operator
may be unbounded.

7.3.8 Exercise  Prove that a linear operator A : X D D(A) — X is
closed iff its graph G4 = {(z,y) € X x X;z € D(A),y = Az} is closed
in X x X equipped with any one of the norms defined in 2.2.27. Use this
result to give a simple proof of the fact that the left inverse of a closed
operator (if it exists) is closed.

7.3.9 Example Let Cy[0, 1] be the subspace of C[0,1] composed of
functions x such that z(0) = 0. For x € Cy[0, 1] define Ax in Cy[0, 1] by
Axz(r) = [ x(0)do. The operator A is linear and bounded, since

sup |Az(7)[ < sup Tz| = [z
7€[0,1] T7€[0,1]
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Moreover, if Az = 0 then fOT xz(o)do = 0, for all 7 € [0,1], and so
z(r) = & [T z(0)do = 0. It is easy to see that the range R of A is
the set of all differentiable functions x € Cy[0, 1] such that =’ belongs to
Co[0, 1]. Therefore, the operator A=! = % defined on R is closed.

7.3.10 Example Here is another proof of the fact that the operator
introduced in 7.3.6 is closed. Let A > 0, we will show that in BUC(R)
there exists exactly one solution to the equation

1
Az — 51:” =y, (7.9)

where y is any (given) member of BUC(R). To prove uniqueness, it
suffices to consider the homogeneous ODE: Az — %m” = 0,. Recall that
solutions to this equation are of the form z(r) = Cre™™V2A 4 Che™V2X,
where C; and Cy are arbitrary constants (r = +1/2X\ are the roots of
A—1ir? =0). If Cy # 0, then lim,_._ |z(7)| = oo, and = must not
belong to BUC(R). Analogously, we exclude the case where Cy # 0.
Hence, the only solution to the homogeneous equation that belongs to
BUC(R) is trivial.

Now, we need to show that for any y, (7.9) has at least one solution.
From the theory of ODEs we know that we should look for an z of the
form

x(r) = C’lefﬂ/ﬁ—I—C’geT‘/ﬁ

1 T
VoY /0 [e*(H)m %Wﬂm} y(o)do. (7.10)

For any constants C7 and Cy, this function solves (7.9), but they are to
be determined in such a way that x € BUC(R). For 7 > 0,

17 1
OV / ~(=WVBy () do| < O] + — .
Le +7\/ﬁ e y(o)do| < |G + Sy llyllsuom)

Therefore, if x is to be bounded,

7 — Che —e

V2X

must be bounded also. Since lim,_,o, ¢™V?* = 0o, we must have

1 o0
Cy = —/ e~V (0) do. 7.11
2 \/ﬁ . y( ) ( )

1 T
N Tm/ VB (5) do
0

Similarly,

1 0
C :—/ e?V22y(5) do.
oy A y(o)
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1 T
.Z'(T) — ﬁ/ e—(T—O’)F ( dU-i-i/ elT— a)\/ﬁ )d

1 o0
_ = —|r—a|V2X d 712
= e o)do. .
We need to check that this « belongs to BUC(R). Certainly,

1 > —|r—0
Izl Bucm) < Sup\/T—)\/ e ‘meH?JHBUc(R)

TR
2 o _ \/ﬁ
= — e 7 do
\/ﬁ/o Hy”BUC(R)
1
= X”y”BUC’(R)v (7.13)

proving boundedness of x. Next, note that
1 | o —|7'—0o
olr) =) < = [ [e7o VR = e oo

Assuming, as we may, that 7/ > 7, and writing the last integral as the
sum of integrals over (—oo 7), |7, 7'] and (7, 00), we estimate it by

(1 VAT )) +2(r' —71)+ (1 - em(T_T/)) L

V2X V22X

which implies uniform continuity of x.

We have proved that for any A > 0 the operator Mpycom) — %f—;
is one-to-one with range equal to the whole of BUC(R). Moreover, by
(7.13), the inverse operator is bounded. It implies that %f—; is closed,
but our analysis shows more, and that is going to be important in what
follows (see 7.5.1). In fact, in Subsection 7.5.1 we will need a slightly

different version of this result, stated in the exercise below.

7.3.11 Exercise Show that for any y € C[—o0, 0], (7.9) has exactly
one solution x € C[—00,00] and that the inverse of AMo[_oo,00] —
bounded with norm less than %

d?
dr2 is

7.3.12 Cores  Sometimes, it is hard to describe analytically the whole
domain D(A) of a closed linear operator A. Actually, in most cases it is
impossible. What is easier and possible is to find an algebraic subspace
D C D(A) that characterizes A in the sense that for any € D(A) there
exists a sequence x,, € D such that lim,,_, z,, = x and lim,, ., Az, =
Az. (See e.g. 7.6.17.) Sets with this property are termed cores of A. It
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is clear that if D is a core for A, then A D (the image of D via A) is
dense in the range R of A. A partial converse to this remark turns out
to be a useful criterion for determining whether an algebraic subspace
D C D(A) is a core. Specifically, we will show that if a closed operator
A has the property that |Az|| > ¢||z|| for some positive ¢ and all z in
D(A), and if AD is dense in R, then D is a core of A. Indeed, under
these assumptions, for any x € D(A), there exists a sequence z,, such
that Az, converges to Az. Since 1| Az, — Az|| > ||z, — z||, the sequence
x, converges to x, and we are done.

The role of a core for a closed operator is similar to that of a dense
algebraic subspace for a bounded operator. In particular, a dense alge-
braic subspace is a core for any bounded linear operator. Note, however,
that what is a core for one closed linear operator does not have to be a
core for another closed linear operator.

7.3.13 Exercise  Show that D is a core of a closed operator A, iff it
is dense in D(A) equipped with the norm | - ||4 (cf. 7.3.3).

7.4 Semigroups of operators

7.4.1 Definition Let X be a Banach space, and suppose that opera-
tors T3, t > 0, are bounded. The family {T},¢ > 0} is termed a semigroup
of operators (a semigroup, for short) iff

1° for all s,t >0, Tsyy = T Ty,
2° Ty = Ix, where Ix is the identity operator in X.

The key relation is the semigroup property 1°; it establishes a homo-
morphism between the semigroup of positive numbers with addition as
a semigroup operation, and the semigroup (the Banach algebra) £(X)
of operators on X. Families of operators that fulfill this relation enjoy
surprising properties. The situation is similar to Theorem 1.6.11, which
says that measurable functions that satisfy the Cauchy functional equa-
tion are continuous. Indeed, if {T},t > 0} is a semigroup of operators in
a Banach space X, and for any z € X, the map ¢ — Tz is (Bochner)
measurable, it is also continuous for ¢ > 0. We will not use this theorem
later on, neither shall we introduce the notion of Bochner measurability;
we mention it here solely to impress the reader with the importance and
far reaching consequences of the apparently simple relation 1°. In what
follows we will prove more (but simpler) results of this sort.
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7.4.2 Example Let z be an integrable function on RT and let ¢ be
a non-negative number. Let T;z be a new function on R defined to be
equal to 0 for 7 < t and z(7 — t) for 7 > ¢. We will use a shorthand:
Ty (1) = 2(T —t)1[t,00)(7), although it is not exactly correct, for z(7 —1)
is not defined for 7 < t. Observe that if y is another integrable function
such that [ |z(7) — y()|dr = 0, then

/0 Tye(r) — Ty(r)] dr / a(r — 1) — y(r — 1)] dr

= /OO |z(7) — y(r)|dr = 0.
0

Therefore, if x and y belong to the same equivalence class in L*(R*),
then so do Ty« and Tyy. Consequently, T} is an operator in L'(R*). To
prove the semigroup property of {T},t > 0}, we take a representant x of
a class in L'(R), and calculate as follows:

TTix(1) = g0 (T)Tix(T — 5)
= 1is00)(T) 1t ,00) (T — 5 = t)2(T — 5 — 1)
= lsqt,o0)(T)2(T =5 —t) = Tyys2(7).
Since the choice of an = from an equivalence class does not influence

the result of our calculations (a.s.), the proof is complete. {T3,¢ > 0} is
called the semigroup of translations to the right.

7.4.3 Exercise  Show that if {T;,t > 0} and {S;,t > 0} are two
semigroups, and S; commutes with Ty for all ¢ > 0, i.e. S;T; = T35,
then U; = S;T; is a semigroup.

7.4.4 Exercise Let p, be the Poisson kernel defined in 1.2.29. For an
integrable x on the unit circle C and ¢t > 0 let Tix = pexp(—¢) * . Use
1.2.29 to check that if we let Tox = x, then {Ti,¢ > 0} is a semigroup
of operators on both the space of continuous functions on C and on the
space of equivalence classes of integrable functions on C. Also, show that
Ti,t > 0, are contractions.

7.4.5 Definition A semigroup {7},t > 0} is said to be strongly con-
tinuous or of class ¢q iff

3° lim;_,o Tyx = x, for x € X.

Semigroups that satisfy this condition are particularly important. In
fact most modern textbooks on semigroups restrict their attention to
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strongly continuous semigroups [26, 43, 91, 94]; the theories of stochastic
processes and PDEs supply, however, many examples of semigroups that
are not strongly continuous (see [25, 54]).

7.4.6 Exercise  Show that if {T},t > 0} and {S;t > 0} are two
strongly continuous semigroups, and S; commutes with T; for all ¢ > 0
then U; = S;T; is a strongly continuous semigroup. In particular, if
{T;,t > 0} is a semigroup, and w is a number, then U; = e“'T} is a
strongly continuous semigroup.

7.4.7 Example Let X = BUC(R™) be the space of all bounded, uni-
formly continuous functions on R™, and let Tyz(7) = z(7+t). Obviously,
T; maps BUC(RT) into itself. As in 7.4.2 we check that {T},¢ > 0} is a
semigroup. To show that it is of class cg, take an x € X, and for a given
€ > 0 choose a ¢ > 0, such that |z(7) — z(0)| < € provided 7,0 > 0, and
|7 — | < 4. Then, for ¢t < 4,
|Tix — x| = sup |Tyx(r) — z(7)| =sup |x(r + t) — z(7)| <e.
72>0 72>0

This proves that lim;_,o4 Ttz = 2. Observe, however, that |13 — I|| =
Sup|g =1 |73z — z|| = 2, for all t > 0 (cf. 7.4.19 and 7.4.20). The reader
should prove it, arguing as in 2.3.29 for example.

7.4.8 Example Let {T},¢ > 0} be the semigroup from 7.4.2. We will
prove that it is strongly continuous. Note first that 73 have norm 1; one
of the ways to see this is to note that they are Markov. Therefore, it suf-
fices to show relation 3° for z from a dense subset X, of X. In particular,
we may choose for Xy the set of (equivalence classes corresponding to)
continuous functions with compact support in the open half-axis (0, c0).
Note that T; maps X into itself, and that Xo ¢ BUC(RT). A modifi-
cation of the reasoning from 7.4.7 shows that for x € Xy, Tix tends to x
uniformly, as ¢ — 0+4. Moreover, if the support of x is contained in the in-
terval (O, K) for some K > 0 then ||TtI—JC||L1(R+) < K‘|Ttx_$”BUC(R+)7
completing the proof.

7.4.9 Exercise  Let r, be the rotation around (0,0) of the plane R?
by the angle o € Rt and let X = Cy(R?). Check that Tyz(p) = z(rp),

where p € R?, is a strongly continuous semigroup of operators.

7.4.10 Example Prove that the semigroup from 7.4.4 is of class ¢g.
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7.4.11 Exponential growth — Suppose that {T3,¢ > 0} is a strongly con-
tinuous semigroup of operators in a Banach space X. Then there exist
constants M > 1 and w € R such that

T, < Me*t. (7.14)

Proof By 7.1.6, there exists a 6 > 0 and an M > 1, such that | T;|| < M
for 0 <t < § (we cannot have M < 1, for || Tp|| = 1 — see also 7.4.13).
For arbitrary ¢ > 0, one may find an n € NU {0} and ¢’ € [0,4) such
that ¢ = nd + t’. By the semigroup property,

T = T3 T || < M™M = Me™™M < Melrot

Taking w = lnéM completes the proof. 0

/) lnSIVI .

7.4.12 Remark Taking X =R, and T; = e“!z, t > 0, we see that w in
(7.14) may be arbitrary. As we have remarked, M must be greater than
or equal to 1. It is also worth noting that for a fixed strongly continuous
semigroup the minimum of the set of w such that (7.14) holds for some
M > 1 may not be attained.

7.4.13 Exercise  Suppose that {T;,¢ > 0} is a semigroup, and that
||| < Me*t, for some w € R, M € R* and all ¢ > 0. Prove that
0 < M <1 implies T; =0 for all t > 0.

7.4.14 Continuity If {T},t > 0} is a strongly continuous semigroup,
then for all € X, the function ¢+ — T}z is strongly continuous in R*
(right-continuous at 0).

Proof Right-continuity at ¢ = 0 is secured by the definition of a strongly
continuous semigroup. If ¢ > 0 then limp o4 Typx = limy, oy TpTix =
Tix, since T; belongs to X. Also, for suitable w and M,
limsup [|T;—px — Tyxl| < limsup |Ti—nllzx) |z — The||
h—0+ h—0+

lim sup Me*=M||z — Tj,z| = 0.
h—0-+

IA

O

7.4.15 The infinitesimal generator  Let {T3,t > 0} be a strongly con-
tinuous semigroup of operators in a Banach space X. Let D(A) denote
the set of all € X, such that the limit

The —x

Az := lim

1
h—0+ h (7 5)
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exists. It is clear that if  and y belong to D(A) then so does ax + By for
all real o and 3, and that A(ax + By) = aAx + SAy. Thus, A is a linear
operator. As we shall see, in general A is not continuous and in particular
defined only on an algebraic subspace of X. Nevertheless, D(A) is never
empty, and in fact dense in X. To see that consider fot Tsx ds where
x € X,t > 0. Since

t t t+h t+h h
Th/ Tsxds :/ Tsynrds z/ Tsxds :/ Tsxds—/ Tsxds,
0 0 h 0 0

(7.16)
we also have

1 t t t+h 1 [k
f(Th/ T.xds —/ Tsxds) = f/ T.xds — 7/ Tsxds. (7.17)
h 0 0 h Jy h Jo

Arguing as in 7.2.3, we see that the last two expressions tend to Tyx and
x, respectively. This proves that fot Tsx ds belongs to D(A) and

t
A/ Tsxds = Tix — x. (7.18)
0

Moreover, by linearity, % fg Tsxds also belongs to D(A) for all ¢ > 0
and x € X. Since, again as in 7.2.3, lim;_.q % fot Tsxds = x, our claim is
proven.

7.4.16 Example What is the generator of the semigroup from exam-
ple 7.4.77 If z € BUC(R™") belongs to D(A), then the limit

lim Tha(r) — x(71) — lim x(r+1t) —x(r)
h—0+ h h—0+ h

=2'(7)

exists (even uniformly in 7 > 0). Therefore, x € D(A) must be dif-
ferentiable with 2’ in BUC(R™). Suppose, conversely, that z is differ-
entiable with ' € BUC(R™T). Then, by the Lagrange Theorem, for
any non-negative 7 and h > 0, there exists a 0 < # < 1 such that
x(r + h) — 2(7) = ha'(r + 6h). Since 2’ is uniformly continuous, for
any € > 0 there exists a § > 0 such that |2/(7) — 2’(0)] < € provided
|7 — o] < § and 7 and o are non-negative. Thus, for 0 < h < 4,

sup Thr(r) = alr) _ 2 (1) =sup |z’ (7 + 0h) — 2/ (1)| <,

>0 h >0
proving that x belongs to D(A), and Ax = a’. Hence, the generator is
completely characterized.
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7.4.17 Exercise = What is the infinitesimal generator of the semigroup
introduced in 7.4.27

7.4.18 Example Let {T;,t > 0} be a strongly continuous semigroup
with generator A. Let A € R be given; we define S; = e~*T}, and denote
its generator by B. Then, D(A) = D(B) and Bx = Az — Az.

Proof For all z € X

. 1 1
}21(1) {t(Stx —z)— ;(Ttx - x)}

hm (Stx — Tix)
= lim l(e_)‘t — )Tz = —Ax.
t—0 ¢

Thus, the limit Bx = lim;_,q %(Stx — x) exists whenever the limit Az =
lim;_,¢ %(Ttm — z) exists, and Bx = Az — Ax. O

7.4.19 Example Let B € L(X) be a bounded linear operator, and let
Ty = eB t > 0. {T},t > 0} is a semigroup of operators by 2.3.13. We
claim that

lim |[7; = I zx) = 0, (7.19)
and
T, — 1
lim || —— — B =0. (7.20)
ol £(x)

We note that relation (7.20) implies (7.19), and so we may restrict our-
selves to proving this last formula. We have

etB 1 1 < t"B" ¢8| ||BH”
- B = -
Rl = B
Lo Bt
= — (""" —B|t-1),

12|

and lim,_ g+ 1(e® — as — 1) = 0, for any number a.

This proves both that {7}, > 0} is a strongly continuous semigroup
and that B is its infinitesimal generator. Note, however, that (7.19) is
much stronger than the definition of strong continuity of a semigroup
(cf. 7.4.7). In 7.4.20 we show that, conversely, if a semigroup {T3,t >
0} satisfies (7.19) then there exists an operator B € L(X) such that
T, = e*B — such semigroups are said to be continuous in the uniform
topology. Strongly continuous semigroups form a much wider class and
their generators are usually not bounded.
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7.4.20 Proposition Let A be a Banach algebra with unit w, and
suppose that a;,t > 0, is a family such that a;as = a4 and limy_¢ ||az —
u|| = 0. Then there exists an element a of A such that a; = exp ta.

Proof By assumption ¢t +— a; is continuous, hence integrable on fi-
nite intervals. Moreover, setting b; := %fg asds,t > 0, we see that
limy_g by = u. By 6.1.5, for small ¢, the inverse of b; exists.

On the other hand, calculating as in (7.16) and (7.17), we see that

ap—uw, 1|1 [th I 1
" bttlh/t asdsfﬁ/o asds hjo;g(atfu).

Thus, there exists the limit limj, o4 %% = limj_o4 2-%bb; ' =

2 (az—u)b; ' =t a. We note that by definition, a commutes with all a;. By
the semigroup property, limp, o4 “4="* = a; limp o4 = a;a, and
limy,_oq “=—2 = limp o4 ar—p limp oy 25— = asa, proving that the
derivative of a; exists and equals aa; = a;a. A similar argument using
7.4.19 shows that ¢; = exp(at) has the same property.

an—u
h

Finally, we take a tp > 0 and define d; = c;as,—+. Then, d; is differen-
tiable with the derivative equal to acias,—¢ — craar,—+ = 0. Therefore, d;
is constant and equals identically dy = a¢,. This means that cia,—+ = as,
for all 0 <t < ty. In particular, for t = to we obtain ¢;, = ay,, completing
the proof. |

7.4.21 Exercise Even though the formula T'(t) = exp(At) is elegant
and simple there are few interesting cases where it can be applied to give
an explicit form of T'(¢). The reason is of course that exp(At) involves all
the powers of A. Even if A is a finite matrix, calculations may be very
tiresome, especially if the dimension of A is large. One usual technique in
such a case is diagonalizing A, i.e. representing it, if possible, as UBU !
where U is an invertible matrix and B has all entries zero except on
the diagonal, to obtain exp(At) = U exp(Bt)U L. Here, exp(Bt) has all
entries zero except on the diagonal where they are equal to e*it; \; being
eigenvalues of A and entries of the diagonal of B. Another technique is
to use the Cayley—Hamilton Theorem which says that A satisfies its own
characteristic equation. Hence, if A is of dimension n, A™ is a polynomial
inl,A, .. A" ! andso el = E?:_()l pi(t)A* where p;(t) are polynomials.
The reader may want to check his knowledge of linear algebra in proving
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that
1 5 0 0
eAt = — |5 = 4@7)5 _ efﬁt 2€7t + 36—615 2e’t _ 2e,6t ’
5—6e"t+e 0 3¢t -3¢0 3¢t 4 2e 6t
0 0 0
where A= |2 —4 2
0o 3 -3

7.4.22 Isomorphic semigroups Let X and Y be two Banach spaces
and let J : X — Y be an (isometric) isomorphism of X and Y. Sup-
pose that {S;,t > 0} is a strongly continuous semigroup of operators
in X, with the generator B. Then {U;,t > 0}, where U; = JS;J 71, is
a strongly continuous semigroup of operators in Y and its generator C'
equals C' = JBJ~!. To be more specific: y € D(C) iff J~'y € D(B), and
Cy = JBJ 'y. The semigroup {U;,t > 0} is said to be (isometrically)
isomorphic to {S, ¢ > 0}.

Proof Obviously, Uy = JSoJ ! = JIxJ ! = Iy, and
UU, = JS J VIS T = T8, SeJ ™t = IS s J 1 = Upys.

Moreover, if y € Y, then x = J~ 'y € X, so that lim, o+ S;J 'y =
J~y. Therefore lim,_o+ JS;J "ty = JJ ty = y. Finally, the limit § =
lim;_, g+ M exists iff there exists Z = lim,_,o+ M, and
§ = J, proving that J~ !y belongs to D(B) iff y € D(C) and Cy =
JBJ 1y. ([

7.4.23 Exercise  Suppose that X; is a subspace of a Banach space X.
Let {T;,t > 0} be a strongly continuous semigroup of linear operators
with generator A, such that T;X; C Xj. Prove that {S;,¢ > 0} where
St = (T3)x, is the restriction of {T,t > 0} to X is a strongly continuous
semigroup of operators in the Banach space X, with the generator B
given by

D(B)=DA)NX; ={r e X;; Az € X3}, Bz = Az,z € D(B).

7.4.24 Example Let [}, r > 0 be the space of sequences (&,),>1 such

that Y7, |, |r" < oo, considered in 5.2.5. When equipped with the

norm ||(zy)n>1]] = Yooy |#a|r™, I} is a Banach space. This space is
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isometrically isomorphic to I! and the isomorphism is given by:

ll > (En)nzl L’ (%) € l%v (7'21)
™/ n>1
113 (Eadnzt T (€™ sy €1 (7.22)

Let L, R and I be defined as in 2.3.9 and let L,., R, and I,. be the left
translation, right translation and the identity operator in [}, respectively.
Consider the semigroup et(*fr+bfrtelr) ¢ > 0 in [l generated by the
bounded operator A = aL, + bR, + cI,. This semigroup is isometrically
isomorphic to the semigroup ef” —tAg ,t > 0, generated by the bounded
operator J 1 A.J. Since

n _ n 1
J_lLTJ(fn)n21 = J_lLT (fn) = J 1 (fnii) = ; ($n+1)n21 5
n>1 n>1

(7.23)

FRIE) e = R (%) ot (55)  —reme,
™) n>1 r n>1 -

(7.24)

we have J"1AJ = 2L +brR+ cl. In other words, et(¢LrFbfr+elr) ¢ >
in [} is isometrically isomorphic to e!(xE+briitel) ¢ > in |1, See 7.4.43

for an application.

7.4.25 Exercise Arguing as in 7.4.14, prove that if « belongs to D(A),
then so does T;x. Moreover, the function ¢ — T;x is continuously differ-
entiable in R™ (has right derivative at ¢ = 0), and

dTx
dt

= ATiyx = T Az, t>0.

More generally, define D(A™) by induction as the set of all x € D(A™™1)
such that A"~z belongs to D(A) and prove that if x belongs to D(A™)
then so does Tyx. Moreover, t — Tyx is then n-times differentiable and

d"Tix
dem

= AnTtlL’ = TtAnfE, t Z 0.

7.4.26 Corollary Using 7.4.25 and 7.2.3 we see that an element of z €
X belongs to D(A) iff there exists a y € X such that Tyx = z+ fg T,y ds.
In such a case Az = y.
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7.4.27 Exercise A matrix (p; ;)i jer, where I is a countable set of
indexes, is said to be a stochastic matrix if its entries are non-negative
and 3, pij = 1,4 € I In such a case, P(&)ier = (Xier iPi) s 15 2
Markov operator in I'(I). A matrix (¢; ;), jer is said to be a Q-matrix,
or an intensity matrix or a Kolmogorov matrix if ¢; ; > 0 for ¢ # j
and Zje]l gi,; = 0. Show that if I is finite, then @ is an intensity matrix
iff P(t) = e®! is a stochastic matrix for all ¢ > 0.

7.4.28 An infinitesimal generator is closed  The infinitesimal generator
of a strongly continuous semigroup is closed. Indeed, if x,, € D(A) then

t
Tyxy = xp +/ T, Az,ds, t>0,n>1.
0

Moreover, if lim,, .., , = x, then T;x, tends to Tyx,t > 0. Finally, if
lim,, o0 Az, =y, then |TsAx, — Tsy|| < Me¥?|| Az, — y|| for suitable
constants M and w. Hence,

t t
‘/ TsAmnds—/ Tsyds
0 0

which tends to zero, as t — 0. Therefore Tiz = = + fot Tsyds, so that =
belongs to D(A) and Az = y.

S t sup HTsxn - Tsy”
0<s<t

7.4.29 Exercise Semigroup restricted to the domain of its generator
Suppose that {T;,t > 0} is a strongly continuous semigroup with gener-
ator A. Consider the Banach space (D(A),| - [|4) from Example 7.3.3.
Since T;D(A) C D(A), {T;,t > 0} may be considered as a semigroup on
(D(A), || ]|a)- Prove that it is strongly continuous and find its generator.

7.4.30 The Laplace transform of a semigroup  Let {T;,t > 0} be a
strongly continuous semigroup and let M and w be constants such that
(7.14) is satisfied. For x € X, u > 0, and A > w consider the integral
fou e T,z ds (note that the integrand is continuous). For v > u,

/e*)‘sTsxds—/ e MT.xds /e*)‘STsmds
0 0 u

v
M||x||/ e~ (A—)s g,
u
which tends to zero, as u and v tend to infinity. Since X is a Banach

IN

IN

space, we may define (see 2.2.47)

u

Ryx = lim e*’\sTsxds:/ e MT.xds.
0

u— 00 0
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Note that Ry, A > w, are bounded operators and

o M
| Rall < M/O e”(=ws s = S (7.25)

7.4.31 Example We will show that
/ e MT(t)pdt = ey * b, A>0,0€ L'RT)
0

where {T'(t),t > 0} is the semigroup of translations to the right from
7.4.2 and ey € L'(R™) are defined by their representatives ey (1) = ™7
(as in 2.2.49). Since {e,, u > 0} is linearly dense in L' (RT), it suffices to
consider ¢ = e,,. Direct computation of e, * 19 ;) shows that T'(t)e, =
pey * 14y — 1jo,) + €,. Using 2.2.49 and (6.6), for A > 0,

o0 o0 o0 1
/ e*)‘tT(t)eﬂ = ,u/ e*’\tl[oﬂf) * e, dt —/ e*)‘tl[w) dt + —eu
0 0 0 A
W 1 1
= Xeu X e\ — X€>\ + Xeu =€) * 6“'
7.4.32 The resolvent of A  Let {Tt,t > 0} be a strongly continuous
semigroup and let M and w be constants such that (7.14) is satisfied.
Fix A > w. An element = € X belongs to D(A) iff there exists a y € X
such that x = Ryy. Moreover,

Ry(Mx — Az = «x, x € D(A), (7.26)
(Mx —A)Rxy = v, y e X (7.27)

In other words, the Laplace transform of a semigroup is the resolvent of
its infinitesimal generator.

Proof Instead of AIx we often write simply A. If © € D(A), then
e MTy (A — Nz = & [e=MTya]. Therefore,
Y . Yd
Ryx(A—A)zx = — e M (A—Nzdt =— lim a[e Tix]dt
O uU—00 0
= lim [z — e MT,2] = ,
since [|e T, z| < Me~A=«)¥||z|. In particular, if = belongs to D(A)
then x = Ryy for y = \x — Ax.
We need to prove that Ryy belongs to D(A) for all y € X. As in
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7.4.18, let B be the generator of the semigroup S; = e *7T;. By 7.4.15,
the vector [ e T,y dt = [, Siy dt belongs to D(B) = D(A) and

A/ StydtzB/ Stydt—i—)\/ Stydt:Suy—y—i—/\/ Sy dt.
0 0 0 0

Moreover, lim,_, o fou Sy dt = Ryy, and limy— o0 [Suy—y+A fou Sy dt] =
AR,y — y. Since A is closed, Ryy is a member of D(A) and ARy =
AR)\y — y, as desired. O

7.4.33 Remark Relation (7.27) shows that if A is a generator of a
strongly continuous semigroup in a Banach space X, then for any y € X,
there exists at least one solution to the equation

Ax — Az =y, A > w, (7.28)

namely x = Ryy, and (7.26) shows that there exists at most one solution
to this equation. We have encountered an operator with this property in
7.3.6. In particular, since R is bounded (cf. 7.25), we have proven once
again that the infinitesimal generator of a strongly continuous semigroup
must be closed.

7.4.34 Remark Relations given in 7.4.32 show that the generator de-
termines the semigroup or, in other words, different semigroups have dif-
ferent generators. Indeed, 7.4.32 shows that the generator, or, to be more
specific, the resolvent of the generator determines the Laplace transform
of the semigroup it generates. Moreover, using Exercise 2.3.31 and the
argument from 7.2.1 (i.e. employing functionals to reduce the problem
to real-valued functions) we show that the Laplace transform of a con-
tinuous (!) Banach space valued function determines this function.

7.4.35 Example Let v > 0 be given. Throughout this subsection
Y = BUC(R) and X = BUC:(R) is the space of differentiable z € Y
with / € BUC(R). The norm in X is given by |z||x = ||z|ly + |/]v-
The space X x Y is equipped with the norm ||(z,¥)|lxxy = ||z|lx + |ly|ly
(in what follows the subscripts in the norms will be omitted). Let the
family {G(t),t € R} of operators in X be given by

T\ C(t)x+ft C(u)ydu
;) - ( 10 oy ) 720

where C(t)z(7) = a(7 + vt) + S2(7 — vt), so that (f(;5 C(u)ydu)(r) =

%fft y(7 + vu) du and % = 52/(1 + vt) — 52/(7 — vt). The family
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{C(t),t € R} is an example of cosine operator function in that it
satisfies the cosine functional equation (Exercise 7.4.36):

20(1)C(s) = C(t + s) + C(t — 5). (7.30)

It is clear that C(t) maps Y into Y and is a contraction operator. More-
over, C(t) leaves X invariant and fot C(uw)ydu maps Y into X with

(C(t)2) () = C / Cls)yds)( ((T+m) y(r—ut).

(7.31)
Hence, C(t) : X — X and fot C(u)du : Y — X are bounded. Similarly,
dgit) is a bounded linear operator from X to Y.

A direct computation based on (7.30) shows that {G(t),t € R} is a
group of operators, i.e. G(t)G(s) = G(t + s),t,s € R.

Clearly, lim;_,o C(t)y = y strongly in Y, and by (7.31), lim;_,o C(t)x =
x strongly in Y;. As a result, lim;_.q fg )y ds = 0 strongly in Y.

Using the other relation in (7.31), lim; g fo s)yds = 0 strongly in X,
dC(t)T

as well. Finally, lim; o = 0 strongly in Y for € X. This shows
that {G(t),t € R} is strongly continuous.

To find the generator A of the semigroup {G(t),t > 0}, we reason as
follows. Let ’D(’f—;) be the set of twice differentiable y in Y with y” € Y.
A direct calculation shows that for A > 0,z € Y there exists the Laplace
transform

Lyx(r) ::/ e MC(t)x(r)dt = e?T/ e_%"x(a)da
0 T

This implies that Lyx is twice differentiable with (Lyz)"” = ﬁ—;LAJ: -
Az €Y (if z € X, then (Lyz)” € X). Since for y € Y, Lg\y =
JoTe M fo 7)dsdt = A1 Lyy, L WS ’D(ddzz) Hence, the Laplace
transform of the ﬁrst coordinate in (7.29) belongs to D(d;) too. Sim-
ilarly, we check that the Laplace transform of the other coordinate in

(7.29) belongs to X. This shows that D(A) C D(de) x X. On the other
hand, for (z,y) € D(dT2) x X,

tli%h% {G(t) <;”) - (5)} - <Ugyw,,> strongly in X.  (7.32)

Hence D(A) = D(d72) x X and A(x,y) = (y,v%z").
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7.4.36 Exercise Show that the family {C(¢),t € R} defined in 7.4.35
is a cosine operator function.

7.4.37 Exercise Prove (7.32).

7.4.38 Exercise Let X = ¢p and T; (§n),5; = (€7™6n),5, - Show
that {T3,t > 0} is a strongly continuous semigroup and that the operator

A (gn)’rLZl = - (nfn)nZI ) D(A) = {(En)nZI € €o; (ngn)n21 € CO}

is its infinitesimal generator.

7.4.39 Exercise Use (7.26) and (7.27) to show that the resolvent Ry
satisfies the Hilbert equation (cf. (6.6))

(A—p)RAR, = R, — Ry, A > w. (7.33)

Then, show that, by (7.25), RT 3 A — R, is continuous (see (8.38), if
needed). Argue by induction that it is also infinitely differentiable with
ARy = (—1)"nIRYT.

7.4.40 Semigroups and the Cauchy problem  Let A be the infinitesimal
generator of a strongly continuous semigroup {73,¢ > 0}. The Cauchy
problem

d
% = Az, t >0, 30=1x€ D(A) (7.34)
where x; is a sought-for differentiable function with values in D(A), has

the unique solution z; = T;x.

Proof By 7.4.25 we merely need to prove uniqueness of solutions.

To this end suppose that x; is a solution to (7.34), fix ¢ > 0 and
consider y, = Tj_42,,0 < s < t. Since %t — T, TethTo 4
%xs for suitably small |h|, and the operators T; are bounded

in any compact subinterval of RT, y, is differentiable and
d T d T A T, s(A Azg) =0
T Ys = Lt—s 7 Ts — Lt s ATs = 13 s ATs — ATs) = U.
dsy t=s s t t

(See Example 7.1.9.) Hence, T;_sx, is constant, and since limg,_; ys =
Tix, Ty_sxs = Tix, for all 0 < s < t. Letting s — ¢, we obtain z; = Tx.
O
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7.441 Corollary If {T},t > 0} and {S;,t > 0} are two strongly
continuous semigroups with generators A and B respectively, and if A =
B, then {T},t > 0} = {S;,t > 0}.

Proof By 7.4.40, Tyx = Syx for all t > 0 and « € D(A) = D(B). Since
D(A) is a dense set, we are done. O

7.4.42 Example By 7.4.35, the equation

2(0) =z € D({5),

y(t),
{di(f) = 0> a(t), y(0)=ye BUCI(R), (755

in BUC}(R) x BUC(R) has the unique solution <;Eg> =G(t) (a:) ,t>
Y
0 with G(t) given by (7.29). A function x(¢,7) satisfying (7.35) satisfies
also the wave equation:
O?x(t 0z (t 0

”g(t; T _ 2 2(75 D 0r) = (), 50(0.7) = y(7); (7.36)
the first coordinate in (7.29) is the solution to (7.36) while the second is
its derivative with respect to t.

7.4.43 Example The infinite system of equations

1 (t) = Az1(t) — (b+ d)z1 (t) + dz2(t),
zi(t) = Azi(t) — (b+ d)aws(t) + dwiyr(t) + bri_1(t), i>2

where d > b > 0 and A € R are parameters, was introduced and studied
in [108] as a model of behavior of a population of cells that are resistant
to a cancer drug. In this model, there are infinitely many types of resis-
tant cells, and z;(t) is the number of resistant cells of type ¢ at time ¢. It
was natural to ask for criteria for the decay, as t — oo, of the population
Yoo, @;(t) of resistant cells. Also the weighted sums > ;< z;(¢)r* where
r > 0 were of interest and it led the authors to considering the problem
in the spaces [l introduced in 5.2.5.

Our system may be written as a differential equation in I} in the form

dx(t)
dt
where L and R stand for left and right translation in I} (see 2.3.9). In

particular, the solution to this system is given by the exponential func-
tion of the operator appearing on the right-hand side above. By 7.4.24,

=(A—=b—d)z(t) + [dL + bR] z(t)
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this exponential function is isometrically isomorphic to the exponential
function of the operator (A —b—d)I + 2L + brR in I'. By 2.3.16, the
norm of the exponential function of (A — b — d)I + gL + brR equals
exp{(br? + (A — b — d)r + d)}. This converges to zero as t — 0, iff
br? + (A — b — d)r + d is negative. Treating this binomial as a func-
tion of r with a parameter A\ and fixed d and b, we consider A(\) =
AN=(+d)> —4bd = (A — M)\ — A2), where \; = (Vd — Vb)?,
A2 = (vV/d + v/b)2. If the binomial is to be negative, we must assume
that either A > Ag or A < Aq, and that r belongs to the open interval
b+d—x+(gb1)i\/m’i

roots of the binomial. Note that in the case A > Ay these roots are neg-

(r1,72) where r; = = 1,2, are the corresponding
ative, and thus we must choose A < A1, as it was proven in [108] in a
different way.

7.4.44 Cores of generators  Suppose that {T3,t > 0} is a strongly
continuous semigroup with generator A and that an algebraic subspace
D c D(A) is dense in D(A). If T;D C D,t > 0 then D is a core of A.

Proof Let w and M be constants such that (7.14) holds. By (7.26) and
(7.27), the relation y = (A — A)z is equivalent to z = Ryy, for A > w.
Thus, using (7.25), [[(A—A)z| > 222 ||z||, for all z € D(A). By 7.3.12, it
suffices therefore to show that (A — A) D is dense in X. Since D is dense
in X, it is enough to show that the closure of (A — A) D contains D.

The reason why this relation is true is that for any =, Ryz belongs to
the closure of the linear span of elements of the form T;x,t > 0. Here is
the complete argument: note first that for any = € X the sequence

TL2

1 Ak
L= LNT ek, 7.37
x nkz::le LT (7.37)

converges to Ryx. Indeed, for t > s,
le Mz — e M Tyz|| < | Toe™| [e Mgz — 2|,

and our claim follows since the norm of x,, — Ryz may be estimated by

fon— [ e a4 [ e N T

—w

0
vk M
§ " -k — —(A—w)n
= k—1/k1 {e /\anx_e /\tTtx} dt Ry .
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n? k

— E " - M —w)n

< sup ||e )\hThx_xH /ki1 ”e /\tTtHdt'i‘me (A-w)
k:1 n

0<h<l
o0
M
< sup e M Ty — x| e MTy | dt + o~ (A—w)n
0<h<y 0 A —
M
<< sup [leMTyr —af| +emPen b ——
0<h< g A—w

Now, take z € D and consider x,, defined in (7.37). By assumption, z,,
belongs to D, and the sequence Az, — Az, = 1 ZZ; e T Az — Ax)
converges to Ry(Ax — Az) = z. It implies that x belongs to the closure
of (A — A) D and completes the proof. O

7.4.45 Exercise Show that the set of all functions that are infinitely
many times differentiable with derivatives in BUC(R™) is a core of the
generator of the semigroup from 7.4.7.

7.4.46 The representation of L'(RT) related to a bounded semigroup
Let {T'(t),t > 0} be a strongly continuous semigroup of equibounded
operators, i.e. let (7.14) be satisfied with w = 0. Moreover, let ¢ be a
continuous function that is a member of L' (R™). For any x € X, the map
R 5t — ¢(t)T(t)x is continuous and one may consider its Riemann
integral on an interval, say [0, u]. Arguing as in 7.4.30, one proves that
the improper integral

H@l= [ 0T (o
0
exists also, and we obtain

IH ()] < M|l @h)lllx-

This implies that, for ¢ fixed, H(¢) is a bounded linear operator in
X. On the other hand, by fixing x and varying ¢ we see that such
a bounded linear operator may be defined for any ¢ € L'(RT), be-
cause any such ¢ may be approximated by a sequences of continuous
elements of L'(R™T), say ¢,,, and then H(¢) may be defined as the limit
of H(¢y,). In other words we use 2.3.33 to extend a bounded linear map
LY(RY) > ¢ — H(¢) € L(X) from a dense subset of L'(R*), where we
have ||H(®)||zx)y < M| ¢||1 g+ to the whole of L'(RT). {

In particular if ¢(7) = ex(7) = e™*7, where A > 0, then H(¢) = R, is

t The operator H(¢) is in fact the strong Bochner integral of ¢(t)T(t).
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the resolvent of the semigroup {T'(t),¢t > 0}. Moreover, approximating
the indicator function of an interval [O t] by a sequence of continuous
functions, we check that H(1j )z = fo s)zds.

Using (6.6) and Exercise 7.4.39, for A, u > 0, A # u we have

(A—p)H(ex xeu) = H(ey —ex) = H(ex) — H(ey) = Ry — Ry,
— (A= w)RaBy = (A — p)H(ex) H(ey)
Since A — ey € L'(R") is continuous, this implies that
H(ex*eu) = H(ex)H(ey)

for all positive A and p, and since the set {ex, A > 0} is linearly dense
in L'(R*), the map ¢ — H(¢) is proven to be a homomorphism of the
Banach algebra L'(R™).

7.4.47 Exercise Let {Ti,t > 0} be a strongly continuous semigroup
in a Banach space X and let A be its generator. Show that ()7, D(A™)
is dense in X.

7.4.48 Exercise  This exercise prepares the reader for the Trotter—
Kato Theorem and for the proof of the Hille-Yosida Theorem (both to
be presented in Chapter 8). Let {T,,(¢),t > 0} be a sequence of strongly
continuous equibounded semigroups, i.e. semigroups such that (7.14) is
satisfied with w = 0 and M > 0 that does not depend on n. Let A,
be the generators of these semigroups and let H,, be the correspond-
ing homomorphisms of L!(R™). Prove that the following conditions are
equivalent.

(a) Forall A >0, ()\ A n) "1 converges strongly (as n — 00).
(b) For all ¢ > 0, fo s) ds converges strongly.
(¢c) Forall ¢ € Ll(R+), Hn(¢) converges strongly.

If one of these conditions holds, then ¢ — H(¢) = lim, oo Hp(¢) is a
homomorphism of the algebra L'(R™).

7.4.49 Exercise  Show the implication (a)=-(b) in the previous exer-
cise, arguing as follows. (a) Let b(X) be the space of bounded sequences
(xn)nzp 2, € X with the norm || (acn)n21 oy = sup,>q [|z,[|, and

let U(t) (Tn),>, = (fo 8)Tn ds) - € b(X). Show that RT > t —
U(t) (zn), >, is continuous in b(X) and [[U(¢)|zpx)) < Mt. Conclude
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that the improper integral [~ e~ (t) (2n),>; dt exists and check that
it equals

([ ) 30

(b) Let ¢(X) be the subspace of b(X) composed of convergent sequences.
Show that the operators U(t),t > 0 leave ¢(X) invariant. To this end,
note that otherwise, by 5.1.13, there would exist a functional F' € b(X)*
such that F (z,),~, = 0 for (z,),,~; € ¢(X) and F(U(t) (zn),>,) # 0
for some ¢ > 0 and (z,,),,5; € ¢(X). This would contradict the form of
the Laplace transform of U(t) found in (a).

7.4.50 A preparation for semigroup-theoretical proof of the CLT — Quite
often we are interested in a situation where {7,,(t),t > 0},n > 1, con-
sidered in the two previous subsections are not semigroups, and yet
approximate a semigroup in a certain sense. We may assume in partic-
ular that {7,,(t),t > 0},n > 1, are families of equibounded operators
in a Banach space X, i.e. that [|T,,(¢)|| < M for all ¢ > 0 and some
constant M > 0. Under some measurability conditions (notably, if func-
tions t — T,(t )m are Bochner measurable), it makes sense to define

P = [ ¢ t)z dt, for ¢ € L'(RT). The case we need for the
proof of the CLT is that of piecewise continuous functions t — T,,(¢)z
with countable number of points of discontinuity. In such a case, we
may first define operators Hy,(¢) for continuous ¢ with compact support
as a Riemann integral, and then extend the definition to the whole of
LY(RT). Of course, now the H,, are not homomorphisms of L!(R™) but
merely operators from L'(RT) to £(X). Nevertheless, the following are
equivalent.

a) Forall A >0, H, (e,\) converges strongly (as n — 00).

=
~

o

For all t > 0, fo s)x ds converges strongly.

) Forall ¢ € L! (R"’), H,(¢) converges strongly.

As an example let us consider a sequence T,,n > 1, of contractions,
and a sequence of positive numbers (hn)n>1 such that lim,, o h, = 0.

We define T,,(t) = T/ and assume that lim, .oo(A — A,) "1 = Ry
exists for all A > 0, where A,, = 71-(T}, —I). This will imply that all three

conditions (a)—(c) above hold. To this end we note that ||T[t/h"]|| <1,
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and for A > 0 write

0o 0 (k+1)hy,
/ e*MTr[f/h"}:c dt = Z/ e MdAt T
0 k

hn
>\n hn>\n — — -
== o Min Z 7/\hnT e Ahn [I e )\hnTn] 11,
-1
_hadn an -1 A [eMm—1 T, —1T
= n o — T = — —
v )= [ T Fin *
An .
= 7()m — Ayt (7.38)
where A, = <=L Hence, [[u(s — An) ™' < valp) f5 e (0t dt = 1

where v, (1) = n% In(hnp + 1). Consequently, ||pR,|| < 1. Moreover,
A (A — A,) ! satisfies the Hilbert equation. Thus,

A — p

1= A0) ™ = (1= 47 < = 2= 40) (= 40) ) < 2

for all A\, > 0. By lim,, .o A, = A, this enables us to prove that the
limit of (7.38) exists and equals Ryx, as desired. Note that A — Ry
satisfies the Hilbert equation, as a limit of A — (A — A,)~!. Hence
¢ — H(¢) = lim,, o H,(¢) is a representation of L'(RT).

We will continue these considerations in 8.4.18.

7.5 Brownian motion and Poisson process semigroups

7.5.1 A semigroup of operators related to Brownian motion  Let w(t),
t > 0, be a Brownian motion, and let p; be the distribution of w(¢).
Define the family {7;,¢ > 0} in BM(R) by the formula T; = T,,. In
other words,

(Tyz)(1) = E (1 + w(t)). (7.39)

I claim that {T},¢ > 0} is a semigroup of operators. Before proving this
note that || 73| < 1, so that {1;,¢ > 0} is the family of contractions,
i.e. (7.14) holds with M = 1 and w = 0. This will be the case for all
semigroups discussed in Sections 7.5 and 7.6.

Properties of the operators T;,t > 0, reflect properties of the measures
ue,t > 0, and thus of the process w(t),t > 0. The property 2° of the
definition of a semigroup of operators is an immediate consequence of
the fact that pg is a Dirac measure (point mass) at 0, [z duo = =(0),
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which in turn follows from w(0) = 0 a.s. Property 1° will be proven once
we show that

R R (7.40)

Brownian motion has independent increments, so that w(t + s) is a sum
of two independent random variables w(t+s) = [w(t+s) —w(s)] +w(s).
Consequently,

Ht+s = P1u(t+s) = ]P}w(t—&-s)—w(s) * IP)w(s) = [t * [s3

the last equality following from the fact that w(t + s) — w(s) has the
same distribution as w(t).

Moreover, we claim that {7} : ¢ > 0} when restricted to C[—o0, co]7 is
a strongly continuous semigroup. Indeed, for any € > 0, by Chebyshev’s
inequality,

pi(—€,6)% = P{lw(t)] > ¢} < _ 1t

hence lim_o p(—¢, €)° = 0. Therefore, by 5.4.12, 11, converge weakly to
do, the Dirac measure at 0, proving our claim by 5.4.18.

Finally, we claim that the domain D(A) of the infinitesimal generator
of {T},t > 0} equals D(%), the set of twice differentiable functions with
2" € C[—00,00], and Az = a”. To prove that limy_o4 H{T}z — a2} =
%x”, for z € D(%), we take a sequence t,, of positive numbers with
lim, .o t, = 0, and assume without loss of generality that ¢, < 1.
Then, T'(t,) = Tw,) = Tyzw) SO that lim, o i(T(tn)x —z) =
limy, 00 i(T frw(1) — €) = 32" by Lemma 5.5.1 with a, = /£, and
X = w(1). (This lemma was used to prove the Central Limit Theorem;
the Central Limit Theorem and the fact that %x’ " is the generator of the
Brownian motion semigroup are very much related.)

We still need to prove that D(A) C D( %). There are several ways to
do that; the first, most direct one is to note that, by 7.4.32, D(A) equals

the range of Ry. Moreover,

i = [ [ i
(1) = e~ e” 2t x(o)dodt
A 0 21t J_ o )

= /jo kN, 7 —o0)x(o)do (7.41)

t The choice of space is more or less arbitrary here; we could have taken Co(R) or
L'(R) instead. See Subsection 8.1.15.
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(r—0)

2
where k(A\, 7 — o) fo e ML e~ dt. This last integral was cal-

27'rt
culated in 6.4.7 to be ﬁ —V2Alr—o], Thus, Ryz(7) equals
1 —rVEX / 1 -vax / —oV2X
—e 7 o)do + —¢” 7 do
Yo 7o)

which 1mphes that Ryz is twice differentiable. Performing the necessary
differentiation we see that (Ryx)” = 2ARyz — 2z, so that (Rxx)” belongs
to C[—o0, 00] and we are done (cf. (7.12)!).

The second method relies on 7.3.10 (or rather on 7.3.11) and 7.4.32.
Suppose that an x belongs to D(A \D =) and consider Az — AJ] €
C[—o00,00]. By 7.3.11, there exists a y € D( ) such that \y — sy =
Az — Az. On the other hand, Ay — 2y = Ay — Ay, and this COIltI'adICtb
the fact that A\ — A is one-to-one.

The third and final method uses (7.4.44) and (7.3.6). If = is differen-
tiable with 2’ € C[—o0,00], then, by (1.2.12) Tyz(1) = Ex(r + w(t))
is differentiable and its derivative E «’(7 4+ w(t)) belongs to C[—o0, 00].
Analogously, if z belongs to D(dd—j?), then so does Tix. Therefore, D(%),
is a core for A. Hence, for any x € D(A) there exists a sequence x,, €
D(%), such that z, converges to xz, and Az, converges to Ax. But
5 de, defined on D(d 2‘) is closed, and

so x belongs to D(d72) and Az = 12"

Az, = %x%, and the operator 2

7.5.2 Remark Asaby-product we obtain that u(¢,7) = E z(7+w(t))
is the only bounded (in ¢ > 0) solution to the Cauchy problem for the
heat equation:

0 1 0? d?
pn u(t,7) = 35,2 u(t, 1), u(0,7) = z(7), xéD(d 2)

This important relation is indeed only the peak of an iceberg. There is a
large class of important PDE and integro-differential equations of second
order for which one may construct probabilistic solutions. Moreover,
stochastic processes are closely related to integro-differential operators
in the way the operator % is related to Brownian motion. In fact as
all properties of the Brownian motion are hidden in the operator %, SO
the properties of some other processes are hidden in their “generating”
operators.

7.5.3 Exercise Show that ARy, where R) is the resolvent of the Brow-
nian motion semigroup, is the operator related to the bilateral exponen-
tial distribution with parameter a = v/2\.
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7.5.4 Exercise Consider the process w(t) + at, where a is a constant
and w(t) is the Brownian motion. Introduce the corresponding fam-
ily of operators, show that this is a strongly continuous semigroup on
C[—o00, 0], and find its generator.

7.5.5 The semigroup of operators related to the Poisson process Asin
2.3.45, let X,, be independent random variables with the same expo-
nential distribution of parameter a > 0, defined on a probability space
(0, F,P). Also, let Sp = 0,and S,, = > | X;, for n > 1. For any w € Q,
let N(t) = N¢(w) be the largest integer k such that S(w) < t. Certainly
No = 0 (almost surely). Moreover, for any ¢ > 0, N(¢) is a random
variable, for if 7 is a real number then

{we A Nw) <7} ={we Y Ni(w) < [7]} = {w € X S (w) > 1}

and this last set is measurable. It is also quite easy to see what is the
distribution gy of N(t). Certainly, this is a measure that is concentrated
on the set of integers. Moreover,

w({kY) = PIN(t) = k} = P{Sk <t} — P{Sgs1 < ¢}
’ k Tk71 —at g ! k+1 Tk |
= A a (k — 1)'6 T — /0 a He T

t k kik
d BT —art _ a*t —at
ZAmee]“—me'

The family N(t),t > 0 is called the Poisson process (on R*). Define
the related operators in BM (R)t by T; = T},,. In other words,

Tya(r) = Ea(r + N(t) = /x(T FOmls) = alr +mE e,
h (7.42)

Since p; is concentrated on natural numbers, it may be viewed as a
member of I*(Np). In the notation of 5.2.3 and 6.3.1,

> aktk > aktk
py = e Z Tek =e Te“fk = e “exp(ate)
k=0 k=0
= exp(—at(e; — ep)). (7.43)

It means that {u:, ¢t > 0}, being the exponent function, is a convolution
semigroup:

Mt * fbs = Hits-

1 See footnote to 7.5.1.
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On the other hand /*(Np) is a subalgebra of (signed) measures and from
2.3.20 we remember that a map p — T}, is a representation of the algebra
of signed measures in the spaces Co(R) and BM(R). Since T, is a
translation operator Az (1) = z(7 + 1), (7.43) gives

2 Mt An
T, =T, =c e =c )" i (7.44)
n=0 ’

where A® = I; the semigroup related to the Poisson process is the expo-
nent function of a(I — A).

Formally, (7.42) and (7.44) are identical, there is a difference though in
the sense they are understood. Formula (7.42) establishes merely the fact
that for any 7 the numerical series on its the right-hand side converges to
Tix(7). Formula (7.44) proves not only that the convergence is actually
uniform in 7; which means that the series converges in the sense of the
norm in BM (R), but also that the convergence is uniform in z, when x
varies in a (say: unit) ball in BM (R). In other words, the series converges
in the sense of the norm in £(BM (R)).

As a corollary, u(t,7) = Eu(r + N(t)), where N(t) is the Poisson
process with parameter a, and u is any member of BM (R), is a solution
to the following Cauchy problem:

ou(t, T)
ot

= au(t,7 + 1) — au(t, 7), u(0,7) =u(r),t e R (7.45)

7.5.6 Remark The semigroup {T; = etlad—al) ¢ > 0} related to the
Poisson process has a natural extension to a group Ty = et(@4—eD) ¢ ¢ R,
Note, however, that the operators T_;, t > 0 (except for being inverses
of T}) do not have clear probabilistic interpretation.

7.5.7 Exercise Prove directly that the Poisson process has stationary
and independent increments, i.e. that for all 0 < t; < {9 < ... < t,, the
random variables N (to)—N (1), ..., N (tn) — N (t,—1) are independent and
N(t;)— N(t;—1) has the Poisson distribution with parameter a(t; —t;_1).

7.5.8 Exercise Let Y,,, n > 1, be a sequence of independent iden-
tically distributed random variables. Suppose that N(¢) is a Poisson
process that is independent from these variables. Consider the random
process p; = an:(tl) Y., where we agree that 22:1 Y, = 0. Processes
of this form are termed compound Poisson processes. If Y,, = 1, for all
n > 1, p; is a (simple) Poisson process. If Y;, admit only two values: 1 and
—1, both with probability %, Pt is a symmetric random walk on integers.
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Find an explicit expression for the semigroup of operators related to p;
and repeat the analysis made for the Poisson process to find the Cauchy
problem of which u(t,7) = Eu(r +p,;) is a solution. Check directly that
this equation is satisfied. Write this equation for the random walk.

7.5.9 Exercise  Find the probability generating function of a com-
pound Poisson process if Y, takes values in N and the probability gen-
erating function of Y,, is given. Find the characteristic function of this
process if Y,, takes values in R and the characteristic function of Y, is
given.

7.5.10 Exercise Let Ry, > 0, be the resolvent of the Poisson semi-
group. Show that AR, is the operator related to the geometric distribu-

tion with parameter p = %ﬂ

7.6 More convolution semigroups

7.6.1 Definition A family {p, ¢t > 0} of Borel measures on R is
said to be a convolution semigroup of measures iff (a) po = do, (b) pu
converges weakly to g, as t — 0+, and (c)

Pt * fbs = Hits, ta S Z 0. (746)

7.6.2 Example Let b > 0. The measures {y;,t > 0} with gamma
densities x4(7) = %Tt_le_l”lﬂw (1), for t > 0 and po = dg, form a con-
volution semigroup. The semigroup property should have been proven
by the reader in 1.2.33. Moreover, if X; is a random variable with dis-
tribution iy, then £ X, = tb~! and D? X, = tb—2. Hence, for any € > 0,
P{|X;—tb~!| > €} tends to zero, as t — 0+, being dominated by tb~2¢ 2
(by Chebyshev’s inequality). This implies that pu; converges to dg, as
t—0-+.

7.6.3 Definition A stochastic process X;,t > 0, is said to be a Lévy
process iff (a) Xy = 0 a.s., (b) almost all its paths are right-continuous
and have left limits, (c) for all t > s > 0, the variable X; — X is
independent of 0(X,,0 < u < s) and has the same distribution as X;_;.

As we have already seen, Brownian motion and the Poisson process are
examples of Lévy processes. In fact they constitute the most prominent
and most important examples of Lévy processes [66], [100].
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7.6.4 Lévy processes and convolution semigroups  Lévy processes are
in a natural way related to convolution semigroups of measures. In fact,
the distributions p;,t > 0 of a Lévy process X;,t > 0 form a convolution
semigroup. Indeed, pg = d¢ by point (a) of the definition of Lévy process.
Moreover, by (b) of this definition, X; converges a.s. to Xy, as t — 0+.
Hence, by 5.8.1, X; converges to X, weakly, as well. Finally, by (c¢) in
7.6.3, Xirs = (Xiys — Xs) + X is a sum of two independent random
variables, and Py, —x, = Px, = p;. Hence, py1 s = Px, . =Px,, x, *
Px, = pue * pis-

7.6.5 Cauchy flights Not all processes with distributions forming con-
volution semigroups are Lévy processes. For example, a Cauchy process
is by definition a process that satisfies conditions (a) and (c) of definition
7.6.3 and X;,t > 0 has a Cauchy measure with parameter ¢, i.e. if u
has the density z:(7) =
(see [36]).

Moreover, the distributions u¢,t > 0, of Cauchy random variables X

%W’ yet its sample paths are discontinuous

with parameter ¢ form a convolution semigroup regardless of whether the
increment X; — X is independent of X5 or not. Indeed, since the Fourier
transform 2() = 7

T1Ts = Tsy¢. By 6.4.11, this proves that puiys = py * ps. Moreover, for
any € > 0,

7z (1) d7 of x; equals e~!Is!, by 6.4.12, we have

1 [ t 2 €
—€,€) = — ———dr = —arctan- — 1
pa ) T /,e t2 + 72 T t t—0+
proving that p; converges to dg.
In other words, forming a convolution semigroup of measures is a
property of distributions and not of random variables.

7.6.6 Examples of generators of convolution semigroups Let {us t >
0} be a convolution semigroup on R. Define the semigroup {73,t > 0}
in X = BUC(R) by T; = T},,. By 7.1.12, this is a ¢y semigroup in X; its
generator A will be called the generator of the convolution semigroup
{/J'tvt > 0}

In general, finding an explicit form of A is difficult, if possible at all.
As we shall see, however, the domain of A contains the space X5 of all
twice differentiable functions in X with both derivatives in X, and A
restricted to Xy can be described in more detail. Here are two examples.

(a) The Cauchy semigroup We have

1 1 fa(r+0)—z(0) .
H(Ga—a)(o) = = [ A g
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Since y(7) = 7 is odd, this equals

l/ [f(TJFU)—SU(U)—x'(J)y(T) 2 21
R

)| —————=d
T T2 (" +1) T2 417242 T

Since y(0) = 0, ’'(0) = 1, and y”(0) = 0, by de 'Hospital’s rule, the
expression in brackets tends, for x € X, to %m”(a), as 7 — 0. Also, it is
continuous as a function of 7, and bounded. Hence it belongs to BC(R).
Moreover, the measures v; with densities = w2 + ;
t — 0, to the measure m with density ——. Hence, for z € X3, and any

> converge weakly, as

o, the above expression tends to

l/ [JC(T+G)—$(‘7)_5E/(U)?J(T)] ar
R

7r T2

Using 7.1.12, this convergence may be proven to be uniform in . We
skip the details now, as we will prove this result in a more general setting
later — see 7.6.14.

(b) The gamma semigroup In this case,

th(tt) /°° |:SC(7' +o0)— wgg) - zl(U)?J(T)] 0V g

bt < 1
/ —br __t
+z'(o dr.
( )ﬂ“(t)/o ) 1e T dT

For any A > 0, changing variables 7/ = (A 4 b)7,

%(th —z)(o) =

[ NV b’ 1
TATeTOT dr = —T(t+2
N0 /0 e = ey ol 2
=b——(t+1).
PTG
This converges to o> +b) ~=r3, as t — 0. Thus, the measures v; with densities
%e_bTT“‘l converge weakly to the measure m with density ;ze e b7,
Similarly, the second integral converges to x’(a)% fooo TZ_He*bT d7. Thus,

for any o, 1(T;x — x)(c) converges to

/0°° [w(T +o) —a(o) =y 7 4 (0) /OOO o dr.

T2 b2 b 7241

Again, the convergence may be shown to be uniform in o.

7.6.7 Generating functional Let {us, t > 0} be a convolution family of
measures on R, {T},¢ > 0} be the corresponding semigroup of operators
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in X = BUC(R), and A be its generator. Let F': C D D(F) — R be the
generating functional of {u;,t > 0}, defined as

Fx = lim Fix
t—0+
on the domain D(F) = {x € X]|lim;_,o4+ Fix exists}, where
1
Fx = ;(Ttx(O) — z(0)).

It is clear that D(A) C D(F). Moreover, if x € D(A) then Ax(o) =
limy o4 3 (Tyz(0) — x(0)) = limy_o4 Fyx,, where 2,(7) = 2(c+7),0 €
R. In particular, x, belongs to D(F) and Az(c) = Fz,. Hence, the
values of A may be recovered from the values of F.

The key result concerning F' is that:

X, C D(F), (7.47)

where Xy is the set of all twice differentiable functions in X with both
derivatives in X.

We note that X5 when equipped with the norm ||z||2 = ||=||x + |2 ||x +
|="||lx (or with the equivalent norm, ||z||3 = ||z|x + ||=”||x), is a Banach
space — see 7.3.3 and 7.3.6. Moreover, if x € X is differentiable with
2’ € X, then so is Tyx and (Tyx) = Ty’ € X. Similarly, if x € X,
then (Tyx)"” = Tya”. Hence, Ty, t > 0, leave Xy invariant, ||Tix||2 < |||z,
and (T)x,,t > 0, is a strongly continuous semigroup of operators. In
particular, the domain D5 of its infinitesimal generator is dense in Xp (in
the sense of the norm || - ||2); certainly, Do C D(A). Besides this remark,
for the proof of (7.47) we will need the following set of lemmas.

7.6.8 Lemma  For every § > 0 we have

1
sup — gt (—0, 5)8 < 00.
>0t

Proof Let x(7) = |7|Ad. There exists a y € Da, lying within §/6 distance
from x. Let 79 € [~0/6,/6] be such that min,¢;_s5/6,5/6) ¥(T) = y(70)-
Note that |y(7)| < /6. Let z(1) = y(r — 70) — y(70),7 € R. Then,
z € Dy, z > 0, and z(0) = 0. Moreover, for |7| > J, we have z(7) >
y(r —10) —6/6 —0/6 > 25 — 25 = 2, since |7 — 19| > 20.

The function f(t) = Fyz = } [, zdyu, is continuous in ¢ € R with
lim; o f(t) = Fz and lim;—. f(¢) = 0, hence bounded. Therefore,
SUpysg 1t (—0,0)8 < Zsup,. o L [ zdpy is finite. O
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7.6.9 Lemma  Let § > 0. Then, there exist ¢” and 2° in the set C'>®
of infinitely differentiable functions with all derivatives in X, such that
y°(7) = 7 and 2°(7) = 72 whenever |7| < 6.

We leave the proof of this lemma as an exercise.

7.6.10 Lemma  (a) There exist y* and 2% in Dy such that y* = 0 and
(y*)'(0) = 1, and 2%(0) = (2#)"(0) = 0 and (2%)""(0) = 2. (b) There exists
a § > 0 such that sup,  + f(,(;’(;) 72 p(dr) is finite.

Proof (a) We may not have 2/(0) = 0 for all z € Ds, for then we

would have inf,ep, |2 — |2 > ’(yb)’(0)| = 1, contrary to the fact that

D, is dense in X,. Hence, there exists an x € Dy with 2/(0) # 0 and,

consequently, y* = ﬁ (z — z(0)1r) possesses the required properties.
To prove the other relation, we note that the operator

Pz =z — 2(0)1g — 2'(0)y* (7.48)

mapping Xp into Y = {z € X3|z(0) = 2/(0) = 0} is linear and bounded
with the norm not exceeding 2+ ||y*||2. Moreover, it is onto (since Px = x
for x € Y) and leaves Dy invariant. Hence, DoNY is dense in Y, Dy being
dense in X,. Therefore, there is an 2 € Dy N'Y such that z'/(0) # 0, for
otherwise we would have inf,ep,ny ||z — 2°[]2 > [(2°)"(0)| = 2. Finally,
2= %@)x possesses the required properties.

(b) By the Taylor formula, 2#(7) = é(zﬂ)”(QT), for some 0 = 6(7),0 <
6 < 1. By continuity of (2%)”, there exists a § > 0 such that (z#)" (1) > 1
whenever |7| < 4. For such a 7, 2%(1) > 372,

Since 2#(0) = 0, Fy2f = % fR 2% dy,. Moreover, arguing as in the proof
of Lemma 7.6.8, we see that sup,. |F;2*| is finite. Therefore,

1 1
supf/ 2 pe(dr) < QSup*/ 2(7) pe(d7)
>0 t J(—s4) t>0 b J(=06,6)

1 1
<2supy [ Hr mdn) +2supy [ ) (an
t>0 ¢ JR t>0 t (—6,6)C

1
< 2sup |Fy2f| + 2||2% |5 sup — e (—6, 6)C
>0 t>0 t

which is finite by Lemma 7.6.10. Ul

Proof (of relation (7.47)) We need to show that the limit lim;_o Fix
exists for all x € X5. By definition this limit exists for all x in Dy and
this set is dense in X5. Therefore, it suffices to show that there exists a
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constant ¢ such that sup,. |Fiz| < ¢||z||l2,z € Xa. Since both 1g and y*
in (7.48) belong to D(F), our task reduces to showing that there exists
a c such that

sup |Fy Pz| < cl|z||2, x € Xs. (7.49)
>0

By the Taylor theorem, Pxz(7) = %Z(PLE)"(GT) where 6 = 0(7) and
0 <0 < 1. Thus, |Pz(r)| < ||PacH2L22 Now the estimate

2
-
[Pa(7)] < [[Pall251(-55) + [1P2]|21 (560

implies (7.49) with

1 72 1
e=c(0) = 1P| sy [ Tpu(dr) 4 sup (-6,
>0 U J_(55) 2 >0 t
which may be made finite by Lemmas 7.6.8 and 7.6.10. |

Before we establish the form of the generator of a convolution semi-
group we need two more lemmas and the following definition.

7.6.11 Definition A distribution p on R is said to be symmetric if
its transport p® via the map 7 — —7 equals . In other words, if X is
a random variable with distribution p, then —X has the distribution pu,
too.

7.6.12 Lemma  Let p be a symmetric distribution on R. Then, for
any § >0 and k € N,

/J/*k[—d, 5]0 > (1 _ ek/t[—é,é]c).

| =

Proof Let Sy = Zle X; be the sum of k independent random variables
with distribution p. We claim that

1
> — i . .
P[|Sk| > 0] > 2[P’{lmagxkp(Z > (5} (7.50)

<i

To prove this we note first that by assumption for any Borel sets B; €
B(R),i =1, ..., k, the probability

P{X; € Bi,i=1,...k} = [[P{X; € B;}
i=1
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does not change when one or more of the X; is replaced by —X;. By
1.2.7, this implies that the same is true for P{(Xy,..., Xi) € B} where
B € B(RF), and, consequently, for the probability P {f(X1, ..., Xx) € B}
where B € B(R'),l € N and f : RF — R! is Borel measurable. In
particular, for any i = 1,...,k, p; 1 = p;,2 where

Pia =PRIX;|<0j=1,..,i-1,X;>56(-1)* > X;>0p,
j=1,...k, j#i

a = 1,2. On the other hand, p; 1 + p; 2 is no less than ¢; := P{|X;| <
8,j=1,...,i—1, X; > d§}. Hence, p; 2 > %qi. Similarly, p ; > %q{ where
pg,a and ¢} are defined in the same way as p; o and g;, respectively, but
with X; > § replaced by X; < —9.

Let 7 = 7(w) = min{i = 1,...,k||X;(w)| > ¢}, where min() = oo.
Then ¢; + g} = P{7 = i}. Moreover,

k
P{|Sk| > 6} > P{|Sk| > 6,7 < oo} = > P{[Sk| > 6,7 = i}

=1
n 1 n

> Z(pm +7i1) > 3 Z(Qz +4q;)
=1 i=1

1<t

1 ¢ 41 1
:22]}”{7:1}—2P(T<oo)—2P{mank|Xi| >§},

as claimed. Next, by independence, P{max;<;< | X;| < d} < (u[-9, )"
< e~ Ful=39° gince for z < 1, z < e~(1=?), Combining this with (7.50),
P{|Sk| > 6} > 1 (1 - ek“[";*‘;}c) . This is the same as our thesis, since
S, has distribution p**. O

7.6.13 Lemma Let t,,n > 0 be a sequence of positive numbers such
that lim,, . t, = 0. For any € > 0 we may choose a § > 0 so that

suplt,, e, [0, 0% < e.
n>1

Proof 1 Let us recall that an m € R is said to be a median of a
distribution g on R if both (—oco, m] and [m, 0o) have p measure at least
%. Note that p has at least one median.

For n > 1, let m,, be a median for f, . Since the measures p;, tend
to Dirac measure at 0, we have lim,,_,,, m,, = 0. Indeed, without loss of
generality we may assume m,, > 0, because the measures p;, with m,, <
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0 may be replaced by y§ (see Definition 7.6.11). Moreover, we may not
have m,, > m for some m > 0 and infinitely many n, because otherwise
for infinitely many n we would have i, (—o0,m) < py, (—o0,m,) < %
contrary to the fact that p, (—oo, m) converges to 1, as n — 0.

2 Fixn > 1. Let X,, and X/ be two independent random variables
with distribution g, . The events {X,, > m, + 9§, X, <m,} and {X,, <
my, — 0, X! > m,} are disjoint and their union is contained in {| X, —
X,| > 0}. On the other hand, their probabilities equal P{X,, > m,, +
SIP{X] < m,} > iP{X,, > m, + 6} and P{X,, < m, — §}P{X] >
mp} > $P{X,, < m, —6}. Hence, 2P{|X,, — X},| > 6} > P{|X,, — my,| >
5}, ie.

[t e, [0 — 6, + 0]° < 20t e, * 455, [0, 6).
Thus, for § > sup,, > [mnl,
[t e, [~26, 2608 < 2t g, # 415, [0, ]°. (7.51)

3 Fore>0letn=23(1—e"%?)andlet § > sup,,>1 |m,| be a point of
continuity for py 5 large enough so that py 5 [—6, 6] < 7. By 5.4.18,
5.4.20 and 7.4.14, the measures Bzt * ,u?t_l converge weakly to

[—4,0]¢ < n.

Itn
p1xu3. Therefore, for n larger than some ng, =1y, *“?t*l]

By (7.50) and (7.51),

in

[t e, [20,20)F < e, (7.52)

for n > ng. On the other hand, for each 1 < n < ng, we may choose
a ¢ such that (7.52) holds for this n. Therefore, for sufficiently large ¢,
(7.52) holds for all n. This implies our thesis. O

7.6.14 The form of the generator Let {u:t > 0} be a convolution
semigroup and let A be the generator of the corresponding semigroup
{T},t > 0} of operators in X = BUC(R). Then, Xy C D(A). Moreover,
there exists an a € R and a finite Borel measure m on R such that

Az(o) = az'(o) (7.53)

+ / (2 + o) — 2(0) — 2'(@)y(r)] Tt

2 m(dT), $€X2,

where y(7) = 7.

Proof 1 Define the measures v, t > 0, by v (dr) = %T;—il pe(d7).
In other words, v; is absolutely continuous with respect to u; and has
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a density %T;—il For appropriate choice of § > 0 (Lemmas 7.6.8 and
7.6.10),

sup4(R) < supl/ 72 pe(d7) + sup l,ut(—(;, 5)C < 00.
>0 >0 t J(—s.5) t>0 ¢

Let t,,,n > 1, be a numerical sequence such that lim,, .. t, = 0. The
measures ﬁyt are probability measures. Hence, there exists a sequence
ng, k > 1, with limg_ .o nx = oo, such that the measures m%"k
converge weakly to a probability measure on [—o0, o], and the numerical
sequence vy, (R) converges, too. Hence, Vt,, converge to a finite measure
m on [—o0, 0c|. Furthermore, m is concentrated on R. Indeed, it is clearly
so when lim, oo 4, (R) = 0, for then 14, converge weakly to zero
measure. In the other case, Vt,, (R),k > 1, is bounded away from 0, and
Lemma 7.6.13 shows that the sequence mmnk,k > 1, is tight, so

that its limit is concentrated on R, and so is m.
For z € Xo, let (Wx)(71) = T;—ilm(ﬂ Clearly, Wz € Xz, and (Wxz)(0)
= 0. Hence,

1
FWm:Iimf/Wwd,ut:Iim/xdl/t: lim rdyy, :/mdm‘
=01t Jg =0 Jr R S

k—o0

Since X5 is dense in X, this determines the measure m.

We have proved that any sequence vy, ,n > 1, with lim, .. t, = 0,
has a subsequence converging weakly to the unique Borel measure m on
R. Therefore, lim; o4 v = m (weakly).

2 For z € Xo, let z,(7) = [z(0c + 7) — x(0) — 2/ (0)y(T)] 72;1,7,0 €
R. Since y(0) = 0, ¢'(0) = 1, and y”(0) = 0, by de ’'Hospital’s rule,

lim; ¢ z,(7) = 32" (0). Also, for any § > 0, z, is seen to be uniformly
continuous in 7 € (—0, 5)G and bounded. This implies 2z, € X. Moreover,
1

(B0 =2(0)] = 7 [ o +0) = a(0)] ()

=a'(o)Fyy + / 2o duy.
R

For any o € R, this converges to az’(c) + [ 2, dm, where a = Fy.
Hence, our task reduces to showing that limy_g [ z, dvy = [ zo dm
uniformly in ¢ € R.

2

To this end, we check directly that the functions 2,(7) = 2,(7) =37
are equicontinuous at any 7 € R. Hence, z, are equicontinuous at 7 # 0.
Also, writing 3z () — x(g+7)_x(2_x (@) a5 1a(0) — 32" (0 +67) +

% where 8 = 6(7),0 < 6 <1 (by the Taylor expansion), and
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using uniform continuity of z” we see that z, are equicontinuous at
7 = 0, too. Finally, by the Taylor formula, |2,(7)| < ||z|l2(1 + ||y]|2)
whenever |7| < 1; when |7| > 1 it does not exceed 2||x||2(2 + ||y||). This
implies uniform convergence, by 7.1.11. 0

7.6.15 Exercise If 2 € Xy, then so does z, where x,(7) = (o + 7),
and we have ||z||x, = ||zo||x, (cf. (7.6.7)). Moreover, t ! [Tyx(0)—x(0)] =
t~ T2, (0) — 2,(0)]. Use this and (7.49) to show directly that Xy C
D(A).

7.6.16 Examples In the case of the Brownian motion semigroup, m is

the Dirac measure at 0 and a = 0. In the case of the Cauchy semigroup,

m is the measure with density T%H (with respect to Lebesgue measure)

and a = 0. In the case of the gamma semigroup, m has the density
—b S S

Te " and a = ¢ [T mge T dr

7.6.17 Corollary  The set Xs is a core for A. In particular, A is fully
determined by 7.6.14.

Proof The operators T; leave Xy invariant and Xo C D(A). Moreover,
X, is dense in X, hence dense in D(A), as well. The result follows now
by 7.4.44. Ul

7.6.18 The Lévy—Khintchine formula  Let {us,t > 0} be a convolution
semigroup on R. There exists a finite Borel measure m and a constant
a such that

: 2
/]Rein e (d7) = exp {it{a —|—t/]R (ei& -1- 7_21&: 1) T T—; ! m( dT)} .
(7.54)

Proof Fix £ € R. Let x1(r) = cos(é1) and zo(7) = sin({7). We
have z; € Xy C D(A),j = 1,2. Hence, $Tya; = ATyx;,j = 1,2. In
particular, $[Tyz;(0)] = [£Tix;] (0) = FTiz;,5 = 1,2. Thus, ¢t —
o(t) = [ p(dr) = Tx1(0) 4 iTya2(0) is differentiable, too, and
%cb(t) = FTix1 + iFTzo. Furthermore, by (7.53), FTix; is the sum of

a [ 2% dpy and

T 241
/R[/ﬂ{xj(7+g)ut(dg)_/ijdut_/Rx;thﬂH] = m(dr).
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Also, (1) + izh(7) = i€e’®™ and x1 (T + o) + iza(T + 0) = el7el".
Therefore, FTix1 + iFTixo equals

aigo () + o0) [ (5 1

In other words, ¢(t) is the solution of the equation £ ¢(t) = be(t) satis-
fying ¢(0) = [5 €™ po(dr) = 1. Hence, ¢(t) = e O

T = m(dr) =: bp(t).

i€ )7’2+l

7.7 The telegraph process semigroup

7.7.1 Orientation The example we are going to present now is some-
what unusual. Since the time of publication of the pioneering paper by
Kolomogorov 73], it has been well known that there is a close connection
between stochastic processes and partial differential equations of second
order. Partial differential equations (PDEs) of second order form three
distinct classes: the elliptic, the parabolic and the hyperbolic equations.
One of the reasons for such a classification is the fact that properties of
PDEs differ greatly depending on which class they belong to. Now, the
second order PDEs that are known to be related to stochastic processes
are of elliptic or parabolic type (see e.g. [35], [33], [38], [42], [113]). The
process that we are going to describe now, however, is related to a hy-
perbolic PDE known as the telegraph equation. A probabilistic formula
for the solutions to this equation was introduced by S. Goldstein [44]
and M. Kac [60]. Years later, J. Kisynski [71] has recognized the fact
that a modified process introduced by Kac is a process with stationary
increments, provided increments are considered in the sense of the group
that we now call by his name. Let us also note that the discovery of Kac,
followed by papers by R.J. Griego and R. Hersh, marked the beginning
of interest in so-called random evolutions (see e.g. [96] where also an
abundant bibliography is given).

Let us describe the result obtained by Kac. Let a > 0 and v be two
real numbers. The equation

0y(t,T) n 2a8y(t77') 2 O?y(t,T)
ot? ot or?
is called the telegraph equation. From the theory of PDEs it is known
that it has exactly one solution if we require additionally that
dy(0, 1)

y(0,7) = y(7), and o = 0, (7.56)

(7.55)

where y is a sufficiently regular function.
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M. Kac has shown that the solution is given by:

y(t,7) = %E ly(T +v€(t)) +y(r —v&(t))], (7.57)
where

§(t) = &alt) = /0 tH)N(“) du, >0, (7.58)

and N(t),t > 0, is a Poisson process with parameter a. It is worth
noting that this formula generalizes the well-known solution to the wave
equation. The wave equation is the equation

0y(t,7) 2 0%y(t, 7).

52 =V g (7.59)

and it is just a question of a change of variables to see that its solution
satisfying (7.56) is (compare 7.4.42)

y(t,7) = %[y(f Fob) + y(r — vb)]. (7.60)

Certainly, the only difference between the telegraph equation and the
wave equation is the second term on the left-hand side of (7.55); and
if @ = 0 the telegraph equation becomes the wave equation. In such a
case, however, the Poisson process degenerates to a family of random
variables that are all equal to 0 and fot(—l)N(") du =t (a.s.), so that
(7.57) reduces to (7.60).

7.7.2 Exercise  From the theory of PDEs it is well-known that the
unique solution to (7.55)—(7.56) is given by (see e.g. [23], [97])

y(t,7) = (a+ %%) (e_“t /_tt Iy (a\/ 2 — 02> y(T + vo) do)
= 5 e lylr + ot) + y(r — o)

2
t
et / Iy (a\/ 2 — 02) y(1T +vo)do
—t
(a\/ 2 — 02) y(T +vo) do,

+

+

N N

t
t
e—at/ o Il
—tV f;2 — 0'2

) 2\ 2k e8] z)2k+1
where Io(z) = Y pe o mm (3)7 and Ii(2) = Y0, m (3) (=

4 Jo(2)) are modified Bessel functions of order zero and one, respectively.
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Show that
t
ety & o / Iy (aV/ = 0?) do
—t
t
t
efat/ - Il (a\/m) da’ = ]_, (761)
V2 =02

and conclude that, for each ¢ > 0, there exists a random variable X (¢)
such that y(7,t) = Ey(T + X(¢)). Equation (7.57) fully describes X (¢).

+a
2

7.7.3 The telegraph process Let us study in more detail the process

t
£(t) = / )V du, >0,

often called the telegraph process or Poisson—Kac process. It de-
scribes the position of a particle that at time 0O starts its movement to
the right with velocity 1 and then changes the direction of the move-
ment (but not the absolute value of its speed) at times of jumps of the
Poisson process. From the physical point of view, to describe the move-
ment completely we should know not only its position at time ¢ but also
its velocity. In our case all we need is the position of the point and the
direction in which it is moving. Comparing the process fot (—1)NW du
with the Brownian motion also suggests the need for another coordi-
nate. If we know that at time ¢ the Brownian motion was at a point 7,
we know also the distribution of the Brownian motion at s > ¢, specifi-
cally, we have w(s) ~ N(7,t — s). However, this is not the case with the
process fot(—l)N(“) du; knowing that fot(—l)N(“) du = 7 does not deter-
mine the distribution of this process in the future s > t. If (—=1)N®) =1
this distribution is going to have a bigger mass on [r,00) than in the
case (—1)N(® = —1. Motivated by such or similar reasons, Kisynski has
introduced the process

g = (v /Ot(—l)N(") du, (=1)N®) (7.62)

and the related group G = Rx{—1, 1}, defined in 1.2.24. Then he proved
that, for any non-negative ¢ and s,

(i) the random vectors giysg; ! and g, are independent, and
(ii) the random vectors g;;.g; ' and g, have the same distribution,

and derived (7.57) as a consequence of this fact.
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To prove (i) and (ii) we may argue as follows. First, using (7,k)~! =
(—k, k) we calculate g, g; ' to be equal to

(v / LN qu, (C1)N ) (1N 0y / {(C)N du, (~1)NO)

0

t+s
= (v/ (_1)N(u)—N(t) du, (_1)N(t+s)—N(t)).
t

Next, for n > 1 we consider s, = k s, tp = 2%15,0 <k<2" -1 and

on
random variables

Y, =v Z N(tk) Zp =0 Z 2n N(t+sn1)=N(t)

For n,m > 1, let G, and F,, be o-algebras generated by the random
variables N (tg+1)—N(tx),0 < k < 2", and N(t+8;41)—N(t+s;),0 < i <
2™ respectively. Since these random variables are mutually independent,
by 1.4.12, G, is independent of F,,. Thus, the 7-system (J,,~, Gn is a

subset of the A-system - and the 7—\ theorem implies & (Un21 g”) C
Fm, i.e. the o-algebra o (UnZl g’n,) is independent of F,,. A similar
argument; shows that o (UmZI 7 ’") is independent of o (Un21 9n> .On
the other hand,

g = lim (Yn7(*1)N(t2"*1)>

n—oo

gtﬂg;l = lim (Zn’(_l)N(t+82n_1)—N(t)))

n— o0

and the random variables N (t;) = Zle [N(t;)—N(t;—1)] are G,, measur-
able and N (t+s;)—N(t) = Z;ZI[N(H—S;) —N(t+s;-1)] are F,, measur-
able. Hence, g; is independent of g;y.g; ! Condition (b) is proven simi-
larly; the main idea of the proof is that by 7.5.7, N(t+ sg4+1) — N(t+sk),
0 < k < 2771 have the same distribution as N(sg11) — N(s), 0 < k <
DAL

7.7.4 The telegraph process semigroup  Let p; be the distribution of
g:; (¢ is a probability measure on G. Writing gy s = (gt+sg;1)gt and
using (i) and (ii) we see that pzys = s * s (convolution in the sense of
1.2.22; compare the analysis following (7.40)). Therefore, by (2.16), the
operators

Tixz(h) =T,,x(h) = /x(h’h)ut(dh') = Ex(gih), he G,z € BUC(G),
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form a semigroup: T;Ts = T}, T, = Tpuyepn, = Tstt. To see that {T;,t >
0} is strongly continuous it suffices to show that p: converges weakly
to 0(0,1), as t — O+. (Compare 7.1.12.) To this end, consider y; as a
measure on R2. Then, ut(Ballc), where Bali® is the complement of the
ball with center at (0,1) and with radius r < 1, is the probability that
N(t) is odd, or |v&(t)] > r. If t < r/v the latter inequality may not be
satisfied, and we see that our probability equals e %! sinh at which tends

to 0 as ¢t — 0, proving our claim.

7.7.5 The generator of the telegraph semigroup  One way to find the
generator of {T;,t > 0} is to compare this semigroup with the semigroup
{Ss,t > 0} where

Six(h) = z((vt, 1)h) t>0,heG

whose generator is easy to find. Specifically, the reader should check that
the domain D(B) of the infinitesimal generator B of {S;,¢ > 0} is given
by

D(B) = {z € BUC(G), z is differentiable and 2’ € BUC(G)} (7.63)
where we say that © € BUC(G) is differentiable iff z;(7) = x(7,i),i =
1, —1, are differentiable with «; € BUC(R), and put a'(7,4) = ia}(7).
Moreover, B is given by

Bz = vx'. (7.64)
Now, let C' = Tj, _,,. Taking h = (7, k) € G, we have

(e"Tyx)(h) = e E (gih)1n(t)=0] + €* E x(g:h) 1[N (1)=1]
+ e E x(gth) 1 [n (1) >2)-

If N(t) = 0, which happens with probability e~ then g; = (vt,1).
Hence, (e"Tix)(h) = (Six)(h) + e E x(gih) 1y ()=1] +o(t) where o(t) <
e||z||P{N(t) > 2} = ||z[[(e** — 1 — at) so that o(t)/t — 0 as t — 0.
Therefore, for any z € BUC(G)

1
lim sup ;HeatTta: — Six — tCx|
t—0

is the limsup, as t — 0, of

eat
— sup

t
E |:.Z‘(U/ (_1>N(u) du + T, —k) — x(T, —k):| 1[N(t):1]
T€Rk=1,—1 0

which equals zero by uniform continuity of = and the fact that P[N(t) =
1] = te™ .
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This shows that the difference between eatT;””*”” and S”f;m converges
to Cz. In particular, the domains of infinitesimal generators of semi-
groups {S;,t > 0} and {e*T},t > 0} coincide and the generator of the
latter equals B+C. Finally, by 7.4.18, Ax = Bx+Cxz—ax on the domain
D(A) equal to D(B) defined in (7.63).

7.7.6 Exercise Prove (7.63) and (7.64).

7.7.7 Proof of Eq. (7.57) Take an z € D(A) and define xy(7,t) =
Tix(7, k). By 7.7.5, the function ¢ — z(7,t) is the unique solution of
the system of equations:

Oxy(7,t)  Oxy(r,1)
ot = kv or

Sometimes it is convenient to write this system in a matrix form:

Oz (7,t) o
(81_(?(7'715)) = <U87— “ ia ) <xl(z—’ t2)> . (765)
T a —v5-—a) \z_1(7,
By 7.4.25, if 2 belongs to D(A?), i.e. if the components of z are twice

differentiable with second derivatives in BUC(R), then the zj(7,t) are
also twice differentiable and ¢ — z(7,t) satisfies

3211(T,t) i _ 2
o) | = <U8T p— ) (xl(ﬂ : ) B
Goalnt) a —v5- —a x_1(T,t)
In particular we may take a twice differentiable y € BUC(R) with
y’ € BUC(R), define 2 € BUC(G) to be (isomorphic with) the pair

(y,y) (compare 2.2.38) and consider y(t,7) = 3[z1(7,t) + x_1(7,t)] and
2(t,7) = %[xl(r, t) — x_1(7,t)]. Then, by (7.65),

1 o
B ton(h e ) (00) -
ot 2 a —v5- —a) \x_1(7,t) or
in particular %y(o, T) = %Z(O,T) = 0. Furthermore, by (7.66),

y _ 1(1, D ((uai —a)? +a? —2a? ) ( z1(7,t) )

+ ax(r, —k) — ax(1, k), k =1,—1.

oz 2 —2a? (Ua% +a)? +a?) \x_1(7,1)
1,07 o 5 0 0 21 (7, 1)
=3 ( a2 " 2War Ve T2e o m)
_ 205,07
or? or
2 0%y _9 dy

R T
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i.e. y satisfies the telegraph equation with y(0,7) = y(7), and %(O, T) =
0. Finally, to obtain (7.57) it suffices to note that

-171(7', t) = Ey(T + Ug(t))l{N(t) is even} + Ey(T - ’Ug(t))l{N(t) is odd}»

x*l(Ta t) = Ey(T + 'Ug(t))]-{N(t) is odd} + Ey(T - 'Uf(t))]-{N(t) is even}-
(7.67)

7.7.8 Exercise From the theory of PDEs it is known that the unique
solution to (7.55) with initial conditions y(0,7) = 0 and %(O, T) = 2(7)

is given by (see e.g. [23], [97])

1 t
y(t, 1) = §e_at/ Iy (a\/ 2 — 02) z(T +vo) do.
—t

Conclude that, for each ¢ > 0, there exists a random variable Y (¢) such
that y(t,7) = 3 E 2(T + vY (t)) — compare (7.68), below.

7.7.9 Exercise (a) Repeat the analysis from subsection 7.7.7 with
x € BUC(G) equal to the pair (y,—y) where y € BUC(R) is twice
differentiable with ¢y’ € BUC(R), to see that y(¢,7) defined there is a
solution of the telegraph equation with initial conditions y(0,7) = 0 and
94(0,7) = vy'(7). (b) Use (a) to show that

&(t)
y(t,7) = %E y(T +v€(t)) + %E y(r —v€(t)) + %E /5(t) z(t +vo)do
(7.68)

solves the telegraph equation with initial conditions y(0,7) = y(7) and
%(O,T) = z(7) where y € BUC(R) is twice differentiable with y” €
BUC(R) and z € BUC(R) is differentiable with 2’ € BUC(R) (see also
(8.64))

Relation (7.68), due to Kisynski [71], is a counterpart of the classic
d’Alembert’s formula for the solution of the wave equation:

u(t,7) = =[y(r + vt) + y(r —vt)] + 1 / z(1 +vo) do,

1
2 2/,

where y and z are the initial conditions stated above (compare Exercise
7.4.42).

7.8 Convolution semigroups of measures on semigroups

In this subsection we present a short discussion of convolution semi-
groups on two important classes of topological semigroups: the (one-
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dimensional) Lie groups and the discrete semigroups. We start by pre-
senting an example.

7.8.1 Convolution semigroup of measures on R}~ What is the general
form of a convolution semigroup on the group R} with multiplication
as a group product? It is quite easy to answer this question once we
note that this group is isomorphic to R with addition (via the map
R} 3w+ Inu € R). This implies that X;,¢ > 0, is a Lévy process on
R} iff In X, > 0, is a Lévy process on R.

In what follows we will find the form of the infinitesimal generator of
a convolution semigroup on R} . Before we do this, let us note that the
isomorphism described above preserves “differential structure” of R} .
To be more specific, a function z on R} is differentiable iff 2 = zoexp is
differentiable on R and we have 2/(7) = 2/(e”)e” or, which is the same
2'(u) = 2/(Inu)L. A similar statement is true for higher derivatives. This
will be important in what follows.

Let {u¢,t > 0} be a convolution semigroup on R;. In other words, we
assume that ps* s = 4 where * denotes convolution on R} as defined
in 1.2.22. Also, up = 91 (the Dirac delta at 1), and lim; oy u: = po
weakly — note that 1 is the neutral element of R} and as such it plays
the same role as 0 does in R.

For t > 0, let v, be the transport of ji; via exp, i.e. [, zdy = ij zo0
In dpg, © € BM(R). A direct calculation shows that

/zd(ut*z/s):/ 201nd(ut*us):/ zolndut+sz/zdut+s
R R R R

* *

(the first convolution in BM(R;"), the second in BM(R)), i.e. that v4xv, =
Vits. Also, vg = g and, by 5.6.2, lim; o4 vy = 1. Hence, {14,t > 0}
is a convolution semigroup on R. Moreover, the corresponding semi-
group {S;,t > 0} of operators S; = T,, in BUC(R) is (isometrically)
isomorphic to the semigroup {T;,t > 0}, T, = T,,, on BUC(R]). The
isomorphism J : BUC(R}) — BUC(R) is given by Jx = z oln. But
J is more than an isomorphism of two Banach spaces — it preserves the
differential structure of R} .

Let A be the infinitesimal generator of {S;,¢ > 0} and B be the
infinitesimal generator of {T},t > 0}. If z € BUC(RY) is twice dif-
ferentiable with 7 € BUC(R]), then Jz is twice differentiable and
(Jx)" € BUC(R). By 7.6.14, Jx belongs to D(A) and AJz is given
by (7.53) with x replaced by Jz. By 7.4.22, = belongs to D(B) and
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Bz = J 'AJx. Using J~1(Jz) (u) = uz’(u) we obtain

241
2

Bz(u) = aux’ (u) +/ [z(e™u) — x(u) — uz’ (u)y(7)] m(dr)

R T
= auz’(u)

, Inv)? +1
+ [ o) = o) = " 0) S ),

where yo =y oln and my is the transport of m via exp.
There are striking similarities between (7.53) and this formula, espe-
cially when written as

Bz (u) = aDx(u) (7.69)
(Inv)? +1
+ [ (o) = (0 - ey )] ST mo (),

where Dz = J~1(Jz)' so that Dz(u) = uz’(u). Note that the function

2
(l?lg)v);rl has singularity at 1, but as v — 1, the expression in the brackets

tends to D?z(1). Also, y¢ inherits properties of y: Dys = J~ 1y so
that Dye(u) = y\lT:lnu; similarly D%y¢ (u) = yl”T:mu. In particular,
Yo (1) =0 and Dy (1) = 1.

Relations (7.53) and (7.69) are particular cases of Hunt’s Theorem, as
explained in the next subsection.

7.8.2 Convolution semigroups of measures on a one-dimensional Lie
group  The Kisynski group and the group from 7.8.1 are examples
of a one-dimensional Lie group. Roughly speaking, a one-dimensional
Lie group is a topological group that is locally isomorphic to R and the
involved isomorphism preserves “a (local) differential structure”.

On any one-dimensional Lie group G there exists exactly one (up to a
constant) natural way to define a derivative Dz of a “smooth” function x.
In the case where G = R, Dz = 2/, if G = R, Dx(u) = uz’(u), and if G
is the Kisyniski group D(z1,22) = (2], —x5) — see 2.2.38, compare 7.7.5.
Moreover, there exists a function z on G, called the Hunt function,
that near the neutral element e of G mimics the properties of z(7) = 72
defined on R. In particular, z(e) = Dz(e) = 0 and D?z(e) = 2. Also,
there is a y on G that plays the role of y appearing in (7.53) in that y(e) =
0 and Dy(e) = 1. Finally, for every convolution semigroup {u:,t > 0}
the set of bounded uniformly continuous twice differentiable functions
with bounded uniformly continuous second derivative is contained in the
domain of the generating functional Fz = lim; o4 ([ 2 du — 2(e)),
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and there exist a constant ¢ € R and a measure m on G, possibly not
finite but such that [ zdm is finite, such that

Fa = aDa(e) + | [o(9) = a(e) = Dale)y(a)] m( do)
A similar, but more complicated, formula is true for n-dimensional Lie
groups. The proof of this theorem, due to Hunt, may be found in [55].

7.8.3 Example Two-dimensional Dirac equation Let H = R X Z
be the non-commutative group with multiplication rule (7, k)(o,l) =
(7(—=1)! + 0,k +1). (H is isomorphic to the subgroup Hy = {(7, k, )|k =
(=1)!} of the direct product of the Kisyriski group G and the group
Z of integers.) We note that the natural derivative D on H is given
by Dx(r,k) = (—1)kZx(r,k); D is defined on the subset BUC; (H) of
BUC(H) of functions = such that 7 — z(7, k) is differentiable for all
k€ Z,and y(1,k) = Dx(1, k) = (—1)’“%1‘(7, k) belongs to BUC(H).

The process g = (£(t), N(t)), where N(t),t > 0 is a Poisson process
and £(t) = [7(~1)N() ds, has independent, identically distributed in-
crements in the group H in the sense that relations (i) and (ii) of 7.7.3
hold.

We want to find the generator A of the corresponding semigroup
{T},t > 0},

T,z(h) = E z(g.h), h € H,x € BUC(H). (7.70)

To this end we compare it with the semigroup {S¢,t > 0}, Siz(7,k) =
e tx ((¢,0)(1,k)) = e tx(r + (—=1)*t, k). We note that the domain of
the infinitesimal generator B of {S;,t > 0} equals BUC}(H), and Bz =
Dz —x where D is the natural derivative on H. Moreover, when N (¢) = 0,
which happens with probability e™*, g; = (,0) and so E 1{n)—o}z(g:h)
= S;z(h). Similarly, N(t) = 1 with probability te~* and then g; =
(&(t),1). Since |£(t)| < t, we have

1 _
sup EE Linw=1yz(geh) — e "2 ((0,1)h)

heH
<e sup |x(7, k) — 2(0, k)| — 0.
o, TERLEL,|oc—7|<t t—0
Therefore,
1 1

1
;(Tt — S¢)x(h) = ;El{N(t):l}x(gth) + ;El{N(t)zz}x(gth)
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tends to z ((0,1)h) (in the norm of BUC(H)), because

1 1
sup %EI{N(t)ZQ}x(gth) < ||xHBUC(]HI) ?P{N(t) > 2} — 0.
heH t—0

This shows that D(A) = D(B) and Ax = Bx +Cx = Dz +Cz — x
where Cz(h) =z ((0,1)h), i.e. Cx(7,k) = z(7,k + 1) (C is the operator
related to the Dirac measure at the point (0,1)). Defining U; = €T} we
obtain that, for € BUC(H),

dUsx
dt

Our findings may be applied to give a probabilistic formula for the

=(D+C)Uiz and Upz = z. (7.71)

solution of the two-dimensional Dirac equation:

Ou(t,T) _ du(t, 7) + 20 u(0,7) = u(r)

ot or
ov(t,7)  Ov(t,T) B
% = o + zu, v(0,7) = v(T), (7.72)

where 2z is a complex number with modulus 1, and v and v are differen-
tiable members of BUC(H) with derivative in this space. Indeed, we may
set x(7, k) = 2*u(r) for even k and z(7, k) = zFv(7) otherwise. Then x

belongs to (complex) BUC (H) and (7.71) is satisfied. In particular

dUtZi(tT’ D= (0 + o0,
dU%(;’l) — (D + O)Ua(r 1).

Defining u(t, 7) = U;z(7,0) and v(t,7) = 1Uz(7, 1), since

(DUyz)(7,0) = gUtaz(T, 0),
or

(7,0
(CUwx)(7,0) = Uz ((0,1)(7,0)) = Ugz(7, 1) = 20(t, 1),
(DUx) (7, 1) = —%Utl'(’ﬁ 1),

(CUz)(1,1) = Uz ((0,1)(1,1)) = Up(, 2) = 22Usz(7,0),

we see that u(t,7) and v(¢,7) solve the Dirac equation (7.72).
By (7.70), using matrix notation we may write the solution to the
Dirac equation as

(161 — s (1) (e E00).
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7.8.4 Continuous convolution semigroups of measures on the Klein group
What is the form of a convolution semigroup {u:,t > 0} of probability
measures on the Klein group G? It may be difficult to answer this ques-
tion directly. However, we may be helped by the fact that the Gelfand
transform (6.23) establishes an isometric isomorphism between the al-
gebra L'(G) and the algebra R* with coordinatewise multiplication. In-
deed, it is easy to find all convolution semigroups, say {v;,t > 0}, on R*.
First of all, coordinates of v; must be non-negative, and we check that
logarithms of coordinates satisfy the Cauchy equation. Hence, vy must
be of the form (rf,r%,r%, rl) for some non-negative r;. Now, if u; is a
convolution semigroup of probability measures on G, then the Gelfand
transform G is a convolution semigroup on R*, and by the definition of
G, the first coordinate of Gy is 1 for all t > 0. Hence Gy = (1,75, r8,rt)
for some non-negative r;,i = 2,3,4, and p; = 1G(1,75, v, 74)T; the r;
must be chosen in such a way that p; has positive coordinates (we will
see how to do that shortly).
To continue our analysis, note that by (1.12) (see (2.17)), the measure
we = (ar(t),as(t),as(t),as(t)) € L'(G) may be represented as the matrix

aq Et; a2Et; G3Et§ a4Et;
an t [25] t Q4 t as t
Alt) = az(t) asa(t) ai(t) as(t)
a4(t) a3(t) ag(t) aq (t)

i.e. as an operator in L(G). Since {u,t > 0} is a convolution semigroup,
the matrices A(t) satisfy A(t)A(s) = A(t + s) (the left-hand side is the
product of matrices). Moreover, as t — 0, matrices A(t) converge to the
identity matrix coordinatewise, and thus uniformly with respect to all
coordinates. By 7.4.20, A(t) = e'® where B = lim;_o A(tt)_l = A'(0).
Now, the derivative of G (1,75, r§, 7)™ at t = 0 equals

1
ZG(O,lnrg,lnrg,lnm)T = (Oél,OéQ,()(3,Oé4)T7
where a1 = Inrorgry, and
Qg = lnr4(r2r3)*1, a3 = 1H7’3(7’27"4)71,Oé4 = 1n7'2(7"37"4)*17

or

ro = e*%(a2+a3),r3 _ e*%(a2+0¢4)’r4 _ e*%(@é3+0¢4).
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Therefore,

Q1 Qg Q3 04
1 Qg (1 Qg QA3
4 Q3 Q04 O 9
Qg QO3 Qo Q7

We have S35 | o = 0. Writing eB = e™fe(B=21! we see that the
vector $G(1,75,r,7}) has non-negative coordinates if a;,i > 2, are
non-negative.

There are striking similarities between the form of B and the matrix
in (2.17). Writing

0 B2 B3 Ba 1 000
B2 0 PBa B3 01 00
B =a —a )
Bs Bs 0 B2 00 10
Ba Bz B2 O 0 0 01
where a = —aq,8; = 4—1aozi,i > 2, we see that the value of the oper-

ator B on a measure, say (a1, a2,a3,a4) € BM(G) is a times the con-
volution of probability measures (0, 82, 83, 84) and (a1, az, as, as) minus
a(ay,as,as, aq). Hence p(t) is the exponent of a(0, B2, B3, 81)—a(1,0,0,0)
in our convolution algebra. This is surprisingly “clean” and elegant re-
sult, especially when obtained after such a long calculation. It suggests
that these were special properties of the Klein group that blurred our
analysis and that we should look for more general principles to obtain a
more general result. This suggestion is strengthen by Theorem 3, p. 290
in [40]. Before continuing, the reader may wish to try to guess and prove
the general form of a convolution semigroup on the group of congruences
modulo p.

7.8.5 Continuous convolution semigroups of measures on a discrete
semigroup Let G be a discrete semigroup with identity element. All
measures on G are members of the algebra [}(G) of measures that are
absolutely continuous with respect to the counting measure. If {u(¢),t >
0} is a convolution semigroup of probability measures in G, then there
exists a probability measure z € [1(G), and a positive number a such
that u(t) = expat(xz — &) where J is the Dirac measure at the identity
of the semigroup.

Proof For simplicity of notation we assume that G has infinitely many
elements; the reader will easily make minor modifications needed for the
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case where the number of elements in G is finite. By 5.8.6, the assump-
tion that u(t) converges in weak* topology to 0 implies that it converges
in the strong topology. By 7.4.20, there exists an element y of I*(G) such
that u(t) = exp{yt}. The Banach space ['(G) is isometrically isomor-
phic to I}(Np) and a measure u(t) may be identified with a sequence
(m;(t))i>0 where we may arrange mg(t) to be the mass of u(t) at the

identity element of the semigroup. Since y = lim;_.q m, the coordi-

t
@=L and gy = limy o ™0 i > 1,

nates of y are given by 7y = lim;_.q n

and all except 7y are non-negative. Since y € I*(G), >0, m < o0
and except for the trivial case this sum is not equal to zero. Moreover,
Yocomi = 0, because p(t) are probability measures. Hence one may take

a=> 7 ni=-mand x=1y+4 O

7.8.6 Remark Calculations related to the Klein group presented in
subsection 7.8.4 have this advantage that they lead to an explicit for-
mula for transition probability matrices, while in 7.8.5 only the form
of the generator is given. From 7.4.21 we know that one is sometimes
able to obtain the transition matrices from the generating matrix using
diagonalization procedure (see also 8.4.31). A closer look at our calcu-
lations reveals that in the case of Klein group, the Gelfand transform is
exactly this procedure. This is a simple case of a more general result — as
explained in [37] Section 2.2.1, the abstract Fourier transform is a way
of decomposing a Banach space, like BUC(G), into a possibly infinite
number of subspaces that are left invariant by translation operators.
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Markov processes and semigroups of
operators

This chapter provides more advanced theory of semigroup of operators
needed for the treatment of Markov processes. The main theorem is the
Hille-Yosida theorem. Also, we establish perturbation and approxima-
tion results; the Central Limit Theorem, theorems on approximation of
Brownian motion and the Ornstein—Uhlenbeck process by random walks,
the Feynman—Kac formula and Kingman’s coalescence are obtained as
corollaries of these results.

8.1 Semigroups of operators related to Markov processes

We start with an example of a semigroup related to a process that is
not a Lévy process.

8.1.1 A semigroup of operators related to reflected Brownian motion
Consider again the semigroup {7%,¢ > 0} from 7.5.1, acting in BUC(R).
Let BUC.(R) be the subspace of BUC(R) composed of even functions.
Note that T} leaves this space invariant. Indeed, the distribution of w(t)
is the same as that of —w(t) so that if x € BUC.(R), then

Tix(—71)=FEax(—7+w(t)) = Ex(—1—w(t)) = Ex(t +w(t)) = Trx(r).

By Exercise 7.4.23, the domain D(B) of the generator of the semigroup
{St,t > 0} of restrictions of Ty to BUC,(R) is given by
D(B) = {z € BUC,(R); z is twice differentiable with 2" € BUC,(R)}.

In particular, 2/(0) = 0 for all x € D(B).

Next, BUC.(R) is isometrically isomorphic to the space BUC(R™)
of bounded uniformly continuous functions on R*. The isomorphism is
given by Jz(r) = z(7),7 > 0,2 € BUC,(R). Note that J~ly(r) =

294
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y(|7]),7 € R,y € BUC(R"). We claim that the domain D(C) of the
infinitesimal generator of T} = JS;J ! equals

{y € BUC(R");y" exists and belongs to BUC(R") and y'(0) = 0}.

(8.1)
(At 7 = 0 the derivative is the right-hand derivative.) To this end note
first that, by 7.4.22, D(C) is the image of D(B) via J, so that if y belongs
to D(C), then it must be twice differentiable with y” € BUC(R™) and
y'(t) = 0, being the restriction of an x € BUC,(R). On the other hand,
if y is twice differentiable with y” € BUC,(R), and y’(0) = 0, then the
function x defined as z(7) = y(|7|) is certainly twice differentiable in
R\ {0}, and

d(r)= =y (), () =y(rl), T#0

7]

Also, the right-hand derivative of x at zero equals lim,_, o+ 2=z _

lim,_, o+ M = 1/(0) = 0; and, analogously, the left-hand derivative
equals —y’(0) = 0. Thus, z'(0) exists and equals 0. Finally,
/ o /

iy YO =IO ) o)

7—0 T =0 |7| om0t O
So, x belongs to D(B) and y = Jx, which proves that D(C) is the set
described in (8.1).

As a result, for any y € D(C), the function y(¢,7) = T}y(7) is the

unique solution to the following Cauchy problem:

Oy(r,t) _ 10%y(r, t)7 >0, y'(0,t)=0, y(r,0)=y(r). (8.2)

ot 2 0r?
We may write an explicit formula for T} :
Tiy(r) = JSJ7ly(r) =8, J 7 y(r) = EJ y(r + w(t))
= Ey(lr+w(®)]). (8.3)

We may also write:

Ttry(T) =F 1T+w(t)20y[7 + w(t)] +FE 17’+w(t)<0y[_(7- + w(t))]

(o—7)2

1 o0 1 0
= — ole” 2t do+ 7/ —o)e
- / y(o) — [ o
_(o+m)?

1 o _(o=m)2 1 o0
= Tﬂ't/o y(o)e™ = da—l—iTﬂ_t/o y(o)e™ = do
— [ it o), (8.4)
0

_(—(e—7)?
2t
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where
1 o2 )2
k(t,T,U):ﬁ |:e( 2t) +ei( -gt> . (85)
Equivalently,
o0
Ty(r) = [ w(o)K (T o) (5.6)

where for fixed ¢ and 7, K(¢,7,-) is a measure on RT with density
k(t,7,0). In other words, k(t,o,7) is a density of the random variable
|7+ w(t)|, and K(t,7,-) is its distribution.

We note that

(T T (r) = / (Tr2)(0)K (t, 7, do)

:/ / 2()K (s, 0, d)K(t,7, do).  (8.7)
R+ JR+

On the other hand, by the semigroup property this equals

(T}, o)) = / K (45,7, d6)

Applying 1.2.20 to the measures [, K(s,0,-)K(t,7, do) and K(t +
s, 7,-) we obtain the Chapman—Kolmogorov equation:

K(s,0,B)K(t,7,do) =K(t+ s,7,B). (8.8)
R+
8.1.2 Exercise Let t > 0. Show that there is no measure p such that
TF =T, in the sense of 2.3.17. (Look for the hint there!)

8.1.3 Exercise  Let BUC,(R) be the space of odd functions in
BUC(R) (‘n’ stands for “not even”). Show that the Brownian motion
semigroup leaves this subspace invariant.

The process w,(t) = |7+w(t)| is termed reflected Brownian motion
starting at 7 > 0. More generally, if w(t),t > 0, is a Brownian motion
and X is a non-negative independent random variable, then w,(t) =
|X 4+ w(t)| is a reflected Brownian motion with initial distribution Px.
Though it has continuous paths, reflected Brownian motion is not a
Lévy process, as it is not space homogeneous (see Exercise 8.1.2, above).
It belongs to a more general class of Markov processes. Similarly, the
Chapman—-Kolmogorov equation (8.8) is a more general principle than
(7.46) — see 8.1.12.
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8.1.4 Definition A process X;,t > 0 is said to be a Markov process
if for every ¢ > 0, the o-algebra o{ X, s > t} depends on F; = 0{X;, s <
t} only through o(X;) — see 3.3.20. This is often expressed shortly by
saying that the future (behavior of the process) depends on the past only
through the present. Equivalently, by 3.3.20 we say that the past depends
on the future only through the present, or that given the present, the
future and the past are independent.

8.1.5 Remark The definition of a Markov process remains the same
when we treat the case where X,;,t > 0, are random vectors or, even
more generally, random elements, i.e. measurable functions with values
in an abstract measurable space (S,F); S is quite often a topological
space and F is the o-algebra of Borel subsets of S.

8.1.6 Equivalent conditions In checking whether a process is Markov,
it is convenient to have a condition that is equivalent to the above defi-
nition but may turn out to be easier to check. To this end, we note that
if X(t),t > 0, is a Markov process then, for every n and t <t; < ... <t,
and Borel sets B;,i =1, ...,n,

P(X(t;) € Biyi = 1,...n|F) = P(X(t:;) € Biyi = 1,...,n|X(t)). (8.9)

On the other hand, this condition implies that X (¢),¢ > 0, is Markov.
Indeed, for any A € F;, both sides of the equation

P(ANB) = / E(1p|X(t))dP
A
are finite measures as functions of B, and (8.9) shows that these measures
are equal on the m-system of sets of the form B = {X(#;) € B;,i =
1,...,n}, B; € B(R), that generates F;. Hence, our claim follows by the
the -\ theorem.
Yet another, still simpler condition for the process to be Markov is

P(X(s) € B|F,) = P(X(s) € B|X(t)), s>tBeBR). (8.10)

Clearly, (8.9) implies (8.10). To see the other implication, we note first
that by a standard argument, (8.10) implies

E(f(X(s)|F1) = E(f(X(s))[X(2)) (8.11)

for any bounded, Borel measurable function f. Next, taking t; < t,
larger than ¢, using the tower property and the fact that the 1x(,)ep,
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is Fi, measurable, we calculate P(X(t1) € By, X (t2) € Ba|F:) as
E (1x(t)es Ix (t2)eBa [ Fir) | F2)

E (
E (Ix(t)en E (1x(t)en, | Ftr ) [Fr)
(1X (t1)€EBy (1X(t2)€Bz|X(t1)> |‘7:t)

with the last equality following by (8.9). Now, since E (1x (1,)e5,|X (t1))
is 0(X(t1)) measurable, it equals g(X (¢1)) for some Borel measurable g.

E (lX(t1)€B11X(t2)€B2|}—t) =

Hence, by (8.10), the last conditional expectation equals

E (1X(t1)€B1E (1X(t2)€Bz |X(t1)) |X(t))
=E (E (]‘X(tl)EBl 1X(t2)€B2 ‘th) |X(t))
=E (Ix@)en 1x@)en X (1),

establishing (8.9) for n = 2. The reader should find it an easy exercise
now to give the details of an induction argument leading from (8.10) to
(8.9).

8.1.7 Easy exercise Give these details.

8.1.8 Exercise Show that a process X(t),t > 0, is Markov iff (8.11)
holds for all f € C(R) (see 6.5.6).

8.1.9 Lévy processes are Markov  The class of Lévy processes is a sub-
class of the class of Markov processes. To see that, let X (t),t > 0, be
a Lévy process. We need to show that (8.11) holds for all f € C(R)
(see Exercise 8.1.8 above). Since X(s) may be written as the sum of
two independent random variables X (s) — X (¢) and X (), it suffices to
show that if X and Y are random variables, X is independent from a
o-algebra F and Y is F measurable, then

E(f(X+Y)|F)=E(f(X+Y)|Y), f € C(R). (8.12)

Now, if f € C(R), then (7,0) — f(7+0) is a member of C(R?). Hence,
by 6.5.7, E(f(X+Y)|F) = [ f(T+Y)Px(dr). By the Fubini Theorem,
o — [p f(T + 0)Px(dr) is Borel measurable. Hence, w — [, f(T +
Y(w))Px(dr) is a well-defined, o(Y") measurable random variable. This
implies (8.12).

8.1.10 Exercise Show that the reflected Brownian motion is a Mar-
kov process.
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8.1.11 Transition functions of Markov processes  The distribution of
the position of a Markov process at time ¢ given that at time s it was at
7 is in general a function of both s and ¢. Markov processes for which
it does depend on s and t only through the difference ¢ — s are termed
time-homogeneous Markov processes. In what follows, we consider
only such processes.

The kernel K related to the reflected Brownian motion is an ex-
ample of a transition function. The transition function of a (time-
homogeneous) Markov process is a function K (¢, 7, B) (‘K for “kernel”)
of three variables t > 0,p € S,B € F, where (S,F) is a measurable
space; S is the set of possible values of the process; K satisfies the fol-
lowing properties.

K(t,p,-) is a probability measure on (S, F), for all t > 0,p € S.
K(0,p,-) = d, (delta measure at p).

K(t,-, B) is measurable for all ¢ > 0 and B € F.

The Chapman—-Kolmogorov equation is satisfied:

NN NN

/SK(s,q, B)K(t,p, dq) = K(t+ s,p, B). (8.13)

We say that a family {X (¢),t > 0} of random variables on a probability
space (2, F,P) with values in S is a Markov process with transition
function K if for t > s:

P(X(t) € BIX(s)) = K(t — 5, X(s),B), BeB(S).  (8.14)

Hence, the measure K(¢,p,-) is the distribution of the position of the
process at time t given that at time zero it started at p.

8.1.12 Exercise  Let {u,t > 0} be a convolution semigroup of mea-
sures, and let K(t,7,B) = u(B — 7). Prove that K is a transition
function, and in particular that the Chapman-Kolmogorov equation is
satisfied.

8.1.13 Example If S =N, a measure u on S may be identified with
a sequence = = (§,),,»; where &, = pu({n}). Similarly, given a transition
function K on N we may define p,, . (t) = K(t,n, {m}),n,m > 1,t > 0.
Then, pn.n(0) = 1,ppm(0) = 0,1 # m, P > 0and > o Prm = 1.
Moreover, by the Chapman-Kolmogorov equation py, (s +t) = K (s +
t,n,{m}) = [ K(s,m,{n})K(t,n, dm) = 37 < Pmn(8)Pnm(t). In
other words, P(s)P(t) = P(s +t) where P(t) = (pn,m(t)) in the

n,m>1
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sense of multiplication of matrices. Such a family of matrices is called a
semigroup of transition matrices.

Conversely, given a semigroup of transition matrices {P(t),t > 0},
P(t) = (pnm(t)),, 51>t = 0, we may define a transition function by
K(s,n,B) = Zme’B Pn.m(s), B C N. The details are left to the reader.

8.1.14 Example The Ornstein—Uhlenbeck process Given a,vy > 0
and a Wiener process w(t),t > 0, we define the Ornstein—Uhlenbeck
process starting at 0 as

X(t) = 'ye_o‘t/o e*® dw(s).

We follow Breiman [19] to show that it is a Gaussian process and a
time-homogeneous Markov process, and find its transition function. Let
keNand 0=ty <t <..<tybegiven. Define Aw; ;. = w(Si+1,j,n)—
’LU(SiJ‘,n),Si’j,n =tj_1+ %(tj — tj_l),i =0,...,n—1,75=1,...k,neN.
Then,

7 t;
X(t) = e Y / ¢ dup(s) (8.15)
1=17t-1

Jj n—1
:")/eiatj lim E E eaSi'l’nAwi,lﬂL
n—oo
=1 i=0

with the limit in L?(Q). Therefore, for any coefficients a;,i = 1,..., k,

Z?Zl a; X (t;) is the limit of 72?:1 b Z:’;Ol e*iln Aw, 1, where b =

Z?:z aje”*%. By Theorem 4.1.5, the approximating sum being normal

as the sum of independent normal random variables, Z?Zl a; X (t;) is
normal, too. Using (8.15) again, by independence of increments of the
Brownian motion and E(Ai’l,n)2 = %,
n—1ln—1
EX(t2)X(t1) = Jim yemaltittz) Z Z ettt BNy Ay
i=0 =0
n—1ln—1
) ) DR N
i=0 =0
n—1 ¢
— i 2 —a(ti+t2) 2a8;,1,n “1
Jim ety e
i—

ty
— 72€—a(t1+t2)/ e2as ds.
0
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For s > t, let Z = Z(s,t) = X(s) — e Y X(t). Z is a normal
variable with mean 0. Also, for r < t,

EZX( ) 2 7a(r+s)A e2au du — 7267a(sft)efa(t+r)A' eQau du = 0,

proving that Z is independent of X (r). Therefore, Z is independent of
Fi = o(X(r),r < t). Furthermore, this allows us to compute the variance
of Z to be

s t
EZ? = EZX( ) _ 726—2045/ 2% qqy — ,er—oz(s—t)e—oe(s+t)/ 2% qu
0 0

— 2672045 /S e2o¢u du = lz(l _ ef2a(sft))
=7 .  2a ’

Consequently, using 6.5.7, for any f € C(R), E(f(X(s))|F:) equals
E(f(Z+e DX (1) F) = [ f(r+e DX () Py (dr). Asin 8.1.9,
we argue that this is E(f(X(s))|X (¢)), and, as in Exercise 8.1.8, extend
this relation to all f € BM(R). This shows that the Ornstein—Uhlenbeck
process is a Markov process Moreover, taking f = 15, B € B(R), we
have P(X(s) € B|X(t)) = [p1p(T + e_“(é DX (t)Py(dr) = P(Z €
B —e =0 X(¢)). In other words, since Z ~ N(0, %(1 — e 2als=t)y)
K, defined to be, for any £ > 0 and 7 € R, the distribution of a normal

7 and variance l(1 —e~22!) is a transition

variable with mean e
function of this process. Clearly, the Ornstein—Uhlenbeck process is a

time-homogeneous Markov process.

8.1.15 Semigroups of operators related to transition functions of Markov
processes  With a transition function one may associate a family of
operators in BM(S) by

(Uen)(B / K (t,p, B) p(dp); (8.16)

it is clear that U;u is a measure. In particular, if p is a probability
measure, then U;p is a probability measure. Moreover, by the Chapman—
Kolmogorov equation, {Uy, t > 0} is a semigroup of operators. To check
that |U;|| = 1,¢ > 0, we may use the minimal representation of a charge,
as described in 1.3.6, and the fact that U; maps non-negative measures
into non-negative measures.

Formula (8.16) has a clear interpretation: if X (¢),¢ > 0, is a Markov
process with transition function K and initial distribution p, then U is
the distribution of the process at time ¢. However, at least historically,
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instead of dealing with this semigroup directly, it has been easier to
consider the semigroup

Toa(p) = /S HQK(tp, dg), >0, (8.17)

defined in BM(S). This semigroup is dual to {U;,t > 0} in the sense
that we may treat a member of BM(S) as a functional on BM(S) given
by pp— [gxdp =: (z,p), and we have (x,Uy) = (Tyx, ). To be more
specific: the dual to Uy coincides with Ty on BM(S). Clearly, ||T;|| = 1,
and Tt]-S = 15,t > 0.

Note that in contradistinction to the case of Lévy processes, when
S = R we may not claim that this semigroup maps Co(R) or BUC(R)
into itself. In general, all we may claim is that it maps BM (.S) into itself.
Also, the operators T; are non-negative in that they leave the cone of
non-negative functions invariant. If .S is locally compact and the semi-
group leaves Cy(S) invariant and is a strongly continuous semigroup as
restricted to this subspace, we say that {T;,¢ > 0} is a Feller semigroup,
that the related process is a Feller process, and/or that the kernel K
is a Feller kernel. We note that Lévy processes are Feller processes.

8.1.16 Example Let S = N. The space of measures on N is isometri-
cally isomorphic with {!(N), the space of absolutely summable sequences
z = (&.),,>1 - Moreover, BM (S) is isometrically isomorphic with I, the
space of bounded sequences y = (Mn),,>1- For a transition family given
by a semigroup of transition matrices P(t) = (Prm () 15t = 0,
the semigroup {U;,t > 0} in I! is given by Uz = (0,(t)),>, where
on(t) = (Ur)({n}) = 30 pmn(t)&m. In other words, Usz is the ma-
trix product zP(t) where x is treated as a horizontal vector. Similarly,
the semigroup {T3,t > 0} in [' is given by T3y = (su(t)),>, ,» where
() = 30 Mmpnm(t). In other words, Tyx is the matrix product
P(t)y where y is treated as a vertical vector.

8.1.17 Semigroups in C(S) and transition kernels Let S be a com-
pact space and {7;,t > 0} be a semigroup of non-negative contraction
operators in C(5) such that T;1g = 1g. Then, there exists the unique
transition function K such that (8.17) holds for all 2 € C(5).

Proof For p € S and t > 0, the map = — Tix(p) is a non-negative
linear functional in that > 0 implies Tyz(p) > 0. Also it is bounded
with the norm not exceeding ||7¢|| = 1. By the Riesz Theorem, there
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exists a Borel measure K (t, p, ) such that (8.17) holds. Since T;1g = 1g,
K(t,p,-) is a probability measure.

We will show that K is a transition function. Clearly, conditions (a)
and (b) of Definition 8.1.11 are satisfied, the latter following by Tox = =.
We need to show (c¢) and (d).

We provide the proof in the case of a metric space. The argument in
the general case is similar, but more technical. If S is a metric space
and B is a closed set, then 15 may be approximated by a pointwise
limit of continuous functions, say xy,k > 1, as in the proof of 5.6.3.
Then, [ xx(q)K (t,p, dg) converges to K(t, p, B). On the other hand, by
(8.17), K(t,p, B) is a pointwise limit of continuous, hence measurable,
functions Tz (p). This shows (c) for closed B. Now, the family of sets
B for which K(t,-, B) is measurable is a A-system. Since the Borel o-
algebra is generated by the m-system of closed sets, by the 7—\ theorem,
K(t,-, B) is measurable for all Borel B.

Note that by the semigroup property we have (compare the final part
of the argument in 8.1.1):

/ / z(r)K(s,q, dr)K(t,p, dg) = / z(M)K(t+s,p, dr), x € C(9).
sJs s

Approximating 1g by continuous functions z; as above, we obtain the
Chapman—Kolmogorov equation with closed B, and then, extend the
result to all Borel sets.

Uniqueness follows directly from (8.17) and the Riesz Theorem.  []

8.1.18 Exercise  Show that an operator T in BM(S) (or BC(S)) is
a non-negative contraction iff 0 < Tz <1 provided 0 < z < 1.

8.1.19 Exercise Show that if K is a transition function of a Markov
process {X (t),t > 0}, then Tz (X (t)) = E(z(X(t + $))|F:), where F; =
o(X(u),u <t).

8.1.20 Exercise Let {X(¢),t > 0} be a Lévy process. Show that the
corresponding semigroup is given by Tix(7) = Ex(r + X (t)).

8.1.21 Exercise Let {X(¢),t > 0} be the Ornstein—Uhlenbeck process
constructed by means of a Brownian motion {w(t),t > 0}. Show that
the corresponding semigroup is given by Tix(7) = Ex(e™*'7 +w(B(t)))
where B(t) = L (1 — e~20t),

2a
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8.1.22 The minimal Brownian motion A slight change in the reasoning
from 8.1.1 leads to another interesting process known as the minimal
Brownian motion. By Exercise 8.1.3, the Brownian motion semigroup
leaves the space BUC,(R) invariant. On the other hand, this space is
isomorphic to BUCH(R*) of uniformly continuous functions z on R
that vanish at 7 = 0. The isomorphism I : BUCy(RT) — BUC,(R)
is given by (Iz)(1) = sgn(7)y(|7|), # € BUCH(R"). The inverse ! is
given by I 1y(r) = y(7),7 > 0, y € BUC,,(R). We define the semigroup
{T/™,t > 0} in BUC,(R™) as the semigroup isomorphic to the restriction
of T; to BUC,(R). Calculating as in (8.3) one obtains:

(T/z)(1) = Esgn(r + w(t))z(|7 + w(t)]). (8.18)
Moreover,

T a(r) = /000 xz(o)K(t, 7, do) (8.19)

where K (t,7,-) is the measure with density

(r—o)? _Gta)?

k(t,r,0)=e¢" 2 —e= 2 . (8.20)

The generator Ay, of T{™ is given by: Anz = 12, on the domain

D(Ay,) composed of x € BUCH(R™) that are twice differentiable with
2" € BUCH(R"). For any x € D(Ay,), the function z(t) = Tz is a
unique solution to the Cauchy problem

dx(r,t)  10%x(r,t)

% —32 o2 0 77 0,2(0,¢) = 0,z(7,0) = z(7).  (8.21)

The process introduced in this way may be described as follows: after
starting at 7 > 0, it evolves as a free Brownian motion until it touches
the barrier 7 = 0. At this moment, it disappears from the space. This
process is termed the minimal Brownian motion.

As a result, the distribution K(¢,7,-) with density (8.20) is not a
probability measure, for there is a positive probability that at time ¢ the
process will no longer be in the space. To accommodate such situations,
in Definition 8.1.11 (a) the requirement that K (¢, , ) is the probability
measure is relaxed and it is assumed that K(¢,7,5) < 1, instead. An-

other way of dealing with such phenomena is to introduce an additional
point A, referred to as the cemetery (or coffin state), where all the
disappearing trajectories of the process are sent and from where none of
them ever returns. More details about this in the next example and in
8.1.26.

Note, finally, that the state space S of the minimal Brownian motion is
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the open half-axis R}, while the state of the reflected Brownian motion
is RT.

8.1.23 Exercise  Using the procedure from 8.1.1 construct the semi-
group related to “reflected Cauchy process” and a “minimal Cauchy
process”. Construct also “reflected” and “minimal” compound Poisson
process from the compound Poisson process defined in 7.5.8 with sym-
metric distribution of Y;,.

8.1.24 Absorbed Brownian motion Let K(t,7,B),t > 0, 7 > 0, be
the transition function on R related to the minimal Brownian motion.
Define K (t, 7, B) on Rt by K(t,0, B) = 15(0) and

K(t,7,B) = K(t,7, B)15(0) + [1 — K(t,7,R)]15(0), 7> 0. (8.22)

Note that [1 — K (¢,7,R})] is the probability that, at time ¢, the mini-
mal Brownian motion that started at 7 is no longer in R;. Therefore,
the above formula says that we modify the minimal Brownian motion
by requiring that after the process touches the barrier 7 = 0 it stays
there for ever. This new process is termed the absorbed Brownian
motion. The procedure just described is of course a particular case of
the procedure from the previous subsection with A = 0. The reader will
check that K is a transition function in R™.

Define the operators T in BUC(R™) by

TPz(t) = /R . z(o)K(t, T, do),  t>0. (8.23)

If {T/,t > 0} denotes the semigroup of the minimal Brownian motion,
then by (8.22),

Tix = z(0)1g+ + T (z — 2(0)1g+);

note that z — 2(0)1g+ belongs to BUCH(R™). Using this and the semi-
group property and strong continuity of {7}, ¢ > 0} we see that {T7?,¢ >
0} is a strongly continuous semigroup. Furthermore,

Tz — =z _ Mz — x(0)1g+] — [ — 2(0)1p+]
t t ’

proving that x belongs to the domain D(A,) of the infinitesimal gener-
ator of {T?,t > 0} iff  — 2(0)1g+ belongs to the domain D(Ay,) of the
infinitesimal generator of {T3™,¢ > 0}. Thus, A,z = 2", on the domain
D(A,) composed of x € BUC(R') that are twice differentiable with
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2 € BUC(RT). Moreover, for any x € D(A,), the function z(t) = Tfz
is the unique solution to the Cauchy problem
dx(r,t)  10%x(r,t)

% —3 5 5> 7>0,2"(0,t) =0,2(7,0) = z(7).  (8.24)
-

8.1.25 Remark Subsections 8.1.1, 8.1.22 and 8.1.24 illustrate the fact
that the behavior of a Markov process on a boundary (in our case at the
point 7 = 0) is reflected in the form of the domain of the infinitesimal
generator of the process, and, consequently in the boundary condition
of the related Cauchy problem. The boundary condition z'(0) = 0 corre-
sponds to reflection, 2”(0) = 0 corresponds to absorption, and z(0) = 0
describes the fact that the process disappears from the space upon touch-
ing the boundary (sometimes called a non-accessible boundary). Elastic
Brownian motion, a process with still another type of behavior at the
boundary, sometimes called the sticky barrier phenomenon, will be in-
troduced in 8.2.18 below. See [58], [88], [100], [109] for more about this
fascinating subject.

8.1.26 Semigroups in Cy(S) and transition functions Let S be a lo-
cally compact space (but not a compact space) and let Sa be the one-
point compactification of S. Let {T3,¢ > 0} be a semigroup of non-
negative contraction operators in Cy(S). Then, there exists the unique
transition function K on Sa such that (8.17) holds for all x € Cy(S),
and K(t,A,-) = da.

Proof We will show that the operators
TtAx = 'T(A)ISA + Tt('r - x(A)ISA)

form a semigroup of non-negative contraction operators in C'(Sa). The
semigroup property of {T/,¢t > 0} follows directly from the semigroup
property of {T;,t > 0}.

For y € Cy(S) let y* = max(z,0) and y~ = max(0, —z). Both y™ and
y~ belong to Cy(S) and we have y = y*™ —y~. Since Tyy = Tyy™ — Tyy~
and the elements Tyy" and T;y~ are non-negative, (T;y)" < Tyy™. For
x € C(Sa)let y = z—alg,, where a = 2(A). To prove that the operators
T, are non-negative, we need to show that alg, + Tiy > 0 provided
alg, +y > 0. The inequality alg, +y > 0, however, implies y~ < a and,
hence, ||y~ || < a. Since T;,t > 0 are contraction operators, ||[T3y~ || < a,
ie. iy~ < alg,. Hence, alg, + Tyy = als, + Tyy™ — Tyy~ > 0, as
desired.
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Using non-negativity and T/ 1g, = 1g,, since |z| < ||z|/1s,, we have
|Tiz| < Til|z||1s, = ||z||1s,- This implies ||T|] < 1, as desired.
Therefore, there exists a transition function on Sa such that

TtAx(p)Z/S z(q)K(t,p,dq),  pe€ Sa.

This implies (8.17) with « € Cy(5); for such x integrals over Sa and S
are the same. The rest follows by T2 (A) = z(A). O

8.1.27 Remark In general K(¢t,p,S) <1,p€ S as K(t,p,{A}) >0

8.1.28 Pseudo-Poisson process Let K(p, B) be a probability measure
on a measurable space (S, F) for each p € S, and a measurable function if
B € Fis fixed. Let us define K™, n > 0, inductively by K°(p, B) = 15(p)
and K"(p, B) = Js K™(q, B)K(p, dg). In particular, K' = K. By
induction one shows that K™, n > 0, are probability measures for each
fixed p € S, and measurable functions if B € F is fixed.

Now, for a given a > 0 define K(t,p, B) as Y .., e"”a:L—‘;"K”(p,B).
Then, conditions (a)—(c) of Definition 8.1.11 hold. Probably the easiest
way to prove the Chapman Kolmogorov equation is to note that the

semigroup (Six)(p) = fR K(t,p, dg) related to these measures is
given by S; = e"” atk, Here K is the operator (Kxz)(p) = [4(
K(p, dg).

The operator K and the semigroup {S,t > 0} act in the space BM (S)
of bounded measurable functions on S. The infinitesimal generator of
{S,t > 0} is a(K — I). The reader should write the Cauchy problem of
which x;, = Syz is a solution for x € BM(S).

The realization of the process with transition function defined above
looks as follows. Suppose that the process starts at p € S. Then, it stays
there for a random, exponential time with parameter a. Next, it jumps
to a random point ¢ and the distribution of its position after this jump
is K(p,-). The process continues in the same way later. This is the so-
called pseudo-Poisson process, compare 7.5.8. It is interesting that
all Markov processes are limits of pseudo-Poisson processes: this is a by-
product of Yosida’s proof of the Hille-Yosida theorem. See Section 8.2,
below.

8.1.29 Example Markov property and the Poisson formula The
Markov property of a process may exhibit itself in interesting analytic
ways. The example we want to present now involves the classical Pois-
son formula for the solution of the Dirichlet problem in a disc. The
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Dirichlet problem in a disc may be posed in the following way: given a
continuous function ¢y on a unit circle C on the complex plane find a
function ¢ continuous in the unit disc, where |z| < 1, and harmonic in
the open unit ball, where |z| < 1. In other words, we want to have a
continuous function such that

2 2
Boa) = 55 (@) + 5 S a) = 0,22 47 < 1,
¢(I7y):¢0(x7y)a $2+y2:1.

It turns out that this problem is well-posed and the unique solution is
given by (see e.g. [95], [97], [103])

™
o) = [ p(@ o) A8 =0 pile®)  (525)
—T

where x = rcosa,y = rsina (0 < r < 1), and p, is the Poisson kernel
defined in Exercise 1.2.29. In this exercise the reader has checked (I hope
he did) that p, >0, [7_7.(0)d0 =1, and p, * ps = pps, 0 < 7,5 < 1.

The first two relations have a nice interpretation once we know that
(see e.g. [103]) the space of harmonic functions in the unit disc (harmonic
in the open disc, continuous in the disc) is isometrically isomorphic to
the space of continuous function on the unit circle, both spaces with
supremum norm. Hence, the map ¢¢9 — ¢ — &(z,y) is a bounded,
non-negative linear functional. Since this functional may be proven to
have norm one (by the so-called maximum principle) there must exist
a probability measure P, ,, on C such that ¢(z,y) = [5 ¢(e'?) Py, (d6).
By (8.25), pr(e'(®=)) is a density of this measure.

A still deeper insight is given by the following probabilistic solution
to the Dirichlet problem (see [34], [93], [113] etc., or the classic [30]):

d)(.l?, y) = E¢0((£v y) + ’LU(T)), (826)

where w(t),t > 0, is a two-dimensional Brownian motion (i.e. a pair of
independent one-dimensional Brownian motions) and 7 is the random
time when (z,y) + w(t) touches the unit circle for the first time.

A word of explanation is needed here. As we have seen, at any time
t, a Markov process starts afresh, forgetting the whole past. Some pro-
cesses, the two-dimensional Brownian motion among them, possess the
stronger property, the strong Markov property and start afresh at
some random times. These times are Markov times 7, i.e., similarly to
3.7.11, at time ¢t we must know whether 7 has happened or not. In other
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words, {r < t} € F; where F; is an appropriate filtration. The time of
touching the unit circle for the first time is a Markov time. After that,
the Brownian motion starts afresh.

Armed with this knowledge, let us rewrite the last of the three prop-
erties of the Poisson kernel as

pr % Ds = Dr, (8.27)

where it is assumed that 0 < r < s < 1. Comparing (8.25) and (8.26) we
see that py(el(®")) is the density of distribution of the position of the
process se'® + w(t) at the time when it touches the unit circle for the
first time. Hence, using the scaling property of the Brownian motion we
may show that p= (ei(a_‘)) is the distribution of the process rel® + w(t)
when it touches the circle with radius s for the first time. After starting
at r'® where 7 < s, and before touching the unit circle for the first
time, the process must touch the circle with radius s. Formula (8.27)
expresses thus the fact that after touching the circle with radius s the
process starts afresh. Conditional on reaching the circle with radius s
at a point se', the distribution of the position at the time of touching
the unit circle is given by the kernel p,(el®=")), and the unconditional
distribution is obtained by integration over positions se'?. In this sense,
(8.27) is very similar to the Chapman—Kolmogorov equation.

8.2 The Hille-Yosida Theorem

Given a transition family K one may construct a Markov process such
that (8.14) holds (see e.g. [38], [113]). However, transition functions are
rarely given explicitly, and the same is true about the semigroups of oper-
ators. Therefore, instead of giving an explicit formula for the semigroup
or specifying the appropriate transition function, we often restrict our-
selves to describing the generator of the semigroup. The main theorem
of this section, the Hille—Yosida—Feller—Phillips—Miyadera Theo-
rem,T characterizes operators that are generators of strongly continu-
ous semigroups. Characterization of generators of semigroups defined by
means of transition families will be given in the next section.

8.2.1 The Hille-Yosida Theorem  Let X be a Banach space. An op-
erator A : X D D(A) — X is the generator of a strongly continuous

1 Although the original formulation of this theorem was given independently by Hille
and Yosida in the case w = 0 and M = 1, and the general case was discovered later,
independently by Feller, Phillips and Miyadera, in what follows for simplicity we
will often call this theorem the Hille-Yosida Theorem.
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semigroup {73,t > 0} in X such that
T3 < Me“t, t>0 (8.28)

for some M > 1 and w € R (see (7.14)) iff the following three conditions
hold.

(a) A is closed and densely defined.

(b) All A > w belong to the resolvent set of A: this means that for all
A > w there exists a bounded linear operator Ry = (A — A)~! €
L(X), i.e. the unique operator such that (A — A)Ryz = z,z € X and
Ry(A— A)x =z,x € D(A).

(¢) Forall A > w and all n > 1,

M

R < ——
H )\”— ()\*w)"

(8.29)

The proof of this crucial theorem is the main subject of this section.
To be more specific, this section is devoted to the proof of sufficiency
of conditions (a)—(c). This is because necessity of (a)—(c) is proven in
a straightforward manner. In fact, necessity of (a) and (b) was shown
in 7.4.15 and 7.4.32, respectively. To prove (c¢) we note that according
to 7.4.32, Ry is the Laplace transform of the semigroup. Hence, by the
semigroup property Riz = [° .. [)° e AL BTN ) dty... dty,
which implies | R}z|| < M|jz|| ([, e~ dt)", as desired.

We note that, by 7.4.34, A may generate only one semigroup; the point
is to prove its existence.

8.2.2 Reduction to the casew =0  We note that it is enough to consider
the case w = 0, i.e. the case where

A" Rl < M. (8.30)

Indeed, if A satisfies (a)—(c) then B = A —w is a closed, densely defined
operator satisfying (a)—(c) with w = 0 for we have (A—B)™! = (A+w —
A7 X > 0. Let {S;,t > 0} be the semigroup of operators generated
by B; we have [|S;|| < M. Define T; = e“!S;. Then, by 7.4.18, the
infinitesimal generator of {T3,¢ > 0} is B + wl = A. Finally, |Ty]| =
e“t]|Sy]| < et M.

The sufficiency of conditions (a)—(c) in the Hille-Yosida theorem fol-
lows from the following result.
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8.2.3 Theorem Let A be a closed, not necessarily densely defined,
operator in a Banach space X, and let X’ = ¢ID(A). Suppose that all
A > 0 belong to the resolvent set of A. Then, (8.30) holds iff there exists
a family {U(t),t > 0} of bounded linear operators such that ||U(t) —
U@)|| < M(t—s),0<s<t, and

/\/ e MU (t)x dt = Ry, xeX (8.31)
0

In such a case, there exists a strongly continuous semigroup {T3,t >
0} on X’ such that ||| < M, and [ e *Tizdt = Ryz,z € X'. In
particular, the infinitesimal generator of {T},¢ > 0} is the operator Ap,
termed the part of A in X', defined by

D(Ap) = {z € D(A)|Az € X'}, A,z = Ax.
8.2.4 Definition  The family {U(t),t > 0} described above is termed

the integrated semigroup related to A. Clearly, A determines the
Laplace transform of U(¢) and hence U(¢) itself.

8.2.5 The Yosida approrimation The key role in the proof of Theorem
8.2.3 is played by the operators
Ay = MRy — M = XARy — 1), A >0,

called the Yosida approximation, and more specifically by their ex-
ponents e*** which will be shown to approximate T}, as A — oo. Let us
therefore look at some properties of Ay and exhibit examples.

8.2.6 Lemma Let A be as in 8.2.3 and assume that (8.30) holds. Then

leH]| < M, (8.32)
lim ARyz =z, zeX, (8.33)
A—o00
and
)\lim Ayz = Az, x € D(A). (8.34)

Proof Since eAxt = e=AMer Rt o show (8.32) it suffices to prove that
[[eX” Bxt|| < eMM, and we write

oo 2n n (oo} n
ARt ZHA R/\” MZA — M
le™ ™l < < nl = On!_e '
n= n=

Since D(A) is dense in X, and || AR || < M, it is enough to check (8.33)
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for x € D(A). For such an x, however, by (7.26), AR x — x = R)Axz,
and ||[RyAz| < || Az| converges to 0 as A — oo.

Referring to (7.26) again we see that Ay = AR Az,z € D(A), so
that (8.34) follows from (8.33). O

Let us note that conditions (8.33) and (8.34) are counterparts of 3°
in 7.4.5, and (7.15), respectively.

8.2.7 Example Let us consider the operator A in Cy(R) given by
Az = z” for all twice differentiable functions = € Cy(R) with z” €
Co(R). An analysis similar to the one given in 7.3.10 shows that Ry
exists for all A > 0 and that AR, is the operator related to the bi-
lateral exponential distribution, say s, with parameter a = v/2X\ (see
7.5.3). Thus, (8.33) expresses the fact that, as A — oo, the uy converge
weakly to the Dirac measure at 0. Moreover, the exponential of Ay is the
operator related to the probability measure e~ et > with exponential
function taken in the sense of the algebra BM(R). By 6.2.9, the Fourier
transform of this measure, a function of ¢ € R, equals e~ e (&)t which

222 2
by 6.4.11 equals e~ Me2+e? " and tends to e~* = . By the Continuity The-

—>\te)\u>\t

orem, e converges to N(0,t) and so by 5.4.18, et converges to

the operator related to the normal distribution. In other words, e?**

approximates the Brownian motion semigroup in Cy(R).

8.2.8 Example Let A be the operator of first derivative in Cy(R) with
suitably chosen (how?) domain. Then AR} exists for all A > 0 and is the
operator related to the exponential distribution p) with parameter .
Relation (8.33) has thus a familiar interpretation. Moreover, the Laplace
transform of the measure related to e?4r!
e~ M erxt and converges to e~¢¢, the Laplace transform of the Dirac
measure at t. Hence e“*! converges to the semigroup of translations to
the left, Tyx (1) = x(r + t).

, a function of £ > 0, equals

8.2.9 Example Let Az(r) = ax(r + 1) — az(7),a > 0,z € Co(R)

(or, say, z € BM(R)). One checks that (A — A)~! exists for all A > 0,

and AR) is the operator related to the geometric distribution py with
A

parameter p = 37, (see 6.1.5 and 7.5.10). Therefore, the probability
At

generating function of the probability measure related to e”**, a function

A2 .
of s € [0, 1], equals e MeXF1=9a . As A — o0, this converges to e~ %te 95t

which is the probability generating function of the Poisson distribution
with parameter at. In other words, e4»*
related to the Poisson process.

converges to the semigroup
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8.2.10 Example Let X = C([0,o0]) be the space of continuous func-
tions on RT with a limit at infinity. Define the domain D(B) of an oper-
ator B to be the set all differentiable functions x € X such that 2(0) = 0
and 7’ € X, and set Bx = —z'. The differential equation Az + 2’ = 0,
where A > 0 has infinitely many solutions x(7) = ce™" indexed by the
constant ¢. However, in D(B) there is only one solution to this equation,
namely the zero function. On the other hand, for any y € X the function
a(r) = [ e M7=9)y(¢) ds satisfies Az + 2/ = y and belongs to D(B) (we
use de I’'Hospital’s rule to show that, if additionally y is non-negative, x
has a limit at infinity, and then by linearity extend this claim to all y).
This shows that (A — B)~! exists for A > 0, and we have

_ T A o 1
0= B) 7yl < sup [ e Dacyl = [ e delyl = Sl
7>0.J0 0

so that the estimate (8.30) is satisfied with M = 1. We will show, how-
ever, that the Yosida approximation does not converge. To this end note
first that we have (A — B) 1y = ey * y where e, (7) = e 7. Next, if we
take any continuous function z defined on R with compact support in
R then

/ “l0= By () =) dr = / 7 y(r) Raz(r) dr
0 0

where R, is the operator considered in 8.2.8; this is a particular case of
(5.17). Thus,

OoeB*t T)z(7)dT = h ) (e 2) (1) dr
/O< y)(r)(r)d /0y<>< )(r)d

where A is the Yosida approximation of the operator A from 8.2.8 and
By, is the Yosida approximation of B. We know that e?r*
uniformly to the translation of z to the left. For a y with compact support
this implies that the last interval converges to [ y(7)z(7 +t) dr. Hence
Bty converges uniformly to some Ty then fooo Tiy(7)z(7) dT must be
equal to this last integral. Since z is arbitrary, Tyy(7) = 0 for 7 < ¢t and
Tyy(r) = y(r—t) for 7 > 0. This is a contradiction as long as we consider

Z converges

ife

y with y(0) # 0, because then T}y defined above is not continuous and on
the other hand is supposed to be a uniform limit of continuous functions.

The reason why the Yosida approximation fails to converge here is the
fact that D(B) is not dense in X; the closure X’ of D(B) is the space of
all z € X with 2(0) = 0. The reader has probably noticed that for such
functions the argument presented above does not lead to contradiction
since the function Tiy is continuous. In fact one may prove that for
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y € Y, ePrty converges strongly to the semigroup {T},t > 0} in Y, of
translations to the right defined above.

8.2.11 Example Let [*° denote the space of bounded sequences x =
(én),,>1 equipped with the supremum norm, and A be the operator given
byAz = (—n&,), s, defined on the domain D(A) C > composed of all
x such that (—ng&,), -, belongs to I°°. For any A > 0 and y = (1,,),>, €
[, the resolvent equation Az — Az = y is equivalent to the system
of infinitely many equations A&, + n&, = n,,n > 1, and thus has the
unique solution in D(A) given by &, = ﬁnn. In other words, AR\y =
(ﬁ%)nx’ and so |[ARy|| < 1, and the estimate (8.30) is satisfied
with M = 1. Moreover, any 2 € D(A) is also a member of ¢y because
1€0] < L] (n€),,>, ||, and so X' is contained in ¢g. Considering sequences
(én),>; that are eventually zero, we prove that X' actually equals c.
Despite this fact the Yosida approximation converges for all z € [*°.
Indeed, note first that

__An
eA*tx:: ( ktek+n gn) ::(e A+nt£n>
n>1 n>1

and that limy_, . e Mt = e~ t > 0. Defining
Tix = (e*"tén)n>1 ,x €1,

we have, for any k € N,

n
| Ty — ez < sup e ¥t — e~ ||z
n>1
—An 4 —nt _ Ak 4
< sup |e” xnt —eT M ||lx|| + 2e7 2 HEY|z]] (8.35)
1<n<k

since the sequence efﬁt,n > 1, decreases and, for n > k, e <
ekt < e_%t. Now, for arbitrary ¢t > 0 and € > 0 we choose a k so
that 2= < 5; in fact one such k may be chosen for all ¢ larger than a
given ty. With this k fixed we may choose a A large enough so that the
supremum in (8.35) is less than § and so is e~ xRt uniformly in any
interval [tg,t1] where 0 < tg < t;.

We have thus proven that the Yosida approximation converges for
any = € [ uniformly in any interval [to, t1]. If = belongs to ¢y, the term
26_%75”33” in (8.35) may be replaced by 2 sup,,~, |{,| and consequently
one may prove that for x € ¢y the Yosida appro;imation converges uni-
formly in any interval [0,¢;1]. The situation is typical in that the Yosida
approximation of a densely defined operator always converges uniformly
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on compact subsets of RT and, for non-densely defined operators, if it
converges at all, it converges uniformly on compact subintervals of R .

To the best of my knowledge, the reason why the Yosida approxima-
tion converges sometimes despite the fact that D(A) is not dense in X
(and such situations happen quite often) is not fully known yet; only
particular cases were studied. In particular there is no useful criterion
for such convergence that would cover all important cases.

8.2.12 Lemma  Suppose that the assumptions of 8.2.6 are satisfied.
Then, for all u, A > 0,

(n— A\t = S + (A)QR A (8.36)
A+ p A+ p peam

Furthermore, limy_, o (¢ — A>\)’1 = R, and the representations H of

the algebra L' (R™) related to the exponential functions of the Yosida ap-

proximation converge strongly to a representation H such that H(ey) =

R. In particular, |H|| < limsup,_, |[Hx|| < M.

Proof Observe that, by the Hilbert equation,

(I —vR\)(I4+vRyx_,)={ +vRx_,)(I —vRy) =1, (8.37)
provided A — v > 0,\,¥ > 0. Fix g,A > 0. For v = % we have
A—v= ;T“# > 0 and, by (8.37),

A2 - A2
I_ -1 — I — = I e L.
(I —vRy) ( )""NR)\) + )\_’_NRAH“

Thus, for all g, A > 0,

proving (8.36).
Observe now that the map R > A — R, is continuous in the operator
norm; indeed, by the Hilbert equation and (8.30),
M2
Ry — R,|| <\ — pu|l—. 8.38
IR = Bl < A= sl (3.39)

Hence limy_.oo (1 — Ax) ™' = R, and the rest follows by 7.4.48. O
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8.2.13 Exercise  Suppose that (8.30) holds. By (8.32), (u— A))~t =
JoT emrtet A dt satisfies [|(u — A) || < HM" Prove this estimate directly
using (8.36).

Proof (of Theorem 8.2.3)

(a) If (8.30) holds, then by 7.4.48 (or 7.4.49) and 8.2.12, the limit
U(t) = limy_,oo Ux(t), where Uy(t) = fg e2% ds, exists in the strong
topology (it exists in the operator topology as well, but we will not need
this result here). Hence, by (8.32), [|[U(t) —U(s)|| < M(t — s),t > s.

Next, for pu > 0,

o] o§] t
,u/ e MU(t)dt = p lim e_”t/ eMs ds dt
0 A= Jo 0

= lim e MeMdt = lim (u— Ay)"' = R,.
A—oo J A—00

Here, the second equality follows by simple calculation (integration by
parts) and the third by Lemma 8.2.12. The first equality is a direct
consequence of the Dominated Convergence Theorem for Banach space
valued functions; since we do not have it at our disposal, however, we
need to establish it in another way. To this end we note that, since both
| [ e MU(t)dt|| and || [, e MUx(t)dt||, where T' > 0, are bounded
by M [;° _Mt dt, given € > 0 we may choose a T such that the norms
of both integrals are less than e. Hence, it suffices to show that, for
x € X with « # 0, Ux(t)z converges to U(t)z uniformly on any interval
[0,T]. Given € > 0, we choose a k € N with k& > 3T M||z|e"!. Then,
we choose a Ao such that for A > Xo, [|[Ux(t;)x — U(ty)z| < §, for
i = .k, where t; = L. Then, for any t € [0,7] there exists an
i Wlth |t — 4] < % Therefore, by the triangle inequality applied to
U()a—Un(t)z = [U()a—U (t:)a]+ U (t:)a—Un (£)]+[Un (t:)2—Un ($)2],
for A > Ao, |[U(t)x — Uxr(t)z|| < ¢, as desired (comp. 5.7.19).

Hence, the family {U(t),t > 0} has the required properties. Con-
versely, suppose that (8.31) is satisfied and |U(t) — U(s)|| < M(t — s).
Let F' € X* and x € X. The real-valued function ¢t — F(U(t)z) is Lips-
chitz continuous with |F(U(t)) — F(U(s))| < M| F|| ||=||(t — s). Hence,
it is differentiable almost everywhere and | F(U(t)z)| < M| F|||z|.
Integrating by parts, F(Ryz) = [, e L F(U(t)z) dt. Hence,

o0
[RAll = sup  sup |F(Rm:)|§/ e MM dt = (8.39)
0

2 |=1 || Flle =1 A

As in (8.38), this implies that A — R is continuous. Consequently, using
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an induction argument, by the Hilbert equation (7.33), it is differentiable
with
dn
dan
On the other hand, for any F' and x as above, a direct calculation shows
that

Ry = (—1)"n!RYyTL. (8.40)

n

d—F(R,\x) = /OOO e M(—t)"=F(U(t)z) dt.

dAan
Arguing as in (8.39), we obtain || 55 Ry|| < M [;° e " dt = 2 and
this gives (8.30) by (8.40).

(b) Let x € D(A). Observe that AR z € D(A), and that A(ARxz) =
AR)Az € D(A) C X'. This means that if v € D(A), then AR z € D(A}).
Moreover, by (8.33), limy_.o AR z = z, proving that D(A,) is dense in
D(A). Thus, D(A,) is dense in X', too.

Let € D(A,). We write

t d t
My — 1 = / —eMpds = / M Ayrds = Uy (t) Axe.
o ds 0

By (8.34), Axz converges, as A — oo, to Az. Moreover, |Ux(t)| < Mt
and the operators Uy (t) converge strongly to U(t). Hence, the limit

T(t)z = )\lim My =2 4 U(t) Az (8.41)

exists for all x € D(Ap). Since D(A,) is dense in X’ and we have (8.32),
this limit exists for all € X/, and |T(t)|zx) < M. Clearly e®r'x
belongs to X’ and so does T'(t)x. The semigroup property of {T'(t),t > 0}
follows from the semigroup property of {e** ¢ > 0}. Furthermore, by
U (t)Ax| < Mt||Az||, we have lim; o T(t)x = =, x € D(Ap). Since
IT(t)] < M and D(A,) is dense in X', limy_,o4 T(t)z = z, z € X
Finally, by (8.31), for « € D(Ap) and A > 0,

e 1
/ e MT(t)xdt = X(a: + Ry\Azx) = Ryx; (8.42)
0

since the operators on both sides of this equality are bounded and D(A,;)
is dense in X/, this equality is true for all z € X'.
(c) By (8.42) and integration by parts,

0o t
)\/ e_’\t/ T(s)zdsdt = Ry, zeX.
0 0

Comparing this with (already established) equality (8.31), by 7.4.34,
Ut)r = fg T(s)xdsdt, z € X'. In particular, (8.41) takes on the form
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Ttr = = + fot T(s)Azds, x € D(Ap). By 7.4.26 this implies that
D(A,) is a subset of the domain D(G) of the infinitesimal generator
G of {T'(t),t > 0}, and Az = Gz for x € D(A,). Finally, if x € D(G)
then there exists a y € X’ and a A > 0 such that x = (A — G)~!y. On
the other hand, (A — G) ™!y is the Laplace transform of ¢ — T'(t)y and
hence, by (8.42), equals Ryy. This shows z € D(A). Since y belongs
to X', Az = ARyy = AR,y —y € X/, showing that « € D(4,), i.e.
D(G) C D(4,). O

8.2.14 Corollary  One of the by-products of the proof is that the
semigroup generated by A is the limit, as A — oo, of exponential func-

Axt This important result has many applications, one of them we

tions e
will need later is that if the operators Ry are non-negative, then so are

T;. The proof of the converse statement is elementary.

8.2.15 Exercise  Show that, for all z € X, A > 0 and ¢t > 0,
T(t)Ryx = U(t)ARy — U(t)z + Ryx.

8.2.16 The algebraic version of the Hille-Yosida theorem  Under as-
sumptions of 8.2.3, (8.30) is satisfied iff there exists a representation H
of LY(R*) in £(X) such that H(ey) = Rx, A > 0, where ey, € L'(RT)
are defined by their representatives ey (7) = e~ (as in 2.2.49). In such
a case U(t) = H(1joy)),

X' = {z e Xz = H(d)y, ¢ € L'(R"),y € X}, (8.43)

and
T(t)x =T(t)H(p)y = H(S(t)9)y (8.44)

where {S(t),t > 0} is the semigroup of translations to the right in
LY(R") defined in 7.4.2.

Proof A direct calculation shows that ey * ex(1) = 7e~*7. More gen-
T'n.fl

erally, by induction we show that e}"(7) = me’”. In particular,

lex™ ||z r+) = 5. Therefore, if H is a representation of L'(R™) such
that H(cx) = Ry and |[H| < M, then [R}llec = IH (e o) <
M|le™||pir+) = 2L, i.e. Ry satisfies (8.30). The other implication was
shown in Lemma 8.2.12.

Next, |H(lpy) — H(lp)ll = [H(p)| < M(t—s)t > s, 50
that ¢ +— H(1jgy) is continuous and there exists the (improper, Rie-
mann) integral [;~ e *H(1g,))dt which, by Exercise 2.2.49, equals
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H ([, e My dt) = 1H(ex) = 3 Ra. By (8.31) and 7.4.34, this im-
plies U(t) = H(1[07t)).

Furthermore, by H(ey) = (A — A)~!, we have D(A4) = {z € X|z =
H(ex)y,y € X} € X” where X" is the right-hand side of (8.43). Hence
X’ C eIX". Moreover, since ey, A > 0, are linearly dense in L'(R%),
X" C X'. Therefore, X = cIX"”. Now, Cohen’s Factorization Theorem
shows that X" is closed, and (8.43) follows.

Finally, t — H(S(t)¢)y is continuous, and bounded by M||¢|| |lyll;
hence its Laplace transform exists. By 7.4.31, it equals

H( /O T e M6 dt)y = Hier * 6)y = H(ex)H(6)y = RaH(@)y.

This shows both (8.44) and the fact that the definition does not depend
on the choice of ¢ and y but solely on = H(¢)y. O

8.2.17 Remarks (a) Without Factorization Theorem 6.7.1, we could
merely prove that X’ is the closure of the right-hand side of (8.43), and
that (8.44) holds for z of the form x = H(¢)y.

(b) With cosmetic changes, our argument shows ezistence of both the
integrated semigroup related to A and the semigroup generated by Ag.

In other words, we have an independent proof of (the sufficiency part
of) the Hille-Yosida theorem.

8.2.18 Example FElastic Brownian motions  Given a number A > 0,
and a continuous function y : Rt — R, with a finite limit at infinity, let
us consider the differential equation

1
Az — ix” =y (8.45)
where x is supposed to be twice continuously differentiable. Fix € > 0.
We claim that there exists a unique twice continuously differentiable
function z satisfying (8.45), such that the limit lim,_, . (7) exists, and

x(0) = ez’ (0). (8.46)

To see that, note first that looking for solutions to Equation (8.45) of
the form z(7) = e~ V2 " 2(7), using the Laplace transform, or another
standard method, one can easily find out that the general solution of
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the equation is

(1) = C1e¥P 4 Cae™ VAT \/>/ sinh[V2A\(o — 7)]y(o) do
= [Cl_\/ﬁ /0 e_\/ﬁTy(o)do} eV

1 T
+|C +—/ V27 (o da} e VAT, 8.47
ot [ P00) (8.7
Observe that, by de l’Hospital’S rule,
1
lim |Co + — eV22e da} VAT _ i y(7).
THO"{ ’ V2 Jo u(o) Tﬂooy( )

Thus lim, . x(7) exists iff the limit

lim [C’l - \/%/ e*m"y(a) da] V2T
0

T—00

exists. This is the case when
Cy =\ y) / V22 (5 do. (8.48)

Now, we demand additionally that (8.46) holds, to obtain
Ci+Cy =e¢v 2)\(01 — CQ),

ie.

eV 2\ — IC
Vor+1 "

and this completes the proof of our claim. We observe also that, by
(8.45), lim, o, 2" (7) exists.

Let us consider the space X = C]0,00] of all continuous functions
x : Rt — R with a finite limit at infinity, equipped with the norm
|z]| = sup,s¢|x(7)|. Given € > 0, define the domain of an operator
A, as the set of all twice continuously differentiable functions x with
2" € X, which satisfy (8.46), and set A.x = éx”

We claim now that for every € > 0, the operator A, is the infinitesimal
generator of a positive contraction semigroup {7f,t > 0}, acting in X.
To see that note first that the domain D(A.) of A, is dense in X. Indeed,
the set of all twice continuously differentiable functions is dense in X,
and, for every § > 0 and every twice continuously differentiable function
z € X with 2" € X such that z ¢ D(A.), there exists a function xs
enjoying ||zs—z|| < ¢ and 25 € D(A,). For example, we may put z5(7) =

CQ = CQ()\, e,y) = (849)
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2(7) 4+ ae" where a = & min (9, ez’ (0

> ) — z(0)]) sgn(ez’(0) — z(0)),
% {W%m) — 1} and observe that b > % (2}2,%8) z O)‘ — 1) %
and €(zs)'(0) = ex’(0) — [e2’(0) — 2(0) — a] = =(0) —|— a = z5(0) and
|l — x| = |a| < 6.

Furthermore, by (8.47)—(8.49)7 we have, for A > 0, 7 > 0,

Ryx(r) := (A A~ a(r)
/ —V2X|T—0o| ( )d
+ H(eV2))— / —V2H)y(0) do

- E [ e*miT*Cf\y*(U) do (8.50)

where H(u) = “—jrl and

yi(r) = Y 720,
H(evV2\)y(—7), 7<0.

The values of the linear fractional function H lie in [—1,1] for non-

negative u. Thus [H (ev2))| < 1 and sup, ¢ [y*(7)| = sup, ¢ |y(7)|, so
that, for A > 0,

L (% vl gy = 1Y
IRa@gal < —= [ eVrlaoly = B (851
—o0

which, by the Hille-Yosida theorem, proves our claim.

The semigroups T,t > 0 are related to so-called elastic Brownian
motion and the parameter ¢ measures the degree in which the barrier
7 =0 is “sticky”. Some insight into the way the particle behaves at the
boundary may be gained from the following analysis.

Let us rewrite (8.50) in the form

1 o0
Ry(Ad)z(T) = \/i/ e_\/ﬁ“’_T| 4 e V2ot y(o)do

ef+1f/ eVt y(o)do.  (8.52)

. . 4
Notice that the function R > 7 — ﬁ

of the positive function R} > 7 — /27 € R are completely monotone
(see [41] p. 415 for the definition) and, thus, by Criterion 2, p. 417 and
Theorem la, p. 416 of the above mentioned monograph, for any € > 0

€ R as well as the derivative
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there exists a measure pu. on Rt such that

1 > — At
— = e  dt.
evV2A+1 /0 s

By setting A = 0 we see that p. is a probability measure. By 6.4.7 the
transition probability of the stochastic process governed by the semi-
group TfF,t > 0, is given by

_(r—o)? _(rta)?

7 te 2 |do (8.53)

KE(t’ T’ F) =

e

1 _(r+o)?
—2/ / —————¢ 29 p(ds)do,t > 0,7 > 0.
rJoy v2r(t—s)

Comparing this formula with (8.5), (8.20) and (8.22) we see that the
measure fi, governs the probability of annihilation of the Brownian trav-
eller touching the screen 7 = 0. Here we are not able to dive more into
this difficult subject. In [58] pp. 45-47 a more detailed probabilistic
treatment based on the employment of P. Levy’s local time is presented.
A more modern presentation may be found in [100].

8.2.19 The Phillips Perturbation Theorem  Suppose that A is the gen-
erator of a strongly continuous semigroup {T'(t),t > 0} satisfying (7.14),
and B is a bounded linear operator. Then, A + B with domain D(A) is
the generator of a strongly continuous semigroup {5(t),t > 0} such that

IS(®)]| < MeHMIEDE, (8.54)

Proof Let X be the space where {T'(t),¢ > 0} is defined. Define induc-
tively bounded linear operators Sy, (t) € L(X), by So(t) = T(t),t > 0,
and
t
Spt1(t)z = / T(t — s)BS,(s)x ds, t>0,zeX,n>0. (8.55)
0
By induction, ||, (¢)]| < We”t, and the series Y ; S, () con-
verges in the operator norm, uniformly in ¢ in compact intervals. Its
sum, S(t), is a strongly continuous family of operators, being a limit of
strongly continuous families, and (8.54) holds. Moreover, a straightfor-
ward calculation shows that, for A > w,n > 0, fooo e S, 1(s)rds =
R\B fooo e=S, (s)r ds, where Ryx = fooo e~ So(t)z dt is the resolvent
of A (note that S,1 is a convolution of S,, and T' and use linear function-
als as in 7.2.1 and 7.2.4 to justify the change of the order of integration).
Hence, by induction [~ e™*'S, (t)zdt = (R\B)"Ryz. Using (8.54) and
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uniform convergence of the series on compact intervals we argue that for
A>w+ M|B|,

/ e MS(t)zdt = Z/ e NS, (H)xdt = Z(RAB)"R,\x.

0 n=0

For such a A and = € D(A), we have > - ((R\B)"Rx(A — A — B)z =
S o(RaB)"x — 307 ((RAB)" 'z = x. Similarly, for z € X and n €
N, the sum > ,_o(R\B)*Ryz = Ry ,_,(BR))*z belongs to D(A)
and (A — A — B) Y }_(R\B)*Ryz = . — (BR,)""'z. Since || BR,|| <
M”BH < 1, we have lim,, .. (BR))"*'z = 0. A = A — B being closed,
Zn: (RAB)"Rxz € D(A) and (A—A—B) > (R\B)"R\z = x, prov-
ing that

/ e MS(rdt = (A= A—B)'a,  weX,A>w+M|B|. (8.56)
0

This implies 5 ()\ A—B) e = [T e M(—t)"S(t)zdt,n > 0. By the
Hilbert equation, - —(N—A— B) b= (~ ) n!(A— A — B)~(*tD (see
Exercise 7.4.39). Hence, by the Hille-Yosida theorem, (8.54) shows that
A+ B is the generator of a strongly continuous semigroup. (8.56) proves
now that the semigroup generated by A 4+ B equals {S(t),t > 0} — see
7.4.34. Ul

8.2.20 Corollary  The semigroup generated by A + B is given by
S(t) = >0, Sn(t), with the limit in operator topology being uniform
in ¢ in compact intervals.

8.2.21 Example If B commutes with all T'(¢),t > 0, then S(¢) =
T(t) exp(tB). Offer two proofs of this result: a proof based on 8.2.20 and
a direct one.

8.2.22 Example A semigroup generated by an integro-differential
equation Let us consider the semigroup {Uy, ¢ > 0} defined by (8.16) with

the transition kernel K related to the Brownian motion. To be more spe-

. . . . (
cific, K(¢,7,-) is the measure with density k(¢,7,0) = ﬁe
probability measure p is absolutely continuous with respect to Lebesgue

measure, and has a density x, then also the measure U.p is absolutely

o—9)2
continuous, and has a density y(o) = [ ;ﬂte’( 7 z(s) ds. In other

words, {U,t > 0} leaves the subspace L!(R) of BM(R) invariant. A
straightforward calculation shows that this semigroup, as restricted to
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LY(R), is a strongly continuous semigroup of Markov operatorb The in-

finitesimal generator of the restricted semigroup is Ax = ld—m defined
for z € D(A) C L'(R), composed of z such that x exists almost every-
where, is absolutely integrable and z(7) = )+ [y 2" (0)do.

Moreover, let us consider a stochastic kernel b, i.e. a measurable func-
tion of two real variables such that b > 0, [ b(r,0)doc = 1,7 € R.
In other words, for each 7 € R,b(7,-) is a density of a measure, say
K(7,-), on R. Given a non-negative number a and such a kernel, we
may construct the transition family related to a pseudo-Poisson process,
as described in 8.1.28. The special form of K(7,-) forces the related
semigroup {U;,t > 0} in BM(R), as was the case with the Brownian
motion semigroup discussed above, to leave the space L!(R) invariant.
Indeed, for 7 € R, the kernels K"(r,-),n > 1, have densities b, (7,0)
given inductively by by = b, b, 41(7,0) fR (s, o) ds. Therefore,
K(t,7,-) has amass of e"% at 7 = 0 and, apart from this point, a density

00
E ata

We note that ”bn(T")”Ll(R) = Land [b(t, 7, )piw) =1 -7, 7 €
R, ¢t > 0. Consequently, if u is absolutely continuous with respect to the

Tlt’l’L

(7,-), (convergence in L'(R)).

Lebesgue measure and has a density x, then U;u is absolutely continuous,
too, and has a density y(0) = e”*z(0) + [ b(t,7,0)x(7) dT.

The last formula implies, furthermore, that {U;, ¢ > 0} restricted to
L'(R) is continuous in the operator norm and that its infinitesimal gen-
erator is aBx — ax where Bx(r) = [ b(1,0)x(0)do, and is a Markov,
hence bounded, operator.

By the Phillips Perturbation Theorem, the operator 3 ld—w + aBx de-
fined on D(A) is the generator of a strongly Contmuous Semlgroup in
LY(R), say {S(t),t > 0}. Using 8.2.20, we see that S(t) are non-negative
operators. To be more specific, an inductive argument shows that for a
density z € L', S,(t)z is non-negative and [; S, (t)z(r)dr = :ﬂn; in
particular ||S,(t)|| = %7 i (8.54), ||S®)| =
e, Now, the semigroup {e~**S(t ) t >0} generated by 12 + ¢Bz—ax

24dr2
with domain D(A) is a strongly continuous semigroup, and operators

e~ %S(t) are Markov operators.
Consequently, the integro-differential equation

Ox(t,7) lazx(t,T
o 2 or?

) + a/Rb(T, o)x(o)do —ax(t,7), x(0,-) € D(A),
(8.57)
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describes the evolution of densities of a Brownian motion that at the
epochs of the Poisson process with intensity a is perturbed by jumps of
the pseudo-Poisson process discussed above.

8.2.23 Example Let X and Y be two Banach spaces, and let K :
X — Y and © : Y — X be two bounded linear operators such that
KBy = y,y € Y; in the non-trivial case, though, we do not have
OKz = z,z € X. Also, let {T'(¢t),t > 0} and {P(¢),t > 0} be two
strongly continuous semigroups in X and Y, respectively, and let A be
the generator of {T'(t),¢ > 0}. We assume that

P(K = KT(t), t>0. (8.58)

To persuade yourself that such semigroups and operators exist, see [16]
pp. 60-62. We note here that letting P*(t) = OP(t)K,t > 0, we ob-
tain P*(t)P*(s) = P!(t + s) and that [0,00) > t + P%(t)x is strongly
continuous for all z € X, yet in general {P%(t),t > 0} is not a strongly
continuous semigroup, since P#(0) = OK # Ix.

We claim that the semigroup {S(t),t > 0} generated by A+OK (with
domain D(A)) is given by

S(t)=T(t) + /Ot e’ T(t—s)OP(s)Kds =T(t) + /Ot e’ T(t — s)Pﬂ(s) ds.

(8.59)
To prove it, by the Phillips Perturbation Theorem, it suffices to show
that

() = / t (Sn_i)'T(t—s)Pﬁ(s)ds, n>16>0 (8.60)
o (n—1)!

By (8.58), this relation holds for n = 1. To prove the induction step we
note that KT (s — u)©P(u) = P(s). Hence,

S () = /O T(t - 5)0 /0 ) %KT(s—u)@P(u)Kduds

t s un—l
:/0 /0 mduT(t—s)@P(s)de

= /t i'T(t — $5)OP(s)K ds,
o nl

as desired.
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8.2.24 Example (See [70]) Let a > 0 and v > 0 be given. Consider
the operator A, ,(z,y) = (y,v*z” —2ay) in XxY = BUC,(R)x BUC(R)
with domain D(A, ) = D(de) x X where D(dTQ) is defined in 7.4.35. In
7.4.35, we have proved that A, is a generator of a semigroup in X x Y.
Since, Aqp = Ao.» + B, where By (z,y) = (0, —2ay) is a bounded linear
operator, A, , is also a generator of a semigroup {Ty . (t),t > 0}. Since
Tow(t) € L(X X Y), there exist operators S;;(t) = S;;(t,a,v),4,5 = 0,1
such that Spo(t) € L(X),S01(t) € L(Y,X),S10(t) € LIX)Y), S11(¢) €
L(Y) and

Tt = (Gl Salien)  ®0)

ie.forzreXand y €V,
T Soo(t,a,v)x  Soi(t,a v)y>
Too(t .
()= (et Snieany
By 7.4.40, for z € D(%) and y € X the system

{das(t y(t), z(0) =
dg(/i(tt) — 2 ddT x(t) — 2ay(t), y(0)

has a unique solution. On the other hand, for such x and y, by 7.7.9,

(8.62)

z,
Y,

1 1 1 £(t)
z(t,7) = §E (T +vE()) + iE z(1 — v€(t)) + §E /_ o y(T +vo)do

and y(t,7) = %I(t,T) solve (8.62). By the density argument, it shows
that for r € X and y €Y,

Soo(t)a(r) = %E.r(T +vE®) + %Em(T —wEt)),

1 £(t)
So1(y(r) = B / y(r + vo) do,
—£(t)

2
Sio(t)z(r) = gEﬂf/(T + v§(8) e — gEﬂ?l(T + v§(8)) g0
+ 5B (T = v() Ly — 5B (7 — v€(1) e,
Su(D)y(r) = 5B lu(r +vE(t)) + y(r —vE(D)] e

Bl e D)ty e, (863)
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where E(t) is the event that N(t) is even and E(t)C is its complement
(note that, for a fixed ¢, the probability that £(¢) is not differentiable at
t equals 0).

Another interesting formula for Sp; may be derived from the fact that
for (z,y) € D(Aqv)

AaTu(t) (j) = Too(t) Ay (;”) .

Specifically, taking = 0 and y € X, we obtain S11(¢)y = Sooy —2aSo1y-
Hence, by (8.63),

S (0)y(r) = 5 Bly(r +06(0)) +y(r — vE(O)lgge. (364

The density argument extends this formula to all y € Y.

8.2.25 Remark In view of (7.68), (8.64) shows that
1 1
x(t,7) = §E (1 +v€(t)) + iE x(r — v€(t))

+ 5 Ely(r + v€(0) + y(r — 0611 (8.65)

solves the telegraph equation with initial conditions (0, 7) = z(7) and
92(0,7) = y(r) where z € D(%) and y € X.

8.2.26 Corollary Formulae (8.63) and (8.64) allow us to estimate the
norms of S;;. Specifically, it is clear that ||Soo(t)z||y < ||z|ly and that
for z € X, (Soo(t)x)" = Soo(t)z’. Hence, [Soo(t)|lz(x,x) < 1. Moreover,
for y € Y, by (8.63), (Sou(t)y) (r) = & B [y(r + vE(1)) — y(r — vE(1))].
This implies. |[(Sor (63| < L[yl Since, by (8.64), [[Sor Byl <
LP(E®)®)[lylly and P(E()E) = 125 < 1, we obtain ||So1(t) | c¢xv) <
(2a)~!+v~!. Moreover, using (8.63) again, ||S10(t)||z(v,x) < v[P(E(t))+
P(E(t)%)] = v. Similarly, 1511 (D)l vy < 1.

It may be shown that the order of the estimate for the norm of Syo(t)
is the finest in that ||S1o(t)]| > 2v.

8.3 Generators of stochastic processes

In this section we give a characterization of generators of Feller processes
and Markov chains.
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8.3.1 Definition Let S be a locally compact space. An operator A :
Co(S) D D(A) — Cy(S) is said to satisfy the positive maximum
principle if for any z € D(A) and p € S, z(p) = sup,egsv(q) > 0
implies Az(p) < 0.

8.3.2 Example Let S = R, and A = a%, where a > 0, on the
domain D(A) composed of all twice differentiable functions in Cy(R)
such that 2 € Cy(R). If the global, or even local, maximum of x €
D(A) is attained at 7 € R, then z/(7) = 0 and, by the Taylor formula,
2”(7) < 0. Hence, A satisfies the positive maximum principle.

8.3.3 Exercise = Show that Az = az’, where a € R, defined on a
suitable domain D(A) C Cy(R) satisfies the positive maximum principle.

8.3.4 Generators of Feller processes I ~ Let S be a locally compact
space. An operator A in Cy(5) is the generator of a semigroup related
to a Feller kernel iff

(a) D(A) is dense in Cy(5),
(b) A satisfies the positive maximum principle,
(c) for some Ag > 0, the range of the operator A\g — A equals Cy(.5).

Proof
(Necessity) The necessity of (a) and (c) follows directly from the
Hille-Yosida theorem. To show (b), suppose that {T},¢ > 0} given by
(8.17) is a Feller semigroup with generator A, x € D(A), and the global
maximum of z is attained at p with x(p) > 0. Then |z] = z(p),
where as before, 27 = max(,0). Since Az = limy_o (T — ) in
Co(S), we have Az(p) = lim;_o 1 (Tix(p) — x(p)). But, the operators
T, are non-negative. Hence, Tyz(p) < Tyzt(p) = [q2T(¢)K(t,p, dg) =
Js e (@K (t,p, dg) < x(p)K(t,p, Sa) = x(p). This implies Az(p) < 0.
(Sufficiency) Suppose that A satisfies (a) through (c). Suppose also
that for some A > 0, y € Cp(S) and = € D(A), \x — Az = y. Also, let
p be such that |z(p)| = ||z|. If z(p) > 0 then by the positive maximum
principle, y(p) > Az(p). Hence, |ly|]| > Az(p) = A|z||. If z(p) < 0, the
same argument applied to —x gives || — y|| > A|| — z]|. So, in both cases
lly|l > Allz||. In other words, if the range of A— A equals Cp(S), (A\—A)~?
exists and its norm does not exceed % In particular, since this is true
for A\g, A is closed.
Let p(A) denote the set of u > 0 such that the range of u — A equals
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Co(S). We need to show that p(A) = (0,00). Let A € p(A) and p €
(0,2)). Then | — A|J[[(A — A)71|| < 1, and the series

oo

Ry =3 (A= w)" (A= 4) (D

n=0

converges in the operator norm. Moreover, writing p— A as y— A+ A— A,
for any y € Co(S), (11— A) SN (A — )" (A — A)~ Dy equals

N N
D A=) A= A) Ty =Y (A= @) = A) Dy
n=0 n=0

— A=V A=)y — oy

N—oo

This implies that lim, .o AN (A — )" (A — A)~("t1y exists and
equals R,y —y. Since A is closed, R,y € D(A), and AR,y = uR,y—y.
In other words, for every y € Cy(S), there exists an « € D(A), namely
x = R,y, such that pax — Az = y. This proves that A € p(A4) implies
(0,2X) C p(A). Now, if p € (0,4X), then p+X € (0,2X) and so (0, 2p+
2)\) C p(A), implying (0,4X) C p(A). By the induction argument A\ €
p(A) implies (0,2"\) C p(A). Since, by (b), p(A) is non-empty, our claim
is proved.

By the Hille-Yosida theorem, A generates a strongly continuous semi-
group {T%,t > 0} in Cy(S). What is left is to show that the operators T}
are non-negative, and this will be proved once we prove that (A — A)~!
are non-negative. To this end we take z > 0. Then, y = (A — A) "' be-
longs to D(A) and satisfies the equation A\y— Ay = z. If y(¢) < 0 for some
q € S, then there exists a p such that —y(p) = sup,es[—y(q)] > 0. By
the positive maximum principle —Ay(p) < 0. Hence, z(p) < Ay(p) <
a contradiction. E]

8.3.5 Remarks (i) Condition (¢) may be replaced by:
(¢") for all A > 0, the range of the operator A — A equals Cy(S5).

(ii) If S is compact, A satisfies the maximum principle: if z € D(A)
and the global maximum is attained at p, then Az(p) < 0, regardless
of whether z(p) > 0 or not. The difference lies in the fact that in such
a case lg belongs to Cy(S); hence z(p)lg — x € Cy(S) is non-negative,
and we obtain Tyz(p) < z(p). Note that if S is locally compact, but not
compact, and z(p) = sup,cg (q), where z € Cy(S), then automatically
z(p) > 0.
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(iii) Proving condition (c), called the range condition, is usually the
hardest part of the proof of the fact that an operator A is a generator.

(iv) As a by-product of the proof, we obtain that operators satisfying
the positive maximum principle are dissipative. A linear operator A :
X D D(A) — X is said to be dissipative if for all 2 € D(A) and A > 0,
Az — Az| = All].

8.3.6 Exercise  Use 8.3.4 to show that the operators A, defined in
8.2.18 are generators of Feller semigroups.

8.3.7 Exercise  Let C?[0,1] be the subspace of C[0,1] composed of
twice differentiable functions with second derivative in C[0, 1]. Use 8.3.4
1..n

to show that the operators A¢ s defined by A sz = 52" on
D(A. ) = {x € C?0,1];2(0) — 2’ (0) = 0, z(1) + 52'(1) = 0},

are generators of Feller processes with values in [0,1]. These processes
are elastic Brownian motions with two barriers: at 0 and at 1.

8.3.8 Proposition  The reasoning used in proving that (c) implies
(¢) is worth closer attention (compare [38] p. 12, [43] p. 46, etc.). Here
we give another example of a situation where it applies. Suppose A is
a Banach algebra and H,, : L'(R*) — A,n > 1, are homomorphisms
of the algebra L'(RT), such that ||H,| < M for some M > 0. Suppose
that the limit lim,, ., H,(ey) exists for some A > 0. Then, it exists for
all A > 0.

Proof Let p be the set of A > 0 such that the above limit exists. We
have seen that it suffices to show that A € p implies (0,2\) C p. A minor
modification of the argument shows that all that needs to be showed is
that A € p implies (0,2A)N(A—1,A+1) C p. Let A\, u > 0. By the Hilbert
equation (6.6), e, = ex+ (11— A)exre,. An induction argument shows that
ep = p e (p—NF"1+ (u—N"ey"e,,n > 0. Suppose | — A| < A
Then, letting n — 00, €, = Yoo €3F(L—A)*"1, since [|e3™ || 11 r+) = -
Thercfore, Hy(ex) = 352, Hale3)(u — AVF~ = S50 [H(ex)] (s -
ANF=LIf Ry = limy, oo Hy(ey) exists, and |p — A| < 1 A A, this series
converges, as n — 00, to R, = Y po R¥(u — A\)F~1. To see that we
take an € > 0, choose an [ € N such that MY 7, [u — AF7IA7F <
€/3, and then choose an n > 0 such that ||RY — H,(e5)|[a < €/(3d)
forall 1 < k <1 -1, where d = ﬁ Clearly lim,, o Hy(e3F) =
lim,, oo [Hy (ex)]® = R} for all k > 1; hence ||R§|| < MA~*. Therefore,
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R, — Hy(11)|| 4 does not exceed €(3d)~ Z VA= pF e 2M S -
AFINTFE <€/3+2¢/3 =e. O

Sometimes it is convenient to have the following version of theorem
8.3.4.

8.3.9 Generators of Feller processes II ~ Let S be a locally compact
space. An operator A in Cy(5) is the generator of a semigroup related
to a Feller kernel iff

(a) D(A) is dense in Cy(5),
(b) if x € D(A), A > 0 and y = A\x — Az, then Ainf,es z(p) > inf,cs y(p),
(c) for some Ag > 0, the range of the operator A\g — A equals Cy(.5).

Proof  (Necessity) Let {Ti,t > 0} be the semigroup generated by
A. By (8.17), we have T;y(p) > infpesy(p) (note that inf,cgy(p) =
inf,es, y(p)). Moreover, if assumptions of (b) are satisfied, then Az(p) =
A Sy e MTyy(p) dt > infy>0 Tyy(p) > infpesy(p). This proves (b). The
rest is clear.

(Sufficiency) Let z,y and A be as in (b). Taking —y and —x instead of
y and z, respectively, we obtain Asup,cgs 2(p) < sup,cs y(p). Together
with (b) this gives A|z|| < |ly|] = ||A\x — Az||, i.e. dissipativity of A.
Hence, as in the proof of 8.3.4 we argue that A generates a semigroup
of contractions. Moreover, (b) implies that Ryy > 0 provided y > 0.
Therefore, the semigroup generated by A is a semigroup of non-negative
operators and 8.1.26 applies. O

The problem with applying theorems 8.3.4 and 8.3.9 is that the whole
domain of an operator is rarely known explicitly, and we must be satisfied
with knowing its core. Hence, we need to characterize operators which
may be extended to a generator of a Feller semigroup. In particular,
such operators must be closable. A linear operator A : X D D(A) — X is
said to be closable if there exists a closed linear operator B such that
Bz = Az for z € D(A).

Let us recall that a graph G4 of an operator A is defined as G4 =
{(z,y) e XxX;2z € D(A),y = Ax}.

8.3.10 Lemma Let A be a linear operator in a Banach space X. The
following conditions are equivalent:

(a) A is closable,
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(b) the closure of the graph G4 of A in the space X x X equipped with
the norm ||(z,y)|| = ||z|| + |lyl| is a graph of a closed operator,

(c) if 2, € D(A),n > 1, lim, 0o &, = 0 and lim,, o, Az, exists, then
lim,, o Az, = 0.

Proof We will show that (b)) = (a) = (¢) = (b).

Clearly, (b) implies (a). Also, if A is closable and B is its closed exten-
sion, then z,,n > 1, described in (c) belong to D(B) and Bz, = Ax,.
Since B is closed, lim,,_,o, Bx,, = B0 = 0, proving (c).

Since the closure ¢l G 4 of G 4 is a subspace of X x X (in particular, it is
closed), we are left with proving that (c) implies that ¢l G4 is a graph of
an operator (see 7.3.8). To this end we need to show that (z,v), (z,y’) €
cl G 4 implies y = y'. By linearity, it suffices to show that (0,y) € cl G4
implies y = 0. Now, (0,y) € ¢l G4 iff there exists a sequence x, €
D(A),n > 1, such that lim,, . z, = 0 and lim, . Az, = y. By (c),
this implies y = 0. |

The following example shows that there are operators that are not
closable.

8.3.11 Example Let X = (C[0,1] and define Az(7) = 2/(0) on D(A)
composed of all € X such that 2/(0) (the right-hand derivative) exists.
Let z,,(7) = max(2™" — |7 — 27"[,0). Then =z, € D(A) with z/,(0) = 1.
Moreover, |[z,] =27" — 0 as n — oo and lim, .o, Az, = 1jg,1) # 0.

8.3.12 Definition  The closure A of a closable operator A is the
unique closed operator such that G5 = cl G 4.

8.3.13 (Pre)-generators of Feller processes I ~ Let S be a locally com-
pact space and A be a linear operator A : Cy(S) D D(A) — Cy(S5). A is
closable and its closure A generates a Feller semigroup iff:

(a) D(A) is dense in Cy(5),
(b) if z € D(A), A > 0 and y = Az — Az, then Ainf,cg 2(p) > infpes y(p),
(c) the range of A — A is dense in Cy(S) for some A > 0.

Proof Necessity is clear in view of 8.3.9. For sufficiency we note first that
by (b) A is dissipative; we will show that A is closable. Let z,, € D(A)
be such that lim,, . x, = 0 and lim,, ., Az, exists and equals, say, y.
Let z belong to D(A). Then ||(A — A)(Az,, + 2)|| = A||Azp + 2], for all
A > 0. Letting n — oo we obtain |[Az — Ay — Az|| > A||z||. Dividing by



8.8 Generators of stochastic processes 333

A and letting A — oo, ||z — y|| > ||z||. Now, by (a), we may choose a
sequence z, € D(A) such that lim,_ . 2, = y. Hence, 0 > ||y||, proving
that y = 0, as desired.

Let A be the closure of A. We need to show that A generates a Feller
semigroup, and to this end we may apply theorem 8.3.9. Clearly, A4 is
densely defined. To prove condition (c) of the theorem, we consider the
A > 0 from assumption (c), and suppose y € Cy(S) is such that there
exists a sequence x, € D(A) with lim, (A — A)z,, = y. Then, by
zn — zml| < $I(A = A)( — @), Tn,n > 1, is a Cauchy sequence,
hence, it converges to some x € Cy(S). Since A is closed, = belongs to
D(A) and (A — A)x = y. This shows that the range of A — A is closed.
Therefore, by assumption (c¢), it equals Cy(.5).

Finally, we need to show that A satisfies condition (b). This, however,
is easy because for any x € D(A) there exist z, € D(A) such that
lim, oo 7, = @ and lim, . Az, = Az. By assumption (b) we have
Minfpes z,(p) > infpes(Azn(p) — Az, (p)). Letting n — oo, we obtain
Ainfpes z(p) > inf,es(Ax(p) — Az(p)), as desired. O

8.3.14 (Pre)-generators of Feller processes II ~ Let S be a locally com-
pact space and A be a linear operator A : Cy(S) D D(A) — Cp(S5). A is
closable and its closure A generates a Feller semigroup iff:

(a) D(A) is dense in Cy(S5),
(b) A satisfies the positive maximum principle,
(c) the range of A — A is dense in Cy(S) for some A > 0.

Proof Necessity is clear in view of 8.3.4. As for sufficiency, by 8.3.13, all
we need to show is that A satisfies condition (b) of this theorem. Consider
x,y and A described there. There are two possible cases: either there
exists a p such that z(p) = inf,eg z(g) or infyes x(q) = z(A) = 0. In the
former case, —z attains its maximum at p and so Az(p) > 0. Therefore,
Ainfees z(q) = Az(p) = Aa(p) — Ax(p) = infees{Az(q) — Az(q)}, as
desired. To treat the latter case, we recall that at the end of the proof of
8.3.4 we showed that the positive maximum principle implies that x > 0
provided y > 0. This means that Ainf,cg 2(g) > 0 = infoes y(q). O

8.3.15 Example Let S = [0,1] and consider the operator Az(s) =
s(1 — s)x’(s) defined for all polynomials on [0, 1]. It is clear that A is
densely defined and satisfies the maximum principle. Moreover, if (s) =
Sy aist then Az(s) = S (i + 1)iaiy1s' — SO0, i(i — 1)a;s’. Hence,
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for a polynomial y(s) = Y., b;s’ and a number A\ > 0, the equation
Ax — Az = y is satisfied iff the coefficients satisfy the system

A+i(i—1)a;—i(i+1)ar; = b;, 0<i<n—-1, (A+n(n—1))a, = by,.

(8.66)
Since this system has a solution (a,, is calculated from the last equation
and substituted to the previous-to-last, which allows the calculation of
an—1, and so on), the range of A is dense in C]0, 1]. Therefore, theorem
8.3.14 applies and the closure of A is the generator of a Feller semigroup
in C0,1]. (See also 8.4.20.)

8.3.16 Exercise It is possible to characterize A introduced above in
more detail: show that D(A) is composed of functions that are twice dif-
ferentiable in (0, 1) with lim,_o4 s(1—s)2"(s) = lims_1— s(1—s)z"(s) =

0 and we have Az(s) = s(1 — s)2"(s),s € (0,1), Az(1) = Az(0) = 0.

We now turn to generators of continuous-time Markov chains; we will
characterize generators of strongly continuous semigroups {U(t),t > 0}
in [ = [Y(N) of the form U(t)xz = xP(t) where {P(t),t > 0} is a semi-
group of transition matrices and 2 P(¢) is the matrix product. Note that,
in contradistinction to the case of Feller semigroups, we thus study the
evolution of distributions of a Markov chain and not the related evolu-
tion given by the dual semigroup — see 8.1.15 and 8.1.16. As we have seen
in 7.4.27, there is a one-to-one correspondence between finite intensity
matrices and semigroups of finite transition matrices. If the matrices fail
to be finite the situation is more complicated in that different semigroups
of transition matrices may be related to the same intensity matrix. In
the remainder of this section in the set of propositions we present a result
due to T. Kato [54, 65] which explains this situation in more detail.

We recall that (fn)n>1 € I' is said to be a distribution iff &, >
0,n > 1, and F(£,),>, = 1 where the functional F € (I!)* is given
by F (&n)s1 = Doney &,; the set of densities is denoted by D. A linear,
not necessarily bounded operator A in {! is said to be non-negative if it
maps D(A) N (I1)*F into (1*)*, where (I')T is the non-negative cone, i.e.
the set of non-negative (&,),~, € I*. For z and y in [' we write z < y
ory < zify—x € (I')T. For two operators, A and B, in I' we write
A < Bor B> Aiff B— A is non-negative. An operator A (defined
on the whole of [!) is said to be Markov if it leaves D invariant; it is
said to be sub-Markov iff it is non-negative and F Az < Fz for x € D.
Markov and sub-Markov operators are contractions. As in 5.2.1, we write
€; = (6i7”>n21 ,i > 1.
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8.3.17 Exercise Let x,,n > 1, be a sequence of elements of {! such
that 0 < x,, < @py1,m > 1, and ||z,|| < M,n > 1, for some M > 0.
Show that x,, converges.

8.3.18 Definition Let Q = (qi,j)i’jeN be an intensity matrix. We
define the domain of an operator Ag to be the linear span of e;,7 > 0, and
put Ao€; = (¢i,n), >, Furthermore, the operator D (“D” for “diagonal”)
with domain D(D) = {(6n)p>1 € 1Y (gn, nén)p>1 € '} is defined by
D(zn)n>1 = (Gnnén), >1; note that —D is non-negative.

8.3.19 Proposition  The operator O (O for “off diagonal”) given by
0] (§n)n21 = (Zizu#n fi(h,n) - is well-defined on D(D) and ||Oz| <
| Dz|| for x € D(D) and ||Oz|| = || Dz|| for x € DN D(D). Moreover, for

any 0 < r < 1, the operator D + rO with domain D(D) is the generator
of a strongly continuous semigroup of sub-Markov operators in .

Proof For x € D(D), Y 0", ’2217#” &igin| does not exceed

n=14i>1,i#n i=1 n>1,n#i

with equality iff (&,),~, is non-negative. This proves the first claim.
For 7 = 0 the second claim is immediate: the semigroup generated by

D, say {S(t), > 0}, is given by S(t) (€)1 = (71,) .-, . To treat

the general case we note first that for A\ > 0 we have (A—D)~! (&,), >, =

1
— and
(/\*Qn,n gn) nZl

By :=0\—-D)! (8.67)
is well-defined. Moreover, we have || Bxz|| < 3,51 3 is1 iz )\3’7; &l =
2121 Zn>1 i Aqlqtq &l = Zi21 %,;: &Gl < Zi21 €| = [|=|. Hence,
B, is a contraction and for any 0 < r < 1 the series > 2 r"B}(=
(I +7B))"1) converges in the operator norm. Let

Ry =(\=D)"'> 1By
n=0

By definition Ry ,x belongs to D(D) and (A—D)Ry,z =Y. ,r"Blz,
and rORy,x = rByY oo r"Blz = > >°  r"Blz. Hence, (A — D —
rO)Ry,x = x. Similarly, Ry ,(A — D — rO)z = z,z € D(D). This
shows that Ry, = (A — D —rO)~! and in particular that D + rO is
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closed. Moreover, if > 0 then y = R) ,x is non-negative, too; indeed,
(A= D)~! >0and O > 0 and so By > 0. Hence, using —D > 0 and
O =0, Ml < Myl + (X =)Dyl = Ay — Dyll — r[|Dyll = llAy —
Dyl|| — 7|0yl < ||\y — Dy — rOy|| = ||=|| with the previous-to-last step
following by the triangle inequality. This shows that AR, , is sub-Markov
and in particular [[ARy || < 1. Since D + rO is densely defined, by
the Hille—Yosida theorem it generates a strongly continuous semigroup
of operators. This is a semigroup of sub-Markov operators since the
approximating exponential functions of the Yosida approximation are
formed by such operators — see 8.2.14. 0

8.3.20 Proposition  Asr 1 1, the semigroups {S,(t),t > 0} converge
strongly to a strongly continuous semigroup {S(t),t > 0} of sub-Markov
operators generated by an extension of D + O (hence, an extension of
Ay, as well).

We postpone the proof to the next section (Subsection 8.4.16) where
we will have approximation theorems for operator semigroups at our
disposal.

8.3.21 Proposition Let {S(¢),t > 0} be the semigroup defined in
8.3.20 and suppose that the generator A of a strongly continuous semi-
group {T'(t),t > 0} is an extension of the operator Ag. Then A is also
an extension of D + O and, if T'(t) > 0,¢ > 0, then S(¢) < T'(t),t > 0.
We say that {S(t),t > 0} is the minimal semigroup related to Q.

Proof Suppose that x = Y 7 | &€, belongs to D(D). By definition
of D(D), so do zn := 25:1 &nen, N > 1, and since Ae, = Age, =
(D + O)ey, we have Axy = (D + O)z . Moreover, lim,,_,o. Dxy = Dz
and so, by ||O(zny — )| < ||D(zn —2)]|, imy— o0 Oxy = Oz. Therefore
limy 00 Az exists and equals (D + O)z and, obviously, imy 0o xn =
x. Since A is closed, being the generator of a semigroup, = belongs to
D(A) and Az = (D + O)z, proving the first claim.

Next, we note that (A — A)~! exists for sufficiently large A > 0. For
y € D(D), we may write

(1-r)Oy=Ay—Dy—rOy=A—D—1r0)y— (A — A)y.

Taking y = (A — D — rO)~x,z € 1!, and applying (A — A)~! to the
left-most and right-most sides of the above equality,

1= A=ATON-D—-r0)te=\N-A) "o —(A=D—-7r0)"'a.
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Since all operators on the left-hand side are non-negative, for large A >
0 we have (A — D —r0O)~! < ()\ — A)~L. As we shall see in 8.4.16,

(A — D —rO)~! converges to (A — G)~! where G is the generator of
{S(t),t > 0}. Hence, (A — G)~! < (A — A)~!. This implies the second
claim — see 8.2.14. U

8.3.22 Proposition  Let {S(¢),t > 0} be the semigroup defined in
Subsection 8.3.20. The following are equivalent:

(a

{S(t),t > 0} is a semigroup of Markov operators;

)
(b) for any A > 0, lim,,_. BY = 0 strongly;
(c) for any A\ > 0, Range(A — D — O) is dense in I};
(d) for any A > 0, Range(\ — Ap) is dense in I*;
(e) for any A > 0, Range(I — B,) is dense in [';
(f) if for some A > 0 and a = (ay,),,~; € I°° we have Qa = Aa (where Qa

is the product of the matrix @ and the column-vector a), then a = 0.
If one and hence all of these conditions hold, the matriz Q is said to be

non-explosive.

Proof Condition (a) holds iff ARy is a Markov operator for all A > 0
(cf. 8.2.14). On the other hand,

I+OZ>\ D)"'Bf = (A - D) Z D)"'BY + Byt (8.68)
k=0
Therefore, for > 0, ||z]| + |OY oA = D)7'BY|| = XX oA —
D) 1BEz|| + | DY p_o(A — D)"1BYz| + | By 2|, since —D > 0. By
8.3.19 this gives, ||lz|| = A p_o(A — D)"'Bkz| + ||BYt'z|. Letting

n — oo we see that ||z|| = [|AR,| iff lim, .o || BYa| = 0 (the fact that
limy, oo D_p_o(A— D) 'BYz = Ryz is proved in 8.4.16). This shows (a)
< (b).

Next we show (b) = (¢) = (d) = (e) = (b). To prove the first
implication we rewrite (8.68) as (A — D — O)Y_;_,(A — D)"'Bia =
x + By™'2, x € 1'; this relation shows that if (b) holds any = may be
approximated by elements of Range(A — D — O), as desired. To see that
(c) implies (d) we note that for any = € D(D) there exist x, € D(Ap)
such that lim, e n, = z and lim, o0 AgZ, = lim,0o(D + O)z,, =
(D + O)x (see the beginning of the proof of 8.3.21); hence the range of
A—D—0 is contained in the closure of the range of A— Ag. The fact that
(d) implies (e) becomes clear once we write [ —By = (A—D)(A—D)~ ! —
O(A—D)~! = (A=D—-0)(A—D)~! and note that all elements z of D(D)
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are of the form z = (A — D)~y for some y € I'. Indeed, this shows that
the range of A — D — O is equal to the range of I — B and we know that
A—D—0 is an extension of Ag. To show the last implication we note that,
since By is sub-Markov, ||BYz|| < ||BYz for 2 > 0 and k < n. Therefore,
for such an z, ||BRz|| < ||Cpx|| where C,, = —5 >";_, B}. Hence, it
suffices to show that C), converges strongly to 0. If x = y — By for
some y € I', we have Cpx = —5 > 1 B¥(I— By = 725 (z — By ).
Therefore, for © € Range(I — By), lim,_,oc Cpz = 0. If (e) holds, the
same is true for all z € ! since ||C,,| < 1.

Finally, we show (d) < (f). To this end we note that (d) holds iff, for
any functional F on [, the relation F(Ax — Agz) = 0 for all z € D(Ap)
implies F' = 0. By definition of D(Ay), F(Az—Agz) = 0 for all z € D(Ay)
iff F(\e; — Age;) = for all ¢ > 1. On the other hand, any F may be
identified with an a = (ay),~; € [ and we have F(le; — Age;) =
)\Oéi — Z;}il qi, ;0. ]

8.3.23 Example Let r,,n > 1, be a sequence of non-negative num-
bers. A Markov chain with intensity matrix Q = (g; ), i>1 where

—Ti, ] = ia
d4ij = § T J:Z+17
0, otherwise,

is said to be a pure birth process with rates r,,n > 1. (In particular,
the Poisson process is a pure birth process with a constant rate.) For

such a @, we have (A — D)1 (En)p>1 = (fﬂ ) N and in particular
1

-1 "

(A=D) e, = )\Jr ex. Also Oey, = rrepy1. Hence, Byep = )\jr"rk €11
k+n—1 k+n—1 .

and so Bjer = [[57" sf-eoar and [|Byer] = [15" 525 Sinc

ek, k > 1, are linearly dense in [', B} converges strongly to 0 as n — 0o
iff [[;2, 545 = 0. This last condition is equivalent to 3372, (—In 5 H,_ )=
(1 z) _ di-

00. Since hmz_,m_ = 1, Q is non-explosive iff > °°

verges for all A > 0.

n=1 )\+r

8.3.24 Example (See [110].) Let d,r > 0. Consider the Kolmogorov
matrix @ = (qi,;), j>1 given by

(i—1)r, j=i—1,i>2,
Gij=—(i—Dr—(G+1)d, j=ii>1,
(i + Dr, j=i+1,i>1,
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and 0 otherwise. To show that () is non-explosive we check that condition
(f) of Proposition 8.3.22 is satisfied. The equation Qa = Aa considered
there may be rewritten as

(i — 1)7’0&,‘_1 — [(Z — 1)7" + (Z + 1)d]0&i + (Z + 1)d0¢i+1 = A, 1> 1,

where we put ag = 0. Then a1 = [1 + %} i — %gai,h or
(i—1r+ A i—1r
i+l — O = - i = 8.69
dikL (i+1)d B P (8.69)
Note that, if a; > 0 for some ¢ > 1, then a;41 — a; > i& 5oy —aiq).
Hence, by the induction argument, if oy > 0 then a;11 — oy > 0 and
a; > 0 for all ¢ > 1. Therefore, by (8.69) again, ;1 — a; > (Hl)dal or

Qg1 > [1 + ﬁ} o resulting in o, > a1 [T, (1+ %) ,n > 1.

Hence, if oy > 0, the limit lim,, o «, exists and is no less than
| bt (1 + %) a1 = oo. Since this contradicts a € [*°, we must have
a1 < 0. But, we may not have a; < 0 for then b := —a € [*° would
satisfy Qb = Ab while having its first coordinate positive, which we
know is impossible. Thus, a; = 0 and an induction argument based on
(8.69) shows that a; = 0 for all 4 > 1.

8.3.25 Remark  Probabilistically, the reason why there are in gen-
eral many semigroups related to a given ) matrix may be explained
as follows. Let us recall that if X (¢),¢ > 0 is a Markov chain related
to @, then given that X(t) = n, the chain waits in this state for an
exponential time with parameter —g, , and then jumps to one of the
other states, the probability of jumping to k # n being —¢n k/Gn,n (if
dn.n = 0 the process stays at n for ever). It is important to note that
in general such a procedure defines the process only up to a certain
random time 7, called explosion. This is well illustrated by the pure
birth process of Subsection 8.3.23. If the process starts at 1, then af-
ter exponential time 77 with parameter r; it will be at 2, and after
exponential time T, with parameter ry it will be at 3, and so on. Let
us put 7 = 307, T, Is 7 finite or infinite? If 357, ;= = oo, then
P{r = oo} = 1 and in the other case P{7 < oo} = 1. Indeed, if the
series converges, we may not have P{r = oo} > 0, as this would imply
ET = 0o while we have E7 =) | ET, => > < oo. Conversely,

n=1r,
if the series diverges then, as we have seen in 8.3. 23 we have for any
A>0, 112, s = 0. Hence, Ee™" =, Een =17, - =0

showing that P{r = 0o} = 1.
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This means that after the (random) time 7, the process is left unde-
fined. In other words, at any time ¢ > 0 some paths of the process may
no longer be defined (namely the paths X (¢,w) such that 7(w) < t), and
we observe only some of them — hence the probability that the process
is somewhere in N may be (and is) strictly less than 1. The transition
probabilities of the process described above form the minimal semigroup
defined in 8.3.20. Now, we may introduce an additional rule for the be-
havior of the process after 7; for example we may require that at 7 it
jumps back to 1 and does the same for all subsequent explosions. How-
ever, instead of the above rule, we could require that at 7 it jumps to
one of the even numbers, the probability of jumping to 2k being some
pr such that > 72, pr = 1, and the reader will be able to find more
such possibilities. All these choices lead to different processes and dif-
ferent semigroups — all of them, however, have transition semigroups
dominating the minimal transition semigroup.

In this context it is worth mentioning that condition (f) of 8.3.22
has a nice probabilistic interpretation. It turns out, specifically, that
a = (an),>1,on = E{e"*7|X(0) = n} solves the equation Qa = a
and is maximal in the sense that if Q (a/,),~, = A (), s, for some
(o), >, € 1 with || (al), >, [l < 1, then o/, < a, — see e.g. [92].

n

Certainly a # 0 iff 7 # oo.

8.4 Approximation theorems

The Trotter-Kato Approximation Theorem establishes a connection be-
tween convergence of semigroups and convergence of their resolvents. As
we have already seen in the examples of Yosida approximation, conver-
gence of resolvents of semigroups alone does not imply convergence of
semigroups on the whole of the space; in general the semigroups converge
only on a subspace, perhaps on the subspace {0}. In fact, convergence
of resolvents is equivalent to convergence of integrated semigroups, and
to convergence of related homomorphisms — see 7.4.48. Before present-
ing the theorem, we illustrate this situation further by the following two
examples. In the first example we need to consider a complex Banach
space, but the reader should not find this a difficulty after remarks made
in 6.2.7.

8.4.1 Example Let {T'(¢),t > 0}, ||T(¢)|| < M, be a semigroup acting
in a complex Banach space Xy and let Ry, A > 0, be the resolvent of this
semigroup. Define X as the Cartesian product Xy x C where C is the
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field of complex numbers and set, for x € Xg, 2 € C,t >0, n > 1,

o ()= ().

Let Ry, be the resolvent of {T),(t),t > 0}. We have, for A > 0,

()= e (- (22)

. R . .
which converges to ( (;x) in the uniform operator topology. However,

T,.(t) (x) does not have any limit, as n — oo, either in the strong or
z

in the weak topology as long as z # 0. On the other hand, integrals
fg e"¥ds = ;L (e™* — 1) tend to 0, as n — oo, in agreement with 7.4.48.

8.4.2 Example Let X = Co(R]) be the space of continuous functions
2 that satisfy 2(0) = lim, o, (1) = 0. For n > 1, let

T, (t)x(7) = 1g+ (7 — nt)x(T — nt), t >0,

and let A, be the generators of these semigroups. The set Xg = {z €
X|3K (x) > 0 such that 7 > K(z) = z(7) = 0} is dense in X. If z € X,
then

which tends to 0 as n — oo. Since the operators R) , are equibounded
inn, ie. ||Ryn| < %, we also have lim,_,oo Rxnz = 0, for all z € X.
On the other hand, it is obvious that, for ¢ > 0, T, (¢) tends weakly, as
n — 00, to 0. Thus, if the strong limit of it exists it is equal to 0, too.
But, for alln > 1,¢t > 0 and x € X,
IT(t)z — 0] = sup |1g+ (7 — nt)z(r — nt)| = ||z||.
TERT

This contradiction proves that although the weak convergence takes
place, the strong one does not, and, once again, convergence of semi-
groups is not implied by convergence of their resolvents.
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8.4.3 The Trotter-Kato Theorem  Let {T,,(t),t > 0},n > 1, be a se-
quence of strongly continuous semigroups with generators A,,. Suppose,
furthermore, that there exists an M > 0 such that |T,(¢)|| < M and
let Ry, = (A—A4,)"' A >0,n > 1, denote the resolvents of A4, If the
limit

R)\ = lim R)\’n (870)

n—0oo

exists in the strong topology for some A > 0, then it exists for all A > 0.
Moreover, in such a case, there exists the strongly continuous semigroup
{T(t),t >0}

T(t)z := lim T,(t)z, reX (8.71)

n—00

of operators in X' = cl(RangeR)). The definition of X’ does not depend
on the choice of A > 0, convergence in (8.71) is uniform in compact
subintervals of R* and we have [~ e MT(t)zdt = Ryz,A > 0,2 € X/
and [[T(t)||zxy < M.

Proof To prove the first assertion we argue as in 8.3.8, where A = £(X),
replacing convergence in the operator topology by strong convergence.
Moreover, the definition of X’ does not depend on the choice of A > 0
because R satisfies the Hilbert equation R, — Ry = (A—p)R\R,, which,
written as R,z = Ryx(z+(A—p)R,ux), ¢ € X, implies first Range(Ry) D
Range(R,,) for all A\, u > 0 and then Range(R)) = Range(R,,) by sym-
metry.
Next,

X' ={z €X| )\lim AR)x exists and equals z}.

Indeed, if we denote the right-hand side above by X", then by definition
X' D X”. Also, X" is closed, by [[AR)|| < M, > 0. Hence, to show
the opposite inclusion it suffices to show that RangeR, C X", for some
w>0.But, if v = R,y, then ARy = AR AR,y = pR\R,y + R,y — Ry,
and since ||Ry|| < MA™!, limy_.o AR\z = R,y = z, as claimed.

Hence, operators T,,(t) being equibounded, to prove (8.71), it suffices
to show that it holds for z of the form z = Ry where A > 0 and y € X.
This, however, will be shown once we prove that T, (t) R,y converges.
By Exercise 8.2.15,

¢ ¢
T.(t)Rxny = )\/ T, (s)Rxnyds — / To(s)yds + Ry nx.
0 0

On the other hand, by 7.4.48, there exists the strong limit U(t) =
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limy, oo fy Tn(s)ds with |U(t)||zx) < Mt. This implies that the limit
lim,, o T5, (t) R ny exists and equals U(t)AR\y — U(t)y + Ryy. In par-
ticular,

T(t)Ray = U(t)ARxy — U(t)y + Ryy, A>0,t >0,y eX. (8.72)

Clearly, ||T(t)z| < M|z|,z € X'. Since R) ,, commutes with T,,(¢),
Ry commutes with U(t). Therefore, by (8.72), ||AR\U(t)y — U(t)y|| =
IT(#)Ryy — Rayll < (M +1)A~Y||y|| which implies limy oo AR\U (t)y =
U(t)y. Hence, (8.72) shows that T'(t)x is a member of X’. By the density
argument the same is true for all z € X’. Also, in view of (8.71), it is clear
that {T'(t),t > 0} is a semigroup. Using (8.72) and [|U(t)| zx) < Mt
we see that lim;_,o T(¢t)z = x for z in a dense subspace of X', hence, for
all x € X'; this means that {T(t),t > 0} is strongly continuous. Finally,
continuity of ¢ — T'(¢)z implies that convergence in (8.71) is uniform on
compact subintervals of R*. The rest is clear. ]

8.4.4 Remark The generator of the limit semigroup  As Examples
8.4.1 and 8.4.2 make it clear, in general there is no closed linear operator
A such that (A — A)~! equals Rx,A > 0, the limit pseudo-resolvent
in the Trotter-Kato Theorem. (A family Ry, A > 0, of operators in a
Banach space is said to be a pseudo-resolvent if it satisfies the Hilbert
equation.) The point is that Rx, A > 0, are, in general, not injective.
However, X' N KerRy = {0} so that Ry, A\ > 0, restricted to X' are
injective. Indeed, by the Hilbert equation, Ryz = 0 implies R,z = 0,
A, 0 > 0; in other words, KerR) does not depend on A > 0. Hence, if
z € X'NKerRy then z = limy_oo ARyxz = 0.

Therefore, for any A > 0 we may define Ax = Az — ((RA)‘X/)flac
on D(A) = RangeR). By the Hilbert equation, this definition does not
depend on A > 0. A straightforward argument shows that A thus defined
satisfies the assumptions of the Hille-Yosida theorem (in X', with w =
0). Therefore it generates a strongly continuous semigroup in X'. Since
(A=Al = Ry = [[Te MT(t)zdt,x € X, this semigroup is the
semigroup {T'(t),¢ > 0} from the Trotter-Kato Theorem.

8.4.5 Example Convergence of elastic Brownian motions Let X =
C[0,00] and let A.,e > 0, be the generators of semigroups related to
elastic Brownian motions defined in 8.2.18. Observe that the formula
(8.50) may be rewritten as

- 2e o
A=A a(r) = Rya(r) + 7/ ¢ VA (0) dre™ VAT,
( ) aln) = Bl + e | z(o)dr
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where
Ryz(r / —V2Alo—r| _ e_m((ﬂ”)} z(o) do.
\/7
Therefore, for every x € X and A > 0,

[(A=A0)™!

/ e~V () dgre—VAT

2
x — R)\acH = ‘\/76“ sup

>0

SR

In other words, for any sequence €,,n > 1, such that lim,, .., €, = 0 the
semigroups {T},(t),t > 0},n > 1, generated by A, ,n > 1, satisfy the
assumptions of the Trotter—Kato Theorem. Also, we see that Ryz(7) =0
and that for any € X such that z(0) = 0,

lim ARy z = z. (8.73)

A—00

Hence, X' = {z € X|z(0) = 0}.

8.4.6 Exercise Check that the semigroup related to Brownian motion
described in 7.5.1 leaves C[— 00, oo] invariant and is a strongly continuous
semigroup in this space, and the resolvent of the restricted semigroup is
still given by (7.41). Conclude that, for € C[—o0, 0],

: A > —V2X|T—0]|
lim 4/ = e x(o)do = x(7)
A—00 2 oo

uniformly in 7. Use this to prove (8.73). Moreover, show that the limit
semigroup in Example 8.4.5 is the semigroup related to the minimal
Brownian motion, restricted to X’'. |

If condition (8.70) holds and x € D(A), then for A > 0 there exists a
y in X’ such that x = Ryy. Also, x, = Rxny,n > 1, belong to D(A,,)
and we have lim, .o £, = x and lim,, o0 ApTy = limy oo ARN nY —

= AR)y —y = AR,y = Ax. In Subsection 8.4.9 a version of the
approximation theorem is presented where convergence of semigroups is
characterized in terms of such convergence of their generators.

8.4.7 Definition  Given a sequence A,,n > 1, of (in general, un-
bounded) operators in a Banach space X, the domain of the extended
limit A, of this sequence is defined as the set of z € X with the prop-
erty that there exist z, € D(A,) such that lim, ., z, = x and the
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limit lim,, o, A, 2, exists. Although the latter limit is not uniquely de-
termined by z (see 8.4.11), we write Ag,x = lim,_ o Apz,. In other
words, A is a so-called multi-valued operator.

8.4.8 Exercise Let A,,n > 1, be as in the above definition and let
¢(X) be the space of all convergent sequences with values in X. Let us
define the operator A in ¢(X) by A(zn),>; = (An2yn),>; with domain

D(A) = {(2n) o1 [Tn € D(An), (Ann) s, € (X)),

Also let L : ¢(X) — X be given by L (acn)n21 = lim,, o0 Trn,. Show that x
belongs to the domain of the extended limit of A,,,n > 1, iff there exists
an (2,),>; € D(A) such that L (z,),>, = =.

8.4.9 The Sova—Kurtz version of the Trotter—-Kato Theorem  Let X
be a Banach space. Suppose, as in 8.4.3, that {T,,(¢),t > 0},n > 1, is
a sequence of strongly continuous semigroups with generators A,,, and
that there exists an M > 0 such that ||T,,(¢)|| < M. Also, suppose that
for some A > 0 the set of y that can be expressed as Az — Ag,x, where
Aoy is the extended limit of A,,n > 1, is dense in X. Then, the limit
(8.70) exists for all A > 0. Moreover, X' = cl(D(Ae;)) and the part
A, of Ae; in X is single-valued and is the infinitesimal generator of the
semigroup defined by (8.71).

Proof By saying that y may be expressed as Ax — Ae,x we mean that
there exists a sequence z,, € D(A,) such that lim, .. x, = z and
lim,, 00 Anxy exists and equals Az —y. Clearly Ry , (A, —AnZy) = Zn.
Also || Rany—2n| = [|Ram (Y= AT+ Anzn)|| < MAHjy— Aty + An,l|.
Since limy, oo (Azy, — Apzy) = y, the sequence Ry ny,n > 1, converges
and its limit equals lim, . , = x. This shows that the limit (8.70)
exists for the A\ described in the assumption of our theorem and x from
a dense subspace of X. Since ||Ry .| < MA~! this limit exists for all
zeX.
The same argument applies now to show that

Ra(Ax — Aezz) = x (8.74)

for all z € D(Ae,) and X > 0. Hence, D(Ae;) C Range Ry C X'. Let A
be the generator of the semigroup defined by (8.70). The remark made
before 8.4.7 shows that D(A) C D(Aez). Since the former set is dense in
X, cl(D(Aez)) =X

Finally, if x € D(Ap), ie. if z € D(Ae,) and Aegz € X/, then, by
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(8.74), = belongs to D(A) and since Ryx(A\x — Ax) = x,z € D(A), we
have Az = Aepx,z € D(Ap). On the other hand, if z € D(A), then
x € D(Aey) and Aeyz belongs to X' so that D(A) C D(A,). O

8.4.10 Corollary  Suppose that {T,(¢),t > 0},n > 1, is a sequence
of strongly continuous semigroups in X with generators A,,n > 1, and
that there exists an M > 0 such that ||T,,(¢)|] < M. Let A be a linear,
in general unbounded operator such that Range(A — A) is dense in X
for some A > 0. If for every © € D(A) there exists a sequence z, €
D(A,),n > 1, such that lim, .oz, = = and lim, ., Az, = Az,
then the limit (8.70) exists, the part A, of A in X' is closable and its
closure is the generator of the semigroup given by (8.71). In particular,
if A is the generator of a semigroup {S(¢),t > 0} in X (in which case
Range(A — A) =X, A > 0), S(t) coincides with T'(t) given by (8.71).

8.4.11 Example Telegraph equation with small parameter Let 0 <
€ < 1 be given. The equation

682x(t,7') dx(t,7) lazx(t,ﬂ Oz

or 5 — a3 a2 o c07)=2(r),5,0,7) =y(r)
(8.75)

is called the telegraph equation with small parameter. Of course,
-1

this equation is obtained from (7.55) when we put 2a = 2v? = €

It is reasonable to expect that, as € — 0, solutions to (8.75) tend to
the solutions of the diffusion equation

oz(t,7) 10%x(t,T)
Bn) TR o) = al).

To prove this conjecture, we consider the operators Ac = A(z)-1 (20)-1/2
where A, , has been defined in 8.2.24. As proved there, A, is the gen-
erator of a strongly continuous semigroup, say {T(t),t > 0}, in X x Y
where X = BUC;(R) and Y = BUC(R). We have

[ Soo(e,t)  Soi(e,t)
Te(t) = (S(l)z(e,t) S(ii(f,t))

where, by 8.2.26,

||SOO(67t)H <1, ||S()1(€,t)|| <e+ \/Z < S\E7

ISw0(e ) < 2= < L. [Su(en] <1 (8.76)

We note that the Trotter-Kato Theorem cannot be applied to the
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semigroups {7T.(t),t > 0},0 < € < 1, since they are not equibounded.
However, putting

1 0 Soo(e,t)  2=So1(e,t
V() = (1 O)Te(t) o1 - oo(e,t)  =So1(e 1)
0 \/E \/g \/ESlo(E, t) Sll(G,t)
we obtain the family of equibounded semigroups {V,(t),t > 0},0 < e <
1. Indeed, for (z,y) € X x Y,

1
[ Soo (e, t)z + \fsm(ﬁ )yl + IVeSwo(e, t)x 4 Sii(e, )yl

<zl + 3yl + =l + llyll < 4l ),

so that ||[VL(¢)] < 4.
The domain of the generator, say B, of {Vc(t),t > 0} is the same as
the domain of A, (= D() x X) and

5 ()= (6 S ;) ()- (Hgy_ J) e

We know that the operator § <7 with domain D(L, 1 ) is the generator
of the Brownian motion 5em1gr0up {T(t),t > 0} in Y. This semigroup
leaves the space X invariant and (Tp(t)z)’ = Tp(t)z’. Hence, the re-
stricted semigroup {V'(t),t > 0} (V(t) = Tg(t)x) is strongly continuous
in X, and its generator is %% with domain Dy ( %) composed of three
times differentiable functions with all three derivatives in Y.

Let us take z € D, (%) and for every € consider (z, /32" —ey) where

y € X. Since z” belongs to X, (z,/e2z"” — ey) belongs to D(B,). More-

1,.m

over, Bu(z, v/eka" — ey) = (32" — Vey,y) — (3a”,y) and (z, y/eba'' —
ey) — (2,0), as € — 0. This shows that, for any sequence €,,n > 1,

converging to zero, Dl(dd%) x {0} is contained in the domain of the
extended limit Be, of B._,. Our calculation shows also that the set of
vectors of the form Az,y) — Bex(x,y), where (2,y) € D(Beg), contains
vectors ()\x ", (A—1)y). Since the vectors of the form Az — 32" where
T € Dl(F) exhaust the whole of X and X is a dense subspace of Y, the
conditions of the Sova—Kurtz version of the Trotter-Kato Theorem are
fulfilled with any A > 0, X # 1. (See Exercise 8.4.12.)

Moreover, if (z.,y.) converges, as € — 0, to (x,y), in such a way that
Be(xc,ye) converges, then, by (8.77), ﬁye converges, and so g, converges
to 0. This shows that D(Be,) is contained in X x {0}. Combining this
with our previous findings we obtain that the subspace where the limit
semigroup of {V(t),t > 0} is defined equals X x {0}. By 8.4.9, we know
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that the part of B, in X x {0} is single-valued, and we have already seen
that one of its possible values on (z,0) where z € Dl(dd—;) is (32”,0).
This means that the generator of the lirmt semigroup and the operator
A(z,0) = (G1 5, 0) coincide on the set Dl( ) x {0}, which is the domain
of the latter operator. Since both operators are generators of semigroups,
they must be equal (use 7.4.32, for example). Hence, we have

i (0) =t (25 00) = (167) - wex e

Therefore, in view of the inequality involving [/Sop1(€,t)|| contained in
(8.76), Soo (€, t)x + So1 (€, t)y converges to V(t)x strongly in X for x € X
and y € Y. A density argument then applies to show that it converges to
V(t)x in Y for z and y in Y, and this is what we have set out to prove.

8.4.12 Exercise = Modify the argument from the previous subsection
to show that the conditions of 8.4.9 are fulfilled, as they must, with any
A>0.

8.4.13 Exercise Prove that the derivative of the solution to the tele-
graph equation with small parameter converges to that of the diffusion
equation provided x € Dl(d 2) and y = 12"

8.4.14 Exercise  Prove convergence of semigroups from 8.4.5 using
8.4.9.

8.4.15 Exercise  Prove convergence of semigroups from 8.4.11 using

the Trotter—Kato Theorem 8.4.3. To this end solve the system of equa-
tions

with given w € X and 2z € y and unknown z € Dl(dd—;) and y € X to
show that

(A= B = ((e)\ + E)O\Qe +

where (A — %%)_1 is the resolvent of the operator %% in X.
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8.4.16 Proof of 8.3.20 We have Ry, < Ry, for r <71/, and ||Ry .|| <
A~1. Hence, by 8.3.17, there exists the strong limit Ry = lim,11 Ry -
Clearly, for any N € N, ZN:o()\ — D)"'r"BY < Ry, < R,. Hence,
letting r T 1, we obtain Y., _ (A — D)"*BY < R,. Applying 8.3.17
again, the series > ° (A — D) !B} converges and we have Y~ (A —
D)~!'B} < Ry. On the other hand, Ry, < >.0° (A — D) !B} and so,
letting 7 1, Ry < Y. (A — D)~ BY, proving that the two are equal.
(Note that we do not claim that Ry = (A — D)~! 3> | BY; in fact, the
series > 7 o BY in general diverges.)

Next, we note that for z € D(D), Y21 (A\ — D)"'BF(A — D)z =
x + Eanll()\ - D)'BY'0r = x + Z?:’:O()\ — D)™'BYOx. Letting
N — o0, we obtain Ry(A — D)z =z + R Oz, i.e. R\(A— D —O)x = x.
In particular, the range of Ry contains D(D) and so cl(RangeR)) = I*.
Therefore, the semigroups {S,.(t),t > 0} converge as r 1 1 to a strongly
continuous semigroup. The limit semigroup is composed of sub-Markov
operators, the operators S,.(t),t >,0 < r < 1, being sub-Markov. Finally,
for € D(D),lim,1; Dx + rOx = Dz + Oz, proving that the extended
limit of D + rO, which is the generator of the limit semigroup, is an
extension of D + O.

8.4.17 Approzimation by discrete-parameter semigroups  Let us sup-
pose that T},,n > 1, are contractions in a Banach space X and h,,,n > 1,
are positive numbers with lim,,_,. h, = 0. Then, the operators A, =
h;1(A, — I) are generators of contraction semigroups {7, (t),t > 0}
where T),(t) = e~ 'te=ha "tTn If the extended limit Aoy of Ap,n > 1,
has the property that for some A > 0 the vectors of the form Az — Ae, @
form a dense set in X, then, by 7.4.48, 8.4.3 and 8.4.9, there exist the
limits
t
U(t)x = lim T, (uw)z du, x € X,

n—0o0 0

T(t)x = lim T, ()=, reX

n—oo

We will show that U(t) and T'(¢t) may also be approximated as follows:

t
Ut)e = lim i T/hlgdu,  zeX, (8.79)
T(t)z = lim Tz zeX (8.80)
n—oo

To this end, we note first that by 8.4.9 there exists the strong limit
Ry = lim, _.o(A — A,)~!. Hence, by 7.4.50, there exists the limit on
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the right-hand side of (8.79). Equality must hold, because both sides are
continuous and their Laplace transforms coincide. Moreover, from the
proof of the Trotter—Kato Theorem 8.4.3 we know that Ut )x 6 X’ for all
t > 0 and z € X; on the other hand, for x € X', U x—fo s)zds, so
that by the strong continuity of {T'(¢),t > 0}, lim; o 1U(t):17 = z. This
shows that it suffices to show (8.80) for x of the form x = U(s)y,y €
X,s > 0. In view of (8.79) and J|T[t/h"]|| < 1, this will be done once we

show that limy,_ e T/ I Tnu/h"]y du exists and equals T'(t)U(s)y.
We have:

uthn [ﬁ

A 5 A S
Tn ydu = Tn ydu = Tn' ydu
0 0 h

nl7]
Y e T rle] ]
_/0 Tn ydu—/0 T ydu
— U(t+s)y—U(t)y.

On the other hand, U(t + s)y — U( )y = hmnﬁOo ft+‘s (u)ydu —
lim, o0 f(f T (u)y du = limy, o Tp,( fo u)ydu = T(t)U(s), as de-
sired.

8.4.18 Corollary Central Limit Theorem again  As in the proof of
5.5.2, we assume without loss of generality that X,,n > 1, are inde-
pendent, identically distributed random variables with mean zero and
variance 1. Let T, = TﬁXn = TﬁXl be the related operators in

C[—00,00]. By Lemma 5.5.1, limy,—.oo n(T}, — I)z = 32" for all twice
differentiable functions x € C[—o0, 00] with 2" € C[—o0, 00]. The oper-
ator r — % " defined on the set of such functions is the generator of the
semigroup {T'(t),t > 0} related to Brownian motion. Hence, by 8.4.10,
limy, oo T2 = T(t)z for all x € C[—00, o0]. Taking ¢ = 1 and noting

that T} = Tﬁ y>r_ x, We obtain the claim by 5.4.18.

8.4.19 Example A random walk approximating Brownian motion
Brownian motion is often approximated by the following random walk.
Given a sequence of independent random variables Y; assuming val-
ues +1 and —1 with equal probability %7 we define the simple ran-
dom walk Wi,k > 1, by Wy = 0 and W, = E?Zl Y;. Next, we define
continuous-time processes X, (t),n > 1, by X, (t) = ﬁW[m],t > 0.
In other words, with n increasing, we increase the number of steps of
the random walk in a finite time, while decreasing their length; the
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steps are being taken at times ¢ = % We note that E X,,(t) = 0 and
D%X,(t) = %Zyﬂ Y? = ["—nt] —t,as n — 00.
To see that X,,(t),n > 1, approximates a Brownian motion w(t),¢ > 0,

we note that T'x, ;) = TE]YJ By 5.5.1, limn_,oo(T%ylx—x) = %x , for
N n

suitable class of functions z. As in 8.4.18, this implies lim,, oo Tx,, (#)®(7)
=Fz(r+w(t)), € R,z € C[—o00, .

8.4.20 Example For an n > 1, we define a discrete-time Markov pro-
cess X, (k),k > 0, in [0,1] by requiring that given X,,(k) = s we have
Xn(k+1) =Y/n where Y is a binomial random variable with parame-
ter s. We will show that as n — oo, X,,([2nt]),n > 0, approximates the
continuous-time process in [0, 1] with generator A introduced in 8.3.15
and 8.3.16. To this end it suffices to show that for a twice differen-
tiable function x € C[0, 1] with 2” € C[0,1], lim,, o 2n[A,z — 2] = Az
strongly in C0,1], where A,z are Bernstein polynomials (see 2.3.29).
Using the Taylor formula (5.21), 2n[A,x — z|(s) = 2nz’(s)E (Y/n—s) +
nE (Y/n—s)%2"[s+0(Y/n—s)] = nE (Y/n—s)%2x"[s+0(Y/n—s)]. Also
Ax(s) =nz"(s)E (Y/n — s)? since E (Y —ns)? = D?Y = ns(1 — s).

For a given € > 0, a 6 > 0 may be chosen so that |7 — o] < ¢ implies
|z"(0)—a"(7)| < €. Hence, by Chebyshev’s inequality, ||2n[A,z—z]—Az||
does not exceed

Sl[%)pl] enE (Y/n = $)° 1)y /n_si<s + 2nlla” || E(Y/n = $)*Liyn—s|>s
sg|0,
<e sup s(1—s)+2n"3072||2"|| sup E(Y —ns).
s€[0,1] s€[0,1]
Since the first supremum equals %, we are left with proving that
lim n™® sup E(Y —ns)* =0.
n—0o0 s€[0,1]

This, however, follows by a straightforward calculation of E (Y — ns)*;
the details are left to the reader.

8.4.21 Example The pure death process related to the n-coalescent of
Kingman  Let us consider a population of N individuals which evolves
according to the following rules. The generations are discrete and non-
overlapping, and each member of the (n + 1)st generation chooses his
parent from the nth generation at random and independently from the
other members, the probability of choosing any parent being equal to
N~1. We observe a sample of n individuals from this population at
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time 0 and are interested in the number Xy (k),k > 1, of ancestors k
generations back; we assume that the process is well-defined for all £ > 0,
i.e. that the population has evolved in the manner described above for
an infinitely long time. Xy (k),k > 0, is a discrete-time Markov chain
with values in {1,...,n} and transition probabilities p; ; = p; ;(N) =

Nt {;} (?’)j!, where {;} is the Stirling number of the second kind

— see 8.4.33. Indeed, N* is the number of all possible ways i members
may choose their parents, and the number of ways exactly j parents
may be chosen is the product of three numbers. The first of them is the
number of ways the set of i elements may be partitioned into j subsets,
i.e. the Stirling number of the second kind. The second is the number
of ways j parents may be chosen from the population of N individuals
— the binomial coefficient (]jv ), and the third is the number of possible
assignments of j parents to j subsets.

The process Xy (k),k > 0, is a pure death process in that its
paths are non-increasing sequences. We will show that Xy ([tN]),t >
0, converges to a continuous-time (pure death) process with intensity
matrix @ = (g;,;), where

Gii = —(;)z =1, Qi1 = (;)Z —92,.n (8.81)

and ¢;; = 0 otherwise. To this end we note first that to prove that
N [(pi,j)1<i i<n — I} converges to () it suffices to show that the corre-

sponding entries of these matrices converge. Moreover,
1—1 —2
1—-—=)=1- —
S CHER S

where |hy| <2071 ZZ G 1) , 5o that limy_,oc Nhy = 0. Similarly,

Dii—1 = <;) Jb;l:[_j (1 — ]];) = &(;) + ho (8.82)

where |hy| < 2071()) 4 S22 G20 o that limy oo Nhy = 0. This
shows that imy_.oc Np;; — 1] = —(;) = —limy_ 00 VNp; i—1. Moreover,

since

Zpi,j = sz',j =1, (8.83)
j=1 =1
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for j #i,i—1, Npij <N, 1pij=N1—pii —pii-1) < Nlhi| +
Nlha| — 0 as N — oo, as desired.

As formula (8.81) shows, if N is large and the time is measured in
units of N generations, the distribution of the time (counted backwards)
when there are j ancestors of the given sample is approximately ex-
ponential with parameter j(j — 1)/2. In particular, the expected time
Tvircas to the most recent common ancestor of a sample of n individual
is ETvurcoas ® 2N Y 0, ﬁ =2N(1- %) In particular, the expected
time Tyrcap to the most recent common ancestor of the whole popu-
lation is ETvrcap =~ 2N.

8.4.22 Example Kingman’s n-coalescent A modification of the rea-
soning from the previous subsection allows tracing of the whole geneal-
ogy of a sample. To this end, for a sample of n individuals we consider
the Markov chain R (k), k > 0, of equivalence relations in {1, ..., n}; the
pair (i, 7) belongs to the equivalence relation Ry (k) iff the individuals ¢
and j have a common ancestor k generations ago. Each equivalence class
corresponds to a member of a population that lived k& generations ago,
yet the opposite statement is not true because some members of this
generation may have not have descendants. Ry (0) is the main diago-
nal in the square {(7,7)|1 < i,5 < n} and by 8.4.21, Ry (k) eventually
reaches the full equivalence relation, i.e. the whole square.

We follow Kingman [67], [68] to show that R ([Nt]),t > 0, converges,
as N — oo, to the continuous-time Markov chain with intensity matrix

Q given by

—(&h, ife=¢,
geer =141, if& <&, (8.84)
0, otherwise,

where |€] denotes the number of equivalence classes in an equivalence
relation £ and we write £ < £ iff £ C & and &’ is formed by amalga-
mating (exactly) two equivalence classes of £. The Markov chain with
intensity matrix (8.84) is called the n-coalescent of Kingman.

To this end we note that pg ¢/, the transition probability of the chain
Rn, is zero if £ ¢ &' Also if £ C & yet € £ &, then |E] — |&'] > 2,
and pg g/ < pigj, 7 where p; ; is the transition probability of the pure
death chain from the previous subsection. Hence, limy_.oc Npg g/ = 0.
Moreover, pg.s = pig|, ||, S0 that imy o N(pe g —1) = —(|‘§|). Finally,
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itE<E, pee = (|§|)_1p|g"|g‘,1 (we do know which two equivalence
classes are to be amalgamated), so that limy_.oc Npg ¢ = 1, as desired.

This result may be used to derive many classic formulae for sampling
distributions in population genetics (see [39]) and in particular the fa-
mous Ewens sampling formula (see [69]).

8.4.23 A generalization of 8.4.17 In applications it is often the case
that semigroups, especially discrete parameter semigroups, approximat-
ing a semigroup do not act in the same space as the limit semigroup
does. Typically, we have a sequence of Banach spaces, say X,,,n > 1,
approximating a Banach space X in the sense that there exist operators
P, : X — X, such that lim, . || Pnz||n = ||z||, for all z € X (|| - ||, is the
norm in X,,). In such a case, we say that a sequence x,, € X,;,n > 1, con-
verges to an x € X if lim,, o ||, — Pr|| = 0. With such a convention,
the Trotter—-Kato Theorem remains true with the proof requiring only
cosmetic changes. In Subsection 8.4.25 we present a typical example of
such an approximation.

8.4.24 Exercise Show that in the situation described above we have
SUp,>1 |1 Ps|| < oo

8.4.25 Example A random walk approzimating the Ornstein—Uhlenbeck
process  Imagine an urn with 2n balls, say green and red. One ball is
drawn at random; if it is red then a green ball is put into the urn and if
it is green a red ball is put into the urn. This procedure is then repeated
— this is the famous Ehrenfest model from statistical mechanics. The
state of this process may be described by a singe number, for example
by the difference between the number of red balls and n. In other words,
we are dealing with a discrete-time Markov chain with values in the set
Sy, = {i € Z||i] < n} and transition probabilities p; ;41 = 1 — Z;rn", —n <
1<n—-1,p; ;1= i;rn",—n—l—l <i<n.

If (pi);cg, is the initial distribution of the process, then at time F,
the distribution is U} (pi);cg, where Uy (pi);cs. = (¢i);ecs, With gn =
ﬁpnfl, q—n = %pfrH»l and ¢_p4it1 = (1_ﬁ)pfn+i+%p7n+i+27 0<
i < n — 2. The operator U,, acts in the space of sequences (pi)iesn
equipped with the norm || (pi);cs || = > ;cq. |pil- The related dual op-
erator T}, is defined in the space X, of sequences (&;),. s, equipped with
the norm || (§);eg, [In = maxies, & as follows: T,y (§)e5, = (Mi)ies,
where n_pnyi = 556nti-1 + (1= 55)8ntit1,1 <@ < 2n—1, ngy =
Etnt1-
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We will show that if the length of a single step of the process is taken

a

to be Tn and the time scale is changed so that steps will be taken

at times %, then, as n — 00, these Markov chains approximate the
Ornstein—Uhlenbeck process. We put a?> = y2a~! and b = a where o
and vy are parameters of the Ornstein—Uhlenbeck process (see 8.1.14). In
other words, we show that

lim_ Tty — T(t)z, (8.85)
where {T'(t),t > 0} is the Ornstein—Uhlenbeck semigroup in Cy(R); we
note that X,,,n > 1, approximate the space X = Cy(R) in the sense of
8.4.23 if we let P,z = (&i);cg, where §; = x(%), -n <i<n.

To prove (8.85) we need the following result. Consider the opera-
tor Az(1) = —ara/(7) + gsc”(r) defined on D(A) composed of twice
differentiable functions in X with both derivatives in X and such that
T — Bx(r) = 72'(7) belongs to X. We want to show that for x € D(A),
lim¢ o4 (T(t)x — ) = Az, i.e. that the infinitesimal generator of the
Ornstein—Uhlenbeck semigroup is an extension of A. To this end, we re-
call that by 8.1.21, T(t)z(7) = E z(e”*7+w(B(t))) where w(t),t > 0, is
a Brownian motion and §(t) = %(1 — e2at), Using the Taylor formula
(5.21), we write z(e™ 7 +w(B(t))) as z(re” ) + 2/ (te”“r)w(B(t)) +
2 (te” + 0w(B(t)))w(B(t))/2; note that # is a function of 7,¢ and w.
Using Ew(B(t)) = 0 and Ew?(3(t)) = B(t), and applying the Lagrange
formula to z(re™%), we obtain T'(t)z(7) — z(1) = 7(e™ — 1)a/(7 +
Or(e " —1))+ 1B8(t)Ea” (te” " +6w(B(t))). Using the triangle inequal-
ity in a straightforward manner the task reduces to showing that

lim sup |72/ (7 + 07(e”* — 1)) — 72/ (7)| = 0, (8.86)
t—0rcR

and
}111(1) sup |E 2" (te™™ + 0w(B(t))) — 2" (1)| =0, (8.87)
—UreR

uniformly in 7 € R. We will prove the first of these relations, leaving the
proof of the other as an exercise.

Let € > 0 be given. We choose an M > 0 so that sup,¢g |72/(7)| < 5€
for |7| > £ M. Also, we choose a 0 > 0 so that |2'(7) — 2/(0)| < 57 for
|7 — 0| < 5 I7|,|lo| < 15M. Finally, we take a t small enough to have
l—e < min(lo, M) Then, for |7] > M, |r2'(17 + 07(e™ — 1)) <
P € < 13¢, so that the absolute value in (8.86) is less than
€. Similarly, for |7] S M the absolute value in (8.86) does not exceed
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M|z (14 6071(e”* —1)) —2/(7)| < e since |f7(e* —1)| < M(e ¥ —1) <

min (4, 32).

Using 8.1.21 we check that the Ornstein—Uhlenbeck semigroup leaves
D(A) invariant. Since D(A) is dense in X, D(A) is a core for the infinites-
imal generator of {T'(¢),t > 0}. In particular, Range(A— A) is dense in X.
Therefore, (8.85) will be shown once we prove that lim,_, ||[R0(T), Pz —
P,x) — P, Az, =0 for € D(A).

By the Taylor formula nb(T,, P,z — P,x) (a *"H) equals

vn
b —n+i—1 . a—n—l—i
5 |7 ai\/ﬁ Tn

b 2n —1i a—n—i—i—i—l . a—n—i—i

2 ) "\" e Vi

_mndid i a*bi_, —n+i , a
—ab\/ﬁx<a\/ﬁ)+4n$ a\/ﬁ 91\/5

a*b(2n —1i) , [ —n+i a )

— 1<i1<2n—-1

in T (a NG —1—92\/5), <i<2n ,

and nb(T, P,z — P,x) (Fa\/n) equals

2p
+aby/na’ (ZFa\/ﬁ) + %x” (:Fa\/ﬁ + 03

where 0 < 6; < 1,7=1,2,3. Since

—n 41 —n 41 —n+1 2 —n 41
P, Ax (a\/ﬁ)z—aa N x (a Tn )+éx” (a 7 ),

0 <i<2n, and b=« and a?b = ¥?, we obtain

_|_

5

|Inb(T,, Pz — Ppx) — PpAx||, < 72 sup . |2" (1) — 2" ()|

T,0,|T—0|< n

which converges to 0 as n — oo by uniform continuity of z”.
8.4.26 Exercise Prove (8.87).

Suppose that we have two Feller processes X 4 and X g with generators
A and B respectively. Sometimes, for example when B is bounded, A+ B
is well defined and generates a Feller semigroup. What does the process
related to A + B look like at time ¢? It is reasonable to expect that
for large n a good approximation is given by the following discrete-time
process: we allow the process to evolve for time ¢/n according to the
transition probability of X 4 and then for the same time according to the
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distribution of X g, and then repeat the whole circle n times. Formally,

we have the following theorem.

8.4.27 The Trotter product formula  Suppose that A and B and C are
generators of ¢g semigroups {S(t),t > 0}, {T'(t),t > 0} and {U(¢),t > 0}
of contractions, respectively, in a Banach space X. Suppose also that D
is a core for C' and D C D(A) N D(B) and Cx = Az + Bz for z € D.

Then,
, t t\1"
U(t) = lim [s()zv()} .o,
n— oo n n

Proof Since D is a core, by 8.4.9 it suffices to show that

strongly.

Tim_ %(S(t/n)T(t/n)z — 1) = Az + Bz
or, which is the same, lim, o [nt=1(S(t/n)T(t/n)x — z) — S(t/n)Ax]
= Buz. To this end we write ||nt=[S(t/n)T(t/n)z — z] — S(t/n)Az —
Bal| < ||8(t/n){nt [T (t/n) — 2] — Az} + |nt~[S(t/n)z — 2] — Bal| <
|nt=1[T(t/n) — 2] — Az|| + ||nt~1[S(t/n) — 2] — Az| — 0, as n — oc.

O

8.4.28 Exercise Suppose that {T'(t),t > 0} and {S(¢),t > 0} are two
contraction semigroups. Show that the limit lim,,_,o [S(¢t/n)T(t/n)]"™ ex-
ists iff there exists the limit lim,, o [T'(t/n)S(t/n)]™, and then both are
equal.

8.4.29 Exercise Find an example showing that, in the notations of
8.4.27, even if the semigroups {S(¢),¢ > 0} and {T'(¢),¢ > 0} commute
and D(A) = D(B), the domain D(C) may be strictly larger than D(A).

8.4.30 Corollary The Feynman—Kac formula Let Xy, t > 0, be a Lévy
process, and let {T'(¢),t > 0} be the related semigroup in X = Cy(R)
or X = C[—00,00]. Moreover, let A be the infinitesimal generator of
{T(t),t > 0} and B be the operator in X given by Bz = bx where b is a
fixed member of X. The semigroup {U(t),t > 0} generated by A+B— I
where 8 = ||b]| is given by

Ut)z = e PR Xeds)p (1 4 X)), (8.88)
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Proof By 8.4.27, it suffices to show that e~ [T'(t/n)e®™B| (1) con-
verges pointwise in 7 € R to the right-hand side in (8.88). We have

eBa(r) = [ T (r + o) py(do).
T(t)etPa(r) /]R (r+0)u(do)

Hence, by induction,

[T(t)e" "] x(r)
— etZ?zl b(T+Z?:i0j)z T 3 ;) e doq)...ue( doy, ).
/R/R (T + > 00) pu(dor)...p(doy)

=1

Since pig/n ® ... @ iy, 1s a joint distribution of Xy /5, Xog/n — Xy, -y X —
X(n—1)t/n, We obtain

e Pt [T(t/n)e(t/")B]naj(T) _ Ee—ﬁte(t/n) > h—1 b(T“ert/n)x(T + Xt)~

This implies our result by the Lebesgue Dominated Convergence The-
orem because, for almost all w, the map ¢ — b(7 + X;(w)) is Riemann
integrable and limy, o (t/1) Y71 b(T+Xpy /n(w)) = fot b(T+ Xs(w)) ds.

O

8.4.31 Corollary The characteristic function of the telegraph process

In 7.7.5 we have proved that the infinitesimal generator of the semi-
group related to the process g;, ¢ > 0, defined in (7.62) is the sum of two
operators: B and C — al. The operator B generates the semigroup of
operators related to the convolution semigroup piy = 6y¢,0),t > 0, on the
Kisynski group G. The operator C — al generates the semigroup of op-
erators related to the convolution semigroup ug =e exp(atd(o,—1)) =

e Yy, (at)™ Sy = e~ cosh(at)d (g 1) + e~ sinh(at)d, 1), t >0,

n!

(convolution in G.) Therefore, by 8.4.27, the distribution of g;,t > 0, is
the limit of (g, * ug /n)*" as n — oo. Identifying a measure on G with

a pair of measures on R, by (1.16), we see that (p/,, *,uﬁ/n)*” is the pair
of measures being the entries of the first column of the nth power of the
matrix

e—at/n cosh(at/n)dye/m e—at/n sinh(at/n)d_ut/pn

A=Altn) = e~ /" sinh(at/n)8,/m €™ cosh(at/n)S_yi/m

Since in calculating powers of this matrix we use convolution (in R)
as multiplication, it may be hard to find explicit formulae for A™. The
task, however, becomes much easier to achieve if we turn to characteristic
functions and note that the characteristic function of the entry of A™,
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a function of 7 € R, say, is the corresponding entry in the nth power of
the matrix (with scalar entries)

we L vt

_at |cosh e sinh Lem T

Ac(tvan) =e inh &t Tlivt h & — vt
S1n. e n COS ne n

of characteristic functions of entries of A. In other words, our task re-
duces to that of finding lim,, o [Ac(¢, n, 7)]™. In what follows we restrict
ourselves to the case where v = 1; this will simplify our calculations and
the general case may be easily recovered from this particular one.

To this end we will use some basic linear algebra. For any non-negative

numbers p and ¢ such that p> — ¢> = 1 and any complex z = r +

iv with w,7 > 0 and |z|] = 1, the matrix M = (Zj zq) has two

complex eigenvalues A\; = pr + s; with corresponding right eigenvectors

v; = (—Zgq,ipu — s;) where s; are two (in general complex) roots of

p?r? —1,j = 1,2. Since p?>r? — 1 is real, s; +so = 0. Therefore, M equals
. —Zq . —Zq A O ;1 ipu—i-'sl Ei] . (8.89)
ipu —s1 ipu+s1| |0 Ao 2zZgs; |s1 —ipu —Zq

The point in representing M in such a form is that the nth power of
(8.89) is easily computed to be

—Zq —Zq A0 -1 |ipu+s1 Zq (8.90)
ipu—s1 dpu+si] |0 A| 2zqs; |s1 —ipu —Zq '

because in (8.89) the rightmost matrix is the inverse of the leftmost
matrix. Of course, e%AC(t,n,T) is of the form of M with z = en™,
p= cosh% and ¢ = sinh %t

To find our limit we need to consider three cases: (a) 72 < a2, (b)
72 > a?, and (c) 72 = a?. Calculating the first two derivatives of x
coshaxcosTe — 1 at x = 0 we see that for sufficiently large n, in case
(a) coshat cosal > 1 and in case (b), coshai cosat < 1.

In both cases we represent [A.(t,n, 7)™ as

1, 1 1 AP0 [L+ipusyt Zgst
T | s ; S T b (891
L, [ st mgsl] T R P T

1

When n — oo, Z converges to 1 and pug~! converges to 7a~!. In case

(a), p?r?2 —1 = (pr + 1)(pr — 1) > 0 for sufficiently large n and we

take s1 = v/p?r?2 — 1. Then qsl_l = 1/W has the same limit

sinh? ax

as 2(cosh azx cos Tz —1)

as x — 0, and by de I'Hospital’s rule this last
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limi ls —=2—. Hence &% = 2L converges to ———. In cas
t equals Jaz—z- Hlence , converges to T case

S1 q s
(b), p2r2 < 1 for sufﬁciently large n and we take s; = iy/1 — p?r2.
Then L 5~ converges to ﬁ, and so 2= — converges to \/: Therefore,
[Ac(t, n, T)]™ converges to

1 _ 1T _ a
@212 @212

1 . 1 1 a; 0
7€ @_ir _@HT 0 as

iT a
1+ Vaz—12 a?—T12 ]

in the case (a), and to

It e v
in case (b), where a; = lim;, o0 A}, j = 1,2. If f( ) isa positive function
such that lim, ¢ f(z) = 0 then lim,_o[1+ f(z)]* = elime—o 7% Hence,

in case (a), Inay = lim,_,qty/ Q(COSMZ—ZOS“H and by de 1’'Hospital’s
rule oy = eV~ Analogously, ay = e V¥ ~7"t In case (b), oy =
eV =0t and ap = eIVt Therefore,

7at]- 1 1 a1 0
€5 |ivrP=a?ir 71@%7 0

a

n— oo

: n _ . —at ¢)1 (ta T, a)a ¢)2(ta =T, a)
i AC(t, " T) —° |:¢)2 (ta T, a)7 ¢1 (ta =T, a):|

where, in case (a),

— cos 2 _ 2y 4T ¥ 2 _ 2
¢1(t,7,a) = cosha? — 7 t—l—lmblnh a? — 72t,
oo(t,T,a) = % sinha?— T2,

2 _ 12
and in case (b)
(t,7,a) =cos V72 — a’t + i———=sin V72 — a?t,
#1( %_ —
_ a ; 2 _ 2

oo(t,T,a) = msm 72 — a?t.
Case (c) may be treated analogously, or we may note that the functions
¢i,% = 1,2 must be continuous in 7 € R. This gives ¢1(t, £a,a) = 1 £iat
and ¢5(t, ta,a) = at.

By (7.67), the characteristic function of £(t) = fot(—l)N(s) ds equals

¢1 + ¢2. Hence it is given by (6.32) — compare [12], [96].

8.4.32 Exercise Use 8.4.31, 6.6.18 and (8.65) to give a direct proof of
convergence of solutions of the telegraph equation with small parameter
to the solution of the diffusion equation that does not rely on the Trotter—
Kato Theorem.
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8.4.33 Appendix Stirling numbers (see [45], [101])
1 The definition Let (t),, denote the polynomial

o=1, (t)i=t, On=tt—1) (t—n+1),n>2

For each n € Ny, the polynomials (t);,0 < k < n, are linearly indepen-
dent, and so are the t*,0 < k < n. Hence, the Stirling numbers s(n, k)
of the first kind may be defined by the formula

n

t)n = Zs(n, k)th;  we put s(n, k) = 0if k & {0, ...,n}. (8.92)
k=0

Analogously, by definition, the Stirling numbers S(n, k) of the second
type are uniquely determined by

n

" =" S(n,k)(t)k;  S(n,k)=0if k¢ {0,...,n}. (8.93)
k=0
It is easy to see that s(n,n) = S(n,n) =1, s(n,0) = S(n,0) = 0.
2 A recurrence relation From now on we will focus on Stirling numbers

of the second kind since they are of greater importance for us. Note that
(t)k+1 = (t)k(t — k) = t(t)k — k(t)k Thus

—tZSn k)( iS k+1+is(n>k)k(t)k

k=0 k=0
n+1

72511 k—1)( HZSn k)k
n+1

= [S(n.k— 1)+ kS(n, k)](t)
k=1

since S(n,n + 1) = 0. Comparing this with (8.93) where n was replaced
by n + 1 we get

Sn+1,k)=Sn,k—1)+kS(n k), k=12 ..n+1  (8.94)

Using this relation allows us to calculate the entries S(n, k) of the matrix
given in Table 8.1. To do that we have to take into account that S(0,0) =
1 and S(n,0) = 0,n > 1, i.e. that the first column (except for the first
entry) is composed of zeros and that S(n,n) = 1, which gives the entries
on the diagonal; (8.94) then allows us to fill consecutive columns (a
bigger table can be found on page 258 of [45] or page 48 of [101]).

The main point, however, is that the recurrence relation (8.94) and
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“boundary conditions” S(n,0) = 0,n > 1, and S(n,n) = 1 determine
all Stirling numbers of the second type.

n\Nk 0 1 2 3 4 5
0 1 0 0 0 0 O
1 01 0 0 0 0
2 01 1 0 0 0 Table 8.1
3 01 3 1 0 0
4 0 1 7 6 1 0
5 0 1 15 25 10 1
6 0 1 31 90 65 15

n
k
of possible ways a set of n elements may be partitioned into k£ non-empty

subsets. It is clear that {g} =0 forn > 1, and {Z} =1 and we could

3 Relation to combinatorics Let, as in 8.4.21, { } denote the number

agree on {8} = 1. Hence, to show that S(n, k) = {

show that
n+1] n n
el

This can be achieved as follows. Think of a set with n 4+ 1 elements
as having n ordinary elements and a special one. When we divide our

Z} it suffices to

set into k subsets, this special element either forms a one-element set,

and there are { } partitions like that since then the remaining n

n
k—1
elements are partitioned into k — 1 subsets, or is a member of a subset
with at least two elements. In the latter case the remaining elements are
partitioned into k subsets and the special element has been added to one

of them — this last step may be done in k ways.

8.4.34 Exercise Relation (8.83) is clear because of the probabilistic
interpretation. Prove it analytically.
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Appendixes

9.1 Bibliographical notes

9.1.1 Notes to Chapter 1  Rudiments of measure theory may be
found in [103]. Classics in this field are [28] and [49]; see also [87]. A
short but excellent account on convex functions may be found in [41],
Chapter V, Section 8. A classical detailed treatment may be found in
[85]. The proof of the Steinhaus Theorem is taken from [76].

9.1.2 Notes to Chapter 2 There are many excellent monographs
devoted to Functional Analysis, including [2], [22], [32], [37], [54], [98],
[112]. Missing proofs of the statements concerning locally compact spaces
made in 2.3.25 may be found in [22] and [55].

9.1.3 Notes to Chapter 3  Among the best references on Hilbert
spaces are [90] and [111]. The proof of Jensen’s inequality is taken from
[34]; different proofs may be found in [5] and [87]. Some exercises in 3.3
were taken from [20] and [34]. An excellent and well-written introductory
book on martingales is [114]; the proof of the Central Limit Theorem is
taken from this book. Theorems 3.6.5 and 3.6.7 are taken from [90]. A
different proof of 3.6.7 may be found e.g. in [98].

9.1.4 Notes to Chapter 4 Formula (4.11) is taken from [59]. Our
treatment of the Itd integral is largely based on [113]. For detailed in-
formation on matters discussed in 4.4.8 see e.g. [93], [64] and [38]. To be
more specific: for integrals with respect to square integrable martingales
see e.g. Proposition 3.4 p. 67, Corollary 5.4 p. 78, Proposition 6.1. p. 79,
Corollary 5.4, and pp. 279-282 in [38], or Chapter 3 in [64] or Chapter
2 in [34]. See also [57], [61], [102] etc.

363
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9.1.5 Notes to Chapter 5 From Bourbaki and Kuratowski to Bourbaki
and Kuratowski — According to [37] p. 7, Lemma 5.1.10 “was discovered
independently in 1923 by R. L. More and by K. Kuratowski, was redis-
covered by Zorn in 1935 and then rediscovered yet again by Teichmiiller
a little later. The name Zorn Lemma was coined by Bourbaki, who was
one of the first to make systematic use of the principle.” The reader
should be warned that Bourbaki is not a single person, but a group of
(outstanding) French mathematicians, who publish all their work under
one name. Korner [75] reports that (once upon a time) Mr. Bourbaki
applied for membership in the AMS, but was replied that he should ap-
ply as an institutional member (and pay higher dues). He never wrote
back. The proof of 5.2.6 is due to Banach. Theorem 5.2.16 is due to H.
Steinhaus. As shown in [51], the assumption that p is o-finite may be
relaxed if 2 is a locally compact topological space. Theorem 5.4.9 and
its proof are due to Banach [3]; other proofs may be found in [22], [32],
[37]. The proof of Prohorov’s Theorem follows closely classic Tkeda and
Watanabe [57]. The proof of Donsker’s Theorem is a blending of argu-
ments presented in [61] and [100], see also [5] and [107]. The proof of
Tichonov’s Theorem is taken from Kuratowski [77]. The absolute clas-
sic on convergence of probability measures is of course the first edition
of Billingsley [6]. A very nice chapter on this subject may be found in
Stroock [107], as well. Concerning Polish spaces, Stroock writes that this
is “a name coined by Bourbaki in recognition of the contribution made
to this subject by the Polish school in general and C. Kuratowski in
particular”.

9.1.6 Notes to Chapter 6 1. Gelfand was the first to notice and
prove in the 1940s the importance of Banach algebras. Now the theory
is flourishing with applications (see e.g. [27]). A different proof of 6.2.6,
based on the Riesz Theorem, may be found in [22] p. 219. The idea of a
character of a group is one of the basic notions of the rich and beautiful
theory of abstract harmonic analysis [51]. The proof of the Factorization
Theorem is due to P. Koosis [74]. For supplementary reading for this
chapter see e.g. [22], [51], [63], [82], [117], [115]. In particular, in [51] a
much more general version of the factorization theorem may be found.

9.1.7 Notes to Chapter 7 Example 7.3.6 is taken from [65]. There
are a number of excellent books on semigroups of operators, some of
them are listed in the bibliography. The absolute classics in this field are
[54] and [112]. A thorough treatment of Lévy processes may be found in
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[4]. For stochastic process with values in a (topological, locally compact)
group see [55], see also [56]. Our proof of (7.47) is a simplified version of
the argument leading to the theorem of Hunt, as presented in [55]. On
the other hand, to arrive at (7.53) while avoiding technicalities involved
in analyzing general Lie groups, I have used the argument of [41] and
this part of reasoning apparently does not work in the general case of
a Lie group. An explicit formula (in terms of the Hilbert transform) for
the infinitesimal generator of the Cauchy semigroup can be given if we
consider it in LP(R),p > 1 — see [89]. The probabilistic formula for the
solution of the two dimensional Dirac equation is due to Ph. Blanchard
et al [7], [8], [9], [10]. Group-theoretical aspects of the formula were
discussed in [11].

9.1.8 Notes to Chapter 8 The vast literature on Markov processes
that covers various aspects of the theory includes [4], [20], [21], [29], [35],
[34], [38], [41], [42], [46], [47], [48], [57], [58], [61], [62], [84], [88], [92], [93],
[99], [100], [102], [105], [107], [109], [113], [114].

Theorem 8.2.1 is due to Hille, Yosida, Feller, Phillips and Miyadera,
and generalizes the earlier result of Hille and Yosida where w = 0 and
M = 1. The proof of this theorem as presented here differs from the orig-
inal one, and there were many who contributed their ideas to simplifica-
tion and clarification of the argument. The decisive steps, however, seem
to be due to W. Arendt whose paper [1] inspired the whole literature on
so-called integrated semigroups (where also 8.2.3 was established — with
a different proof) and J. Kisyniski, who noticed relations with the the-
ory of representations of Banach algebras and introduced the algebraic
version 8.2.16 of the theorem. In particular, thanks to W. Chojnacki’s
reference to Cohen’s Factorization Theorem, he was the first to show
(8.43). The whole research on non-densely defined operators was also
greatly influenced by the paper by G. Da Prato and E. Sinestrari [25].

One of the most important cases of the Hille-Yosida theorem not
discussed in this book is the Stone Theorem on generation of unitary
groups. The famous Bochner Theorem characterizing Fourier transforms
of bounded Borel measures on R™, n € N, may be proved to follow from
the Stone Theorem [98], [112].

With the exception of the proof of 8.4.16, the second part of Section
8.3 follows [54] closely.

The equivalence of (a) and (b) in 7.4.48 was apparently first noticed
by T. G. Kurtz [78], but at that time it seemed to be merely a side-
remark (compare, however, [26] pp. 123-124 and probably hundreds of
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other places). Arendt’s article [1] added a new dimension to this result;
see [14]; see also the paper by Lizama [86] for convergence theorems for
integrated semigroups. By the way, this part of Kurtz’s article seems to
be completely forgotten by many specialists of the theory of integrated
semigroups.

Subsections 8.4.21 and 8.4.22 are of course based on Kingmans’ orig-
inal papers [67], [68]. Examples 8.4.1, 8.4.2, 8.4.5 and 8.4.11 are taken
from [13] and [15]. A straightforward way of computing the characteristic
function of the telegraph process may be found in [96].

9.2 Solutions and hints to exercises

Hint to Fzercise 1.2.4 By 1.2.3, it suffices to show that B(R) = o(G)
where G is the class of intervals (—oo,t], t € R. To this end, prove first
that intervals (s, t), s,t € R, belong to o(G). Then show that every open
set in R is a countable union of such intervals, and deduce that o(G)
contains all Borel sets. For the example we may take (2, F) = (R, B(R))
and f(1)=1T.

Exercise 1.2.6 The family F defined by the right-hand side of (1.3) is
a o-algebra, and contains open sets in S’. Hence, F D B(S’). Moreover,
the family G of subsets A of S such that AN S’ is Borel in S’ is a o-
algebra and contains open sets in S. Therefore G D B(S). This implies
F C B(S’) and completes the proof.

Ezercise 1.2.10 Let G be the class of sets of the form AUB where A € F
and B € Fy. Of course G C F,,. We see that {2 belongs to G and so do
countable unions of elements of G. Also, if A € F and B € Fy and C' is
as in the definition of Fo, then (AU C)¢ € F, and C'\ (AU B) € F.
Since Ct BC,

(AUB)® = [AuB)®nclua®nBtnCh
= [c\auB)JuA®nctl=[Cc\(AuB)uAuUC)®

proving that (A U B)C € Fp. Thus, G is a o-algebra and we must have
Fu =G. Suppose that A, A’ € F, B, B’ € Fy and C,C" are chosen as in
the definition of Fy. If AU B = A’ U B’, then the symmetric difference
of A and A’ is a subset of BU B’ C C'UC’, and so u(A) equals u(A’).
Therefore, we may define u(A U B) as u(A), A € F, B € Fy. The rest is
clear.
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Ezercise 1.2.12 For almost all w € Q and h # 0, we have + [z(T+h,w) —
z(r,w)] = a'(7 + 0h,w) where 0 depends on 7,h and w. The absolute
value of this expression is no greater than y(w). The claim thus follows
from the Lebesgue Dominated Convergence Theorem.

Exercise 1.2.31 1f [ is the left-hand side of the relation we are to prove,
then, changing to polar coordinates,

s2+t2 4 o0 r2
//e_ 2 dsdt:// re” 2 drdf
R JR o Jo
e

T 21 = 2.

12

FExercise 1.2.36

Ex=[ xdp+ XdIPZe/ dP = eP{X > ¢}.
X>e X<e X>e

FEzercise 1.2.37 By the Fubini Theorem, since P{X > s,V > t} =
Jo Lix>t,y>¢y AP, the left-hand side in (1.17) equals

/ / 5L Bt81 Ieby(d(s, 1)) P(dw).
2 J[0,X (w))x[0,Y (w))

Using the Fubini Theorem again, the inner (double) integral equals

X (w) Y (w)

/ asaflds/ ptPtdt = X(w)YP(w),
0 0

and we are done. (1.18) is now straightforward, and so is (1.20) if we have

(1.19). To prove (1.19) note that P{Y 1;xss >t} =P{X > s,V > t}.

Hint to Exercise 1.3.4 The right-hand limit of vy (¢) exists and is no less
than v (t), for this function is non-decreasing. May v (t+) be strictly
bigger than v (t)? The following argument shows that this is impossible.
If vy (t+) > v4(¢) then there exists a ¢ > 0 such that for any sufficiently
small € > 0, var[y,t,to] > &, where tg = ¢t + e. We may assume that this
€ > 0 is so small that |y(t) — y(s)| < 0’ = /2 for s € [t,to]. This implies
that we may find a ¢ < ¢t; < ¢y and a partition of [t1, ] such that the
appropriate sum of absolute values of differences between values of y at
partitioning points is greater than ¢’. The interval [t, ¢1], however, enjoys
the same properties as [t,?o]. Therefore we may find a ¢t < t3 < t1, and
a partition of [te,t1], (and consequently a partition of [ta,to]) such that
the appropriate sum is bigger than 24’
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Since this is supposed to be a hint and not a complete solution, we
shall say no more.

FExercise 1.5.8 Write

k—l

S(T,E,:E,y) :x(fk—l)y(b)_x §0 - f’t 1)] ( )

:1

<.

to see that
|S(7;17 Envl'vy) - S(,Tna Envxayr) - w(éO,n)[y(aJr) - y(a)”
is less than

’U(LT‘[G,7 bv y] : sup |(E(€) - x(n”a
[€—n|<2A(T5)

which tends to zero, by the uniform continuity of x. Here &y, is the first
element of Z,, and lim,,_. z(£,n) = z(a).

Ezercise 1.4.4 It is enough to note that o(f(X)) C o(X) and o(g(Y)) C
a(Y).

Exercise 1.4.5 The “if” part is trivial, the “only if” part follows from
1.2.7.

Ezercise 1.4.10 Note that Z is an exponential random variable with
parameter \ iff P[Z > s] = e7**,s > 0. Now, P[Y > s] = P[X; >
s, Xo > s] =P[X; > s|P[Xs > 5] = e~ (A1tA2)s

Hint to Exercise 1.4.11

[ee] oo
PX <Y]=Au / / e Me M dsdt.
0 t

Hint to Exercise 1.4.18 Find a recurrence for Z,.

Ezercise 1.5.2 g belongs to [ug, us] iff there exists an 0 < o < 1 such
that ug = aquz + (1 — @)uy. This a equals 72— See 2.1.26.

Ezercise 1.5.3 We calculate (au+ Bv) = ¢(a+b—au—Bv) = ¢(a(a+
b—u)+p(a+b—v)) < ap(a+b—u)+Bdlatb—v) = ad(u) + Bo(v),
where 3 = 1 — .. The claim concerning ¢ is proved similarly.

Ezxercise 1.6.1 Since u(AN B) = u(ANBNC) + u(An BN CY), and
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w(CNB)=pu(CNBNA)+ u(Cn BN AL), then

(AN B) = p(C N B)| = (AN BN CY) — u(BNCNAY)
<u(ANBNCY + u(BNCN AL
<u(ANCY + pcn A = pAa+0).

Ezercise 1.6.3 Suppose that § = 0. Then there exist sequences a,, € A
and b,, € B such that lim,,_, o, d(an,b,) = 0. Since A is compact we may
choose a converging subsequence a,,; limg_, a,, = a € A. However,
this implies that b, also converges to a, and since B is closed, a € B.
This is a contradiction.

An appropriate example may be constructed in R, and the trick is
to choose A and B unbounded. For example A = J,y[27,2n + 1],
B={2n+1+4+ 1 n>2}

Ezercise 1.6.6 For s > 0, z(ks) = xz(

£, and an arbitrary t > 0, z(§)

these two relations, we get the claim.

kx(s). Tak-

)= =
ing s = 1x(kt) = 1(t). Combining

Exercise 2.1.2 Suppose that there are two vectors ©; and © satisfying
(a2). Then ©; = ©1 + O3 = O2 + O1 = O,.

Ezercise 2.1.83 Suppose z+z'" = ©. Then 2"’ = 2" 4+0 = 2"+ (x+2') =
@ +z)+2 =(@@+2")+2' =0+ =2'+0 =2

Ezercise 2.1.4 We have 0x = (04-0)z = 0z+0z. Thus, © = 0z+(0z)’ =
(0z 4 0z) + (0z)' = 0z + (0z + (0z)') = 0z + © = Oz.

Ezercise 2.1.5 © = 0z = [1 + (—1)]z = 1z + (—1)a. Thus, by 2.1.3,
(-Dx=2a'.

Ezercise 2.1.14 (a) follows directly from the definition of a linear map.
(b) If  and y belong to Ker L, then L(ax + 8y) = aLz + fLy = 0. (c)
is proved similarly.

Ezxercise 2.1.17 If a class is not equal to Y, it contains an element, say x,
that does not belong to Y. An element y belongs to this class iff x ~ y,
i,e. z —y €Y, so that the class equals z + Y.

Hint to Exercise 2.1.20 Pick p € S and show that the set of functions
that vanish at this point is an algebraic subspace of R®. Proceed as in
2.1.19 to show that this subspace is algebraically isomorphic to R /Y.
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Hint to Exercise 2.1.21 Show that I[z] = Lz does not depend on the
choice of z from the class [z] and that I is the desired algebraic isomor-
phism.

FEzercise 2.1.23 The inverse image of () is ) and the inverse image of Q
is Q, but the range of f equals {3} & F'.

Ezercise 2.1.28 Observe (and then check) that both Y; and Y, are
convex, and that span Y, = spanYs = R2.

Hint to Ezercise 2.1.29 Show that the set of z of the form (2.1) is convex,
and note that any convex set that contains y; must contain elements of

[

such a form. As for the counterexample, think of the letter “x” as a
subset of R?, and take Y; to be the left-hand part of the letter and Y,
to be the right-hand part of the letter. The convex hull of the “x” is a
square and the set of z of the form (2.1) is clepsydra-shaped.

Ezxercise 2.1.32 The inclusion spanZ, C spanY, is easy. Moreover,
span Ly, C Zps1. We will show that spanY,, C spanZ, by induction.
For n = 1 this follows from

Z0 =Yo0,1 +Y1,1, 21 =7Yo,1 —Y1,1-

Assume that Y,, C Z,, so that y;, € spanZ, C spanZyyi, for all
0 <1l < 2" Since

Yin = Y2ln+1 T Y2u+1,n+1, 2240 = Y2Uin+1 — Y20+1,n+1,
or
1 1
Y2Un+1 = i(yl,n +2on41),  Youpintl = §(yl,n — Zang4l),
Yknt1 € SPan Zpy1, for 0 <k < 27*1 as desired.

Erercise 2.2.2 By (04), ||zl = |lyll = lz £y Fyll - lly]l < |z +y]|, which
gives that claim, except for the absolute value sign on the left-hand side.
We complete the proof by changing the roles of z and y.

Ezercise 2.2.7 By 2.2.2,
llzall = llll] < llzn — =l.

Hint to Fxercise 2.2.14 The “only if” part is immediate. To show the
other part, assuming that z,, is a Cauchy sequence, find a subsequence
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- 1 orieg o0
Tp,,, such ||z, —Tn, || < 5r. Then the series Y .~ (Tp,,, —Tn,,) +Tn,
converges. Prove that x,, converges to the sum of this series.

Hint to Ezercise 2.2.17 Proceed as in 2.2.16: the uniform limit of a
sequence of bounded continuous functions is bounded and continuous
(use 2.2.9). Analogously, the limit (even pointwise) of a sequence of
measurable functions is measurable.

Hint to Exercise 2.2.42 Take ) =

z(t) = 1.

T with Lebesgue measure and

*

Hint to Ezercise 2.53.4 Use
IS(T, 5, Az.) = S(T",E', Az)| < Al |S(T,E,2.) = S(T', &/, z.)]|.
Cf. 7.3.4.

Hint to Ezercise 2.3.12 Proof by induction. For the induction step
write P41 — Rpt1 as (Apt1Pr— Ani1Ry) + (A1 Ry — Bry1 Ry) where
Pn = AnAn—l'nAl and Rn = Ban_l...Bl.

Hint to Ezercise 2.3.13 Prove that S,(t) = >0, tif!‘i is a Cauchy
sequence in £(X). To this end, use Exercise 2.3.11 to see that ||A"] <

LA™

Ezercise 2.3.14

etdetB equals:
XL (tA)" (1B)F S (tA)Y (tB)'
’;)nE_:O(m) (k|) :;j_O(J|) ((Z_)])' (z—ﬂ+k)
i% ( ) A) (tB)i™7 = i tl(A;r B ars o)
=0 :

Hint to Exercise 2.3.16
Note that our exponent equals e° ZZO:O (n), , where C = aL + bR.

Thus it is enough to show that [|e|| = e2™’. Furthermore, || <
ellCll = e+ for obviously ||C|| = a + b. Also, we have

C*(&n)n>1 = (i (f) aibk_ifn—kwi) (9-2)

i=0 n>1

where &y = 0,§_; = —¢&;, for i > 1. In particular, if (§,)n>1 = (0n,m), 5
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for some m > 1, then for k < m, [|C*(&,)n>1]lr equals

m-+k
Z Z ( > aibk_i6n7k+2i,m Z Z < ) ak_jbj(anrmej,m

n=m—k i=0 n=0 j=0
Z Z ( > akijb]x2n+m—2j = Z (z> a" 7l = (a+ b)k
n=0 j=0 1=0

Thus, since the operator C' is positive, we get for all m > 2,

m— m—1
a—i—b
HeC” > ||ec( n,m) n>1 [ > Z n>1 )
k=0 ' k=0

and, consequently, [[e€|| > e *t?.

Hint to Exercise 2.3.19 The formula E Xg(X) = AE g(X + 1) holds
iff p, = P[X = n] satisfies (n + 1)p, = Ap,. The formula F g(X) =
qE g(X + 1) holds iff p1 = gpy.

Ezercise 2.3.40 This problem is a particular case of 2.3.43.

Ezercise 2.3.43 The integral in the definition is finite almost everywhere
by Fubini’s Theorem. Moreover, the image of z lies in L' (R, M, leb), for
changing the order of integration we obtain:

/R|Kw(7')|d7§/R/Rk(T,U)|x(U)|dadT:/R\x(o)|do: lzll. (9.3)

The reader should check that K maps classes into classes. Moreover,
for non-negative z, omitting absolute values signs in (9.3) we obtain a
sequence of equalities.

Hint to FExercise 2.3.44 Taking x = 14 where A € F’, we see that
p(A) = [ Lady’ must be equal to [, 1ao fdu = [,1lp-1(aydp =
u(f~1(A)). Thus the only measure that will satisfy the required property
is the transport of p via f : y/ = py. It remains to check that 5 is indeed
the proper choice.

Ezercise 3.1.9 Subtract both sides of (3.1) with ¢ = 1 and t = —1,
respectively.

Ezercise 3.1.19 If P is a projection on a subspace Hy, then
(Pz,y) = (Px,y — Py + Py) = (Pz,y — Py) + (Pz, Py) = (P, Py)

since y — Py is perpendicular to Hj.
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Hint to Exercise 3.1.16 Take x = Pz and y = z — Pz where P is the
projection on Hy. If z +y = 2’ +/, then x — 2’ = ¢ —y is perpendicular
to itself.

Hint to Ezercise 3.1.24 Use 3.1.23. Note that P? = P iff (a) holds; in
such case Pj is self-adjoint. Analogously, Py is self-adjoint iff (z, Py Pyy)
= (2, P P1y) for all x and y in H, i.e. iff (a) holds; in such a case P = P;.

Moreover, the range of Pj is contained in H; +Hy for Py = Py + Po(I—
Py), and H; + Hj is a subset of the range because a direct calculation
shows that if © = Pyy; + Poyo for some y; and yo in H then Psx = z,
which implies that z belongs to the range of Ps.

Finally, the range of Py = P P, = P, P; is contained in H; and in H
and it must be equal the intersection of these two subspaces since for x
in the intersection we have x = Pyx.

Hint to Ezercise 3.2.2 For the converse show that z(t) = InP(T >
t),t > 0 satisfies the Cauchy equation.

Ezercise 3.3.4 The sum Y . b;1p, is G measurable, and we check that

/ ZblB 4:]/ d]P’:/ X dP.
B, B;

le

Ezercise 3.3.6 The square of the norm of ¢ in L?(, F,P) is

2 _Oo 2 _Oo 2
/Q¢ d]P’—;/BiqS d]P’_;bl]P’(B)

so that ¢ € L?(Q, F,P) iff the last series converges. As in (3.7) we show
that

o0

/ (¢ —14)*dP = Z [b7P(B;) — 2b;P(B; N A) + P(A)],
Q i=1
so that we have to choose b; = Mﬁ;gi) =P(A|B;),i=1,2,... Since
(AN B; IP’Q(A N B L P(AN B
S (Monr) we - ¥ <3
i=1 i=1 i=1

- ij(A N Bi) = P(A),
=1

¢ with such coefficients belongs to L?(Q2, F,P) (in particular the minimal
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distance is finite). Also, for such a ¢,

/BﬁdP:/.bidIP’:bi]P’(Bi):]P’(AQBZ-):/.lAdP

B; B;

Ezercise 3.3.7 For any t € R,
t?’E(Y?|G) — 2E(XY|G) + E(X?|G) = E((tY — X)?|G) (9.4)

except for the set A; of probability zero. But just because of that we
should not claim that this holds for all ¢ € R, except on a set of proba-
bility zero. We need to be more careful and proceed as follows.

For any rational ¢t € Q, (9.4) holds except on a set A; of probability
zero. Moreover, E((tY — X)2|G) > 0, except on a set B, of probability
zero. Thus

t*E(Y?|G) — 2tE(XY|G) + E(X?|G) >0 (9.5)

except on A;UB;. Furthermore, A = Ute@(AtUBt) is a set of probability
zero. For all w € Q\ A, (9.5) holds for all ¢t € Q, and by continuity of the
right-hand side, for all ¢ € R. Therefore, except for a set of probability
zero, the discriminant of the right-hand side is non-positive, and our
claim follows.

) > E(Y|G) when-
ever X > Y. Hence E(1y=,|G) < E(§1xza|g) < E(%\g).

Ezercise 5.5.10 We have EVAR(X|G) = E [E(X?|G) — E(X|G)?] =
EX? - E[E(X|6)]° and D?[E(X|G)] = E[E(X|G)]” — [EE(X|G)]?
=F [IE(X|Q)]2 — (E X)2%. Adding up we get the claim.

Ezercise 5.3.16 E(Z,|Zs) = EXilg + E(Y|Z) = E X1 + E(Zy —
Xo|Zy) = E(Z3| Zo) = Zs.

Ezercise 3.53.19 We have EXY = FE {E(XY|0(Y))} =FE (YE(X|o(Y))
~E(YEX)=EX-EY.
Ezercise 3.5.2 Define A,y =Y 1 [E(X;41|F) — Xi].

Exercise 3.5.7 Set | X| = [|X}||2, k,n > 1. We have

[e%s) k 2 s} k
EZ2, =EY (Z X{L“) 1z, =Y P{Z,=k}E(D Xt
k=0 \i=1 k=1 =1
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= > P{Zu = K} [kIX? + k(k — 1)m?]
k=1
= || X||?E Z, + m*E (Z2 — Z,,)
= (IX|2 = m?) E Z, + m*D2(Z,) + m*+1),

whence (3.25) follows.
The case m = 1 is clear, since D?(Z;) = o%. In the other case we
2
note that ﬁm” is a particular solution of (3.25) and that the gen-
eral form of the solution to the homogeneous recurrence associated with
(3.25) is am?"; the constant « is chosen so that D*(Z;) = o2.

Hint to Ezercise 3.6.6 Apply 3.6.5 to A}, = —A,.

Ezercise 3.7.9 The condition of the first definition implies the two
conditions of the second definitions because (i) for all n,k > 1 we
have E'|X,| < E|X,|1x, > + kp(2) which proves that X,,n > 1, is
bounded, and (ii) in view of the fact that F'|X,,|[1a = E | Xy [14qx, >+
EXullanix, 1<k < E|Xnllx, >k + ku(A) we may make | X, |14 less
than an arbitrary € > 0 by choosing a large k first, and then taking,
say, 6 < g (provided p(A) < J). On the other hand, if our sequence
is bounded in L! then E | Xn|1jx, >« is bounded by the same constant,
say M, and so the measure of each of the sets A, = {|Xmn| > k} is

less than % Hence, given € > 0 and § = §(¢) spoken of in the sec-

ond definition we may take k > & to make sup,>; E |Xn|lx, >k <

SUP,,>1 SUP,,>1 B [Xy[la,, , less than e

Hint to Fzercise 3.7.10 Note that random variables ¢y (X), where ¢,
was defined in the last paragraph of 3.7.3, converge to X in L'.

Hint to Exercise 3.7.18 For part (c), given A € F,, consider the proces
Xn = 1anfr=n},n = 1, and show that it is adapted.

Exercise 4.2.3 For any real ai,1 <k <n,

n 2 n n
Z opTE — || = (Z ORTE — T, Z QT — ) (9.6)
k=1 k=1 k=1

n n
=zl -2 an(ar2) + > of
k=1 k=1
n

= llal® = D (e @)® + ) o — (a,@0)).
k=1

k=1




376 Appendizes

The first two terms above do not depend on ag, and thus the minimum
is attained exactly when the last term equals 0, i.e. iff ay = (zg, ).

Ezercise 4.2.5 For any n > 1, >}'_,(x,,x)? is the square of the norm
of the projection of x onto span{zx,1 < k < n}. Thus it is less than
||lz||* by 3.1.13 (it also follows directly from (9.6) above if we take ay =
(x,2)). Since n is arbitrary, (4.3) follows.

FEzercise 4.2.15 Note that || Zli:k a;zi||* = Zé:k a? so that the sequence
>, aiz; is Cauchy.
Hint to Exercise 4.3.12 1t suffices to show that

E (ea[w<t+h>—w<t>]2| ;t> _ Feelw(tth) —w®)]? _ e—

or that FeX = e%, provided X ~ N(0,0?), which can be checked
directly. (Recall that Mx (t) = Ee'X is a so-called moment generating

function of a random variable X; if X ~ N(0,02) then Mx(t) = e#.)
Exercise 5.1.11 Use the Kuratowski-Zorn Lemma.

Hint to Ezercise 5.2.5 The isomorphism is given in 7.4.24. A functional
on [l may be represented as Fz = F(&n)ps1 = 2opey @n™E, where
(o), >, belongs to [°°. To prove this, use 5.2.3 and the argument from
5.2.10.

Hint to Ezxercise 5.2.12 By 2.2.38, Cy(G) is isometrically isomorphic to
Co(R) x Co(R).

Hint to Exercise 5.1.17 Check that finite combinations y = 2?21 &e;
of e; := (0i,n),;>q,1 > 1, belong to Y.

Hint to Ezercise 5.4.8 To prove weak convergence use 5.2.16. To show
that the sequence does not converge strongly note that if it converges it
must converge to zero and that ||y, | = 1.

Hint to Exercise 5.5.4 Argue as in the proof of the Markov inequality
(see 1.2.36).

Hint to Ezxercise 5.5.5 Use the estimate:

E Xy — e L X 6503 = Sa0%E [ X — pk*1{ x4 —pn | 5550} -

Hint to Ezercise 5.7.20 For any € > 0 there exists an n > 1 and
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T1,..., &, € Asuch that min;—; ., ||z —z;|| < § for all z € A. Moreover,
there is a ¢ such that d(p,p’) < d implies |z;(p) — z:(p')| < 5.

Hint to Exercise 6.2.8 Use the argument from the proof of Alaoglu’s
Theorem to show that F(xy) = Fx Fy for all z and y in A and F in the
closure of M U {0}. Note that we may not exclude the zero functional
from being in the closure of M. If A has a unit u, though, we show that
F(u) =1 for all F' in the closure of M, so that the zero functional does
not belong to ¢l M.

Hint to Ezercise 6.3.5 Note first that it is enough to determine av,,n >
2. Now, choose n = 2k + 1 and m = 2k — 1 in (6.14) to obtain

Qopt1 = 200102 — Qgf—1.

Similarly, choose n = 2k and n = 2k + 2, to obtain asgpyo = 201911 —
aag. This proves that values of «, and «,; determine ay, 12, so the
proof is completed by the induction argument.

Hint to Exercise 6.4.6 (b) Use (a) and (6.24) with r = 3, and « replaced
by 4apq. Note that (2n — 1)!12"n! = (2n)! so that (" 1+2)4" = (>").

n

(f) Use Abel’s theorem to show that Y ° | r, = lim,_1 g(a), and note
that 1 — 4pg = (p + q)? — 4pq. Details may be found in [40] or [48].

Exercise 6.4.7 For T = 0, this result follows directly from 1.2.31 by the
substitution s = V' At.

For 7 > 0,
dg(T,t
UL
and
ag(r,t) 1 72 10%g(r,t)

p T i DL Ll b

Let (a,b) C R be a finite interval. For 7 in this interval,

Og(7,1) c 0?g(7,t) 1 e
‘57‘ A ‘é%2<%t+ﬂ

)g(d,t)

where ¢ = |a| V |b] and d = |a| A |b|. Taking u in Exercise 1.2.12 to be
the measure on Rt with density e~

0 0
EG()\,T) = /}R+ gQ()\,T) p(dw), 7> 0.

we obtain



378 Appendizes

Similarly,

8—267()\ T) = / L (A7) (olw)—Q/ooe*”2 (,t) dt
5.2 oI T pldw) =2 | 57 9(T> 1) dt.

Integrating by parts, this equals 2AG(7,t). The general solution to the

equation 4 G()\ 7) = 2AG(\, 7) in R} is given by

dr?
G(A,7) = Cre™ VAT 4 CoeV?V,

(This is an ODE with ) treated as a parameter ) Since lim, oo G(A, 7) =

0, Co =0, and since lim, o G(\, 7) = 01 \/ﬁ

A different, more direct computation of this integral may be found
e.g. in [109].

Exzercise 6.4.8 By the Lebesgue Dominated Convergence Theorem, and

the estimate |e!?* — 1| < |sh| (draw a picture!) the difference quotient

7¢(a+h,1_¢(a) 1= eies e’ =1o=5 (s converges to i[7 selvse™ T ds.
2

Integrating by parts, this equals i times [—el*e™ 7] __ +ia¢(a). Since

the first term above equals zero, (6.25) is proved. A general solution to

the equation {-¢(a) = —ag(a) is ¢(a) = Ce™ = . Since we must have

o2

¢(0) =1, C =1, and we obtain ¢(a)) = e = .
Exzercise 6.5.4 Use the relations
1 1
zVy=gle—yl+5@ty), zry=—[(-2)V(-y),
or
1 1
Ay =—sle—yl+5@+y), @Vy=—[-2) A=y
or their combination.

Hint to Exercise 6.5.5 Show first that the set of real parts of the elements
of A is equal to the algebra of real continuous functions on S.

Ezercise 6.5.7 Since ||z(X,Y) —y(X,Y)||p1q) < |z — y||C(@)7 by lin-
earity it suffices to show the formula for z(7,0) = y1(7)y2(0) where
yi € C(R),i = 1,2. We have E(yu(X)ya(V)IF) = (Eya (X)), Y
being F measurable and X being independent of F. On the other hand,
since y2(Y") does not depend on T,

/ u1 ()32 (V) Px (dr) = (V) / y1(5) Px (d7) = 1 (Y) By (X),
R R

as desired.
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Hint to Exercise 6.6.6 Show the the following calculation is correct:

/ Z(t)el™ dt = Z &n / et dt = 276, m e Z.

- n=—oo

Ezercise 6.6.14 The pgf of the binomial distribution equals (pa+¢q)" =
[1+4 (1 —a)p]™. In the limit, as p — 0 and n — oo in such a way that
np — A, we obtain e 21~ ag desired.

Exercise 7.1.1 Note that z,, is a Cauchy sequence, for if m > n then
Tm € By, C By, so that ||z, — x| < 7. Let £ = lim,,—, o ©,,. For any
n € N, x,, € B,, as long as m > n and B, is closed. Thus, x € B, as
desired.

Exercise 7.1.9 By 7.1.3, A,, are equibounded. Hence, there exists an M
such that

|Anx, — Az|| < ||Apzn — Apz|| + ||Anz — Az
< M|z, — 2| + [|Apz — Az

which implies our claims.

Ezercise 7.1.7 1If the supremum of norms is not finite, then T must
contain an infinite number of elements, and we may choose t, € T

Theorem.

Hint to Ezercise 7.3.4 The key is the fact that if the sequences z,,,n > 1,
and Cz,, converge, then so do Bz, and Ax,.

Exercise 7.4.6 By 7.1.6, there exists a § > 0 and M > 1 such that for
0<t<4,||Te|| <M (M is bigger than 1 since ||Tp|| = 1). Thus, for any
reX,and 0 <t <4,

IT:Six — x| < ||TiSex — Tix|| + || Tix — x| < M||Sex — x| + ||Tex — ||
The claim follows by taking the limit as ¢ — 0.

Hint to Ezercise 7.4.10 Use 5.4.12 and a result analogous to 5.4.18,
where R is replaced by the unit circle.

Ezercise 7.4.13 Note that S; = e”“!T} is a semigroup, and that ||S;| <
M. By the semigroup property, for any t > 0 and n > 1,

1Sell = ISZI < [[Se ™ < M™.
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Since 0 < M < 1, ||S¢|| =0, i.e. Sy =0, and Ty = 0.

Hint to Exercise 7.4.25 The characteristic values of A are 0,—1 and
—6 with eigenvectors [1,1,1], [0,2, 3] and [0, 1, —1] respectively. Further-
more,

10 O 1 5 0 0
1 2 1 =5 -2 1 1
1 3 -1 -1 3 -2

Ezercise 7.4.23 The semigroup property of {S;,t > 0} and its strong
continuity are trivial. Moreover, x belongs to D(B) iff the limit
Six —x . Tir—=x
im = lim ——
t—0+ t t—0+ 4

exists. If it exists, however, it belongs to X1, for X; is closed.

Ezercise 7.4.27 Let e = (1,--- ,1)T be the column-vector with all en-
tries equal to 1. The condition ZjE]I ¢i,; = 0,1 € I, is equivalent to
Qe = 0. Analogously, Eje]lpiJ = 1,i € I, iff P(t)e = e. The key to
the proof is the fact that @Q = %P(t)n:& If P(t),t > 0, are stochastic

matrices then ¢; ; = %pm ()t=0 = limg 0 p"'"t'(t) >0,1#j,and ¢;; =

limy 4 p“(tﬁ < 0. Moreover, Qe = % [P(t)e]‘t:O = [%du:o = 0.
Conversely, if @ is an intensity matrix, then all the entries of exp tQ are
non-negative because rI + () where r = —min;cy ¢;; has non-negative

entries and we have e?! = e~ "te("+@)t matrices —rI and Q commuting.
Moreover, e9'e = e since €?%e = e and $e%e = e?'Qe = 0.

Hint to Ezercise 7.4.37 Use the Taylor formula (5.21). For example,
for z € D(%), C(t)z(r) — z(r) = 20?2 (7 + b1vt) + 2" (1 — Oa01)]
and (C(t)z)' (1) — 2/(7) = Ltw[a" (7 + O30t) — 2" (1 + 640t)], where 0 <
0; <1,i=1,...,4. This implies lim; .o +(C(t)z — z) = 0 for z € D(%)
strongly in X.

Hint to Exercise 7.4.47 Show that without loss of generality we may
assume that the semigroup is bounded and consider elements of the form
H(¢)x where ¢ is C*° with bounded support.

Hint to Ezercise 7.4.48 Both sets {ex,A > 0} and {1f,t > 0} are
linearly dense in L*(R™).

Ezercise 7.5.3 See (7.41) and the paragraph following it.
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Hint to FExercise 7.5.4 Repeat the analysis given for the Brownian mo-

tion. The semigroup is given by Tix(1) = Ex(T+at +w(t)). Prove that
2

the generator equals 12" + az’, and has the domain D(+L5).

Hint to Ezercise 7.5.10 X [;~ e™* eatatt t dt = /\W.

FEzercise 7.7.2 y(t,7) = 1 solves (7.55)—(7.56) with y(7) = 1.

Hint to Exercise 7.7.6 If x, k = 1, —1 are differentiable and their deriva-
tives belong to BUC(R) then y(7, k) = kva'(r, k) belongs to BUC(G).
Moreover,

Six(1, k) — x(1, k) = w(vtk + 1, k) — 2(7, k) = vtka' (1 + Ovtk, k)
where 6 = 0(v,t, k,x, ) belongs to the interval [0, 1]. Thus
1
—|ISix —z —ty|| < sup |2/(7 + Otkv, k) — 2/ (1, k)|
t TERk=1,—1

< sup vl (o,k) — 2/ (1, k)|
|T—o|<tv

which tends to zero, as t — 0, by uniform continuity of 7 — /(7 k),
k =1,—1. The rest is proven as in 7.4.16.

Hint to Ezercise 7.7.8 Let y(t) = 1 [ 2(c) do, and write 2(7 + vo) as

87y(7’ + vo), then integrate fft I (a\/ 2 -0 ) %y(T + vo) do by parts
to obtain

y(T +vt) —y(r — vt) + a/tt L (a\/tQ — 0'2) ﬁy

Next note that the function z, (o) := y(7 +vo) — y(r — vo) is odd, and
sois o +— I (a\/t2 - 02) %02 while o — I; (a\/t2 - 02) \/ﬁtffﬂ and

12

o Iy (a\/t2 — 02) are even. Hence,

y(t,7) = e (t) + eot? /_tt Iy (a\/ 2 — 02) z,(0)do

2

t
t
+ e_atg/ L (a\/ 2 — 02) LZ‘T(U) do.
—t

2 12 — g2

(1 +wvo)do.

Also, using (7.61),

t
e g ef‘”/ Iy (a\/ 2 — 02> do
t

t

t
e _tto (a\/ t2 — 02) do =1.

a
+-
2 ¢ V2 —o?
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Hint to Ezercise 7.7.9 (b) Let y(t) = 1 fo o) do. Note that y(7 +
v€(t)) —y(T —v&(t) fgg(t) T —H}O) do. Use linearity of the telegraph
equation.

FEzercise 8.1.2 As shown in 2.3.17, operators 1}, commute with transla-
tions. Let S; denote translation: Syxz(7) = (7 +t). Then

(USsx) (1) = Ex(|s + 7+ w(t)|),
while
SsUsz)(1) = Ex(s + |7+ w(t)]).

These two are not equal for all z € BUC(R™): take e.g.

T—S8 TS
ZUS(T)—{ ) )

0, T2>0.

Ezercise 8.1.7 Easy.

Exercise 8.1.8 In 1.2.20 it was shown that there exist continuous func-
tions fj, converging pointwise, as h — 0, to 1(,; where a < b. By
the Lebesgue Dominated Convergence Theorem, f;(X(s)) converges in
Ll(Q) to 1X(S)G(a,b]- Hence E(lX(s)G(a,bH]_—t) = E(lX(s)G(a,bﬂX(t))’ ie.,
for any A € F, [, 1x()epdP = [, E(lx(s)ep|X(t))dP for B of the
form B = (a,b]. However, both sides in this equality are finite measures
in B. By the -\ theorem, the equality holds for all B, proving (8.10).

Hint to Ezxercise 8.1.10 Use 6.5.7 to conclude that E(f(w,(s))|F:) =
Jo FUT + 0 +wr(O)]) Pus)—we) (do).

Exercise 8.1.12 The only non-trivial part is the fact that, for any Borel
set B and a measure p, the function fg(7) := u(B — 7) is measurable.
If B = (—00,0] for some o € R, then fg(7) = p(—00,0 — 7]. Hence, Fg
is bounded, left-continuous and non-increasing, and in particular mea-
surable. Using linearity of the integral, we check that fp is measurable
for B of the form (a,b],a < b. Such sets form a m-system. Moreover,
the class H of Borel sets such that fp is measurable is a A-system.
Indeed, R € ‘H and if A,B € H,and A C Bthen A—7 C B—1
and the relation (B\ A) —7 = (B—17)\ (4 —7) (see 2.1.18) results
in fg\a(r) = fB(7) — fa(7), proving conditions (a) and (b) in 1.2.7.
To prove (c) it is enough, by the already proved part (b), that for
any disjoint A; € 'H we have (J;o, A; € H (for if A; are not disjoint



9.8 Some commonly used notations 383

then we may consider Ajj A; — U - ! instead). For such A;, however,
fus, 4, = 22 fa,. By the m-A theorem, B(R) C H, i.e. fp is measur-
able for all Borel sets B.

Exercise 8.2.13 By (8.30) and the Binomial Theorem we have
" 2

. < R
RO N )

<M
2% <A+u> (A+u> (Ap)?
A2 () () -7
n e\ A+ Apu)  pn

Hint to Exercise 8.2.15 On both sides of this equality, we have contin-
uous functions. Calculate their Laplace transforms and use the Hilbert
equation (7.33) to show that they are equal.

<

Hint to Exercise 8.8.16 The operator x — z” with natural domain in
Cle,1—€],0 < e < § is closed.

Hint to Exercise 8.3.17 Show coordinate-wise convergence first; then
use Scheffé’s Theorem.

Hint to Ezercise 8.4.6 Note that Ryx (1) =
where z*(7) = (sgn7) z(|7]).

\/% [25 e VRITolat (5) do

Hint to Exercise 8.4.24 Use the Uniform Boundedness Principle on the
operators A,,n >1:

Apx = (Piz, ..., Pp2,0,0,...)

mapping X into the Banach space of bounded sequences (z,),,~; with
T, € X,,n > 1.

Ezercise 8.4.34 Putt= N,n =1 and k = j in 8.93.

9.3 Some commonly used notations

[7] or LT1 — the largest integer not exceeding T,
T77 — the smallest integer no smaller than 7,
7+ =max(0,7),77 = (—7)T,

A, B, C either a set or an operator,
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AC — the complement of a set A,

BC(S) — the space of bounded continuous functions on S,

BM(S) — the space of bounded measurable functions on S,

BM(S) — the space of bounded Borel charges (signed measures) on a
topological space S,

BUC(G) — the space of bounded uniformly continuous functions on a
locally compact group G — see 2.3.25,

C(S) — the space of continuous functions on S,

C(]—o00,0]) — the space of continuous functions on R with limits at
both co and —oo,

C(R) — the subspace of C([—00, 00]) of functions with the same limit
at oo and —oo,

D(A) — the domain of an operator A,

ex —ex(T) = e, see 2.2.49,

F,G, etc. — o-algebras,

m, A, 4, V — measures, but

A, i, v — are also often used to denote a positive (or non-negative)
number, especially in the context of the Laplace transform, while m
may denote a mean or a median of a random variable,

G - a (semi-)group,

M — Lebesgue measurable sets (see 1.2.1),

N — the set of natural numbers,

Ny - Nu {0},

Q, (2, F,P) — a probability space,

p, q — points of S,

Q — the set of rational numbers,

R — the set of reals,

R — the set of non-negative reals,

RY - BT\ {0},

S — a set, or a space, probably a topological or metric space,

sgn — the signum function, see (1.46),

7,0 — usually a real number, sometimes a Markov time,

X,Y,Z etc. — a linear space, a Banach space or a subset, perhaps a
subspace of such a space, but

Z — is sometimes used to denote the set of integers, see e.g. 6.1.1,

x,y, z — elements of a Banach space, or of a linear space.
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o-algebra, 3 convex hull, 43
0-1 law, 110 convolution, 10
on a semigroup, 12
algebra, 3 core, 245, 261
cosine operator function, 258
ball(open,closed), 3 countable additivity, 4
Banach cumulative distribution function, 28
algebra, 202
functional, 152 d’Alembert’s formula, 286
limit, 154 Dirac
space, 48 (delta) measure, 12
Bernstein polynomials, 74, 351 equation, 290
Brownian motion Dirichlet problem, 307
absorbed, 305 distribution, 9
as a martingale, 138 bilateral exponential, 221
construction of, 133-137 exponential, 15
definition of, 125 gamma, 15
elastic, 321, 330, 343 Gaussian, 15
minimal, 304 negative binomial, 218
reflected, 294, 296 normal, 15
Poisson, 15
canonical map (canonical symmetric, 275
homomorphism), 40 uniform, 15
Cauchy
equation, 34 Ehrenfest model, 354
flight, 271 equation
problem, 259 Cauchy, 34
process, 271 Chapman—-Kolmogorov, 296, 299
cemetery, 304 cosine functional, 258
change of variables formula, 9 Hilbert, 205, 259
Chapman—Kolmogorov equation, 296, telegraph, 280, 327
299 with small parameter, 346
character, 224 wave, 260, 281
character group, 225 equibounded operators, 76
charge, 20 equivalence
coffin state, 304 class, 40
combination relation, 40
convex, 43 Ewens sampling formula, 354
linear, 43 exchangeable, 99
conditional expectation, 89 explosion, 339

390



extended limit, 344

field, 3
finite-dimensional distribution, 190
formula
Ewens sampling, 354
Feynman—Kac, 357
Trotter product, 357
function
absolutely integrable, 7
Bessel, 281
bounded, 39
convex, 29
Hunt, 288
measurable, 7
of bounded variation, 17
simple, 7
vanishing at infinity, 57
functional
Banach, 152
characteristic, 220
generating, 273

Galton—Watson process, 105
genetic drift, 115
Gram—Schmidt orthonormalization
procedure, 128
group
dual, 225
Kisyniski, 13
Klein, 12
Lie, 288

Holder inequality, 31
Helly’s principle, 187
Hilbert
cube, 187
equation, 205, 259
Hunt
function, 288
Theorem, 289

independent
mutually, 23
pairwisely, 23

inequality
Bessel’s, 129
Cauchy—Schwartz-Bunyakovski, 81
Chebyshev’s, 16
Doob’s LP, 120
Holder, 31
Jensen’s, 94
Markov, 16
maximal, 119
Minkowski, 32
upcrossing, 113

inner product, 80

Index

391

isomorphism, 54
algebraic, 39
isometric, 55

Ito
integral, 139, 145
isometry, 144

kernel, 40
Kingman’s coalescence, 351

Lévy
—Khintchine formula, 279
process, 270
Theorem, 139
lattice, 222
law of large numbers, 81, 112, 115
and ergodic theorem, 166
least square regression, 128
Lemma
Alexandrov’s, 185
Doob—Dynkin, 42
Fatou’s, 8
Kuratowski—Zorn, 151
Lindeberg condition, 177

map
measure-preserving, 166
non-singular, 103
Markov
chain, 101
inequality, 16
operator, 76-79, 164
process, 297
property, 101
time, 118
matrix
intensity, 255
Kolmogorov, 255
measure, 4
absolutely continuous, 9
Dirac, 12
invariant, 164
regular, 6, 34, 159
signed, 20
translation invariant, 6
transport of, 9
measure space, 4
measures escaping to infinity, 172, 182
median, 276
metric
Fortet—Mourier, 180
Prohorov-Lévy, 180
moments, 10

natural filtration, 139
nets, 180
non-explosive, 337
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norm, 45 progressively measurable, 142
pseudo-Poisson, 307
one-point compactification, 58 pure death/birth, 338, 351
operator simple, 143
adjoint, 163 telegraph, 280
bounded linear, 63 Wiener (see Brownian motion), 121
extension of, 75 property
norm of, 65 Lindelof, 181
closable, 331 Markov, 101
closed, 240 memoryless, 89
dissipative, 330 tower, 93, 100
dual, 163 pseudo-resolvent, 343
Feller, 164
Frobenius—Perron, 103 range, 40
graph of, 243, 331 range condition, 330
Markov, 76-79, 164 representation, 202
non-densely defined, 365 Riemann—Stieltjes integral, 22
part of, 311
projection, 83 scalar product, 80
characterization of, 85 semi-norm, 45
related to a measure, 67 semicharacter, 224
related to a random variable, 69 semigroup
self-adjoint, 84 integrated, 311
non-negative, 107 of equibounded operators, 262
non-negative, a root of, 109 of operators, 246
norm of, 85 continuous in the uniform topology,
sub-Markov, 334 251
translation, 66 infinitesimal generator of, 249
unitary, 166 Laplace transform of, 256
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strongly continuous, 247
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Poisson topological, 12
—Kac process (telegraph process), separation of points, 167, 222
230, 280 space
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compound process, 269 complete, 48
distribution, 15 Hilbert, 82
formula, 307 inner product, 80
kernel, 15, 247 linear, 38
point process, 220 normed, 45
process, 268, 312 Polish, 178
polarization formula, 82 unitary, 80
positive maximum principle, 328 span, 43
process standard probability space, 5
adapted, 119, 141 Stirling numbers, 361
Feller, 302 Stratonovich integral, 142
Galton—Watson, 105 subspace, 46
Lévy, 270 algebraic, 39
Markov, 297
time-homogeneous, 299 telegraph process, 230
non-decreasing, 146 Theorem
Ornstein—Uhlenbeck, 300, 354 A, 6
point, 220 Alaoglu’s, 186
geometric, 221 Arzela—Ascoli, 190
Poisson, 220 Baire’s category, 234
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